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ABSTRACT

In the aftermath of a disaster, the impacted communication infrastructure is

unable to provide first responders with a reliable medium of communication. Delay

tolerant networks that leverage mobility in the area have been proposed as a scalable

solution that can be deployed quickly. Such disaster response networks (DRNs)

typically have limited capacity due to frequent disconnections in the network, and

under-perform when saturated with data. On the other hand, there is a large amount

of data being produced and consumed due to the recent popularity of smartphones

and the cloud computing paradigm.

Fog Computing brings the cloud computing paradigm to the complex environ-

ments that DRNs operate in. The proposed architecture addresses the key challenges

of ensuring high situational awareness and energy efficiency when such DRNs are sat-

urated with large amounts of data. Situational awareness is increased by providing

data reliably, and at a high temporal and spatial resolution. A waypoint placement

algorithm places hardware in the disaster struck area such that the aggregate good-

put is maximized. The Raven routing framework allows for risk-averse data delivery

by allowing the user to control the variance of the packet delivery delay. The Pareto

frontier between performance and energy consumption is discovered, and the DRN

is made to operate at these Pareto optimal points. The FuzLoc distributed pro-

tocol enables mobile self-localization in indoor environments. The architecture has

been evaluated in realistic scenarios involving deployments of multiple vehicles and

devices.
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1. INTRODUCTION

Natural disasters cause loss of power and communication infrastructure in the

affected area, and make the recovery process challenging. Search and rescue is one of

the Emergency Support Functions as described by the Federal Emergency Manage-

ment Agency in the U.S.A; Urban Search and Rescue (USAR) is a sub-function that

deals with collapsed structures in urban areas. Since USAR first responders have al-

ways communicated using traditional means such as paper and paint on walls, recent

research [1] has looked at providing them with new sensing modalities like low power

wireless sensors and smart phones. DRNs use concepts from delay tolerant network-

ing research to build a networking infrastructure that integrates these modalities and

allows responders to share data. These DRNs are expected to handle data created

by sensors that can be measured in kilobytes, to multiple gigabyte videos generated

by smartphones.

However, the capacity of DRNs are finite and limited for many reasons. Node

mobility in the area, which is leveraged by the DRN to mule data, is inherently un-

predictable and random. This unpredictability makes it very difficult to find optimal

end-to-end paths in the network. Because of the large deployment area and limited

mobility, node contacts are sparse and the inter-contact time which is the primary

component of the end-to-end packet delivery delay [2], can be measured in tens of

minutes or even hours. Limited on-node storage buffers and contact bandwidth make

optimal routing of data more challenging.

The crippled power infrastructure contributes to the complexity. Network devices

Parts of this section reprinted with permission from “Distressnet: A disaster response system
providing constant availability cloud-like services” by H. Chenji, W. Zhang, R. Stoleru, and C.
Arnett. Ad Hoc Networks, vol. 11, no. 8, pp. 2440-2460, 2013. Copyright 2013 by Elsevier.
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need to be powered by portable power sources that are in limited supply. While

these devices can be duty cycled to save energy, the performance of the DRN will

be severely impacted. Missing a node contact opportunity due to sleep scheduling is

prohibitive since contacts in a DRN are very sparse. Some devices perform mission

critical functions - as a result, they may not always be able to save power by sleeping.

Providing a high degree of situational awareness in an energy efficient manner be-

comes challenging in such environments. In this dissertation we present Fog Comput-

ing, a mobile ad hoc wireless network architecture for DRNs where traditional cloud

computing is instantiated in a disconnected, mobile network called the “fog”. Since

large amounts of data will no longer pose a problem, cloud computing paradigms

like file sharing and social networking that enhance teamwork are made possible.

The key challenges addressed by Fog Computing are the improvement of situational

awareness (SA) and ensuring energy efficiency, especially when there is a deluge of

data in the network. SA is enhanced through a variety of means, mainly by im-

proving the QoS metrics of the underlying DRN. System-wide energy efficiency at

all layers of the network stack ensures that the Fog Computing architecture can be

deployed using only battery powered COTS devices to last for about a week.

Increasing aggregate throughput in the underlying DRN will contribute towards

increasing SA. The capacity of the DRN can be artificially increased by placing

additional hardware in the area of deployment, since the number of contacts increases

and the inter-node contact time decreases. Nodes can then use the improved capacity

to deliver large amounts of data more reliably. However, the complexity of computing

optimal locations at which to place hardware increases exponentially as the size of

the deployment area increases. In this dissertation we investigate how such optimal

locations can be computed such that the aggregate throughput and hence, the SA,

can be improved.
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Recent research has looked at algorithms which improve traditional QoS met-

rics like the average packet delivery delay (PDD) and packet delivery ratio (PDR).

