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ABSTRACT 

 

Natural gas pipelines are a critical component of the U.S. energy infrastructure. 

The safety of these pipelines plays a key role for the gas industry. Therefore, the 

understanding of failure characteristics and their consequences are very important for 

designing future operations, operating expenditure, and maintenance decisions. 

The oil and gas industry spends billions of dollars annually for the corrosion-

related cost of the transmission pipelines, the costs which increases due to aging and 

deterioration processes in pipeline networks. Therefore, pipeline operators need to 

rethink their corrosion prevention strategies. These results of corrosion failures are 

forcing the companies to develop accurate maintenance models based on failure 

frequency. Statistical methods for modeling pipeline failures and proper maintenance 

decisions play a key role in future safety of lines, to reduce the rate of occurrence of 

failures, and the cost-effective operation of pipelines. 

 This thesis is focused on two challenges. The first challenge is to estimate the 

failure rate of natural gas transmission pipeline networks from the previous incidents’ 

data in the United States. A specific objective of this part is to determine the 

characterization of the failure modes of the transmission pipelines, and to develop the 

statistical models based on the reliability of a repairable system. The second challenge is 

to develop the optimal preventive replacement actions by using well-developed 

optimization models. The objective of the second part is to choose appropriate 
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maintenance policies based on the statistical models and to find the optimal maintenance 

policies. 

In this thesis, two of the most commonly applied stochastic models, which are 

the homogeneous Poisson process and the power law process, are used for the estimation 

of the failure rate. The point and interval estimators of the failure intensity function are 

provided and the accuracy of the stochastic models is tested for each determined failure 

mode. Finally, appropriate maintenance models will be presented for planning 

preventive maintenance and replacement activities for a repairable and maintainable 

system. It is assumed that pipeline systems could be restored to operation requirements 

by some minimal repair process instead of replacement after each failure.
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1. INTRODUCTION 

 

Modern economies need energy to produce goods and services. Support 

transportation and provide heating and other life to communities. Pipelines are key to an 

effective transportation and distribution of liquid and gas products. 

Pipelines represent a dominant means of transporting gas from their upstream 

location to the downstream. While the oil and gas industry uses other transportation 

methods such as oil-gas tankers and tank trucks/railroad tank cars, pipelines are the 

preferred choice. There are two main reasons why pipelines are an important 

transportation method for oil and gas products. First, pipelines are capable of 

transporting large amounts of gas and liquid over long distances (Thompson, 2004). For 

example, replacing a modest-sized oil pipeline, which can transport 150,000 barrels per 

day, with tanker trucks would require 750 trucks, and with railroad cars would require 

225 cars loads per day (AOPL, 2014). Second, the pipelines’ design enables them to 

carry oil and gas products quickly, safely, and cost-efficiently to end-use markets when 

compared to other forms of transportation (Mohitpour et al., 2010; U.S. Energy 

Information Administration, 2013; Mohitpour et al., 2007).  

Pipeline systems can be divided into three major categories: oil pipelines, natural 

gas pipelines, and others (water, chemical, etc.). The purpose of oil and gas pipelines is 

similar. However, the operation processes and the equipment are different (Mohitpour et 

al., 2010). Gas transmission pipelines use compressors to provide high-pressure for long-

distance transport and are connected to distribution systems that deliver the gas via low-



2 
 

pressure and small-diameter pipes that go through the “city gate” valving and the 

metering station. On the other hand, oil and petroleum product pipelines use pumps to 

push oil to tankage or storage facilities (Mohitpour et al., 2010). 

Complex engineering and economical analysis are required for pipeline system 

designs. While designing the facility, pipeline engineers must consider all environmental 

effects, characteristics of oil and gas, volume of fluid, the length of a pipeline, and others 

variables. After complex studies are completed, engineers design the system by 

speculating the material type, diameter, wall thickness, route, power requirements, 

prevention methods, maintenance schedule, etc. (Mohitpour et al., 2007).  

Although pipeline systems are the most economical, the most efficient, and the 

safest way of transportation, there have been an increasing number of incidents in the 

pipeline industry. The failures of the pipeline system can lead to events such as: injuries, 

fatalities, environmental issues, product loss, and property damages (Thompson, 2004). 

As a result of the increasing trends, the reliability of pipelines is a major concern of the 

operators. Therefore, pipeline operators are interested in understanding the failure 

characteristics of an individual pipeline asset and all the variables affecting the 

pipeline’s performance (Baker Jr., 2008; Thompson, 2004). 

A systematic approach for pipeline safety is required to reduce the number of 

incidents. Each company is required to provide a systematic approach to reduce the 

number of failures, improve system reliability, increase the system’s safety, and reduce 

maintenance costs. The best way to reach this target is the adoption of an incident-free 

operation policy (American Society of Mechanical Engineers (ASME), 2010). 
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Effective maintenance strategies are the most important part of the systematic 

approach to pipeline safety. These strategies are extremely important to avoid failures 

during operation. A number of policies have been established to improve system 

reliability and to prevent the occurrence of system failure, and to reduce maintenance 

costs (Wang and Pham, 2006). The first step is to determine system reliability (Wang 

and Pham, 2006). Failure modes can be determined using statistical prediction models. 

These prediction models help the operators to minimize or eliminate any risks. The 

second step is to establish the optimal maintenance strategies. The purpose of the 

optimization problem is to minimize the overall costs of system operation and to 

maximize the overall reliability of the system by maintenance. Appropriate maintenance 

strategies can improve the system’s reliability.  

However, estimating system reliability and establishing optimal maintenance 

frequency is a difficult task. The failure rate, which is used to express reliability of a 

system, is affected by many factors such as the environmental conditions (soil type, 

onshore, offshore, etc.), internal variables (the amount of the liquid water, chemical 

components of natural gas, etc.), structural characteristics (the material, diameter, wall 

thickness, etc.), and maintenance variables (protection methods, frequency, etc.). These 

include a set of variables affecting a pipeline performance is a very difficult task because 

of the very complicated nature of it. Similarly, finding optimal preventive maintenance 

policies in multi-component systems requires complex studies. 
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This section introduces the overall motivation for the study. In addition, this 

section presents the goals and objectives, summarizes the contributions, and outlines the 

organization of the thesis.  

1.1 Background and Motivation 

Pipeline systems are the most popular method for transporting natural gas. 

Pipelines distribute almost 70 percent of oil and gas products worldwide (Mohitpour et 

al., 2010). Also, pipeline networks are growing every year due to new pipelines’ 

construction in new areas.  

Pipelines require the highest level of reliability due to safety concerns. In fact, 

pipeline systems are becoming more complex and being located excessively near high-

density populated areas (“high-consequence areas” (HCAs)). Any release of hydro-

carbon in HCAs could have adverse consequences and great environmental impacts. 

Therefore, safety is the highest priority for governments and the operators (Hernandez-

Rodriguez et al., 2007). 

Due to economic and public safety concerns, pipeline systems are operated 

continually as possible as without an incident. Effective maintenance strategies require 

reaching this objective. The first fundamental step of effective maintenance actions is to 

determine system reliability. Reliability of the pipeline systems can be formulated by 

mathematical models. Mathematical models allow for prediction of future failure 

behaviors and estimate the probability of pipeline failures (Blischke and Murthy, 2000). 

The key to application of reliability to pipeline networks is acquisition, analysis, 

and interpretation of data. Therefore, effective and efficient collection of data and 
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description and analysis of data plays an important role in application of reliability 

(Blischke and Murthy, 2000). There are several types of data gathering techniques that 

can be used in reliability analyst. There are two main approaches: experimental data and 

failure data. Experimental data gains data from samples from well-defined populations. 

Although experimental data provides a good indication of the actual condition of the 

pipeline, it is commonly considered too costly. For pipeline networks, it requires taking 

out a pipe sample for the entire network. On the other hand, in most cases, failure data 

can be used in reliability analysis. Failure data has many advantages. First, failure data 

would go a long way in helping the operators not just to predict the pattern of these 

untoward incidents but also to provide them with a comprehensive understanding of 

what has gone wrong in the pipeline systems. Second, gathering failure data is easier 

than experimental data. For example, the historical failure data sources for the United 

States, Canada, and Europe are open access (OA) (Andersen and Misund, 1983; 

Papadakis, 1999; Blischke and Murthy, 2000). 

The U.S. Department of Transportation-Pipeline & Hazardous Materials Safety 

Administration (PHMSA) maintains a database on pipeline incidents. PHMSA has been 

collecting these data from American pipeline operators since 1986. The PHMSA’s 

database provides invaluable information such as pipeline and operator information, 

failure causes, consequences of these incidents, cathodic protection conditions, coating 

conditions, property damage, year of installation information, and etc. However, a 

number of items are missing. For example, it is very difficult to find information on 

operators and pipeline systems such as the environmental conditions, total section length 
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of pipelines, design considerations, maintenance frequency, inspection techniques, soil 

conditions, etc. 

The key challenge for the operators is to develop reliable models to estimate the 

number of future failures. The results of reliability models help the operators achieve 

this goal. First, the operators can minimize the operational risks such as injury, fatality, 

economical, and etc. Second, the operators can mitigate and control most pipeline 

failures. Third, they can produce safer operations. Finally, they can decide on effective 

maintenance procedures and timing.  For example, if maintenance is scheduled too early, 

the failure of the system cannot be detected and repaired. If maintenance is scheduled 

too late, the pipeline systems pass to an acceptable safety level to the public and 

environment, so the failure will likely occur (Hong, 1997). 

However, developing task prediction models to estimate failure rate for the 

pipelines system is a difficult. Pipelines do not have constant failure rate along its entire 

length because the material, surrounding environmental, and its operational conditions 

are not uniform for the whole pipeline (Røstum, 2000). Moreover, the pipeline systems 

consist of many subcomponents such as valves, metering stations, and compressors. 

Wang and Pham (2006) imply that the failures of different subcomponents in 

multicomponent system may not be independent failure dependency. Therefore, it is 

very difficult to model all factors that affect pipeline’s performance. To address this 

problem pipeline systems can be defined as a group of pipelines (network level), which 

are modeled by the same point stochastic process (Ascher and Feingold, 1984; Caleyo et 

al., 2008). 
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It is important to note that the pipeline system can be considered as a system that 

is repaired upon failure by emergency repair. Hence, it exists as “bad-as-old” type of 

behavior following application of maintenance actions (Stillman, 2003). The arrival of 

the system failures over time can be treated as a stochastic point process. Therefore, 

reliability of the systems could be expressed as a failure rate for repairable systems 

(Mohitpour et al., 2010). There are two common reliability approaches to model 

repairable systems: the homogeneous Poisson process (HPP) and the nonhomogeneous 

Poisson process (NHPP). The NHPP is a popular method to model the failure process of 

repairable systems such as natural gas transmission pipelines (Krivtsov, 2007). 

The next step of pipeline safety is the development of the optimal maintenance 

models. Based on failure characteristics, the optimal preventive maintenance models can 

be established. In the past several decades, a number of different preventive maintenance 

optimization models have been proposed (Wang, 2002). As with the development of 

reliability model, the development of the optimal preventive maintenance models is 

difficult. The success of the models depends on the prediction of future pipeline failures, 

the reliability criteria, the cost of improvements, and maintenance degrees of the system 

(Thompson, 2004). 

1.2 Research Goal and Objectives 

The main motivation for this work comes from developing a better understanding 

of the complexity of characterizing failure behavior and finding optimal preventive 

maintenance decision in natural gas pipeline networks. 
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This thesis focuses on significant failures on the natural gas transmission 

pipelines that lead to adverse consequences. This thesis has two main goals. The first 

goal is to develop a reliability model for pipeline integrity and safety. The second goal is 

to choose optimal maintenance policies based on reliability models. 

The objectives of this thesis are described as follow:   

1. Characterize the failure modes of natural gas transmission pipeline systems in the 

United States. The characterizing process covers time-dependent failure modes 

which causes more significant consequences; 

2. Develop the statistical models to estimate the failure rate of a natural gas pipeline 

network by the analysis of observed failure data, which come from the American 

natural gas pipeline operators. The statistical models need to consider the effect 

of preventive maintenance and rehabilitation actions; 

3. Determine optimal maintenance policy in a realistic way for pipeline system. 

Moreover, the aim of this thesis to present mathematical models for scheduling 

preventive maintenance and replacement activities.  

1.3 Research Contributions 

The main contribution of this thesis is to develop mathematical models to 

estimate failure rate of the pipeline network and to develop a model to find optimal 

preventive maintenance and replacement decisions to literature. Based on the complete 

literature review, only handful of schedule addressed this problem. 

Other specific contributions of this thesis to the gas pipeline industry are in following 

areas:  
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1. Understanding of the time-dependent failure characteristics of natural gas 

transmission pipeline systems; 

2. Development of a reliability model to predict failure rate; 

3. Development of some optimal preventive maintenance and replacement models 

that can help minimize the overall costs of system operation and maximize the 

overall reliability. Moreover, the developed models help companies make more 

accurate maintenance decisions and eliminate and eliminate or reduce future 

operating expenditure (OPEX). 

1.4 Thesis Outline 

This thesis is organized in seven sections. Motivations, research goals and 

objectives, research contributions, and the thesis outline are introduced in this section. 

The relevant background literature for natural gas pipeline systems, causes of failures, 

statistical models used for modeling failures on natural gas transmission pipeline 

networks, preventive maintenance methods, modeling of rehabilitation and replacement 

decision, and optimization models for maintenance are reviewed and presented in 

Section 2. Section 3 presents the applied methodology used in reliability and optimal 

maintenance models. Moreover, this section introduces selection of accurate statistical 

models, statistical representation of the pipeline systems, and data selection and 

assumptions. The incident data sources and data prediction or preparations from several 

pipeline networks in the U.S are described in Section 4. In Section 5, the formulation 

and the solution approach of the relevant statistical models are presented. In the same 

section, a number of expected failures model are estimated. The developed statistical 
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models and the models’ result are then applied to maintenance optimization and the 

equipment replacement decisions in Section 6. In the final Section summarizes the key 

findings and conclusions, and presents recommendations for future research work.
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2. LITERATURE REVIEW 

 

This section presents reviews of the existing literature in four major areas within 

the scope of this thesis: pipeline systems function, failure modes in gas transmission 

pipelines, modeling pipeline failures, and preventive maintenance and replacements 

methods. The first subsection presents general information related to pipeline systems. 

More specifically, the function of natural gas transmission pipeline in the Unites States 

discusses. The second subsection describes causes and consequences of pipeline failures. 

In the third subsection, the existing reliability analysis’ models are reviewed for 

estimating pipeline failures. In the fourth subsection, the existing maintenance and 

replacement models are discussed. In the final subsection, the previous studies that 

focused on effects of rehabilitation and replacement decisions are reviewed. 

2.1 Natural Gas Pipeline Systems 

According to a recent estimation from the Energy Information Administration 

(EIA), global energy demand will increase more than 85 percent from 2010 to 2040. 

Strong economic growth and expanding world population create this demand. Although 

renewable energy sources and nuclear power are the world's fastest-growing energy 

sources, fossil fuels remain and provide almost 80 percent of the world energy supply 

through 2040 (Stambouli and Traversa, 2002; U.S. Energy Information Administration 

Office of Energy Analysis, 2013). 

Natural gas is the fastest-growing fossil fuel. According to the EIA data (2013), 

the gas consumption has steadily increases by 1.7 percent per year. If are looks at the 



12 
 

reasons for this, natural gas has a clean consumption characteristics. In other words, it is 

more environmentally friendly compared to other fossil fuels (Obanijesu, 2009). Further, 

natural gas plays a highly important role as a power generation fuel and is present 

abundance in the U.S. (Obanijesu and Sonibare, 2005; U.S. Energy Information 

Administration Office of Energy Analysis, 2013). 

The pipeline systems are the best way to transport natural gas to the customers. 

There are many reasons why pipelines are a popular means of transportation. First, 

distribution of natural gas with pipelines are a safe and an economically efficient 

transportation method of carrying gas over long distances as compared to oil and gas 

tankers, trucks/railroad tank cars, and other transportation methods (Papadakis, 1999; 

Sun et al., 2000). Mohitpour et al. (2010) noted that the pipeline safety was statistically 

proved this. In 1998, the total number of fatalities due to pipeline incidents in the U.S. 

was twenty-seven ppm, which is much lower than the other transportation methods. 

According to the EIA (2013), “two-thirds of the lower 48 States in the U.S. are almost 

totally dependent upon the interstate pipeline system for their supplies of natural gas” 

(Mohitpour et al., 2010; U.S. Energy Information Administration, 2013; Andersen and 

Misund, 1983). 

The key components of the gas pipeline systems include production wells, 

gathering lines (pipes), separation facilities or processing plants, transmission pipes, 

valves, metering stations, aboveground or underground storage facilities, compressor 

stations, metering stations, city gate at distribution center, distribution pipes, regulator 

station, etc. Figure 2.1 illustrates the major components of this system: a natural gas 



13 
 

production (gathering), transmission, storage, and distribution system (Thompson, 2004; 

Mohitpour et al., 2010). 

The pipeline operation processes include the following steps. First, pumping of 

gas from the wells to gathering lines. Gathering lines then deliver the natural gas to 

processing facilities to remove undesirable chemical components. After the natural gas is 

separated, clean gas is pumped into the transmission lines via compression stations. At 

the end of the transmission lines, the city gates connect to distribution pipelines. The 

purpose of the city gate is to measure gas via metering stations and to deliver low-

pressure gas to the customers using small-diameter pipes (Mohitpour et al., 2010).  

Transmission pipelines form the key component of overall pipeline system 

because transmission pipelines are the main connection between gathering lines and 

distribution lines (Papadakis, 1999). Although, more than 1,000 companies lead an 

operation in the transmission lines in the U.S., only, sixty major natural gas pipeline 

operators are responsible for 80 percent of all natural gas transmission networks in the 

U.S. (PHMSA, 2013c; PHMSA, 2013d; Hereth et al., 2000). 
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Figure 2.1 Components of a Natural Gas Pipeline System 

The transmission pipelines are normally high-pressure, large-diameter, and 

buried underground or underwater because transmission pipelines are passing across 

states and counties (Papadakis, 1999). For this reason, pipes should be durable. 