However, the variance of the packet delivery delay (PDV), commonly called jitter,

remains un-addressed. In traditional networks, the PDD/PDV is typically measured

in milliseconds - but in DRNs it can range from tens of minutes (trace based ex-

periments in [3]) to even hours. This means that some packets may have a delivery

delay much higher than the average delay. Since sensed data from the field is used to

make decisions at the Emergency Operations Center (EOC), a large PDV becomes

problematic since some critical data may arrive very late. Reducing the PDV can

help improve the SA, by providing data more reliably. In this dissertation we look

at how the PDV metric in a DRN can be controlled in a distributed fashion.

Energy efficiency in such a system is critically important. Area-wide deployment

of portable power sources may not be practical, requiring manpower that could

otherwise be used to rescue victims. Aggressive energy efficiency without regard to

the performance of the network is equally dangerous, since low network performance

could hamper situational awareness. In this dissertation we investigate the inherent

trade-off present between energy efficiency and performance. More concretely, when

a packet in the network is sent over multiple disconnected paths (i.e. replication in

a delay tolerant network), nodes which do not lie on these paths can save energy

by sleeping. Excessive replication can cause nodes to stay awake all the time, but

very low replication hampers performance. It is this fundamental trade-off that is

investigated.

Data with precise location is very important both during and after a fast paced

process like disaster recovery. Victims can be easily located and tracked in the med-

ical triage area, while responders in the field can quickly locate vital equipment.

After the disaster, location tagged data can be very helpful in providing feedback to
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responders and potentially improving the disaster recovery process. However, GPS

which is a familiar technique, is prohibitive both energy and cost wise. Additionally,

GPS may not be available in indoor areas such as the basement of a collapsed build-

ing. In this dissertation we investigate how self-localization can be performed in a

fast and energy efficient manner.

1.1 Motivation

The motivating scenario for Fog Computing is a disaster whose affected area

spans tens or hundreds of square miles. In this section we first describe this scenario

in detail, followed by the mathematical mobility model used to capture movement

in the area. The Post Disaster Mobility Model [4] is especially suited to model such

disasters, but does not model US&R responder mobility. Some enhancements to

PDMM are proposed, in order to correct this shortcoming.

Based on this motivating scenario, a set of requirements that are to be fulfilled by

Fog Computing are enumerated in the next section. Each of these requirements im-

prove the degree of SA during the disaster recovery process; they have been compiled

based on multiple sources, including our interaction with Texas Task Force 1 mem-

bers, various articles in newspapers and trade journals which describe the problems

faced by responders during rescue, and our own proposed use of new technologies

like fog computing, file sharing and social networking.

1.1.1 Motivating Scenario

Fog Computing addresses the needs of the disaster recovery process in the USAR

application domain, as opposed to the medical triage area of a large disaster, as

illustrated in Figure 1.1. When a disaster hits an urban metropolitan area that spans

tens of square miles (2011 Joplin tornado) or hundreds of square miles (2011 Japan

earthquake), power and communication infrastructure are rendered unusable. A

4



Vehicle Node

EOC
Data Waypoint Sensor Proxy

Smartphones

Rubble Pile →

← Seismic Sensor

↗

BTag Sensors↗ ↗

↗

Vehicle Node

Base 

Station↗

↗

Figure 1.1: Schematic of a Fog Computing deployment showing all components (to
be discussed later). Data generated by BTag and Seismic Sensors is ferried to the
Base Station using Vehicle Nodes. A Data Waypoint improves the data transfer
process by creating a contact opportunity between two Vehicle Nodes.

situation report about the 2011 Joplin Tornado [5], three days after the disaster, offers

a glimpse into the situation: electric services are still being restored, a few cell sites

have been restored, cell phones are being distributed and satellite telephone has been

set up. In this kind of environment, presence of broadband internet access cannot

be assumed, and blanketing a large urban area with battery powered communication

hardware is near impossible. Providing data to USAR responders at high spatial

and temporal resolution, with only tens of routers becomes a challenge. We assume

that in such an environment, there are multiple collapsed buildings (buildings in

Figure 1.1) or rubble piles in the affected area (“Rubble Pile” in Figure 1.1), and

the Emergency Operations Center (“EOC” in Figure 1.1) is situated tens of miles

away from the affected area. Limited internet connectivity is available only at the

EOC. There is some mobility in the area (“Vehicle Node” in Figure 1.1) as medical

supplies and rescued victims are transported from the field to the EOC.

1.1.2 Post Disaster Mobility Model

The PDM Model uses two main components to functionally model the interac-

tion between survivors and rescue workers: “mobile agents” (MAs) and “Centers”.
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Centers are fixed, static areas on a city map and represent important areas such as

the EOC or an evacuation center such as a stadium. PDM is a map based mobility

model as opposed to random waypoint: each MA moves from one point to another

based on a predefined set of roads. There are different categories of MAs like patrol

cars, ambulances, volunteers and supply vehicles, each with its own movement model

as described below. It is assumed that a networking device is present at each Center

as well as on each MA. The PDM model is described formally as follows. There

are multiple Centers C, of which two are special and compulsory: the EOC and the

Triage. The categories of MAs are: Volunteers, Supply Vehicles, Ambulances and

Patrol Cars. Each category has its own min and max speeds, and an agent belonging

to that category chooses a speed uniformly between min and max at random, for

each leg of travel. In the Volunteer Movement Model, each volunteer is placed at

a randomly assigned home center cH ∈ C initially. Next, every volunteer individu-

ally chooses a random point within the entire map with 90% probability or chooses

cH with 10% probability, and travels to it along the shortest path. The process is

repeated upon reaching the point. In the Supply Vehicle Movement Model, each

SV is placed at a randomly assigned home center cH ∈ C initially. Then each SV

individually chooses a center cd ∈ C at random and travels to it along the shortest

path. The process is repeated upon reaching cd. In the Patrol Car Movement Model,

each car has a predefined list of centers {c1, c2, . . . , cn} ∈ C × C × · · · × C, and is

placed at c1 initially. Next, it travels to c2 along the shortest path, and the process

is repeated by choosing the next center in the list. In the Ambulance Movement

Model, each ambulance is always assigned to the Triage initially. Next, each ambu-

lance chooses a Center (including the Triage) at random to travel to, following which

the ambulance always returns to the Triage. The process is repeated, resulting in a

series of alternating Centers and Triages.
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1.1.2.1 Enhancement

We add the “Urban Search and Rescue Worker (USAR)” category of MAs to the

PDM mobility model. USARs operate in a area of fixed radius around a Center and

move using random waypoint within that area. In the USAR Movement Model, each

USAR member is placed at a predefined home center cH ∈ C initially. Then, every

USAR agent individually randomly chooses a point uniformly within radius r of its

cH , and travels to it along the shortest path possible in the map. After reaching the

point, the process is repeated. USARs need not visit cH compulsorily.

1.2 Fog Computing Requirements

The FEMA equipment cache list [6] gives an idea of the size, cost and bulk of

equipment currently used by US&R teams. Based on this list and interaction with

Texas Task Force 1 US&R team members, we outline the responder requirements

below.

1. File Sharing: Large rescue efforts typically involve many teams, sometimes

from different countries. Data sharing among teams leads to a better under-

standing of the situation, and hence a high degree of SA. However, popular

file sharing services available on today’s desktops, like Dropbox and Amazon

S3, cannot work in the absence of a connection to the central server. In Fog

Computing, these file sharing methodologies have to function in the absence of

high quality links or end-to-end paths, while the devices are physically spread

over a large geographical area. A corresponding smartphone app should serve

as an interface to this fog, allowing responders to share files, as well as allow

third party developers to develop new apps using a published API.
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2. Disconnected Social Networking: Social media like Twitter are increasingly

being used by the public during the aftermath of disasters for communication

and information dissemination [7][8]. Information sharing by responders dur-

ing disaster recovery could possibly enhance the recovery effort. However, such

traditional services cannot function in the absence of persistent internet con-

nectivity. An equivalent service for Fog Computing will provide first responders

with an opportunity to share information without requiring constant connec-

tivity, while automatically synchronizing with the internet whenever internet

access is available.

3. Network QoS Control: Data produced and consumed during disaster recovery

can have vastly different QoS requirements. Some data could be mission critical

where low packet delivery delay is acceptable. Large video files shared by

responders need high throughput paths in the DRN. Other data could require

low jitter. However, optimizing the network for one metric for one data stream

could negatively affect one or more metrics for other data streams. Thus,

the inter-dependency and dynamics of QoS control need to be investigated,

following which, control of these metric should be offered to the user. The SA

in this case is increased since data arrives more timely and reliably.

4. Accurate Localization in Indoor Environments: The affected area can be re-

motely monitored at the EOC by deploying sensors in areas of interest. For

example, the air quality around the scene of a chemical leak in the basement

of a building can be periodically monitored using low power wireless sensors.

When such data is tagged with a precise location, it enhances the degree of

SA since the quality of data is improved, meaning that responders can quickly

and accurately pinpoint problems. Device localization is a primitive that is
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assumed by many other services like routing and distributed data retrieval.