Therefore, the majority of materials of the natural gas transmission pipelines are made of 

carbon steel (93 percent), other materials (6 percent), and plastic and concrete (1 

percent). Figure 2.2 shows a distribution of natural gas transmission pipelines materials 

in PHMSA dataset. Ranges of these diameters are from 2 to 48 inches. 
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Figure 2.2 Distribution of Materials of Pipeline for Natural Gas Transmission Pipelines 
from 1986-2012 Source: DOT/PHMSA Pipeline Incidents Data 

Although pipelines are the safest and the most economical way of the carrying 

natural gas, any release on pipelines can have an adverse effect on employees, 

customers, the public, or the environment (American Society of Mechanical Engineers 

(ASME), 2010). More specifically, the consequences of pipeline failures depend on 

where the hydro-carbon release occurs. Pipeline safety regulations use a specific 

description to identify areas where a release could have serious negative consequences. 

The name of this concept is “High Consequence Areas” (HCAs). Majority of pipelines 

are located in “high-consequence areas” (HCAs). Thompson (2004) emphasized that 60 

percent of the pipelines are in HCAs. For transmission pipelines, it is almost 261,000 

miles of natural gas pipelines in NCAs (PHMSA, 2013a; PHMSA, 2013b).  

Pipeline incidents can lead to many important consequences other than costs. 

Injuries and fatalities are the two obvious ones (Simonoff et al., 2010). According to 
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DOT/PHMSA Pipeline Incidents Data, a total of 75 fatalities, 334 injuries, and 

$1,977,571,106 of property damage has occurred due to failure of natural gas 

transmission pipelines from 1986 to 2012 (PHMSA, 2013d). An illustrating example of 

this occurred on August 24, 1996. A butane pipeline exploded near by Lively, Texas. 

Two persons lost their lives as a result of a failure. After the incident, engineers 

concluded that the cause of failure was external corrosion due to inadequate cathodic 

protection (Riemer and Orazem, 2000).  

Due to an increasing number of incidents and their consequences, reliability of 

the pipeline system is becoming crucial for the operators and public in general. Public 

safety concerns have been a driving force for new regulations for managing pipeline 

operations (Thompson, 2004). First, pipeline operators require following the Code of 

Federal Regulations (CFR) title 49, Part 192 and 195. 49 CFR Part 192 is titled 

“Transportation of Natural and other Gas by Pipeline – Minimum Federal Safety 

Standards” which was established in August of 1970. This regulation prescribes 

minimum safety requirements for the pipeline industry. More specifically, this regulation 

specifies a minimum design requirement, material and qualification, internal and 

external protection requirements, etc. (Parker, 2004). 

The last significant effort in improvement public safety was taken on December 

17, 2002. President George W. Bush and the 107th Congress passed the “Pipeline Safety 

Improvement Act of 2002” into law. Under this legislation, the U.S. Department of 

Transportation (DOT) issued regulations prescribing the standards guidance for 

implementation of new transmission integrity management programs. Also, the law sets 



17 
 

a minimum requirement for integrity management programs for gas transmission 

pipelines located in “High Consequence Areas” (HCAs) (Baker Jr., 2009). 

Following the 2002 legislation, a number of codes, regulations, and standards are 

established to develop more systematic approach to public, pipeline, and environmental 

safety. The purpose of these codes and standards are to provide a systematic, 

comprehensive, and integrated approach to managing the safety and integrity of pipeline 

systems (Papadakis, 1999). There are two main guidelines that are used by the gas 

industry: American Society of Mechanical Engineers (ASME) B31.8-2010 “Gas 

Transmission and Distribution Piping Systems” and ASME B31.8S-2010 “Managing 

System Integrity of Gas Pipelines” provided by ASME. The ASME B31.8-2010 defines 

requirements for the safe design and construction of pressure piping. The purpose of the 

ASME B31.8S-2010 is to provide the operator general information to develop and 

implement an effective integrity management program. 

The general pipeline industry’s goal is to provide a reliable and safe delivery of 

gas to the end users without an adverse effect on the environment and the public in 

general. This is a fundamental objective for all gas operators. To reach this aim, the gas 

operators have to apply the integrity process by reliability and safety engineers. In other 

words, pipeline operators have adopted an incident-free operation policy. Details of the 

pipeline integrity management system are defined in the ASME B31.8S-2010 (American 

Society of Mechanical Engineers (ASME), 2010).  

According to the ASME B31.8S-2010, the integrity management of the pipeline 

systems involves several steps. The first step is to understand failure mechanisms and 
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their consequences. The second step is to develop reliable physical models that describe 

failure mechanisms using experimental data or the number of previous failures. The third 

step is to analyze the models with collected data from the perspective of risk and 

integrity. The fourth step is to find a solution to mitigate or prevent failures by 

inspection, maintenance, and replacement actions including preparing a plan for future 

operations. The following subsection summarizes the previous studies in failure 

characteristics of natural gas pipelines. 

2.2 Causes of Pipeline Failures 

The first fundamental step in managing the integrity of a natural gas pipeline 

systems is to understand failure modes of pipeline incidents. Enumerating all pipeline 

failures modes is beyond the scope of this thesis. However, this thesis provides a general 

information and explanation about pipeline failure causes.  

According to the ASME B31.8S-2010, the natural gas pipeline failure 

mechanisms are classified under 22 root causes by the Pipeline Research Committee 

International (PRCI) (7 American Society of Mechanical Engineers (ASME) 2010). A 

list of possible threats that cause pipeline failures is given in Table 2.1. These 22 threats 

have been grouped into 9 categories of related failure types based on their nature and 

growth characteristics. Engineers shall correctly address threats at Table 2.1 for risk 

assessment, integrity management, and mitigation activities. Each threat shall be 

considered individually because each threat has its own mitigation strategies (American 

Society of Mechanical Engineers (ASME), 2010). 
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The threats to pipeline integrity are classified in three main categories: time-

dependent, stable, and time-independent. The time-dependent threats involve corrosion 

failures. The stable category covers equipment; welding-fabrication related, as well as 

manufacturing-related defects. The last category includes third party or mechanical 

damage, incorrect operational procedure, outside force, and weather-related and outside 

force failure. According to the statistics from PHMSA, the most common known cause 

of incidents is due to damage by the outside force (26 percent), corrosion (24 percent), 

material failure or construction defect (20 percent), natural force (6 percent), 

miscellaneous (4 percent), other or unknown causes (11 percent), and the rest of the 

causes (16 percent). Figure 2.3 illustrates a summary of the distributions of significant 

failures by causes (American Society of Mechanical Engineers (ASME), 2010; 

Papadakis, 1999). 

Figure 2.3 Causes of Significant Pipeline Incidents in Natural Gas Transmission 
Pipelines from 1986-2012 Source: DOT/PHMSA Pipeline Incidents Data 
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Table 2.1 Whole Threats to Pipeline Integrity Source: ASME B31.8S-2010 

Time-related 

Defect Types 

Failure Types Based on Their 

Nature and Growth 

Characteristics 

Root Causes 

Time-
Dependent 

External corrosion  
Internal corrosion  
Stress corrosion cracking  

Stable 

Manufacturing-related defects 
Defective pipe seam 
Defective pipe 

Welding/fabrication related 

Defective pipe girth weld 
(circumferential) 
Defective fabrication weld 
Wrinkle bend or buckle 
Stripped threads/broken 
pipe/coupling failure 

Equipment 

Gasket O-ring failure 
Control/relief equipment 
malfunction 
Seal/pump packing failure 
Miscellaneous 

Time-
Independent 

Third party/mechanical damage 

Damage inflicted by first, 
second, or third parties  
Previously damaged pipe  
Vandalism 

Incorrect operational procedure  

Weather-related and outside force 

Cold weather 
Lightning 
Heavy rains or floods 
Earth movement 

Failure mechanisms can occurs at different stages of pipeline life cycle. The rate 

of occurrence of failures (ROCOF) is often described as a “bathtub curve” (Muhlbauer, 

2004). The bathtub curve shown in Figure 2.4 is a theoretical curve that represents the 

failure behavior of a system for repairable systems (Ascher and Feingold, 1984). Facility 

life cycle is divided into three main phases. First phase of the graph is called “burn-in-
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phase”. This phase represents early lives of the system, failures occur at a relatively high 

rate, since the stable defect type causes failures (Muhlbauer, 2004). From Table 2.1, 

manufacturing-related defects, welding/fabrication related, and equipment failure types 

are observed in the burn-in-phase. These failures may be eliminated when operators start 

operating the pipe. The second phase is called “constant failure phase”. This period 

represents random failures such as third party damage, weather-related and outside force, 

and incorrect operational problems. Failure rate is fairly constant on the phase. The last 

zone is “wear-out phase”. The components of pipeline complete their useful service life 

in this zone, so failure frequency starts to increase due to time-dependent (corrosion and 

fatigue) failure (Røstum, 2000; Muhlbauer, 2004; Nachlas, 2005). 

 

Figure 2.4 Repairable System Bathtub Curve 
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Companies and researchers have extensively studied the causes of pipeline 

failures (Thompson, 2004; Baker Jr., 2008; Baker Jr., 2009). The main sources of data 

are the annual incident reports that are produced by governments, non-profit 

organizations, researchers, and institutions (Andersen and Misund, 1983; European Gas 

Pipeline Incident Data Group (EGIG), December 2011). The purpose of these studies is 

to provide basic information about pipeline failures, frequency, and to spread awareness 

on pipeline safety. For example, essential information of incidents such as frequency, 

nature of incidents, and causes of failures are available for the United States, Canada, 

and Europe, from PHMSA, the Canadian National Energy Board (NEB), and the 

European Gas pipeline Incident data Group (EGIG), respectively (Baker Jr., 2009). An 

illustrating example of these reports is reported incidents that have been collected by the 

fifteen major gas transmission system operators in Europe since 1970, were analyzed by 

the European Gas pipeline Incident data Group (EGIG, 2008) (Baker Jr., 2009). It is 

important to note that those analyses are very useful for researchers. However, each 

pipeline system has its own designed, so databases should not be compared with each 

other easily.  

Previous studies show that wear-out phase is the most important phase for 

maintenance and renewal strategies (Røstum, 2000; Papadakis, 1999). Pipeline failures 

frequency starts to increase on wear-out phase due to time. Moreover, pipeline operators 

seek for options to extend the life of the pipeline system with accurate maintenance 

decisions. As, most of the studies focus on the failures happening in the wear-out phase 

(Kermani and Harrop, 2008; Song, 2011; Gomes et al., 2013). 
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In the gas industry, the corrosion is the most common threat to pipeline integrity 

in wear-out phase (Thompson, 2004; Ahmad et al., 2011). Corrosion leads to leaks and 

ruptures (Baker Jr., 2008). Stated in other words, corrosion represents a process that 

increases probability of failures over time (Gomes et al., 2013). Baker Jr. (2009) implied 

that corrosion has been responsible for almost 23 percent of significant failures. 

Moreover, 40 to 65 significant corrosion incidents per year were observed onshore and 

offshore gas transmission pipelines from 1988 to 2008 in the U.S. The EGIG report 

(2008) showed that corrosion was the second most important failure cause after external 

interference failures. 

From the operation point of view, the failures due to corrosion represent the 

biggest problem for pipeline operators. Corrosion costs approximately $5.4 to $8.6 

billion annually to the transmission pipeline operators (Thompson, 2004). Annual 

operation and maintenance cost associated with corrosion is 15 percent of total operation 

and maintenance cost. According to Baker’s report (2008), corrosion leads to $7 billion 

of total cost to the oil and gas industry annually. 

Corrosion is a process of destruction or deterioration of a material because of the 

reaction with its environment (Patel, 1969; Baker Jr., 2008). In other words, corrosion is 

chemical or electrochemical oxidation of metals in reaction with an oxidant. Corrosion 

on the wall of the steel pipeline may occur anytime internally or externally (Thompson, 

2004). 

Well-developed reliability models depend on failure characteristics; therefore 

cause of corrosion should be understood well. Corrosion depends on several factors. For 
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example, internal corrosion occurs when corrosive liquids are carried through the 

pipelines (Thompson, 2004). In detail, internal corrosion depends on the amount of the 

liquid water in the natural gas and chemical components of gas such as carbon dioxide 

(CO2), hydrogen sulfide (H2S), oxygen (O2), flow velocity, density, temperature, surface 

condition of the steel, and presence of bacteria in the natural gas. Those factors cause 

different internal corrosion types like uniform corrosion, pitting or crevice corrosion, 

erosion-corrosion, and microbiologically influenced corrosion (MIC) (Thompson, 2004; 

Song, 2011; Ahmad et al., 2011). Conversely, external corrosion mainly occurs due to 

soil environment (types, moisture, level of salts, or bacteria), coating degradation 

(disbandment) or local damage of the external coatings (holiday), inadequate cathodic 

protection (CP), and alternating current or direct current interferences (Rajani and 

Kleiner, 2001). 

The main problem is the corrosion cannot be controlled fully, as pipelines 

interact with its environment that naturally triggers corrosion process. However, the 

corrosion process can be mitigated with proper corrosion prevention strategies (Alfon et 

al., 2012). These strategies relate to the models that formulate the expected number of 

failures in future. Therefore, the estimation of number of failures plays a fundamental 

role for future operation. The expected number of failures can be predicted with 

statistical models. The following subsection summarizes the previous research in 

statistical modeling. 
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2.3 Statistical Models to Predict Pipeline Failures 

Modeling of the pipeline systems’ failures is the second step in reliability 

analysis of pipeline networks (Røstum, 2000). Reliability analysis is commonly used for 

describing the failure behavior of a system. Therefore, reliability plays a key role to 

improve system performance. A good prediction of the expected number of failures can 

be used in an economic analysis of repair versus replacement option. Statistical models 

can help companies develop more accurate maintenance decisions and eliminate or 

reduce future operating expenditure (OPEX). Therefore, pipeline operators can avoid 

unnecessary operation such as early repair or removal of a pipeline coating (Røstum, 

2000). 

The system reliability depends on system characteristics that in case of pipelines 

can be defined as non-repairable and repairable. A repairable system was defined as: “ a 

system which, after failure to perform at least one of its required functions, can be 

restored to performing all of its required functions by any methods, other than 

replacement of the entire system” by Ascher and Feingold (1984). 

Majority pipeline system repairs typically involve a replacement of only a very 

small component or part of a system rather than replacing the entire system because 

repairing the pipes is the most practical and economical rehabilitation approach. The 

natural gas transmission pipeline networks therefore are considered to be repairable 

systems (Rigdon and Basu, 2000; Røstum, 2000; Caleyo et al., 2008). For example, 

Røstum (2000) evaluated statistical methods for modeling pipe failures for individual 
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pipe in a water distribution network. The water pipeline networks are considered to be 

repairable systems (Røstum, 2000). 

The measures of system reliability involve the specification of probability 

distributions (Nachlas, 2005). There are some of the commonly used probability 

distributions for repairable systems such as the exponential, Weibull, and gamma. The 

selection of proper distribution is important for good prediction the probability of failure 

in a certain interval. The Weibull distribution is a good choice for repairable systems. 

First, it is probably the most widely used distribution for the life lengths of very many 

devices (Nachlas, 2005). Second, the Weibull distribution is related to the power law 

process, which is a commonly used model for repairable systems (Rigdon and Basu, 

2000). Another advantage of the Weibull distribution is that it provides a graphical plot 

that illustrates cumulative probability of failure against the age to failure (Mohitpour et 

al., 2007). The cumulative failure rate plot’s slope is beta that is defined as shape 

parameter. Beta >1 indicates increase in wear-out failures, beta = 1 shows constant 

failure rate, and beta<1 denotes a decreasing failure rate on the “bathtub curve” 

(Mohitpour et al., 2007). 

The pattern of failures, which denotes the times between successive failures of a 

single repairable system, is very important for reliability analysis (Ascher and Feingold, 

1984). There are two mathematical models for defining the pattern: stochastic point 

processes and differential equations. Ascher and Feingold (1984) defined the stochastic 

point process as: “a mathematical model for a physical phenomenon characterized by 

failures events distributed randomly in time”. The most popular stochastic point 
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processes, which can be applied to repairable systems, are the homogeneous Poisson 

process (NPP), the nonhomogeneous Poisson process (NHPP), the renewal process, and 

superimposed renewal process (SRP) (Ascher and Feingold, 1984). Also, Caleyo et al. 

(2008) emphasized that the pipeline systems refer to a group of natural gas pipelines, 

which are modeled by the same point stochastic process. In contrast, differential 

equations are quite different than the point process approaches. These equations are very 

useful for reflecting known underlying mechanisms, which contribute to reliability 

growth (Ascher and Feingold, 1984). 

The ROCOF plays an important role in selecting a model for a repairable system. 

The ROCOF of the pipeline systems contains the information about the likelihood of a 

failure at any time t and how the system ages over time. In other words, the ROCOF 

measures reliability of a repairable system (Rigdon and Basu, 2000). 

The selection of appropriate repairable system models depends on how the 

system is affected by failures and repairs (Rigdon and Basu, 2000). In general there are 

five repair (maintenance) actions: minimal, renewal (or prefect), imperfect, worse, and 

the worst repair (Wang and Pham, 2006). Rigdon and Basu (2000) defined the minimal 

repair as “the repair done on a system leaves the system in exactly the same condition as 

it was just before the failure”. In the same book, they defined renewal (or perfect) repair 

as; “the system is brought to a like new state after the repair”. In other words, it refers to 

the “good-as-new”. It is assumed that imperfect repair restores the system operation 

condition somewhere between “as good as new” and “as bad as old”. The rest of repair 

actions lead to the system fail or breakdown (Wang and Pham, 2006). Rigdon and Basu 
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(2000) state that the minimal repair model leads to the NHPP and the renewal repair 

model leads to the renewal process. 

Although, the renewal assumption represents many maintenance situations such 

as single cell components, a large proportion of the practical maintenance situations are 

not well represented in the renewal assumption. As Coetzee (1997) emphasized minimal 

repair represents the majority of the maintenance situations.  

Louit et al. (2009) imply that for complex systems such as distribution networks 

each component has different failure modes. Repair actions are generally specific for 

each failed part. Each failure affects only one small section of the entire system; 

therefore, repair action does not have a significant effect on the complete system’s 

probability of failure. Due to fact that, repair actions leave the rest of the system’s failure 

rate unchanged. In this kind of situation, the failure pattern of the system can be 

commonly represented by NHPP. NHPP assumes that maintenance (repair) actions 

return the system to its previous state. This is referred to as minimal repair (Louit et al., 

2009). Røstum (2000) explained this situation for water pipes networks; pipeline 

systems could be restored to operation requirements by some minimal repair process 

other than replacement of the entire system. Therefore, pipeline system’s reliability, after 

repair process, is defined as “bad-as-old”. The risk of the entire pipeline system would 

only be modified after a significant maintenance operation, such as recoating of the 

entire system.  Due to the behavior of the pipeline system, repairable system assumption 

is reasonable with minimal repairs only. This assumption causes that system reliability is 
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modeled as a non-homogeneous Poisson process (NHPP) (Ascher and Feingold, 1984; 

Pievatolo and Ruggeri, 2004). 