However, localization technology like GPS may not be available indoors or in

GPS-denied environments, or it could be cost prohibitive to deploy on all sen-

sors. Even if it is available, periodically polling the GPS on a mobile device

shortens the battery life. Existing WiFi based localization techniques can not

always be used because the necessary infrastructure could be destroyed or un-

usable. Thus, there is a need for an inexpensive way of computing a device’s

location indoors, especially when the device is mobile.

5. System-wide Energy Efficiency: Each and every disaster recovery scenario is

unique and dynamic, with respect to the number of deployed devices, the spe-

cific disaster recovery function performed by first responders, the length of time

taken to recover from the disaster as well as the resources available. As a result,

the expected system lifetime of each scenario can be different, or the amount

of usable portable power in the form of batteries can vary, or the network per-

formance requirements can be different. It is important to tune the deployed

system such that the network performance is optimal given constraints on the

available energy resources. In other words, the user needs to be able to control

the system performance/system lifetime tradeoff to achieve the best possible

performance given an anticipated time frame for disaster recovery.

6. Smart Victim Detection Under Rubble: Highly sensitive seismic sensors that

pick up vibration from a rubble pile were used during the 9/11 emergency to

locate trapped victims [9]. First responders can listen for human voices or

activity through attached headphones, and can locate them by asking victims

to tap on nearby pipes. However, the low frequency sound created by shaking

buildings and nearby human activity interferes with this detection process [9].
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Automatic noise filtering 1) eliminates the “All Quiet” condition required for

seismic sensor use (which halts rescue efforts in the immediate surroundings);

and 2) enables the re-deployment of on-site personnel to other areas of the

disaster.

7. Digitized Building Information: Whenever USAR teams search buildings, the

search status of the building is indicated using markings (called X-codes, FEMA

or INSARAG format) painted in day-glo orange on walls (tagging), for the ben-

efit of other teams. This includes data like the last search date/time, presence

of hazards etc. Digitizing such tags using low power motes will provide the

EOC with high situational awareness due to the variety of information that

can be sensed on motes. By digitizing building tags and enabling automated

data collection, resources can be allocated by the command center more effi-

ciently.

8. Team Separation Detection: During USAR operations in a collapsed building,

team members may become separated from each other due to falling beams, or

they may lose vital tools like cement saws accidentally. We present an algorithm

that lets each team member know of any separation in the team independent

of the team size, even when the separation or “cut” occurs many hops away.

Team separation detection delay is measured in seconds. An app installed on

a smartphone alerts a first responder immediately after a tool or team member

is detected as missing, enabling recovery from the situation within seconds.
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2. RESEARCH CHALLENGES AND MAIN CONTRIBUTIONS

Fog Computing has been introduced and motivated in Section 1. In this section

the key research challenges by this dissertation are enumerated. First, the disserta-

tion statement is defined, followed by discussion about the two key research challenges

espoused in this statement. A set of factors that contribute to the complexity of solv-

ing these challenges is listed. The rest of this dissertation is divided into multiple

sections, all of which aim to answer these key challenges; a dissertation structure is

proposed. Each of these sections answer some specific research questions, which are

collected here. Finally, the research contributions of this dissertation are presented.

2.1 Dissertation Statement

The dissertation statement that concisely represents the design goals and the

proposed dissertation is as follows:

“Design Of A Fog Computing Architecture For Disaster Response Net-

works That Provides A High Degree Of Situational Awareness In An

Energy Efficient Manner”

2.2 Key Research Challenges

The two major research challenges espoused in the above statement are:

1. Improved situational awareness through improved Quality of Service: The key

to effective disaster response is a high degree of situational awareness. Fog

Computing can improve situational awareness by providing large amounts of

data with high spatial and temporal resolution. Improving QoS metrics like

throughput, packet delivery delay, variance of the packet delivery delay and

packet delivery ratio results in data that is delivered quickly and reliably.
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2. Energy Efficiency: Since there is no usable power infrastructure available, the

entire system has to be powered with portable power sources like include bat-

teries, diesel generators and solar panels. While diesel generators need a con-

stant supply of fuel, solar panels are expensive. Even if every Fog Computing

device had a dedicated energy source, there is a need for energy efficiency.

Because of limited personnel and human resources during an emergency, pre-

cious man-hours can not be spent maintaining the energy sources (replacing

spent batteries, refilling diesel generators). Moreover, devices in these systems

are critical and cannot stop functioning without compromising the whole sys-

tem. With energy efficient devices, the system lifetime is extended as much as

possible.

The following factors contribute to the complexity of meeting the above two major

challenges:

1. Sparsity: Stable end-to-end paths in the network are very sparse because of

the low node density, which causes frequent disconnections in the network.

Routing data under these circumstances becomes a challenge.

2. Unpredictability: Both the node mobility in the area of deployment, and the

data workload produced by Fog Computing devices are unpredictable. As a

result, tasks such as routing data and sleep scheduling become difficult.

3. Limited resources: Fog Computing devices have limited radio bandwidth as

well as on-node storage capacity. As a result, only a small amount of data can

be transferred at each node contact, increasing the packet delivery delay QoS

metric. The storage capacity is limited compared to the large data workloads

- hence, retrieving data from the network can result in low throughput as well

as increased delay.
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4. Scalability: A complex architecture like Fog Computing should scale ideally.

However, because of limited resources and the state maintained by several sub-

systems, scaling to thousands of devices becomes a problem.

5. Security: A sensitive application like disaster response necessitates secure trans-

port of data. However, the computing and transportation overhead incurred

by security strains the already limited resources like bandwidth and storage

capacity.

2.3 Dissertation Structure

The rest of this dissertation will be divided into the following six sub-components

(barring the next section which is survey of relevant literature), each of which con-

tribute towards the goal of realizing the dissertation statement, given the assump-

tions, key research challenges and motivation. A very high level overview of each

section follows.

1. Fog Computing Design Principles and Architecture: Based on the design re-

quirements, a set of design principles is proposed, followed by a high level

system architecture that incorporates these principles.

2. New Applications and Proof-of-concept Implementation: A few motivating ap-

plications that satisfy some of the Fog Computing requirements are described.

The previously proposed high level architecture is instantiated on multiple

heterogeneous devices. The software and hardware used in each device class is

shown, followed by a list of new motivating applications that can be run on a

particular device class.

3. Infrastructure Optimization in Fog Computing: The key challenge of improving

SA is addressed by increasing the aggregate goodput in the network. Experi-
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mentation and evaluation of this approach is presented.

4. QoS Aware Routing in Fog Computing: The key challenges of improving SA as

well as energy efficiency are addressed, by controlling the PDD as well as PDV

simultaneously and measuring their effect on energy consumption. An analysis

of the tradeoff is presented, followed by experimentation and evaluation.

5. Energy Efficiency in Fog Computing: Simultaneously satisfying the key chal-

lenges of improving SA as well as ensuring energy efficiency is analyzed, and a

mathematical approach to control the tradeoff is presented, followed by exper-

imentation and evaluation.

6. Mobile Self-Localization in Fog Computing: SA is improved by tagging data

with location. This section described an algorithm that can performing this

task in GPS-denied or indoor environments, followed by experimentation and

evaluation.

2.4 Research Questions

Here we concisely and concretely enumerate the research questions that are ad-

dressed in each of the six sub-components listed above, so that the dissertation

statement can be realized, considering the assumptions.

1. Fog Computing Design Principles and Architecture:

(a) What are some design principles that will make Fog Computing more user

friendly, and prevent practical roadblocks during usage?

(b) How can heterogeneous devices and protocols, each with their own capa-

bilities, be integrated into a single architecture?
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(c) What are the services used by and required of each layer of this architec-

ture?

2. New Applications and Proof-of-concept Implementation:

(a) Is it possible to implement the above architecture using COTS devices?

(b) If so, what are the capabilities of each device’s hardware?

(c) What services are required of each device?

(d) Can the system requirements be implemented as user installable apps,

conforming to the above design principles and architecture?

(e) Can third party developers create apps that can be used easily?

3. Infrastructure Optimization in Fog Computing:

(a) Can placing additional devices (waypoints) increase aggregate through-

put?

(b) If so, is there an efficient heuristic for waypoint placement?

(c) Is a polynomial time algorithm possible?

(d) Is there a DTN routing scheme that allows lower delay than the others

given a scenario?

(e) How does vehicle speed and payload size affect the amount of data trans-

ferred?

(f) Can devices automatically tune system parameters so that wireless data

transfer is optimized?

4. QoS Aware Routing in Fog Computing:
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(a) How can the variance of the packet delivery delay, commonly called jitter,

be controlled in a DRN?

(b) Is it possible to obtain closed form equations to estimate both the mean

and variance of the travel time for the USAR movement model?

(c) What are the effects of controlling a QoS metric, on other QoS metrics?

5. Energy Efficiency in Fog Computing:

(a) Which devices/components consume the most power, and under what

circumstances?

(b) Is there a Pareto Front between system performance and energy consump-

tion?

(c) How has recent research in the area advanced our knowledge of this Pareto

Front?

(d) Is it possible for the user to tune the Fog Computing system to operate

at a chosen Pareto optimal point?

6. Mobile Self-Localization in Fog Computing:

(a) How can we design a lightweight algorithm for multi-hop, self localization

of mobile nodes in complex environments?