Many studies have been conducted to develop statistical reliability models using 

historical failure data. Majority of studies in pipeline reliability relate to water supply 

network failures due to data availability (Røstum, 2000; Kleiner et al., 2001; Rajani and 

Kleiner, 2001). Hence, it is difficult to find in the published literature reliability analyses 

for natural gas pipeline systems. 

Although there is limited study for natural gas pipelines, majority of other studies 

are related to repairable systems such as power distribution systems or water distribution 

systems (Stillman, 2003; Rajani and Kleiner, 2001). One example was found for natural 

gas pipeline system. Caleyo et al. (2008) conducted a study to estimate the failure rate of 

a pipeline population from the historical failure data, which are pooled from multiple 

pipeline system in Southern Mexico. In the study, Caleyo et al. (2008) emphasized that 

the study was conducted on the basis of the statistical methods for reliability of 

repairable systems (Caleyo et al., 2008).  

Due to the limited sources for natural gas pipeline system reliability study, 

repairable system reliability process and analysis are used for natural gas transmission 

pipeline systems. The basic process of modeling corrosion failure rate for pipeline 

systems is discussed in details in the next subsection. 

2.3.1 Failure Function 

The actual failure characteristics of systems are generally based on the analysis 

of observed failure data. When data is obtained from the system, the parameters of life 
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distribution or reliability of the system can be determined. The estimations of the 

parameters of the life distribution are called parametric statistical methods (Nachlas, 

2005).  

The analysis of previous failure data is mentioned in many articles. Røstum 

(2000) emphasized that the most important factor to predict future failures in water 

supply network is previous failures. Further, the age is an important element to estimate 

the first failure on water supply network. Similarly, Kleiner and Rajani (2001) stated that 

the previous historical failures could be used to identify pipe breakage patterns. They 

assume that historical failure pattern will continue into the future. Therefore, probability 

of breakage can be estimated with statistical methods. Previous authors used statistical 

methods to predict failure rate of water main breaks by way of the past failures. 

Parametric statistical methods for analyzing reliability data require an assumption 

of the form of the life distribution. The choice of a distribution model depends on 

experience about similarity of the systems. With the estimation of the parameters, 

reasonable representation of the failure probabilities can be obtained (Nachlas, 2005). 

First, the basic parameters of parametric statistical estimation of failure rate are 

discussed. Failure rate can express reliability for repairable system (Mohitpour et al., 

2010). Also, Caleyo et al. (2008) use this fact in their study and they emphasize that the 

term of “failure rate” is used in the ROCOF. Hence, the reliability of pipeline network is 

represented by failure rate. N(t) denotes the number of failures in the intervals (0,t] in a 

pipeline system. The rate of occurrence of failure (ROCOF, μ(t)) and the failure intensity 
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(rate) function (λ(t))  of a point process are given in Equation 2.1 and Equation 2.2, 

respectively (Rigdon and Basu, 2000; Caleyo et al., 2008).  

𝜇(𝑡) =
𝑑

𝑑𝑡
(𝐸(𝑁(𝑡))) (2.1) 

𝜆(𝑡) = lim
∆(𝑡)→0

𝑃[𝑁(𝑡,𝑡+∆(𝑡)≥1]

∆(𝑡)
  (2.2) 

where E(N(t)) denotes the expected number of failures in the interval (0,t] in a pipeline 

system. 

Rigdon and Basu (2000) noted that the intensity function and the ROCOF are 

measures of the reliability of a repairable system. They proved that these two functions 

are equal, provided that simultaneous failures cannot occur. Caleyo et al. (2008) stated 

that this assumption is reasonable for pipeline systems, in which simultaneous failures 

occur with a probability very close to zero.  

If failure mechanisms do not depend on time, failure rate shows a constant failure 

rate. Therefore, failure mechanisms, which have a constant failure rate, can be modeled 

using a homogenous Poisson process (HPP) with constant failure rate (λ) (Caleyo et al., 

2008). On the other hand, if the systems deteriorate or improve their reliability with 

time, the failure rate of the system can be modeled using the nonhomogeneous Poisson 

process (NHPP) (Caleyo et al., 2008). The following subsection summarizes the 

previous research for the estimations of parameters of life distribution and parametric 

statistical methods for the failure rate. 

2.3.2 Parametric Estimation of the Failure Rate 

As mention previously, pipeline systems are defined as repairable system, which 

can be modeled with a stochastic process. Poisson distribution is one of the important 
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processes used in the modeling of repairable systems (Rigdon and Basu, 2000). Two 

types of stochastic point process are commonly used in modeling pipeline failures: the 

homogeneous Poisson process (HPP) and the nonhomogeneous Poisson process 

(NHPP). 

2.3.2.1 The Homogeneous Poisson Process 

The homogeneous Poisson process (HPP) is a Poisson process with an intensity 

function that is constant (Rigdon and Basu, 2000). The HPP is one of the simplest 

possible models for repairable system. However, it should be applied with caution 

because the HPP model cannot be used to model a system that deteriorate or improve 

over time. Therefore, only table and time-independent failures from Table 2.1 can model 

by a homogeneous Poisson process (HPP) with constant failure rate (λ) (Rigdon and 

Basu, 2000). The HPP is characterized by exponentially distributed times between 

failures. 

The pipeline system failures are assumed to be time truncated. Rigdon and Basu 

(2000) defined the terminology as when a system could be observed until a 

predetermined time t, the number of failures N(t) is a random variable. The 

predetermined time, t, is Tobs for the pipeline systems in this thesis. The meaning of Tobs 

is observation time of the pipeline system. Therefore, the total number of failure in the 

observation time is N(Tobs) (Bain and Engelhardt, 1980; Rigdon and Basu, 2000; Caleyo 

et al., 2008). 

Basically, the failure rate of the pipeline system can be predicted with Equation 

2.3 (Caleyo et al., 2008).  
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�̂� =
𝑁(𝑇𝑜𝑏𝑠)

𝐿𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇𝑜𝑏𝑠
  (2.3) 

where N(Tobs) is the total number of failures in the observation time in observing pipeline 

system, Tobs is the observation time (year), and Lexposure is total length of the pipeline 

system (mile) that is observed. Pipeline conditions are assumed uniform throughout the 

line in the studied section. The failure rate of a pipeline has the unit of number of 

failures per year and per unit of length of the pipeline, 1/(mile-year) or “per mile year” 

(Caleyo et al., 2008).  

The statistical uncertainty of failure rate can be determined with a significance 

level α. The quantity 2λTobs has a chi-square distribution (χ2) with 2N(Tobs ) degrees of 

freedom for the HPP truncated at time Tobs. The Equation 2.4 shows the 100(1-α)% 

confidence interval for λ (Caleyo et al., 2008; Rigdon and Basu, 2000). 

𝜒1−𝛼 2⁄
2 (2𝑁(𝑇𝑜𝑏𝑠

))

2𝐿𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇𝑜𝑏𝑠
< 𝜆 <

𝜒𝛼 2⁄
2 (2𝑁(𝑇𝑜𝑏𝑠

))

2𝐿𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇𝑜𝑏𝑠
  (2.4) 

2.3.2.2 The Non-Homogeneous Poisson Process (NHPP) 

As mentioned in the beginning of this subsection the minimal repair assumption 

leaded to the nonhomogeneous Poisson process (NHPP). The NHPP plays an important 

role for improvement of failure analysis techniques for repairable systems (Coetzee, 

1997; Krivtsov, 2007). 

Continuous growth models, especially power law model, are suitable for the 

pipeline systems. As mentioned previously, point process models are divided into NHPP 

reliability growth models and alternative reliability growth models (Ascher and 
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Feingold, 1984). Power law model is defined under NHPP reliability growth models 

(Ascher and Feingold, 1984; Pievatolo and Ruggeri, 2004). 

The nonhomogeneous Poisson process (NHPP) is a Poisson process with an 

intensity function that is non-constant (Rigdon and Basu, 2000). The NHPP is similar to 

the HPP with the exception that the expected number of failures is the function of time 

(Moghaddam and Usher, 2011). The NHPP can be used to model the systems that 

deteriorate or improve over time. Hence, the NHPP can be used to model the failure 

process of repairable systems (Rigdon and Basu, 2000; Krivtsov, 2007). 

Coetzee (1997) discussed the selection criteria for implementation of the NHPP 

model. First, the NHPP is a suitable model whether there is a trend in the times between 

failures. Second, if the system can be defined as the “bad-as-old “, the NHPP can be 

selected for modeling data. Third, if the systems are defined as repairable systems, again 

the NHPP is a good choice for modeling data. Characteristic of the pipeline failures 

match up with these selection criteria. 

As discussed at the beginning of third subsection, the cumulative number of 

failures is indication used in the reliability analysis (Nachlas, 2005). In addition, the 

NHPP is characterized by the cumulative intensity function, Λ(t), which represents the 

expected cumulative number of failures as a function of operation time (Krivtsov, 2007). 

Krivtsov (2007) defined the cumulative intensity function as: Λ(𝑡) = ∫ 𝜆(𝑡)𝑑𝑡,
𝑡

0
 where 

λ(t) is known as ROCOF.  

The intensity of the NHPP can be determined with a number of different 

parametric models such as power law model, the linear model, and the log-linear model. 
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The power law model is most commonly used technique in the literature. In the next 

subsection, the power law model is discussed. 

2.3.2.2.1 Power Law Process  

Power law model is considered to represent the NHPP. In fact, the NHPP is 

commonly referred as the power law process. Rigdon and Basu (2000) explain this 

situation as special case of the NHPP, where ROCOF is proportional to the global time t 

raised to a power. Also, the power law model is sometimes referred as a Weibull 

process, since the intensity function has the same functional form as the hazard function 

of the Weibull distribution (Røstum, 2000). 

The power law process is a model when the intensity function has the form 

𝜆(𝑡) =
𝛽

𝜃
(

𝑡

𝜃
)

𝛽−1

, where β > 0 and θ > 0 (Rigdon and Basu, 2000; Caleyo et al., 2008).  

The functional form of the expected number of failures for the pipeline system 

and the intensity function of pipeline failures through time t are shown in Equations 2.5 

and 2.6 (Rigdon and Basu, 2000): 

𝐸[𝑁(𝑡)] = 𝛬(𝑡) = (𝑡 𝜃⁄ )𝛽  (2.5) 

𝜆(𝑡) =
𝛽

𝜃
(

𝑡

𝜃
)

𝛽−1

  (2.6) 

where θ>0 and β>0 are the scale (the characteristic life) and shape parameters of the 

failure intensity function, respectively.  

The estimator β affects how system deteriorates or improves over time and θ is a 

scaling follow (Stillman, 2003; Rigdon and Basu, 2000). If: 

• β  > 1, λ (t) is increasing, the failures tend to occur more frequently; if 
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• β  < 1, λ (t) is decreasing, and the failures are less frequent; and if 

• β  = 1, the power law process reduces to a HPP, with intensity = 1/θ. 

As noted before, the time truncated case can be used for the pipeline failure data 

at Tobs. Let T1<T2<…<TN<Tobs denote the observed failure times before time Tobs. If the 

failure data is assumed that at least one failure occurs before time Tobs, the maximum 

likelihood estimators exist and are equal to (Rigdon and Basu, 2000): 

𝜃 =
𝑇𝑜𝑏𝑠

𝑁(𝑇𝑜𝑏𝑠)
1 𝛽⁄   (2.7) 

�̂� =
𝑁(𝑇𝑜𝑏𝑠)

∑ log(𝑇𝑜𝑏𝑠 𝑡𝑖)⁄
𝑁(𝑇𝑜𝑏𝑠)

𝑖=1

  (2.8) 

where ti is the time of the ith failure and N(Tobs) is the total number of failures in the 

observation time in observing pipeline system. 

Based on the maximum likelihood estimations, the intensity function of the 

failure process can be estimated with Equation 2.9.  

�̂�(𝑡) =
�̂�

𝐿𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒�̂��̂�
𝑡�̂�−1  (2.9) 

The statistical uncertainty of β can be determined with a significance level α. The 

quantity 2𝑁(𝑇𝑜𝑏𝑠) 𝛽 �̂�⁄  has a chi-square distribution (χ2) with 2N(Tobs ) degrees of 

freedom for a power law process truncated at time Tobs. The Equation 2.10 shows the 

100(1-α)% confidence interval for β (Caleyo et al., 2008; Rigdon and Basu, 2000). 

𝜒1−𝛼 2⁄
2 (2𝑁(𝑇𝑜𝑏𝑠

))�̂�

2𝑁(𝑇𝑜𝑏𝑠
)

< 𝛽 <
𝜒𝛼 2⁄

2 (2𝑁(𝑇𝑜𝑏𝑠
))�̂�

2𝑁(𝑇𝑜𝑏𝑠
)

  (2.10) 

Caleyo et al. (2008) state that there is not any method to determine the exact 

confidence intervals for θ when the data are time truncated. Rigdon and Basu (2000) 
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emphasized that confidence intervals for θ are usually not computed when the data are 

time truncated. 

It is important to note that, it is often to test H0: β=1 versus H1: β≠1 as the power 

law process reduces to the homogeneous Poisson process when β=1 (Rigdon and Basu, 

2000). In other words, the null hypothesis is: the best model is a HPP, while the 

alternative is: the power law process is the best. The rule is to reject H0 if (Rigdon and 

Basu, 2000; Caleyo et al., 2008). 

𝜒𝛼/2
2

(2𝑁(𝑇𝑜𝑏𝑠))
<

2𝑁(𝑇𝑜𝑏𝑠
)

�̂�
 or 

2𝑁(𝑇𝑜𝑏𝑠
)

�̂�
 > 𝜒1−𝛼/2

2

(2𝑁(𝑇𝑜𝑏𝑠))
 (2.11) 

2.4 Preventive Maintenance Methods 

As mentioned in the first subsection, pipeline operators try to avoid pipeline 

failures because it may lead to significant injuries and fatalities, environmental issues, 

product loss, and property damages. Not only the nature of the failure events but also the 

frequency of failures are very important for the safety. These results force the companies 

to avoid pipeline failures and to use their available funds more effectively for preventive 

maintenance actions. At that point, developing an optimum corrosion prevention strategy 

plays a key role to extend the useful life, to improve the system reliability, and to reduce 

the rate of occurrence of failures of transmission pipelines (Nachlas, 2005). 

Maintenance helps the operators to use the resources more efficiently. Although 

the pipelines are designed, conducted, and operated correctly, deterioration occurs on the 

line internally or externally, directly or indirectly (Mohitpour et al., 2010). Therefore, 

routine maintenance activities are crucial to keep the pipeline operation safe (Mohitpour 

et al., 2010). Maintenance policies help decrease the unexpected failures and reduce 
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OPEX. For example, Baker Jr. (2008) emphasized that, although the failure pattern was 

consistent over time, the pattern was not affected by the aging of the infrastructure 

(Baker Jr., 2008). Due to the this reason, Baker Jr. (2008) did not observe any significant 

increase for pipeline failure from 1988 to 2008, due to the effectiveness of the industry 

efforts to control corrosion (Baker Jr., 2008). Moreover, the pipeline system reliability 

can be maximized and failure costs can be minimized with proper maintenance decisions 

(Wang, 2002).  

Maintenance can be defined as actions to: 1) control the system’s deterioration 

process which leads to failure and 2) restore the system to its operational state, through 

corrective actions after a failure (Blischke and Murthy, 2000). Under the same scope of 

maintenance, Mohitpour et al. (2010) define the pipeline system maintenance objectives 

is as “The primary purpose of any pipeline maintenance program is to maximize 

throughput and prolong the life of a pipeline system while ensuring public safety and 

respecting the environment” (Røstum, 2000; Thompson, 2004; Mohitpour et al., 2010). 

Reliability and maintenance are closely related to each other. Nachlas (2005) 

defined reliability as: “Reliability is the probability that a device properly performs its 

intended function over time when operated within the environment for which it is 

designed.” It follows from here that the equipment or the device can be operated 

correctly within design limits by maintenance (Mohitpour et al., 2010). Due to above 

definition, the first step of the optimal maintenance policy is to determine system 

reliability (Wang and Pham, 2006).  
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Maintenance actions can be divided into two major classes: preventive 

maintenance and corrective maintenance (Wang, 2002). Preventive maintenance (PM) is 

a broad term that involves a set of activities to improve the overall system reliability. 

These activities are planned activities such as monitoring, cleaning, CP, testing, 

patrolling, training, repair, and replacement (Nachlas, 2005). For all types of systems, 

the manufacturer or operators prescribe maintenance schedules to reduce the risk of 

system failure (Moghaddam and Usher, 2011). Mohitpour et al. (2010) summarize 

required performance and time by code requirement for routine maintenance activities in 

Table 2.2 for corrosion type failures. For example, cathodically protected pipeline 

systems must be controlled annually, and the interval between two-inspections cannot 

exceed 15 months (Baker Jr., 2008). Corrective maintenance (CM) or emergency repair 

(ER), on the other hand, implies emergency response (unscheduled) that is performed as 

a result of the failure like a rupture or a leak (Wang, 2002). Corrective maintenance 

involves often replacement or repair to a section of a pipeline to restore the system from 

a failed state to a specified condition (Mohitpour et al., 2010). 

Previous studies shows that a significant number of maintenance actions are 

performed as corrective maintenance in pipeline systems (Røstum, 2000; Thompson, 

2004; Baker Jr., 2008). The meaning of the CM is that failures occur before measures 

are taken.  
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Table 2.2 Routine Maintenance Schedules of Major Pipeline Elements (Mohitpour et al., 
2010) 

Maintenance Activity 
Maintenance Schedule or 

Frequency 
Requirement or Remarks 

CP monitoring Annual, not to exceed 15 
months 

ASME B31.1 (1999) 

Internal Corrosion 
Monitoring <6 months 

ASME 31.4 (1998): if line 
internally coated, pigged, 
dehydrated/corrosion inhibition, 
corrosion coupon used 

Exposed pipe: External 
monitoring <3 years ASME B31.4 (1998) 

On the other hand, preventive maintenance determines the maintenance 

requirements by providing systematic inspection, detection and prevention of incipient 

failures (Wang, 2002). Preventive maintenance requires a good knowledge of the 

pipeline characteristics, including whole variables that affect pipeline performance 

(Mohitpour et al., 2010; Røstum, 2000).  

As previously discussed, the main purpose of maintenance actions is to improve 

the system reliability and to prevent the probability of system failure (Wang and Pham, 

2006). However, there are varieties of possible applications of PM policies (Nachlas, 

2005). Therefore, in the last several decades, a number of different preventive 

maintenance optimization models have been proposed to establish the optimal 

maintenance policies. Barlow and Hunter (1960), Nakagawa (1981), Nakagawa (1986), 

Valdez-Flores and Feldman (1989), Wang (2002), and Wang and Pham (2006) survey 

and summarize the research and practice in reliability, maintenance, replacement, and 
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inspection in different ways. It is important to note that, discussing all maintenance 

models are beyond the scope of this thesis. However, general information and a few 

models are discussed in this thesis.  

As discussed in the third subsection, the system operating condition can be 

classified according to how the system is affected by maintenance, and then five repair 

(maintenance) actions are discussed. For instance, in some cases, maintenance involves 

the replacement of a component of the system before to failure. In contrast, maintenance 

actions sometimes consist of simple inspection and testing (Nachlas, 2005). Due to these 

reasons, each of the maintenance policies depends on maintenance costs and/or different 

maintenance restoration degrees (minimal, imperfect, perfect) (Wang, 2002). 

In the literature, there are two main replacement-types of preventive maintenance 

policies: age replacement and block replacement policies (Nachlas, 2005).  

Age replacement policy means that the system is replaced when the system 

achieves an age equal to the policy age. The earliest age replacement policy considers 

that the system is replaced by a new one after each preventive maintenance or ER. The 

policy considers renewal theory-based models for system performance. Therefore, 

systems are repaired to the “good-as-new” condition at each repair action due to renewal 

model assumptions. However, maintenance practice showed that a system or equipment 

continues to deteriorate even when the system or equipment was renewed. Although PM 

reduces failure probability, it does not restore the system operation condition to a “good 

as new” state. Therefore, renewal models are not suitable for many real systems 

(Coetzee, 1997; Gertsbakh, 2000; Nachlas, 2005).  
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As an alternative to renewal process, minimal repair models are proposed. The 

earliest minimal repair models were suggested by Barlow and Hunter (1960) (Nachlas, 

2005). This model assumes that the system failure rate is not disturbed by any minimal 

repair of failures and the system is replaced at predetermined times (Nguyen and 

Murthy, 1981). In other words, the minimal repair eliminates the failure but leaves the 

failure rate unchanged (Gertsbakh, 2000; Nachlas, 2005). For pipeline systems, the 

failure rate increases with age; therefore, operation of the system would become 

increasingly expensive to maintain by minimal repairs. Thus, the main problem of the 

minimal repair models is when replacement actions are optimal instead of performing 

minimal repair (Valdez‐ Flores and Feldman, 1989).  

Minimal repair models generally assume that 1) the failure rate function of the 

system increase, 2) minimal repairs do not affect the system’s failure rate, 3) the cost of 

a minimal repair is less than the cost of replacing, and 4) system failures are detected 

immediately (Valdez‐ Flores and Feldman, 1989). 

With the concepts of minimal repair and imperfect maintenance, these models 

were improved. These new established models are referred to as the age-dependent PM 

policy. This policy assumes that a system is preventively maintained at some 

predetermined age, or repaired at failure until a perfect maintenance is received (Wang, 

2002). Wang (2002) noted that PM at the predetermined age and CM at each failure 

might be minimal, imperfect, or perfect. Therefore, many maintenance models are 

developed based on different types of PM (minimal, imperfect, perfect), CM (minimal, 

imperfect, perfect), cost structures, etc. (Wang, 2002). On the contrary, if a system is 
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repaired with only minimal repair at failure, the age replacement policy reduces to “the 

periodic replacement with minimal repair at failure” policy (Wang, 2002). 

Periodic (block) replacement policy is based on scheduled actions rather than on 

the system age. As is the case with age replacement policy, the earliest studies consider 

that the system is replaced by a new one after each preventive maintenance or ER. 

However, with the concepts of minimal repair and imperfect maintenance, another PM 

periodic policy is established. This model is called “periodic replacement with minimal 

repair at failure” policy in which a system is replaced at predetermined times and 

failures are removed by minimal repair (Wang, 2002). Also, this policy was introduced 

firstly by Barlow and Hunter (1960) as policy II.  

Many extensions and variations are proposed for periodic replacement with 

minimal repair at failure policy. Nakagawa (1981) studies four models of modified 

periodic replacement with minimal repair at failures. The first three models study a 

failure that occurs just before the replacement time is specified. The last model considers 

failure, which occurs well before replacement time. The last model suggests that the 

system is replaced at failure or at time, whichever occurs first. All models obtain the 

optimum T0
*,T* to minimize the cost rates, when T is the replacement time which 

minimizes the expected cost rate for the basic replacement model. If 0<T0
*<T and T* >T, 

exists, then the models have a lower cost rate (Nakagawa, 1981; Wang, 2002). 

Costs of PM can be optimized based on an optimal maintenance cost models. 

The cost models for these PM policies can be formulated without considering the 

maintenance time. Basically, the preventive maintenance costs can be divided into three: 
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failure costs, maintenance costs, and replacement costs. The final cost of the preventive 

maintenance is a function of the all the actions taken in the life cycle of the system 

(Moghaddam and Usher, 2011). Therefore, the total cost per unit time is an informative 

measure of system performance (Nachlas, 2005). 

The preventive maintenance costs can be divided into three: failure costs, 

maintenance costs, and replacement costs. The final cost of the preventive maintenance 

is a function of the all the actions taken in the life cycle of the system (Moghaddam and 

Usher, 2011). 

There are many approaches to determining the optimal maintenance policy. 

Under the scope of this thesis, selected approach for cost model considers the 

maintenance interval, which minimizes the total expected cost per unit time for the 

system. The cost per unit has to take into account both costs associated with failures, and 

costs of the PM (replacement). The optimization problem can be pictured as shown in 

Figure 2.5. It can be observed on Figure 2.5 that with low level of PM action, the PM 

cost is low but the expected CM costs are high. With increasing PM action, the CM cost 

decreases and the PM cost increases as shown in Figure 2.5. Moreover, the total cost that 

includes PM and CM decreases initially and then increases with increasing PM action. 

Therefore, there is an optimum level of PM effort that can minimize the total costs of 

maintenance (Damnjanovic, 2006; Louit et al., 2009; Blischke and Murthy, 2000). 
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Figure 2.5 Optimal PM Intervals for Costs Minimization 

 The optimal maintenance interval can be solved with a fixed interval. Therefore, 

the fixed interval problem will be solved with the block replacement policy. The 

advantage of the fixed interval policy is easy practical implementation (Louit et al., 

2009). 

 The cost models for the block replacement policy are formulated without 

considering the durations of the maintenance exercises. As mentioned previously, the 

costs represent the implications of failure and of planned replacement. Hence, the total 

cost per unit time is an informative measure of system performance (Nachlas, 2005). In 

the view of such information, a model for the total cost per unit time for a block 

replacement PM strategy is described in Equation 2.12 (Louit et al., 2009; Nachlas, 

2005).  

𝐶(𝑇) =
𝐶𝑟𝑒𝑝𝑎𝑖𝑟𝐸(𝑁(𝑇))+𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑇
 (2.12) 
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where, C(T) is the expected cost per unit time given a PM interval equal to T, E(N(T)) is 

the expected number of failures in [0,T], Creplacement is the average cost of system 

replacement, and Crepair is the average cost of repair of a failure through minimal repair.  

Louit et al. (2009) suggested that E(N(T)) should be estimated for different 

failure modes separately such as internal corrosion and external corrosion. Therefore, 

Equation 2.12 is modified for incorporating multiple failure modes that is given in 

Equation 2.13 (Louit et al., 2009).  

𝐶(𝑇) =
𝐶𝑟𝑒𝑝𝑎𝑖𝑟 ∑ 𝐸(𝑁𝑖(𝑇))𝑚

𝑖=1 +𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑇
 (2.13) 

where, E(Ni(T)) is the expected number of failures for failure mode i, i=1,2,…,m.  

The intensity of failures per unit time can be estimated with Equation 2.6 for 

particular types of corrosion failures. From the intensity function 𝜆𝑖(𝑡), the expected 

number of failures E(Ni(T)) can be estimated for each failure mode. This calculation is 

given in Equation 2.14 (Coetzee, 1997; Gertsbakh, 2000; Louit et al., 2009): 

𝐸(𝑁𝑖(𝑇)) = ∫ 𝜆𝑖(𝑇)
𝑇

0
𝑑𝑡 (2.14) 

This equation will give the cumulative number of failures in [0,T] for each type of 

corrosion failures. 

2.5 Pipeline Protection and Corrosion Control Methods 

Operators are rethinking and developing new maintenance strategies that may 

improve business outcomes (Mohitpour et al., 2010). Estimation of future pipeline 

failure rate is critical for developing the budgets for rehabilitation and replacement needs 

(Røstum, 2000). Therefore, the operators would like to apply the best maintenance 

strategy, which will give the most effective results (Mohitpour et al., 2010). 
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As discussed in the fourth subsection, the purpose of the maintenance is to 

minimize the overall costs of the system operation and to maximize the system reliability 

(Moghaddam and Usher, 2011). The overall costs include the failure costs (production 

cost), maintenance costs, and replacement costs. Another part of the maintenance is to 

make proper decision for replacement for the end of the life cycle of equipment and 

facilities.  

Full replacement is not a cost-effective choice for pipeline operators after each 

occurrence of failure. As mentioned previously, pipeline systems are linear structures, 

and each failure affects only one small section of the entire system. Thus, the most 

appropriate approach is to repair the pipes until the failure costs clearly outweigh the 

replacement cost, or until new pipeline projects make replacement economically 

attractive (Røstum, 2000). 

Thompson (2004) and Mohitpour et al. (2010) suggested replacement criteria, if 

the following conditions occur: 

 Severe corrosion damage of a pipeline is not properly cathodically protected; 

 Stress corrosion cracking is through a large area of pipeline; 

 Performance is inadequate for current requirements; 

 Reliability reduces below acceptable levels; 

 Maintenance and technical support is no longer available; 

 The increasing cost of operation and maintenance justifies replacement by 

similar or more suitable equipment. 
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Rehabilitation or replacement decisions should be properly timed. According to 

the case studies of replacement/rehabilitation policies by Thompson (2004), the average 

rehabilitation cost of the existing line is estimated to be approximately 60 percent of the 

replacement cost in 1996. Also, in the same study, rehabilitation cost to be estimated 40 

percent to 80 percent of the new pipeline construction cost (Thompson, 2004). This 

study shows that early replacement decision can lead to large financial losses. 

Moreover, to make a proper maintenance decision, the variables that affect the 

maintenance decisions must be analyzed well. The costs of maintenance are one of the 

crucial variables. The corrosion costs can be divided into two parts: direct and indirect. 

Direct cost includes annual test point cathodic protection surveys, maintenance coating 

operations, training, pipe inspection at excavations point, rectifier readings (monthly), 

casing and insulator inspection, CP maintenance and upgrades (including materials), 

record-keeping, and close interval survey (Kermani and Harrop, 2008; Thompson, 

2004). The indirect cost, on the other hand, is related to third party activities. The 

indirect cost has a more complex structure because it is related to several factors like 

damages to the environment, disruption to the public, injury or fatality (judicial process), 

permits, property damages, and lost revenue because of pipelines being out of service 

due to ruptures (Thompson, 2004; Kermani and Harrop, 2008).  

The pipelines must operate in design and operation requirements until the final 

decision of replacement time. Therefore, routine maintenance activities are crucial to 

keep the pipeline in operation requirements. Several pipeline protection and control 
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methods have been established. It is important to note that each mitigation strategies 

depend on the individually threats which are given at Table 2.1.  

As discussed in the second subsection, corrosion failures are considered in the 

scope of this study. Mitigating strategies are different for each type of corrosion mode. 

For instance, external corrosion preventing strategies are not a feasible option for 

internal corrosion. More specifically, internal corrosion treatment requires cutting out 

and replacing the sections of the pipeline that is affected. In contrast, cathodic protection 

and re-coating may protect the pipe from external corrosion factors (Thompson, 2004). 

In the next subsection, corrosion preventing and mitigation maintenance methods 

are discussed for corrosion failure modes.  

2.5.1 Pipeline Protection and Corrosion Control Methods for External Corrosion 

External corrosion is a chemical or electrochemical phenomenon that occurs due 

to a reaction between the pipeline surface and the pipeline environment. Therefore, 

external corrosion can be controlled by altering the electrochemical condition field 

around the pipeline or disconnecting interface of pipeline from its environment. There 

are two main mitigation strategies for external corrosion: coating and cathodic protection 

(CP) (Thompson, 2004; Baker Jr., 2008; Mora‐ Mendoza et al., 2011). 

Cathodic Protection (CP) is used for control of the corrosion of a metal surface 

by making it the cathode of an electrochemical cell (Peabody, 2001). For buried 

pipelines, if voltage around the pipe can be altered by CP technique, the rate of corrosion 

can be controlled. CP is needed only on the minute areas of pipes’ surface that exposed 
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its environment at local damage of the external coatings (holidays) rather than all 

pipelines’ surface of an uncoated pipe (Mohitpour et al., 2010). 

Coating is another technique used to prevent external corrosion. There are 

different coating techniques such as Fusion Bond Epoxy (FBE), bituminous enamels, 

asphalt mastic pipe, cold applied tapes, wax coatings, fused tapes, and three-layer 

polyolefin (Thompson, 2004). 

However, pipeline surface cannot be protected fully by coating because it is 

impossible to produce a perfect line of coating. There are always coating flaws 

(holidays), there are due to the construction damage, inappropriate application, natural 

phenomenon, completed life cycle of coating, or soil stresses (Baker Jr., 2008; 

Thompson, 2004). When the coat has holidays, pipeline systems need more CP 

(Thompson, 2004). With poor coating, corrosion process can occur on the pipeline 

surface, even though appropriate CP levels are applied. Moreover, protecting bare 

pipeline with CP throughout pipes’ length is not a cost effective method. Therefore, CP 

and external coating techniques are used together whenever possible to mitigate external 

corrosion (Thompson, 2004). The purpose of the coating is to reduce the amount of 

required protection area of the pipe as much as possible (Ireland and Lopez, 2000; 

Thompson, 2004; Beavers and Thompson, 2006; Baker Jr., 2008; Mora‐ Mendoza et al., 

2011). 

Older pipelines, installed before 1950s, might have many unprotected pipeline 

segments resulting in corrosion problems. Although major pipeline operators started to 

coat their line in the 1950s, they did not provide CP until it became a requirement to do 
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so (Baker Jr., 2008). Following 49 CFR Part 192, the oil and gas industry has been 

familiar with mitigation and corrosion prevention (Thompson, 2004).  

One of the important questions for developing external corrosion plan is 

determining the frequency of pipe coating. Coating deterioration starts when pipeline 

reaches to the end of the effective life cycle of coating. Because of this reason, CP and 

external coating techniques are used together whenever possible is. Deterioration of 

coating affects the success and cost of CP, directly. For this reason, the best way to 

extend pipeline operation-life is pipeline coating rehabilitation (recoating of the line). 

According to the Ireland and Lopez (2000), recoating saved 40 percent of cost versus 

replacement of coating (Thompson, 2004; Baker Jr., 2008; Ireland and Lopez, 2000). 

2.5.2 Pipeline Protection and Corrosion Control Methods for Internal Corrosion 

Internal corrosion is an electrochemical process. However, mitigating strategies 

are different than from external corrosion. For example, CP is not a feasible option for 

mitigating the efforts of internal corrosion. However, there are other mitigating the 

efforts of internal corrosion strategies such as dehydration, chemical treatment, periodic 

cleaning, and internal coating.  

The most common method of preventing internal corrosion is dehydration 

(dewatering). Moisture-free gas (dry gas) does not cause corrosion because there is not 

any corrosive material in the gas (Thompson, 2004). Therefore, the pipeline operators 

need to control the amount of corrosive fluids such as moisture, oxygen, and CO2 

contents. In the natural gas pipeline, dehydration control is done through separation 

facilities. The purpose of the separation facilities is to remove the undesirable 
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components from the gas before pumping the gas to the transmission pipelines. 

However, those components can reenter the pipelines by way of compressor stations, 

metering stations, valves, control stations and SCADA systems, or storage facilities 

(Thompson, 2004; Hacioglu, 2012). 

The other option for preventing internal corrosion is chemical treatment 

(inhibitors and biocides). Chemical inhibitors are injected into the gas being transported 

to reduce the corrosion to an acceptable rate.  Also, biocides are used to prevent 

microbiological activity. The chemical treatments are expensive prevention strategies 

because chemical treatment requires monitoring of the inhibitor additive and continuous 

injection of inhibitors or biocides (Thompson, 2004; Hacioglu, 2012).  

Periodic cleaning of the line with smart pigs is another mitigating strategy. There 

are different kinds of pigs that are used for different purposes. During the cleaning 

operation, the pigs scrape the line and apply cleaning solution such as solvents, biocides, 

acids, and detergents when it passes through the line. The pigs remove the operation of 

debris from the line before leaving (Thompson, 2004).  

The operators do not prefer internal coating, because the line must be 

disconnected from the service during the coating process. This result is loss of profit due 

to shutdown, so they prefer other mitigation and preventing methods for internal 

corrosion (Thompson, 2004). 

As a summary, this section presents the literature review relevant to the overall 

objectives of the thesis and introduces the necessary background to analyze system 
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reliability and optimal maintenance actions for pipeline systems. In the following 

section, the methodological framework of this thesis is formulated and discussed.
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3. THE OVERALL METHODOLOGY 

 

The next step of this thesis is to develop a mathematical representation of the 

pipeline system, its failures, and develop a model for determining optimal maintenance 

action. Figure 3.1 shows a schematic diagram of the research framework used for the 

reliability modeling and preventive maintenance strategies. The research framework 

involves six steps. First, the raw incident data is collected from PHMSA data sources. 

The data is then classified according to pipeline attributes such as diameter, installation 

year (service age), wall thickness, amount of property damage, cause of incidents, etc. 

Second, the failure intensity function is formulated based on whether the failure data is 

fit the homogeneous Poisson process (HPP) or non-homogeneous Poisson process 

(NHPP) (power law process). Third, the HPP is tested against the power law process for 

corrosion failure modes. The null hypothesis is H0: β=1 versus H1: β≠1. Fourth, based on 

the null hypothesis results, a proper stochastic model is selected. If the system is suitable 

for NHPP, the power law parameters and their confidence intervals are estimated. If the 

HPP is suitable, the generic (constant) failure rate and the confidence intervals are 

evaluated. Fifth, the expected number of failures and the intensity functions of the failure 

are estimated for any time point and their confidence intervals are estimated with results 

of selected statistical models. Finally, the models for determining an optimal preventive 

maintenance schedule are developed based underlying point process. The following 

subsections present the details of the methodology framework and assumptions. 
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3.1 System Characterization  

Pipeline systems refer to a group of natural gas pipelines. PHMSA does not 

provide detailed information about each line’s length. PHMSA just provides total miles 

of pipe for each company by nominal size and decade of installation, so pipelines should 

be considered as a network instead of single line. Due to the above reason, pipeline 

systems are modeled as a network by a point stochastic process (Caleyo et al., 2008). 