(b) What is the effect of sparse anchor density and anchor location accuracy

upon indoor, RSS-based multi-hop self localization schemes?

(c) How can we design a fully distributed protocol for multi-hop self localiza-

tion while minimizing network overhead?
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2.5 Main Contributions

In light of the above research questions, assumptions and the dissertation state-

ment, the contributions of this dissertation are as follows (per sub-component):

1. Fog Computing Design Principles and Architecture:

(a) Recognizing and defining Fog Computing

2. New Applications and Proof-of-concept Implementation:

(a) Completely battery powered, purely COTS implementation

(b) New applications like File Sharing, Social Networking, Building Tags, Vi-

bration Sensing

3. Infrastructure Optimization in Fog Computing:

(a) Framework for placing extra hardware to maximize throughput

(b) Optimizing device to device data transfers

(c) Polynomial algorithm under special assumptions

4. QoS Aware Routing in Fog Computing:

(a) Raven, a risk-averse outing protocol that allows control over QoS metrics,

especially the jitter

(b) Enhancements to Post Disaster Mobility Model to include USAR first

responders

(c) K-Shortest paths algorithm adopted to graphs with stochastic weights

5. Energy Efficiency in Fog Computing:
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(a) Novel framework that intentionally excludes nodes from the routing pro-

cess

(b) Dual objective non-linear optimization problem solved using evolutionary

algorithms

6. Mobile Self-Localization in Fog Computing:

(a) FuzLoc, a distributed self-localization protocol

(b) Greatly improved accuracy by considering two hop neighbors

(c) Uncertainty is characterized using fuzzy logic, in a system of non-linear

equations
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3. LITERATURE SURVEY

Our motivating scenario is a large scale disaster (e.g., entire cities/regions are

affected) and not a local, block-wide emergency in a city or a town. Unfortunately,

recent history gives a few motivating examples like the earthquake in Haiti [10] and

the tsunami in Japan [11]. In these incidents, the communication infrastructure is

disrupted (i.e., cellular networks are completely or partially damaged) for weeks if

not months, there are serious shortages of power (i.e. power sources like nuclear

reactors are damaged), surveying the disaster area for survivors under the rubble

takes from days to weeks (with some inspiring examples of survivors emerging after

tens of days) and the EOC is flooded with sensing and multimedia data from the

field. This febrile, fast pace environment lasts from one to several weeks, until the

infrastructure is usable again.

In this section, state of art research related to the above motivating scenario is

reviewed. First, DRNs are introduced and both academic as well as industrial state

of art is reviewed. The set of motivating applications that we present in Section

5 is motivated by comparing them with recent research. Then, research related to

the infrastructure optimization technique that we propose in Section 6 is discussed.

Section 7 which presents a QoS aware routing scheme draws from both the DTN

routing and stochastic graph theory research communities. State of art in both

these areas is reviewed. The energy efficiency scheme in Section 8 is motivated by

explaining its contributions compared to state of art research. FuzLoc, the mobile self

localization scheme presented in Section 9 is discussed with respect to prior research

in the localization area.
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3.1 Disaster Response Networks (DRNs)

The disaster recovery process has seen a lot of development over the last few

years owing to the increasing use of technologies like wireless networking and mobile

computing. In the United States of America, the Federal Emergency Management

Agency (FEMA) is responsible for coordinating the federal response to disasters and

emergencies. It’s mission is to “support our citizens and first responders to ensure

that as a nation we work together to build, sustain and improve our capability to pre-

pare for, protect against, respond to, recover from and mitigate all hazards” [12], and

was established in 1803. FEMA’s National Incident Management System (NIMS)

defines an organized approach to emergency management.

The importance of communication during emergency response is stressed in one of

the NIMS training modules [13]. It details numerous instances where data sharing,

communication and information management can save lives. For example, during

the Air Florida tragedy in 1982, coordination problems were experienced between

response agencies because they could not communicate with each other. The doc-

ument specifies that communications equipment should be reliable, portable and

scalable; redundancy and resiliency should be implemented to ensure that data flow

is uninterrupted.

We now focus on work that has improved the disaster recovery process from a

computer networking and communications perspective.

3.1.1 Industrial State of Art

A mandated and standardized equipment list for FEMA US&R teams is available

online [6]. Each task force maintains its own cache, containing over 16,000 items.

The technical equipment details Project 25 (P25) [14] compatible 2 way portable

wireless radios. A 120V AC powered base station is also mentioned, along with
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battery powered repeaters. Such radio systems have a large radio range capable

of covering large areas and are securely encrypted. However, only voice and data

channels are available on such systems at very low data rates of 9.6kbps [15]. Since

the P25 systems defines a physical as well as a MAC layer, it is difficult to integrate

protocols meant for low power wireless like 802.15.4 (henceforth referred to as 15.4).