Success of the statistical models depends on the quality of the data. As discussed 

in Section 2, pipeline failures depend upon various factors such as maintenance types, 

maintenance time, pressure, diameter, employees’ training level, environmental 

conditions, etc. It is very difficult to include these variables into reliability models. Also, 

failure data cannot be collected under similar conditions because lines in the same 

networks have different materials, soil conditions, construction techniques, installation 

years, and design requirements. Due to this reason, environmental variations and 

operational variations are assumed as uniform throughout the whole pipeline systems 

(Røstum, 2000). Moreover, due to the Code of Federal Regulations (49 CFR Parts 191, 

195) and the effectiveness of the industry efforts to control corrosion, it is assumed that 

the pipelines are internally and externally protected by proper methods. 

As noted in literature review, there are more than 1,000 natural gas pipeline 

operators. Working with all the companies’ data requires time and more analysis. This 

study considers only the largest eleven natural gas operators’ failure data that were 

chosen for this thesis. These companies hold almost 33 percent of natural gas pipeline 

networks in the United States. 
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The development of reliability models requires previous number of failure 

recorded. This research uses the historical failure data set include incidents from 2001 to 

2011 and is used estimate the expected number of failures for the networks. In the 

Section 4, more detailed information about the selection criteria of the time interval are 

provided and discussed. 

The expected number of failures of the system includes the unit of the number of 

failures per year and per unit length of the pipe. 

3.2 Modeling Failures 

The scope of this thesis is the developed statistical models for reliability of 

repairable systems. First, failure characteristics of natural gas pipeline system are 

defined. As noted in the literature review, the natural gas pipeline failure mechanisms 

have been classified under 22 root causes. Corrosion failures are considered in this study 

because corrosion failures rate are not a constant rate. In other words, corrosion failures 

deteriorate or improve over time. Therefore, statistical models require describing failures 

mode on wear-out phase for corrosion. 

Characterization of failure, which depends on probability distribution of the 

number of failures, is the most important step of good predictions. The first step of 

characterization is to calculate failure rate for a taken time interval. Basically, failure rate 

can be figured out with a nonparametric estimate of the failure rate equation. Each 

statistical data has different distributions, as in the pipelines failures. After figuring out 

the failure rate, proper distribution fitting methods should be selected to fit probability 

distribution.  
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There are several probability distributions for modeling reliability as discussed in 

Section 2. Selecting the most appropriate methods of fitting of a probability distribution 

requires having good statistical knowledge. One of the distributions can fit better into 

probability distribution than others. Selections of the methods depend on the 

characteristics of the dataset.  

The pipeline systems deteriorate or improve the reliability of the system over 

time. Also, the systems are defined as repairable systems and failure data has trend. 

Pipeline system, after the repair process, is defined as bad-as-old. This assumption 

causes reliability of repairable systems to be modeled as a non-homogeneous Poisson 

process (NHPP), mainly the Power Law process (Ascher and Feingold, 1984; Pievatolo 

and Ruggeri, 2004). 

There is no statistical software available for handling the NHPP. Therefore, 

MATLAB® was chosen for solving these NHPP’ equations and the shape parameters of 

power law process under the scope of this thesis. 

3.3 Optimal Preventive Maintenance Methods 

The pipeline operators are seeking not only the expected number of failures, but 

also an optimal solution to minimize potential failures in the future operation. As noted 

in the literature review, predictive models can be used to improve maintenance 

decisions. Therefore, the expected number of failure is a step towards a preventive 

maintenance. As noted in the literature review, there are number of corrosion mitigation 

strategies to prevent the lines. Although, these methods are used by majority of pipeline 

operators, the pipeline systems continue to deteriorate. Therefore, the rehabilitation and 
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renovation plan should be prepared for each line. Optimization preventive maintenance 

involves these plans for future pipeline operation.  

Optimization preventive maintenance refers to combining many situations and 

systems, then selecting the best solution from all feasible results. The usual selection 

criteria are based on maintenance cost measures such as expected maintenance cost per 

unit of time, total discounted costs, gain, etc. (Wang and Pham, 2006). First, proper 

maintenance policy is chosen for a repairable and maintainable system. There are 

number of optimal maintenance policies which depend on system characteristic. The 

pipeline systems consider to be repairable system with minimal repairs only. Therefore, 

the periodic replacement with minimal repair at failure policy is adopted in this study. 

Second, the selected maintenance policy needs cost data that is related to 

maintenance and replacement cost to find optimal solution. The pipeline systems are 

complex systems and there is a limited source to find current costs information. 

Therefore, average costs are taken for related costs information. 

As noted in in the literature review, the purpose of the maintenance is to 

minimize the overall operation costs and to maximize the system reliability. The optimal 

maintenance decision is an optimum level of PM effort that can minimize the total cost 

of maintenance. This decision can be developed with proper cost models. Finally, based 

on optimal maintenance policy, cost models are developed to find optimal maintenance 

time and minimum maintenance cost.
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Figure 3.1 Schematic Diagram of Thesis Methodology 
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4. DATA SETS DEVELOPMENT 

 

The next step of this thesis is to prepare data sets for the reliability modeling. 

Figure 4.1 shows the data set used in the thesis. Two major data sets are used in this 

thesis. Data set 1 is required for getting the total miles information for each operator, and 

data set 2 is required for analyzing incidents data. In the following subsections, details 

about the two main data sets are provided. 

4.1 Data Set 1- Distribution, Transmission, and Liquid Annual Data 

Due to the Code of Federal Regulations (49 CFR 191.15), written incidents 

reports are required for gas transmission and gathering systems by the natural gas 

operators. These data is collected by PHMSA. Government agencies, the industry 

professionals, researchers, and PHMSA generally use these annual reports for purpose of 

safety, inspection planning, and risk assessment. This database is called Distribution, 

Transmission, and Liquid Annual Data, and can be downloaded from PHMSA website 

(PHMSA, 2013c). The data that is downloaded on July 31, 2012 is used in this thesis. 

An example of the data set is shown in Table 4.1. The annual reports contain general 

information such as pipeline operators’ information, total pipeline mileage, miles by 

material of pipeline, miles by diameter, and decade of installation from 1970 (PHMSA, 

2013c). 
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Table 4.1 Example of Annual Report of Distribution, Transmission, and Liquid Annual 
Data 

Report Year: 2008 Operator ID 

 The miles of 

transmission 

ONSHORE 

lines in the 

system at end 

of year, by 

diameter 

The miles of 

transmission 

OFFSHORE 

lines in the 

system at end 

of year, by 

diameter 

The miles of 

transmission 

ONSHORE 

lines in the 

system at end 

of year, by 

decade of 

installation 

The miles of 

transmission 

OFFSHORE 

lines in the 

system at end 

of year, by 

decade of 

installation 

Unknown 0 0   

4 in or less 104 0   

> 4 in and ≤10 in 519 45   

>10 in and ≤20 in 2255 22   

>20 in and ≤28 in 1634 0   

> 28 in 891 0   

Unknown   0 0 

Pre 1940   22 0 

1940 - 1949   251 0 

1950 - 1959   968 0 

1960 - 1969   569 40 

1970 - 1979   931 27 

1980 - 1989   420 0 

1990 - 1999   578 0 

2000 – 2009    1664 0 
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4.2 Data Set 2- Significant Incident Data Reports 

U.S. Department of Transportation-Pipeline & Hazardous Materials Safety 

Administration (PHMSA) provides also historical incident statistics that has been 

collected from American pipeline operators since 1986. The database involves different 

type of pipelines information such as gathering, distribution, and transmission pipeline 

incidents and different category of incidents such as serious and significant. Within the 

scope of this study, only significant incident data are considered. A significant pipeline 

incident is identified by PHMSA when any of the following conditions occur (PHMSA, 

2013d):   

1. Fatality or injury requiring in-patient hospitalization, 

2. $50,000 or more in total costs, measured in 1984 dollars, 

3. Highly volatile liquid releases of 5 barrels or more or other liquid releases of 50 

barrels or more, 

4. Liquid releases resulting in an unintentional fire or explosion. 

The significant incident data’ reports are generated from various data sources 

maintained for Pipeline Safety Regulation. PHMSA shares the database to the public to 

raise awareness of pipeline safety. This database involves significant pipeline incidents 

information for onshore and offshore pipelines such as the pipeline operators 

information, failure causes, total dollar amount of property damages, installation year of 

line, maximum pressure and pressure on failure time, depth of cover, local date and time 

of failure, the pipe diameter, wall thinness of pipe, the pipe materials, coating 

information, CP information, release type, and fatally or injury information. The raw 
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incident data can be downloaded from PHMSA website (PHMSA, 2013d).  The database 

was divided into three time periods that are 1986-2001, 2002-2009, and 2010-present. 

2,625 significant pipeline incidents have been reported in the U.S. since 1986. The costs 

associated with incidents are also provided in 2012 dollars in the datasets (PHMSA, 

2013d). 

4.3 Preparation of Final Data Set 

The PHMSA databases were collected from a wide range of sources that covered 

all types of pipelines (e.g. gathering, transmission, and distribution) and all failures 

causes. Therefore, there are many number of variables that are related to incidents and 

the pipeline operators in the PHMSA’ datasets. However, the study does not need all the 

information in datasets. Therefore, the datasets were cropped carefully based on operator 

ID number. Appendix A, Appendix B, and Appendix E illustrate more details of dataset.  

As noted in previously, natural gas transmission pipelines incident data were 

considered. These incident data can be divided into subsections such as, failure 

characteristics and groups of pipes with the same decade of installation. Røstum (2000) 

implied that, each installation decade of pipeline has had different construction practices 

and with technologies that are no longer appropriate. Therefore, pipelines have different 

failure characteristics depending on installation decade. 

Due to above reason, time interval (the decades of installation) is divided into 

eight groups based on the decade of installation in DOT/PHMSA distribution, 

transmission, and liquid annual data. Table 4.2 shows decades of installation of the 

dataset. 
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Table 4.2 Decade of Installation of Natural Gas Transmission Pipelines in the U.S in 
DOT/PHMSA Distribution, Transmission, and Liquid Annual Data 

Decade of installation of the transmission pipeline networks 

Pre 
1940 

1940-
1949 

1950-
1959 

1960-
1969 

1970-
1979 

1980-
1989 

1990-
1999 

2000-
2009 

Second, DOT/PHMSA distribution, transmission, and liquid annual data set are 

examined from 2001 to 2011.Before 2001 only a few companies sent their information 

properly to DOT/PHMSA for the scope of Code of Federal Regulations. Another 

problem is that, there is not any information about the decade of installation before 2001. 

In summary, the data sources were carefully prioritized based on type of failure 

caused by corrosion. Pipeline reliability models are established for corrosion failure. 98 

internal corrosion failures were recorded from 2001 to 2011. In same time interval, 46 

external corrosion failures were recorded.
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Figure 4.1 Data Processing for Reliability Analysis
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5. RELIABILITY MODELS FOR NATURAL GAS TRANSMISSION PIPELINES 

 

This section presents development of reliability models for the estimation of 

failure rate of pipeline networks. In the first subsection, reliability models are formulated 

for internal corrosion mode. In the second subsection, reliability models are formulated 

for external corrosion. 

5.1 Reliability Models for Internal Corrosion 

Based on the eleven largest natural gas pipeline operators’ data from 2001 to 

2011, 98 internal corrosion failures were recorded. Table 5.1 shows the total number of 

failures from 2001 to 2011 for each observation year. 

Table 5.1 Number of Incidents Recorded per Year Due to Internal Corrosion 

Year incident occurred Number of total incidents 

2001 5 

2002 7 

2003 7 

2004 9 

2005 5 

2006 8 

2007 9 

2008 7 

2009 10 

2010 18 

2011 13 
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The cumulative number of failures for internal corrosion is shown in Figure 5.1. 

The plot represents incidents data from 2001 to 2011 and decades of installation from 

pre 1940 to 2011. As noted in Section 4, each pipeline has different failure 

characteristics by installation decade.  Due to this reason, these 98 incident data was 

divided into sub-groups, which are 1950-1959, 1960-1969, 1970-1979, and 1980-1989 

based on the decade of installation. Before 1950 and after 1989 failure data are not 

considered because majority of data is between from 1950 to 1989. 

 

Figure 5.1 Internal Corrosion Cumulative Number of Failure Plot from 2001 to 2011 

As mentioned before, there is not any geographical data so there is not any 

information of individual line’s length. However, PHMSA provides total pipeline miles 

by the decade of installation for the each company. The total miles and failures were 

shown in Appendix F. 

As noted in Section 2, the power law model is a feasible model for the estimation 

of expected number of corrosion failures. Although reliability improves with 

maintenance, corrosion continues to reduce pipeline reliability. Therefore, pipeline 
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reliability links to a growing number of failures with pipeline’s service time. To show 

the relation between reliability and failures, the cumulative number of failures caused by 

internal corrosion was analyzed in MATLAB for predetermined groups, based on 

Equation 2.6. Table 5.2 illustrates the results of the analysis. θ and β scale and shape 

parameters were calculated with Equations 2.7 and 2.8. Equation 2.9 was used to 

produce the 95 percent confidence intervals for shape parameter β. A complete set of 

cumulative plots showing the observed number of failures for all predetermined decades 

of installation is shown in Appendix C.  

Table 5.2 Cumulative Number of Failures (N(t))’ Scale and Shape Parameters and 95 
Percent Confidence Intervals of Failures Rate of the Internal Corrosion Incidents 

Cause 

Decade of 

Installation 

Number 

of 

Incident 
�̂� �̂� 

95% Confidence 

Intervals for β 

In
te

rn
a
l 

C
o
rr

o
si

o
n

 Overall 98 1.333 0.353 1.082 1.610 

1950-1959 12 0.954 0.812 0.493 1.564 

1960-1969 25 1.633 1.532 1.057 2.333 

1970-1979 32 1.778 1.566 1.216 2.445 

1980-1989 20 0.957 0.480 0.584 1.419 

According to the results in Table 5.2, reliability of pipeline systems is 

deteriorating for internal corrosion failures for overall, 1960-1969, and 1970-1979. For 

1950-1959 and 1980-1989 the estimator β is less than 1; therefore, probability of failure 

will occur less frequent. Based on the result at Table 5.2, the β estimator is not enough to 
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determine if the system deteriorates or improves over time. As discussed in the literature 

review, the failure trend can be modeled by an NHPP. Therefore, accuracy of the NHPP 

has to be tested. 

Although the non-homogeneous Poisson process (NHPP) is selected to model 

pipeline systems, adequacy of the NHPP must be tested to verify the model. The null 

hypothesis is H0: β=1 or the HPP model is the best model for internal corrosion failures 

data with α=0.05. The alternative hypothesis is H1: β≠1 or the power law process is the 

best model for internal corrosion failures data with α=0.05. Equation 2.11 was used to 

test the adequacy of the HPP.  

Table 5.3 Test the Null Hypothesis to Verify Model for Internal Corrosion Failures 

Cause Decade of 

Installation 

𝟐𝑵(𝑻𝒐𝒃𝒔
)

�̂�
 

𝝌𝟏−𝜶/𝟐
𝟐

(𝟐𝑵(𝑻𝒐𝒃𝒔))
 𝝌𝜶/𝟐

𝟐

(𝟐𝑵(𝑻𝒐𝒃𝒔))
 Reject H0: HPP 

with α=0.05 

In
te

rn
a
l 

C
o
rr

o
si

o
n

 Overall 147.04 159.122 236.663 Yes 

1950-1959 25.17 12.401 39.364 No 

1960-1969 30.62 32.357 71.420 Yes 

1970-1979 36.00 43.776 88.004 Yes 

1980-1989 41.81 24.433 59.347 No 

The results of the analysis are shown in Table 5.3. According to the results, the 

null hypothesis is rejected for internal corrosion with α=0.05 for the decade of 

installation of all data, 1960-1969, and 1970-1979. Based on the results, the pipeline 

systems for internal corrosion failures can be modeled by the power law process for all 
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data, 1960-1969, and 1970-1979. Otherwise, the HPP model is the best model for the 

decade of installation for 1950-1959 and 1980-1989. The average failure rates were 

calculated for 1950-1959 and 1980-1989. Equation 2.3 and 2.4 were used to analyze 

failure rates based on the HPP model. Table 5.4 provides the results of the estimations 

with the significance level at 5 percent for the HPP.  

Table 5.4 Estimates and 95 Percent Confidence Intervals for Failure Rate of the Pipeline 
Systems for Internal Corrosion 

Cause Decade of 

Installation 
�̂�(𝒕) (𝒑𝒆𝒓 𝒎𝒊𝒍𝒆 𝒚𝒆𝒂𝒓) 95% Confidence Intervals (per 

mile year) 

Internal 

Corrosion 
1950-1959 3.17263E-05 1.63935E-05 5.20365E-05 

1980-1989 0.000232051 0.000141725 0.000344248 

Results of table 5.3 and Table 5.4 are summarized in Table 5.5. The final 

expressions are given for the cumulative number of failures for each predetermined 

decade of installation for internal corrosion. 

Table 5.5 Reliability Trend in the Pipeline Systems for Internal Corrosion 

Cause Decade of 

Installation 

Best 

Model 

N (t) �̂�(𝒕) per mile year Reliability 

Trend 

In
te

rn
a

l 
C

o
rr

o
si

o
n

 

Overall NHPP 3.842𝑡1.333 5.04𝑥10−5𝑡0.333 Deterioration 

1950-1959 HPP 1.022𝑡0.9535 3.17263E-05 Stationary 

1960-1969 NHPP 0.4618𝑡1.633 2.96𝑥10−5𝑡0.633 Deterioration 

1970-1979 NHPP 0.425𝑡1.778 9.73𝑥10−5𝑡0.778 Deterioration 

1980-1989 HPP 2.293𝑡0.9566 0.000232051 Stationary 
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Summary of beta shape parameters and 95 percent confidence internals results 

are illustrated in Figure 5.2. The expected results were beta parameters increase with 

increasing network age. In other words, the network’s failure intensity increases with 

increasing pipes’ age. The results indicate that with increasing the network age, beta 

parameters increase, except the beta parameter for the decade of 1950-1959. This result 

can be explained with the effectiveness of the industry efforts to control corrosion.  

 

Figure 5.2 Estimates of the β Parameters and 95 Percent of Confidence Intervals of the 
Failure Rate of the Internal Corrosion 

Figure 5.3 illustrates the recorded cumulative failures and the estimated 

cumulative failures for internal corrosion from 2001 to 2011. These plots might be used 

to graphically evaluate the power law results with recorded failures. According to the 

power law model results, 94 failures were evaluated compared to the recorded data that 

was 98 failures. Beta parameter is more than 1. It means that the system a deteriorating 

networks when includes all internal corrosion failure data. In other words, the future 

Overall 1950-1959 1960-1969 1970-1979 1980-1989

BETA 1.333 0.954 1.633 1.778 0.957

CI(95%)Lower 1.082 0.493 1.057 1.216 0.584

CI(95%)Upper 1.610 1.564 2.333 2.445 1.419

0.400

0.900

1.400

1.900

2.400

2.900

β

Decade of Installation

Internal Corrosion β Confidence Interval for Cumulative 
Number of Failures (95%) 
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failures will most properly occur due to internal corrosion for natural gas transmission 

pipelines.  

 

Figure 5.3 Cumulative Failures Plot for Internal Corrosion for the Period 2001-2011 

Similar plots are also made for each group for internal corrosion mode. A 

complete set of cumulative plots for all groups are given in Appendix C. 

5.2 Reliability Models for External Corrosion 

46 external corrosion failures were recorded based on the eleven largest natural 

gas transmission pipeline operators’ data from 2001 to 2011. Table 5.6 shows the total 

number of failures from 2001 to 2011 for each observation year.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Observed 5 12 19 28 33 41 50 57 67 85 98

Power 4 10 17 24 33 42 51 61 72 83 94
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Table 5.6 Number of Incidents Recorded per Year Due to External Corrosion 

Year incident occurred Number of total incidents 

2001 0 

2002 4 

2003 4 

2004 5 

2005 4 

2006 7 

2007 7 

2008 6 

2009 3 

2010 5 

2011 1 

The cumulative number of failures for external corrosion is shown in Figure 5.3. 

Failure data in the plot represent the whole decades of installation from pre 1940 to 

2011. As mentioned earlier, age is an important factor for reliability analysis. Due to this 

reason, these 46 incident data were divided into sub-groups, which are 1920-1929, 1930-

1939, 1940-1949, 1950-1959, and 1960-1969, based on decade of installation. Before 

1920 and after 1969 failure data are not considered because majority of data is between 

from 1920 to 1969. 
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Figure 5.4 External Corrosion Cumulative Number of Failure Plot from 2001 to 2011 

As discussed in Section 1, there is not any geographical data so there is not any 

information of individual line’s length. In contrast, PHMSA provides total pipeline miles 

by the decade of installation for each company. The total miles and failures were shown 

in Appendix F. 

As noted in Section 2, the power law model is a feasible model for corrosion 

failures. Although reliability improves with maintenance, corrosion continues to reduce 

pipeline reliability. Therefore, pipeline reliability links to a growing number of failures 

with pipeline’s service time. To show the relation between reliability and failures, the 

cumulative number of failures caused by external corrosion was analyzed in MATLAB 

for predetermined time periods based on Equation 2.6. Table 5.7 shows the results of the 

analysis. θ and β scale and shape parameters were calculated with Equation 2.7 and 2.8. 

Equation 2.9 was used to produce the 95 percent confidence intervals for shape 

parameter β. A complete set of cumulative plots showing the observed number of 

failures for all predetermined decades of installation is shown in Appendix D.  
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Table 5.7 Cumulative Number of Failures (N(t))’ Scale and Shape Parameters and 95 
Percent Confidence Intervals of Failures Rate of the External Corrosion Incidents 

Cause 
Decade of 

Installation 
Number 

of 

Incident 
�̂� �̂� 

95% Confidence 

Intervals for β 
E

x
te

rn
a
l 

C
o

rr
o

si
o

n
 

Overall 46 1.272 0.542 0.931 1.665 

1920-1929 3 0.954 3.478 0.197 2.298 

1930-1939 2 2.219 8.049 0.269 6.182 

1940-1949 11 1.118 1.288 0.558 1.869 

1950-1959 9 1.970 3.606 0.901 3.450 

1960-1969 14 0.999 0.783 0.546 1.586 

 According to the results in Table 5.7, the reliability of pipeline systems is 

deteriorating for external corrosion failures for overall, 1930-1939,1940-1949, and 1950-

1959. For 1920-1929 and 1960-1969 the estimator β is less than 1; therefore, probability 

of failure will occur less frequently. Although the β estimator is an important variable on 

how the system deteriorates or improves over time, it is not enough itself. 

Although the non-homogeneous Poisson process (NHPP) is selected to model 

pipeline systems, adequacy of the NHPP must be tested to verify the model. The null 

hypothesis is H0:β=1 or the HPP model is the best model for external corrosion failures 

data with α=0.05. The alternative hypothesis is H1: β≠1 or the power law process is the 

best model for external corrosion failures data with α=0.05. Equation 2.11 was used to 

test the adequacy of the HPP.  
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Table 5.8 Test the Null Hypothesis to Verify Model for External Corrosion Failures 

Cause Decade of 

Installation 
𝟐𝑵(𝑻𝒐𝒃𝒔

)

�̂�
 

𝝌𝟏−𝜶/𝟐
𝟐

(𝟐𝑵(𝑻𝒐𝒃𝒔))
 𝝌𝜶/𝟐

𝟐

(𝟐𝑵(𝑻𝒐𝒃𝒔))
 Reject H0: 

HPP with 

α=0.05 
E

x
te

rn
a
l 

C
o

rr
o

si
o

n
 

Overall 72.33 67.356 120.427 Yes 

1920-1929 6.29 1.237 14.449 No 

1930-1939 1.80 0.484 11.143 No 

1940-1949 19.68 10.982 36.781 Yes 

1950-1959 9.14 8.231 31.526 Yes 

1960-1969 28.03 15.308 44.461 Yes 

The results of the analysis are shown in Table 5.8. According to the results, the 

null hypothesis is rejected for external corrosion with α=0.05 for the decade of 

installation all of data, 1940-1949, 1950-1959, and 1960-1969. Based on the results, the 

pipeline systems for external corrosion failures can be modeled by the power law 

process for all data, 1940-1949, 1950-1959, and 1960-1969. On the other hand, the HPP 

model is the best model for the decade of installation for 1920-1929 and 1930-1939. The 

average failure rates were calculated for 1920-1929 and 1930-1939. Equation 2.3 and 2.4 

were used to analyze failure rates on the basis of the HPP model. Table 5.9 shows the 

results of the estimations with the significance level at 5 percent.  
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Table 5.9 Estimates and 95 Percent Confidence Intervals for Failure Rate of the Pipeline 
Systems for External Corrosion 

Cause Decade of 

Installation 
�̂�(𝒕) (𝒑𝒆𝒓 𝒎𝒊𝒍𝒆 𝒚𝒆𝒂𝒓) 95% Confidence Intervals 

(per mile year) 

External 

Corrosion 
1920-1929 5.40722E-05 1.11506E-05 0.000130218 

1930-1939 3.60481E-05 4.36543E-06 0.000100442 

Table 5.10 shows the final expressions for the cumulative number of failures for 

each predetermined decade of installation for external corrosion.  

Table 5.10 Reliability Trend in the Pipeline Systems for External Corrosion 

Cause Decade of 

Installation 
Best 

Model 
N(t) �̂�(𝒕) (𝒑𝒆𝒓 𝒎𝒊𝒍𝒆 𝒚𝒆𝒂𝒓) Reliability 

Trend 

E
x
te

rn
a
l 

C
o
rr

o
si

o
n

 

Overall NHPP 2.426𝑡1.272 2.62𝑥10−5𝑡0.272 Deterioration 

1920-1929 HPP 0.2981𝑡0.9542 5.40722E-05 Stationary 

1930-1939 HPP 0.01196𝑡2.219 3.60481E-05 Stationary 

1940-1949 NHPP 0.852𝑡1.118 7.21𝑥10−5𝑡0.118 Deterioration 

1950-1959 NHPP 0.07754𝑡1.97 4.58𝑥10−6𝑡0.970 Deterioration 

1960-1969 NHPP 1.448𝑡0.999 4.65𝑥10−5𝑡−0.001 Improvement 

Summary of beta shape parameters and 95 percent confidence internals results 

are shown in Figure 5.4. The expected results with increasing the network age, beta 

parameter increase, such as internal corrosion. However, the results illustrate that there is 

not real trend for beta parameters with increasing network age. The beta parameters 
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begin to decrease with 1960-1969. This result can be explained with the effectiveness of 

the industry efforts to control corrosion and 49 CFR Parts 191, 195. 

 

Figure 5.5 Estimates of the β Parameters and 95 Percent of Confidence Intervals of the 
Failure Rate of the External Corrosion 

Figure 5.6 illustrates the recorded cumulative failures and the estimated 

cumulative failures for external corrosion from 2001 to 2011. According to the power 

law model results, 51failures were evaluated compared to the recorded data that was 46 

failures. Beta parameter is more than 1. It means that the system a deteriorating networks 

when includes all external corrosion failure data. In other words, the future failures will 

most properly occur due to external corrosion for natural gas transmission pipelines. 

Overall 1920-1929 1930-1939 1940-1949 1950-1959 1960-1969

BETA 1.272 0.954 2.219 1.118 1.970 0.999

CI(95%)Lower 0.931 0.197 0.269 0.558 0.901 0.546

CI(95%)Upper 1.665 2.298 6.182 1.869 3.450 1.586
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Figure 5.6 Cumulative Failures Plot for External Corrosion for the Period 2001-2011 

Similar plots are also made for each group for external corrosion mode. A 

complete set of cumulative plots for all groups are given in Appendix D. 

5.3 Summary 

The natural gas transmission pipeline networks are analyzed using with 

stochastic point processes. The pipeline failure mode is divided into internal and external 

corrosion. Moreover, internal corrosion failure mode is divided into five groups that 

represent the decade of pipes’ installation year. As different from internal corrosion, 

external corrosion is divided into six groups that consist of different decade of 

installation.  

Each pipeline network is analyzed separately. Two statistical models, HPP and 

NHPP are considered for estimation of expected number of failures. These statistical 

models use the failure data for an eleven-year observation. These two models are tested 

against each other, and then the best models are selected for each group. Based on the 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
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Power 2 6 10 14 19 24 29 34 40 45 51
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test results, the failure intensity function is calculated for each pipeline groups for 

network level. The result is given in Table 5.5 and Table 5.10.
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6. OPTIMAL MAINTENANCE MODELS FOR NATURAL GAS TRANSMISSION 

PIPELINES 

 

This section introduces the development of preventive maintenance models. 

There are two main subsections. In the first subsection, the costs of preventive 

maintenance that is associated with failure and replacement of natural gas transmission 

pipelines are discussed. In the second subsection, the formulation of the cost models for 

finding the optimal preventive maintenance actions is introduced for natural gas 

transmission pipeline networks. 

6.1 Preventive Maintenance Model Specification 

In the literature review, an application of preventive maintenance (PM) on the 

natural gas transmission pipelines is discussed. The purpose of the PM activities is to 

minimize the overall cost of system operation and to maximize the overall reliability of 

the system. The main problem of PM is the sequence of PM actions that are maintenance 

or replacement in the pipeline networks for each time period (Moghaddam and Usher, 

2011). 

As mentioned in the literature review, reliability and maintenance are closely 

related to each other and to obtain the optimal maintenance policy requires determining 

system reliability. The results of the reliability analysis are given in Table 5.5 and Table 

5.10.  

The second step is to formulate the optimal maintenance actions based on the 

system reliability and characteristics. Optimization of preventive maintenance refers to 
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combining many situations and systems, then selecting the best solution from all feasible 

results. Hence, selection of the best solution requires complex engineering and economic 

analysis. To find the optimization models consist of two main subsections. The first 

subsection involves finding costs associated with preventive maintenance. The second 

subsection includes finding optimum costs and time for preventive maintenance actions.   

6.2 Costs of Preventive Maintenance and Replacement Actions 

The operator would like to estimate their future operating expenditure (OPEX) 

accurately. The biggest part of OPEX is the costs of unplanned system failures. There is 

no model that can predict such failures correctly on time. However, if the pipeline 

systems have a high ROCOF throughout their life, expected failure could most likely 

happen. Then the operators can estimate their OPEX based on the expected number of 

failures. In contrast, a low ROCOF may cause a low cost of failure in the same time 

intervals. Because of the above reason, the expected number of failures should be 

estimated for accurate estimation of OPEX (Moghaddam and Usher, 2011).  

The expected number of failures is estimated with the NHPP. The results of the 

number of failure functions are shown in Table 5.5 and Table 5.10. If the failure costs 

are known, future OPEX can be figured out by the results of the number of failures 

(Moghaddam and Usher, 2011). 

The costs of maintenance are associated with corrosion can be determined with 

engineering analysis. The costs of maintenance are affected either directly or indirectly 

by maintenance and are divided into two: direct and indirect costs of maintenance. The 

direct costs involve cost of manpower, material, tools, equipment, and overhead. The 
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indirect costs include material losses, excessive energy consumption, delay in fulfilling 

orders, legal, etc. (Blischke and Murthy, 2000). Thompson (2000) discusses that indirect 

costs that are associated with corrosion are more difficult to understand and to assign 

value. It could be explained by inherent properties of the impact of corrosion. More 

specifically for pipeline systems, indirect costs involve costs associated with damages to 

the environments or disruption, public relations costs, legal costs, lost revenue, etc. 

(Thompson, 2004). 

Property damage cost can be used in the study for determining direct 

maintenance costs. The PHMSA provides detail of total dollar amount of property 

damages for each pipeline incident in PHMSA’s database. Due to the Code of Federal 

Regulations (49 CFR 191.15), all relevant costs associated with corrosion available at 

the time of submission must be included on the written incidents reports. The property 

cost includes all direct costs of the incident such as property damage to the operator’s 

facilities and the property of others, facility repair and replacement, and the 

environmental cleanup and damage. The average property damages cost, which is 

Fproperty ($ per failure) for each predetermined the decades of installation is illustrated in 

Table 6.1. Due to above reason, property cost reflects the actual failure cost. Based on 

minimal repair assumption, the cost model needs cost of failure. Therefore, property 

damage cost is used as Cfailure, which denotes cost of failure (Thompson, 2004).  

As discussed in the literature review, the most appropriate approach is to repair 

the pipes until the failure costs clearly outweigh the replacement cost, or until new 
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pipeline projects make replacement economically attractive (Røstum, 2000). Therefore, 

maintenance is the most effective way to reduce ROCOF of the pipeline systems. 

Repair techniques are various from the installation of a reinforcing sleeve to full 

replacement when failure occur. Corrosion failures can be either leaks or ruptures for 

both internal and external corrosion. Baker Jr. (2008) emphasized that leaks generally do 

not cause property damage. Conversely, ruptures are more likely to cause an explosion 

and fire. 

The main external repair techniques are: the cut out and replace, the bypass, 

grinding, the weld depositions, the metallic sleeves, and the composite sleeve (Batisse 

and Hertz-Clemens, 2008). Thompson (2004) implied that for localized corrosion flaws, 

composite sleeves, steel sleeves, or replacement of the pipe segment are the most 

commonly used techniques for corrosion repair actions. Local flaws repairing process 

depends on company procedures and criteria. These kinds of problems are generally 

solved with composite sleeves and steel sleeves process. Conversely, the companies 

consider replacement or rehabilitation actions when large-scale corrosion or coating 

deterioration problem occurs.



85 
 

Table 6.1 Property Damages for Each Predetermined Decade of Installation 

Cause Decade of 

Installation 
Average Property Damage 

Due to Corrosion (per 

failure) 

Average Standard 

Deviation 
In

te
rn

a
l 

C
o

rr
o

si
o

n
 Overall $563,481 $856,348 

1950-1959 $200,172 $229,851 

1960-1969 $715,519 $1,412,253 

1970-1979 $589,603 $537,857 

1980-1989 $690,259 $736,810 

E
x
te

rn
a
l 

C
o
rr

o
si

o
n

 

Overall $2,694,061 $12,914,999 

1920-1929 $185,603 $175,889 

1930-1939 $273,107 $287,543 

1940-1949 $703,621 $1,005,536 

1950-1959 $2,027,638 $3,861,197 

1960-1969 $6,764,024 $23,247,348 

As mentioned previously, all relevant costs associated with corrosion available at 

the time of submission must be included on the written incidents reports. The costs of 

repair (composite sleeve, steel sleeve, and pipe replacement) are included to the property 

damage cost. Therefore, it requires no extra effort to find the cost of each repair 

techniques.  

The optimal maintenance models not only the cost of a corrective maintenance 

action through minimal repair but also need cost of a PM action involving replacing a 
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nonfailed component by a new one (Blischke and Murthy, 2000). ASRC Constructors 

Inc., Michael Baker Jr. Inc., and Norstar Pipeline Company (2007) conducted a technical 

report for Alaska spur pipelines for summarizing the detailed construction costs. In the 

study, direct and indirect construction costs, material (include freight) costs, 

miscellaneous costs, and project indirect costs are evaluated for different length of the 

gas transmission pipelines. The detail of the pipeline cost estimation is given in 

Appendix H. Based on the estimation, the average cost of new construction pipeline for 

Alaska Spur Gas Pipeline projects is estimated as $2,245,823 per mile. Let Creplacement 

denote the average cost of replacement cost in this thesis. Moreover, it is assumed that 

all of the replacement is related to corrosion (Thompson, 2004; ASRC Constructors Inc. 

et al., 2007). 

As discussed in Section 2, several considerations require making a final decision 

on whether a pipeline section should be maintained or replaced. For both rehabilitation 

and replacement decision is part of preventive maintenance policy. In the literature 

review detail of preventive maintenance is discussed. Based on this information, optimal 

values for the policy times could be determined by analyzing appropriate cost models 

(Nachlas, 2005). The following subsection is formulated the optimal cost model for the 

natural gas transmission pipeline networks. 

6.3 Cost Models (Optimization) 

The optimum a system replacement time can be done in order to balance the cost 

of maintenance against capital expenditure optimally. There are several optimal 

solutions for this problem that depend on the criteria selected for optimization. In this 
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thesis, the model, which minimizes the total expected cost per unit time for the system is 

selected. Coetzee (1997) provided a solution to optimize the maintenance strategy for 

repairable systems by adding relevant cost information (Louit et al., 2009). 