Although reliable real time long range secure communication systems like Project

25 exist, they have several caveats like cost, difficult integration with other systems,

high power requirements, physical bulk.

[16] has commercial offerings which accomplish network centric warfare. Based

on the limited details available, the system offers robust middleware based on 802.11

and/or WiMax based networking. To the best of our knowledge, these systems

assume an AC powered connected network and do not offer integration of low power

smart devices. Additionally, they address spatially localized disasters or the triage

area of disasters which occur over a large area.

3.1.2 Academic State of Art

Recent work in academia [17] has shown that using traditional means of communi-

cation like paper/pencil and sharing data using voice based radios is not scalable, and

often leads to inaccuracies. Using networks that require significant infrastructure,

like cellular networks for example, is not possible in a large scale natural disaster.

Moreover, scalability is an issue with such solutions. Medical triage activity dur-

ing a disaster has received significant attention from the research community. An

initial version of the Wireless Internet Information System for Medical Response in

Disasters (WIISARD) [18] project proposed a local client-server infrastructure. A

middleware layer supported a publish-subscribe model where cached remote objects

(CROs) are shared. The key contribution is that data consistency is assured across
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clients, even when disconnections are caused by client mobility and unreliable links.

As mentioned in [19], the above setup (which used AODV-based routing) per-

formed poorly across deployments. The next iteration of WIISARD [19] focused on

characterizing the network properties during deployments. It’s chief contribution is

showing that network properties can vary during the different stages of disaster re-

covery due to the complex co-operation and data sharing that occurs among mobile

first responders. As a solution, it proposes the WIISARD Communication Protocol

(WCP), which is a gossip based protocol for data dissemination. IEEE 802.11 based

hardware provide the networking backbone.

Another academic effort that improves disaster recovery in the medical triage

area is the Advanced Health and Disaster Aid Network (AID-N) [20]. It presents the

design of an electronic triage system for use on victims. Low power IEEE 802.15.4

based hardware replaces colored paper tags that are used to identify the severity of

a victim’s situation. A tiered architecture is proposed: level 1 contains an ad hoc

network of embedded 802.15.4 based devices, level 2 consists of 802.11 based PDAs

and laptops that personnel use to access victim information, and level 3 is a central

high capacity server that stores information. Level 1 devices form an ad hoc mesh

network that uses the Flows routing protocol [20] which was proposed as part of the

CodeBlue project [20]. It is a spanning tree based protocol that uses hop by hop

acknowledgments. Level 2 devices connect to a 802.11g based wireless router, which

in turn connects to the level 3 central server. To summarize, AID-N provides a tiered

multi-PHY architecture that uses mesh networking.

[21] is another 802.11 based wireless mesh network (WMN) tailored to provide

effective medical response in the event of a disaster. Mobile clients like PDAs and

laptops roam around the geographical area while being connected to the Internet

via multiple backhaul connections [22]. Digital tags on patients [23] are read by
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medical personnel using PDAs. Changes to such digital records are tracked and can

be easily rolled back in case of conflict due to multiple simultaneous editing. Project

RESCUE [24] provides an overview of a WMN for effective emergency response. [25,

26] argues for a WMN to be used in disaster response. It cites several shortcomings

in several real use cases which provide a baseline comparison to such systems. In [27],

a hybrid WMN makes use of wireless WANs as a backhaul link to access traditional

networks. Several portable networked devices make use of routers affixed to lamp

posts in order to achieve network connectivity. The SAFIRE project [28] deals with

situational awareness for firefighters. Among the many problems dealt with are

reliable data dissemination over ad hoc networks. Responders use a WiFi enabled

tablet which uses a central push-pull method of data movement. The intended

purpose is for use in a local emergency, and not a region wide disaster.

These WMNs are susceptible to disconnections, unreliable links due to user mo-

bility as well as network partitioning when spread over a large geographical area.

Delay Tolerant Networks (DTNs, discussed in the next section) have been used in a

few disaster response networks. Our own previous work [29] proposes a multi-tiered

802.11 and 802.15.4 based architecture that focuses on urban search and rescue in-

stead of the medical triage area (it’s contributions are discussed in Section 3.1.5).