In the literature review, two main preventive maintenance policies, which are age 

policy and block policy, are discussed. After all discussions, it is decided that the 

periodic replacement with minimal repair at failure policy is feasible option for pipeline 

systems. 

Coetzee (1997) uses the above policy in the cost models. There are two types of 

cost models, which can be applied with success repairable system cost optimization, are 

type 2 policies and type 3 (Coetzee, 1997). 

6.3.1 Type 2 Policies 

Type 2 replacement policies include the planned replacement of a system at a 

certain age with minimal repairs at breakdown up that age. In other words, preventive 

maintenance policy is based on the age of the system, and only minimal repair is made 

for each failure (Wang, 2002). These replacement policies were introduced by Barlow 

and Hunter (1960). The model assumes: 1) after each failure, only minimal repair is 

made so that the system’s failure rate is not distributed; 2) the system is restored to its 

original state after preventive maintenance (Barlow and Hunter, 1960). The model 

optimizes cost per unit time over time. T* denotes the optimal replacement time that 

minimizes the total maintenance cost. Estimation of T* is given in Equation 6.1 

(Coetzee, 1997). 
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𝑇∗ = [
𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

(
1

𝜃𝛽)(𝛽−1)𝐶𝐹𝑎𝑖𝑙𝑢𝑟𝑒

]

1

𝛽

 (6.1) 

where θ>0 and β>0 are the scale (the characteristic life) and shape parameters of the 

failure intensity function, CReplacement is cost of system replacement, and CFailure is cost of 

repair of a failure (minimal repair). 

6.3.2 Type 3 Policies 

Type 3 policy involves a system replacement after an optimum number of 

failures n* has been repaired with minimal repair policy. These replacement policies 

were introduced by Makabe and Morimura (1963). The optimum number of the minimal 

repairs before the system replacement is given in Equation 6.2 (Coetzee, 1997).  

𝑛∗ =
𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

(𝛽−1)𝐶𝐹𝑎𝑖𝑙𝑢𝑟𝑒
 (6.2) 

where β>0 is the scale (the characteristic life) of the failure intensity function, CReplacement 

is the cost of system replacement, and CFailure is the cost of repair of a failure (minimal 

repair).  

If the total number of failure is equal to or greater than a number of minimal 

repair n*, the replacement should be done as soon as possible; otherwise, maintenance 

actions are not required (Wang, 2002). 

The pipeline failures data set is analyzed in Section 5, and the best model is 

decided for each decade on installation for internal and external corrosion. The result in 

the Table 5.5 and Table 5.10 can be used to illustrate the use of the cost models to 

optimize the system replacement strategy. 
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The optimal maintenance cost per unit time is given in Equation 6.3 (Coetzee, 

1997).  

𝐶(𝑇∗) =
𝐶𝑟𝑒𝑝𝑎𝑖𝑟𝜆(𝑡)+𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑇∗  (6.3) 

where, λ(t) is the expected number of failures in [0,T*], Creplacement is the average cost of 

system replacement, and Crepair is the average cost of the repair of a failure ( minimal 

repair). Under minimal repair assumption, the expected number of failures can be 

expressed in the interval (T1, T2) is (Coetzee, 1997; Gertsbakh, 2000): 

λ(t) = ∫
β

θ
(

t

θ
)

β−1

𝑑𝑡
T2

T1
= (

T2

θ
)

β

− (
T1

θ
)

β

, T2 ≥ T1 ≥ 0  (6.4) 

In Table 6.1, average property damage cost is given. To find more reliable 

results, a range cost of property damage is used instead of constant cost. Cost of 

replacement is given as $2,245,823 per mile. However, selected 10-mile section will 

provide more reliable result: therefore, the cost of a corrective maintenance action 

through minimal repair is multiplied by 10-mile. 

Based on type 2 policies and Equation 6.1, the optimal replacement time is 

determined by maximizing the expected cost effectiveness. Figure 6.1 shows how the 

scheduled replacement time changes with expected cost of failure for internal corrosion 

for all internal corrosion failures (98 incidents). An illustrating example for average cost 

of property damage, when CReplacement=$22,458,230 (10 mile section) and 

CFailure=$563,481, the optimal replacement time is at T* = 13 year and the corresponding 

cost is 𝐶(𝑇∗)=$7,034,496 for overall group of internal corrosion. 
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Figure 6.1 Cost Effectiveness as Function of Scheduled Replacement Time for Internal 
Corrosion Overall Group 

Moreover, the optimal replacement time depend upon the ratio of preventive to 

corrective replacement costs. Therefore, the optimal time can be analyzed by the 

derivative of Equation 6.3. Figure 6.2 shows how the scheduled replacement time 

changes with this ration for internal corrosion for all internal corrosion failures. 
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Figure 6.2 Scheduled Replacement Time as Function of Ratio of Preventive to 
Corrective Replacement Costs for Internal Corrosion Overall Group 

Steps of the optimal cost models are repeated for external corrosion. Figure 6.3 

shows how the scheduled replacement time changes with expected cost of failure for 

external corrosion for all external corrosion failures (46 incidents). An illustrating 

example for average cost of property damage, when CReplacement=$22,458,230 (10 mile 

section) and CFailure=$2,694,061, the optimal replacement time is at T* = 8 year and the 

corresponding cost is 𝐶(𝑇∗)=$13,138,560 for overall group of external corrosion. 

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100

T
im

e
 t

o
 R

e
p

la
ce

m
e

n
t 

(y
e

a
r)

Ratio (Replacement Cost/Correvtive Replacement Cost)

Overall Internal



92 
 

 

Figure 6.3 Cost Effectiveness as Function of Scheduled Replacement Time for External 
Corrosion Overall Group 

Such in internal corrosion, the optimal replacement time depend upon the ratio of 

preventive to corrective replacement costs. Therefore, the optimal time can be analyzed 

by the derivative of Equation 6.3. Figure 6.4 shows how the scheduled replacement time 

changes with this ration for internal corrosion all external corrosion failures. 
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Figure 6.4 Scheduled Replacement Time as Function of Ratio of Preventive to 
Corrective Replacement Costs for External Corrosion Overall Group 

The remaining the decades of installation are illustrated for the optimal 

maintenance cost models. The results are shown separately in Appendix H. 

In summary, the natural gas transmission pipeline system will be replaced after 

the number of minimal repairs results of analysis. The results show that the length of the 

replacement interval depends upon a ratio of the replacement costs. Therefore, cost of 

repair and cost of replacement must be analyzed carefully before evaluating cost models.
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7. SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY 

 

This section summarizes major findings, discusses results, and suggests 

directions for future study. The section is organized in two subsections. In the first 

subsection, a summary of the thesis work is presented. In the second subsection, the 

directions for future work are suggested.  

7.1 Summary 

The purpose of this study is to formulate statistical models for the estimation of 

failure rate and to develop the optimal maintenance actions for natural gas transmission 

pipeline networks. Although much literature exists for repairable systems, there is a 

limited amount of work for natural gas pipelines. Therefore, this thesis tries to build a 

small bridge between previous studies, which are conducted for repairable systems or the 

other type of networks, and natural gas pipeline systems and to develop a method of 

maintenance optimization models establishment for pipeline systems. It is assumed that 

the readers of this thesis have some idea about the basic of theory of stochastic processes 

and reliability for repairable systems.  

This thesis work focuses on three major topics. The first topic is characterization 

of natural gas transmission pipeline system failure modes. The discussion of this topic is 

discussed in Section 2.  

The second topic is the development of reliability models to estimate the 

expected number of failures. Two reliability models are considered to explain 

characterization of pipeline failures in the literature review. It is found that the stochastic 
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point processes are the most convenient processes to use a parametric model like the 

homogeneous Poisson process (NPP) and the nonhomogeneous Poisson process (NHPP) 

for natural gas transmission pipeline systems.  

Application of the statistical models is illustrated in Section 5. The models used 

for natural gas transmission pipeline incidents data were observed from 2001 to 2011. 

Under the scope of this thesis, the pipeline networks are divided into two main groups 

(internal and external corrosion) based on failure characteristics. The following 

covariates are found to be significant: decades of installation and the number of previous 

failures.  

The point and interval estimators of the failure intensity function (NHPP) are 

evaluated and the accuracy of the stochastic models is tested for each determined failure 

mode and decade of installation. The null hypothesis shows that both HPP and NHPP are 

convenient for estimating the failure rate of transmission pipelines. Therefore, NHPP 

and HPP are highly recommended for modeling failures’ characterization in natural gas 

transmission pipeline networks for corrosion failure modes. 

The thesis illustrated that three out of five pipeline networks are deteriorating due 

to internal corrosion failures. The other two network groups have stationary behavior. 

For external corrosion failures, three out of six pipeline networks are deteriorating, two 

of them have stationary behavior, and one network is improving reliability over time.  

Based on the finding in this study, internal corrosion failures more significant 

than external corrosion. As mentioned in Section 5, there is an increasing trend of beta 

shape parameters for internal corrosion with over time. On the other hand, it is hard to 
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illustrate a trend of beta shape parameter for external corrosion with over time. The 

results can be explained that the oil and gas industry has been familiar with corrosion 

mitigation and prevention strategies due to 49 CFR Part 192. Due to the legislative 

regulation and industry effort, external corrosion has been kept under control.  

The statistical models give the expected number of failures. However, there is no 

guarantee that these failures will occur. The results of the statistical models can be used 

in reliability analysis, risk analysis, and optimum maintenance decisions. As mentioned 

earlier, the second purpose of this study is to optimize maintenance for pipeline 

networks. Therefore, the results of statistical models underlie the maintenance 

optimization models. 

The third topic is the development of optimal preventive maintenance actions for 

gas pipelines. Details of the maintenance models are presented in Section 2 and Section 

6. Maintenance actions can be divided into two major classes: preventive maintenance 

and corrective maintenance. Corrective maintenance occurs as a result of failures; 

therefore, it does not affect the overall system reliability. On the other hand, preventive 

maintenance changes the system reliability.  

The optimal preventive maintenance actions are chosen based on minimal repair 

process by the non-homogeneous Poisson process assumption. Based on the minimal 

repair process, the cost model is selected. The cost model takes into consideration 

optimal preventive maintenance schedule and minimum average total cost per time unit 

criterion. In other words, the purpose of selected cost model minimizes the total 

expected cost per unit time for the pipeline networks. 
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The results of this study are a contribution to decision-makers in the gas industry 

to predict the expected number of failure in future operation more accurately and to help 

to decide proper preventive maintenance decisions. 

7.2 Directions for Future Research 

Even though this thesis work has presented a framework to estimate failure rate 

and to determine the optimal preventive maintenance decision for the natural gas 

transmission pipeline networks, it does not mean that it solves all the problems that are 

associated with reliability and maintenance optimization.  

Reliability and maintenance optimization models require further research 

attention are as follows:  

1. The development of reliability models that can predict the probability of failure 

and the expected number of failures depend upon many performance variables 

such as pressure of gas, environmental conditions, temperature, diameter, wall 

thickness, record of previous maintenance history, etc. Due to lack of 

information, the reliability models developed in this thesis consider the decades 

of installation of lines, corrosion failure mode, and the number of previous 

failures. The models can be improved by including other failure modes, multiple 

performance variables, and exact pipeline length for scope of future research. 

2. The pipes in the natural gas transmission networks are only considered in this 

work. However, pipeline systems consist of pipes and other subcomponents such 

as compressors, valves, metering stations, etc. For more accurate reliability 
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analysis for the entire pipeline network, whole subcomponents performance 

should be considered. 

3. The development of preventive maintenance models depends on many variables 

such as different maintenance restoration degrees. The optimal preventive 

maintenance models developed in this thesis consider minimal repair restoration 

degrees. Other maintenance restoration degrees such as imperfect or perfect 

could be included in the scope of future research. 

4. The development of preventive maintenance models considers the periodic 

replacement with minimal repair at failure policy. On the other hand, some other 

models consider previous maintenance time and frequency of maintenance until 

preventive maintenance actions are taken. Therefore, other possible applications 

of preventive maintenance could be considered for future research. 

5. The accuracy of the optimization models generally depends upon two variables: 

accuracy of failure intensity functions and accuracy of cost. Accuracy of failure 

intensity functions can be improved with the first comment. However, estimating 

the costs that are associated with failure, construction conditions, and 

maintenance actions are not easily obtainable. This problem could be obviated in 

the future with a closer collaboration with the oil and gas industry, pipeline 

safety agencies, and researchers. 
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APPENDIX A 

Table A-1 Summary of internal corrosion failures from 2001 to 2011-A 

Year 

incident 

occurred 

Number 

of total 

incidents 

Cumulative 

number of 

total 

incidents 

Total Property 

Damage (PRPTY) 

Due to Corrosion 

(per failure) ($ x 

thousand) 

Average of 

PRPTY Due to 

Corrosion (per 

failure) ($ x 

thousand) 

Standard Deviation 

of PRPTY Due to 

Corrosion (per 

failure) ($ x 

thousand) 

Galvanic 

Corrosion 

Microbiological 

Corrosion 

Other 

2001 5 5 

55,221 563 856 

2  3 
2002 7 12 3 1 3 
2003 7 19 3 2 2 
2004 9 28 2 7  
2005 5 33  3 2 
2006 8 41 4 4  
2007 9 50 2 6 1 
2008 7 57  4 1 
2009 10 67 4 4 2 
2010 18 85    
2011 13 98    
      Total: 20 Total: 31 Total: 14 
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Table A-2 Summary of internal corrosion failures from 2001 to 2011-B 

Decade of 

installation 
Property Damage 

(PRPTY) Due to 

Corrosion (per 

failure) ($ x 

thousand) 

Pipe Diameter (in) Pipe Wall Thickness 

(in) 

Galvanic Corrosion 

($ x thousand) 

Microbiological 

Corrosion ($ x 

thousand) 

Other ($ x thousand) 

 Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Overall 563 856           
1950-1959 200 229 14.17 6.45 0.31 0.07 185 45 251 280 383 500 
1960-1969 715 1,412 21.86 9.05 0.41 0.11 136 64 1,155 2,318 241 258 
1970-1979 589 537 17.72 6.16 0.44 0.13 353 305 731 548 1,393 1,706 
1980-1989 690 736 16.00 7.94 0.37 0.07 1,339 1,151 448 134 468 500 
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Table A-3 Summary of internal corrosion failures from 2001 to 2011 by the decade of installation between 1950 and 1959 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 2 2 

4 3 0 5 12 0 0 

2002 1 3 
2003 1 4 
2004 0 4 
2005 1 5 
2006 0 5 
2007 0 5 
2008 1 6 
2009 1 7 
2010 3 10 
2011 2 12 
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Table A-4 Summary of internal corrosion failures from 2001 to 2011 by the decade of installation between 1960 and 1969 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 1 1 

14 0 1 10 22 0 3 

2002 1 2 
2003 2 4 
2004 2 6 
2005 1 7 
2006 2 9 
2007 1 10 
2008 2 12 
2009 3 15 
2010 5 20 
2011 5 25 
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Table A-5 Summary of internal corrosion failures from 2001 to 2011 by the decade of installation between 1970 and 1979 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

18 1 0 13 28 1 3 

2002 3 3 
2003 3 6 
2004 2 8 
2005 1 9 
2006 0 9 
2007 3 12 
2008 2 14 
2009 5 19 
2010 8 27 
2011 5 32 
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Table A-6 Summary of internal corrosion failures from 2001 to 2011 by the decade of installation between 1980 and 1989 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 2 2 

19 0 0 1 18 1 1 

2002 2 4 
2003 1 5 
2004 3 8 
2005 0 8 
2006 6 14 
2007 4 18 
2008 1 19 
2009 1 20 
2010 0 20 
2011 0 20 
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Table A-7 Summary of types of PM methods from 2001 to 2011 for internal corrosion 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late Start Without 

protection 

Coated Bare 

2001 5 5 3 1 1 5  
2002 7 12 6 1  7  
2003 7 19 7   7  
2004 9 28 9   9  
2005 5 33 5   5  
2006 8 41 8   7 1 
2007 9 50 8 1  9  
2008 7 57 7   7  
2009 10 67 9 1  9 1 
2010 18 85 17  1 18  
2011 13 98 13   12 1 
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APPENDIX B 

Table B-1 Summary of external corrosion failures from 2001 to 2011-A 

Year 
incident 
occurred 

Number 
of total 
incidents 

Cumulative 
number of 
total 
incidents 

Total Property 
Damage 
(PRPTY) Due 
to Corrosion 
(per failure) ($ 
x thousand) 

Average of 
PRPTY Due to 
Corrosion (per 
failure) ($ x 
thousand) 

Standard 
Deviation of 
PRPTY Due to 
Corrosion (per 
failure) ($ x 
thousand) 

Galvanic 
Corrosion 

Improper 
Cathodic 
Protection 

Microbiological 
Corrosion 

Other 

2001 0 0 

123,926 2,694 12,914 

    
2002 4 4   1 2 
2003 4 8 1   2 
2004 5 13 3 1   
2005 4 17 1   2 
2006 7 24 3  1 2 
2007 7 31 5   2 
2008 6 37 2 1 2  
2009 3 40 1   1 
2010 5 45 3  1  
2011 1 46     
      Total: 19 Total: 2 Total: 5 Total: 11 
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Table B-2 Summary of external corrosion failures from 2001 to 2011-B 

Decade of 

installation 
Property Damage (PRPTY) 

Due to Corrosion (per 

failure) ($ x thousand) 

Pipe Diameter (in) Pipe Wall Thickness 

(in) 

 Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Overall 2,694 12,914     
1920-1929 185 175 19.54 10.69 0.26 0.03 
1930-1939 273 287 19.00 7.07 0.28 0.04 
1940-1949 703 1,005 20.73 5.88 0.32 0.08 
1950-1959 2,027 3,861 23.93 4.90 0.30 0.05 
1960-1969 6,764 23,247 21.10 11.81 0.30 0.08 
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Table B-3 Summary of external corrosion failures from 2001 to 2011-C 

Decade of 

installation 
Galvanic Corrosion ($ x 

thousand) 
Improper Cathodic 

Protection 
Microbiological Corrosion 

($ x thousand) 
Other ($ x thousand) 

 Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Average Standard 
Deviation 

Overall         
1920-1929 220 233       
1930-1939 273 287       
1940-1949 91 28   887  1,015 1,511 
1950-1959 3,069 5,449 5,416  57  60 84 
1960-1969 408 576   70  172 103 
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Table B-4 Summary of external corrosion failures from 2001 to 2011 by the decade of installation between 1920 and 1929 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

1 0 2 0 2 1 0 

2002 1 1 
2003 0 1 
2004 0 1 
2005 0 1 
2006 1 2 
2007 0 2 
2008 0 2 
2009 0 2 
2010 1 3 
2011 0 3 
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Table B-5 Summary of external corrosion failures from 2001 to 2011 by the decade of installation between 1930 and 1939 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

0 2 0 0 0 2 0 

2002 0 0 
2003 0 0 
2004 0 0 
2005 0 0 
2006 0 0 
2007 1 1 
2008 1 2 
2009 0 2 
2010 0 2 
2011 0 2 
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Table B-6 Summary of external corrosion failures from 2001 to 2011 by the decade of installation between 1940 and 1949 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

2 9 0 0 9 2 0 

2002 0 0 
2003 2 2 
2004 1 3 
2005 3 6 
2006 2 8 
2007 0 8 
2008 2 10 
2009 0 10 
2010 1 11 
2011 0 11 
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Table B-7 Summary of external corrosion failures from 2001 to 2011 by the decade of installation between 1950 and 1959 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

4 4 1 0 9 0 0 

2002 1 1 
2003 1 2 
2004 0 2 
2005 0 2 
2006 1 3 
2007 2 5 
2008 0 5 
2009 1 6 
2010 1 7 
2011 2 9 
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Table B-8 Summary of external corrosion failures from 2001 to 2011 by the decade of installation between 1960 and 1969 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late 

Start 

Without 

protection 

Unknown Coated Bare Unknown 

2001 0 0 

9 1 1 3 14 0 0 

2002 2 2 
2003 1 3 
2004 2 5 
2005 1 6 
2006 2 8 
2007 3 11 
2008 0 11 
2009 1 12 
2010 1 13 
2011 1 14 
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Table B-9 Summary of types of PM methods from 2001 to 2011 for external corrosion 

Year 

incident 

occurred 

Number of 

total 

incidents 

Cumulative 

number of 

total 

incidents 

Cathodic protection Coating condition 

Under CP Late Start Without 

protection 

Coated Bare 

2001 0 0 0   0  
2002 4 4 2  2 4  
2003 4 8 2 2  4  
2004 5 13 4 1  5  
2005 4 17 1 3  3 1 
2006 7 24 4 3  7  
2007 7 31 3 3 1 6 1 
2008 6 37 3 3  4 2 
2009 3 40 3   3  
2010 5 45 2 2 1 4 1 
2011 1 46 1   1  
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APPENDIX C 

 

Figure C-1 Overall number of cumulative failures for internal corrosion plot from 2001 to 2011  

 

Figure C-2 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011  
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Figure C-3 Number of cumulative failures for internal corrosion plot from 2001 to 2011 by the decade of installation between 
1950 and 1959 

 

Figure C-4 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1950 and 1959 
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Figure C-5 Number of cumulative failures for internal corrosion plot from 2001 to 2011 by the decade of installation between 
1960 and 1969 

 

Figure C-6 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1960 and 1969 
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Figure C-7 Number of cumulative failures for internal corrosion plot from 2001 to 2011 by the decade of installation between 
1970 and 1979 

 

Figure C-8 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1970 and 1979 
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Figure C-9 Number of cumulative failures for internal corrosion plot from 2001 to 2011 by the decade of installation between 
1980 and 1989 

 

Figure C-10 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1980 and 1989 
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Table C-1 Summary of internal corrosion failures the maximum likelihood estimators (beta) values  

Decade of 

Installation 

Internal Corrosion Beta Shape 

Parameter 

CI (95%)Lower CI (95%)Upper 

1920-1929    

1930-1939    

1940-1949    

1950-1959 0.935 0.555 1.352 

1960-1969 1.633 1.319 1.946 

1970-1979 1.778 1.32 2.235 

1980-1989 0.9566 0.6709 1.242 

1990-1999    

2000-2009    
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Figure C-11 Summary of internal corrosion failures the maximum likelihood estimators (beta) values as a graphical
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APPENDIX D 

 

Figure D-1 Overall number of cumulative failures for external corrosion plot from 2001 to 2011 

 

Figure D-2 Observed cumulative failures and estimated cumulative failures plots for external corrosion from 2001 to 2011 
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Figure D-3 Number of cumulative failures for external corrosion plot from 2001 to 2011 by the decade of installation between 
1920 and 1929 

 

Figure D-4 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1920 and 1929 
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Figure D-5 Number of cumulative failures for external corrosion plot from 2001 to 2011 by the decade of installation between 
1930 and 1939 

 

Figure D-6 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1930 and 1939 
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Figure D-7 Number of cumulative failures for external corrosion plot from 2001 to 2011 by the decade of installation between 
1940 and 1949 

 

Figure D-8 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1940 and 1949 
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Figure D-9 Number of cumulative failures for external corrosion plot from 2001 to 2011 by the decade of installation between 
1950 and 1959 

 

Figure D-10 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1950 and 1959 
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Figure D-11 Number of cumulative failures for external corrosion plot from 2001 to 2011 by the decade of installation 
between 1960 and 1969 

 

Figure D-12 Observed cumulative failures and estimated cumulative failures plots for internal corrosion from 2001 to 2011 by 
the decade of installation between 1960 and 1969
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Table D-1 Summary of external corrosion failures the maximum likelihood estimators (beta) values 

Decade of 

Installation 

External Corrosion Beta 

Shape Parameter 

CI (95%)Lower CI (95%)Upper 

1920-1929 0.9542 0.6112 1.297 

1930-1939 2.219 0.8378 3.6 

1940-1949 1.118 0.7515 1.485 

1950-1959 1.97 1.507 2.432 

1960-1969 0.9989 0.8019 1.196 

1970-1979    

1980-1989    

1990-1999    

2000-2009    
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Figure D-13 Summary of external corrosion failures the maximum likelihood estimators (beta) values as a graphical
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APPENDIX E 

Table E-1 Summary of the internal corrosion of cathodic protection status for the 
selected number of failures 

Cathodic Protection Status Percentage (%) 

Cathodically Protected 94 

Cathodic Protection Started after pipe 
installation (Late Start) 

4 

Cathodically Unprotected 2 

 

Table E-2 Summary of the internal corrosion of coating status for the selected number of 
failures 

Coating Status Percentage (%) 

Coated  97 

Bare 3 

 

Table E-3 Summary of the cause of corrosion related failures for internal corrosion 

Type of Corrosion that Causes 

Failures 

Percentage (%) 

Galvanic 31 

Stray Current 0 

Improper Cathodic Protection 0 

Microbiological 48 

Stress Corrosion Cracking 0 

Other 21 
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Table E-4 Summary of the external corrosion of the cathodic protection status for the 
selected number of failures 

Cathodic Protection Status Percentage (%) 

Cathodically Protected 54 

Cathodic Protection Started after pipe 
installation (Late Start) 

37 

Cathodically Unprotected 9 

 

Table E-5 Summary of the external corrosion of the coating status for selected of 
number of failures 

Coating Status Percentage (%) 

Coated  89 

Bare 11 

 

Table E-6 Summary of the cause of the corrosion related failures for external corrosion 

Type of Corrosion that Causes 

Failures 

Percentage (%) 

Galvanic 42 

Stray Current 0 

Improper Cathodic Protection 5 

Microbiological 11 

Stress Corrosion Cracking 18 

Other 24 
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APPENDIX F 

Table F-1 Analysis of internal corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 5 5 92,441 0.054088554 0.054088554 

2002 7 12 107,626 0.065040046 0.1191286 

2003 7 19 107,195 0.065301553 0.184430153 

2004 9 28 111,487 0.080726901 0.265157054 

2005 5 33 107,377 0.046564907 0.311721961 

2006 8 41 106,984 0.074777537 0.386499498 

2007 9 50 106,328 0.084643744 0.471143242 

2008 7 57 106,801 0.065542457 0.536685699 

2009 10 67 106,870 0.093571629 0.630257328 

2010 18 85 106,118 0.169622496 0.799879824 

2011 13 98 105,419 0.123317429 0.923197252 

Average   105,877 0.083927023 0.42565356 

Standard 

Deviation 
  

 0.035228801 0.278268681 
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Table F-2 Analysis of internal corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1950 and 1959 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 2 2 31,323 0.063850844 0.063850844 

2002 1 3 34,725 0.028797544 0.092648388 

2003 1 4 35,048 0.028532149 0.121180537 

2004 0 4 36,622 0 0.121180537 

2005 1 5 35,267 0.028355462 0.149535999 

2006 0 5 34,396 0 0.149535999 

2007 0 5 34,410 0 0.149535999 

2008 1 6 34,297 0.029156659 0.178692657 

2009 1 7 34,260 0.029188266 0.207880923 

2010 3 10 34,009 0.08821072 0.296091643 

2011 2 12 33,878 0.059035782 0.355127425 

Average   34,385 0.032284311 0.171387359 

Standard 

Deviation    0.028333232 0.086564739 
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Table F-3 Analysis of internal corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1960 and 1969 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 1 1 23,545 0.042471862 0.042471862 

2002 1 2 27,695 0.03610747 0.078579333 

2003 2 4 26,761 0.074735455 0.153314788 

2004 2 6 28,523 0.07011791 0.223432698 

2005 1 7 28,017 0.035692459 0.259125156 

2006 2 9 28,070 0.07125144 0.330376597 

2007 1 10 27,970 0.035752809 0.366129406 

2008 2 12 27,915 0.071647054 0.43777646 

2009 3 15 27,871 0.107638247 0.545414707 

2010 5 20 27,618 0.1810396 0.726454306 

2011 5 25 27,578 0.181303241 0.907757547 

Average   27,415 0.082523413 0.370075715 

Standard 

Deviation    0.053565608 0.269466162 
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Table F-4 Analysis of internal corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1970 and 1979 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 7,341 0 0 

2002 3 3 7,834 0.382944764 0.382944764 

2003 3 6 8,751 0.342816867 0.72576163 

2004 2 8 9,351 0.213880228 0.939641858 

2005 1 9 8,540 0.117094538 1.056736396 

2006 0 9 8,293 0 1.056736396 

2007 3 12 8,150 0.368077385 1.424813781 

2008 2 14 8,064 0.248004033 1.672817813 

2009 5 19 8,065 0.619952271 2.292770084 

2010 8 27 8,115 0.985877429 3.278647513 

2011 5 32 7,976 0.626899191 3.905546705 

Average   8,226 0.3550497 1.521492449 

Standard 

Deviation    0.297194797 1.200557706 
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Table F-5 Analysis of internal corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1980 and 1989 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 2 2 7,442 0.268744961 0.268744961 

2002 2 4 7,918 0.252578064 0.521323025 

2003 1 5 7,795 0.128281703 0.649604728 

2004 3 8 8,175 0.366957036 1.016561764 

2005 0 8 8,237 0 1.016561764 

2006 6 14 7,829 0.766370243 1.782932007 

2007 4 18 7,683 0.520638772 2.303570778 

2008 1 19 7,862 0.127193305 2.430764084 

2009 1 20 7,900 0.126582823 2.557346907 

2010 0 20 7,756 0 2.557346907 

2011 0 20 7,590 0 2.557346907 

Average   7,835 0.232486082 1.605645803 

Standard 

Deviation    0.241490177 0.921285467 
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Table F-6 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 92,441 0 0 

2002 4 4 107,626 0.037165741 0.037165741 

2003 4 8 107,195 0.037315173 0.074480914 

2004 5 13 111,487 0.044848278 0.119329192 

2005 4 17 107,377 0.037251925 0.156581118 

2006 7 24 106,984 0.065430345 0.222011462 

2007 7 31 106,328 0.065834023 0.287845485 

2008 6 37 106,801 0.056179249 0.344024735 

2009 3 40 106,870 0.028071489 0.372096223 

2010 5 45 106,118 0.04711736 0.419213583 

2011 1 46 105,419 0.009485956 0.428699539 

Average   105,877 0.038972685 0.223767999 

Standard 

Deviation    0.020819727 0.156002744 
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Table F-7 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1920 and 1929 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 4,544 0 0 

2002 1 1 5,594 0.178752895 0.178752895 

2003 0 1 5,521 0 0.178752895 

2004 0 1 5,651 0 0.178752895 

2005 0 1 5,281 0 0.178752895 

2006 1 2 5,127 0.195058619 0.373811514 

2007 0 2 5,085 0 0.373811514 

2008 0 2 4,581 0 0.373811514 

2009 0 2 4,559 0 0.373811514 

2010 1 3 5,041 0.198383531 0.572195045 

2011 0 3 4,497 0 0.572195045 

Average   5,044 0.052017731 0.304967975 

Standard 

Deviation    0.08921446 0.178467027 
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Table F-8 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1930 and 1939 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 4,544 0 0 

2002 0 0 5,594 0 0 

2003 0 0 5,521 0 0 

2004 0 0 5,651 0 0 

2005 0 0 5,281 0 0 

2006 0 0 5,127 0 0 

2007 1 1 5,085 0.196656834 0.196656834 

2008 1 2 4,581 0.218307722 0.414964556 

2009 0 2 4,559 0 0.414964556 

2010 0 2 5,041 0 0.414964556 

2011 0 2 4,497 0 0.414964556 

Average   5,044 0.037724051 0.168774096 

Standard 

Deviation    0.084070225 0.203500514 
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Table F-9 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1940 and 1949 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 10,776 0 0 

2002 0 0 11,883 0 0 

2003 2 2 12,935 0.15461925 0.15461925 

2004 1 3 11,989 0.083411935 0.238031185 

2005 3 6 11,838 0.253411125 0.49144231 

2006 2 8 11,782 0.16975234 0.66119465 

2007 0 8 11,823 0 0.66119465 

2008 2 10 11,527 0.173509009 0.834703659 

2009 0 10 11,450 0 0.834703659 

2010 1 11 11,351 0.088101139 0.922804798 

2011 0 11 11,241 0 0.922804798 

Average   11,690 0.083891345 0.520136269 

Standard 

Deviation    0.091842022 0.362915541 
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Table F-10 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1950 and 1959 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 31,323 0 0 

2002 1 1 34,725 0.028797544 0.028797544 

2003 1 2 35,048 0.028532149 0.057329692 

2004 0 2 36,622 0 0.057329692 

2005 0 2 35,267 0 0.057329692 

2006 1 3 34,396 0.029073497 0.086403189 

2007 2 5 34,410 0.058123433 0.144526622 

2008 1 6 34,297 0.029156659 0.173683281 

2009 1 7 34,260 0.029188266 0.202871547 

2010 2 9 34,009 0.058807146 0.261678693 

2011 0 9 33,878 0 0.261678693 

Average   34,385 0.023788972 0.12105715 

Standard 

Deviation    0.021914065 0.09279757 
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Table F-11 Analysis of external corrosion failure rate and cumulative failure rate per 
1,000 miles from 2001 to 2011 by the decade of installation between 1960 and 1969 

Year 
incident 
occurred 

Number of 
total 
incidents 

Cumulative 
number of 
total incidents 

Total mileage 
at the end of 
year (mile) 

Failure rate 
(failure/1,000 mile) 

Cumulative 
failure rate 
(failure/1,000 
mile) 

2001 0 0 23,545 0 0 

2002 2 2 27,695 0.072214941 0.072214941 

2003 1 3 26,761 0.037367728 0.109582668 

2004 2 5 28,523 0.07011791 0.179700578 

2005 1 6 28,017 0.035692459 0.215393037 

2006 2 8 28,070 0.07125144 0.286644477 

2007 3 11 27,970 0.107258428 0.393902905 

2008 0 11 27,915 0 0.393902905 

2009 1 12 27,871 0.035879416 0.429782321 

2010 1 13 27,618 0.03620792 0.465990241 

2011 1 14 27,578 0.036260648 0.502250889 

Average   27,415 0.045659172 0.277214996 

Standard 

Deviation    0.03219282 0.172389059 
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APPENDIX G 

Table G-1 Estimation of new natural gas pipeline construction costs (ASRC 
Constructors Inc. et al., 2007) 

 Construction 
Costs (cost 
/ft.) 

Markup 
(cost /ft.) 

Material 
Costs 
(cost /ft.) 

Miscellaneous 
Costs (cost 
/ft.) 

Project 
Indirect 
Costs 
(cost /ft.) 

Total 
Project 
Costs 
(cost /ft.) 

Project 1 $150.72 $30.14 $144.10 $30.35 $66.85 $422.16 

Project 2 $150.09 $30.02 $143.64 $45.68 $66.85 $436.28 

Project 3 $181.03 $36.21 $148.35 $53.48 $66.85 $485.92 

Project 4 $143.77 $28.75 $131.49 $51.24 $67.11 $422.36 

Project 5 $166.90 $33.38 $131.79 $80.04 $67.11 $479.22 

Project 6 $150.46 $30.09 $143.30 $44.95 $66.85 $435.65 

Average $157.16 $31.43 $140.45 $50.96 $66.94 $446.93 
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Figure G-1 Cost effectiveness as function of scheduled replacement time for internal 
corrosion from 2001 to 2011 by the decade of installation between 1960 and 1969 

Figure G-2 Scheduled replacement time as function of ratio of preventive to corrective 
replacement costs for internal corrosion from 2001 to 2011 by the decade of installation 

between 1960 and 1969 
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Figure G-4 Cost effectiveness as function of scheduled replacement time for internal 
corrosion from 2001 to 2011 by the decade of installation between 1970 and 1979 

 

Figure G-4 Scheduled replacement time as function of ratio of preventive to corrective 
replacement costs for internal corrosion from 2001 to 2011 by the decade of installation 

between 1970 and 1979 
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Figure G-5 Cost effectiveness as function of scheduled replacement time for external 
corrosion from 2001 to 2011 by the decade of installation between 1940 and 1949 

 

Figure G-6 Scheduled replacement time as function of ratio of preventive to corrective 
replacement costs for external corrosion from 2001 to 2011 by the decade of installation 

between 1940 and 1949 
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Figure G-7 Cost effectiveness as function of scheduled replacement time for external 
corrosion from 2001 to 2011 by the decade of installation between 1950 and 1959 

 

Figure G-8 Scheduled replacement time as function of ratio of preventive to corrective 
replacement costs for external corrosion from 2001 to 2011 by the decade of installation 

between 1950 and 1959 
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Figure G-1 Pipeline cost estimates for Alaska spur gas pipeline study-project 1 (ASRC 
Constructors Inc. et al., 2007) 
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Figure G-2 Pipeline cost estimates for Alaska spur gas pipeline study-project 2 (ASRC 
Constructors Inc. et al., 2007) 
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Figure G-3 Pipeline cost estimates for Alaska spur gas pipeline study-project 3 (ASRC 
Constructors Inc. et al., 2007) 

 