The authors of [30] propose an Emergency DTN (EDTN) and recognize that TCP

is a protocol that is unsuitable for use in DTNs. The main contribution of [30]

is an analysis of the Session Initiation Protocol (SIP) for use in a DTN, and a

subscribe-notify architecture. The authors of [31] comprehensively survey academia

and industry for information about how information flows in disaster, and review

state of art network simulators for their usefulness in simulating a large scale natural

disaster. The main contribution here is a survey of responder requirements and a

conclusion that a distributed system is much more efficient than a centralized top-
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down command-and-control approach. In [32], the authors propose an opportunistic

network that can glue together existing crippled infrastructure. It uses the HiBoP

protocol [33] which is a context based routing protocol. Simulations are performed

using this protocol in a disaster scenario. The main contribution of this paper is

recognizing that DTNs can be used to bridge existing networks, and the use of the

HiBoP protocol in simulations.

3.1.3 Applications in DRNs

Seismic sensing has been used alongside WSNs to predict volcano activity [34].

In this system, Mica2 nodes (called infrasound nodes) are outfitted with a condenser

microphone which samples data at 102.4Hz. Twenty five consecutive samples were

packed into a single 32 byte packet and transmitted to an aggregator node. Data

is then sent to a wired high capacity node using a long distance wireless link. Data

sampled using the onboard ADC on the infrasound nodes was initially distorted

during radio transmission due to hardware voltage issues. The 4Hz noise caused by

the radio is corrected using a smoothing filter. The paper then proposes a distributed

event detection system designed to reduce bandwidth usage during times when the

volcano is quiescent. An exponential weighted moving average algorithm is used to

detect local events. Other examples of using seismic sensors to detect events include

footstep characterization in intrusion detection systems [35, 36]. In [37], seismic

data is analyzed both in the time and frequency domain. A method to differentiate

walking footsteps from running is also presented, based on the Fourier Transform

technique. Techniques involving the sampling and processing of seismic data are the

focus of research in home intrusion detection systems and military area monitoring.

In [38], the authors describe their experiences in deploying a wireless sensor network

to monitor the Torre Aquila building. Environmental nodes sensed temperature,
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while deformation nodes sensed the building’s deformation by measuring the time

taken for an optical pulse to travel through fiber optical cables. Vibration nodes

used an accelerometer to measure movement. The heterogeneous data generated by

these sensors was transmitted to a Gumstix based sink node using a modified version

of Trickle, a tree based routing protocol.

Building monitoring systems have been proposed in recent research. In [39],

the authors present a framework designed to improve information sharing during

disaster rescue. Responders place RFID tags on buildings and program them with

802.11 enabled devices, which form a mobile ad hoc network.

3.1.4 Infrastructure Optimization in DRNs

Researchers have investigated the idea of placing additional hardware in the de-

ployment area, in order to improve various performance metrics. In [40] the authors

present a scheme to deploy static relays, called throwboxes. These devices artificially

increase the number of contact opportunities in a DTN. The throwbox placement

problem aims to maximize the capacity between nodes in order to increase the overall

throughput. It is mathematically modeled as a mixed integer programming problem,

and a greedy solution is proposed. There are three possible scenarios depending on

how much is known about the network. The first one assumes that quantities like the

traffic demand, average contact duration and average capacity between any two nodes

are known. The second scenario assumes that only the information about contact

opportunities (and not the traffic demand) is known. Lastly, the oblivious scenario

assumes that nothing is known about the network. Since the first scenario is NP-

Hard, a greedy approximation is proposed. The second scenario is solved tractably

and a random solution is proposed for the third scenario. After the throwbox loca-

tions are computed, single, multi and epidemic routing algorithms are proposed and

25



analyzed. [41] studies the hardware architecture for such throwboxes in an attempt

to increase the lifetime (discussed in Section 3.3).

The authors of [42] analyze the problem of augmenting existing networks with

three types of solutions: base station based, wireless mesh based and disconnected

store-and-forward relay based approaches. Base stations are connected by high ca-

pacity wired networks, mesh nodes connect to each other over wireless links, while

the relay nodes cannot talk to each other due to the sparsity (they simple store data

and relay it to passing mobile nodes). The first contribution of the paper is the

observation that the performance improvement gained by adding x base stations can

only be achieved by using 2x mesh nodes or 5x relay nodes. However, base stations

require the most infrastructure (because of the wired backhaul link), and relay nodes

require the least. The second contribution notices that adding just a few nodes of

any kind is much better than having none at all and relying purely on data transfers

between mobile nodes. Then two strategies for placing these nodes are proposed:

uniform and non-uniform. A simple heuristic is used for the latter wherein the area

of deployment is divided into a grid, and the number of nodes placed in a square

is proportional to the amount of time spent by mobile nodes in that square. The

problem of choosing relay strategies for deployed throwboxes is investigated in [43].

A Markovian model of a DTN is proposed, where the contact opportunities between

any pair of mobile nodes is modeled as a Poisson process.

3.1.5 Contributions of this Dissertation

The contributions of this dissertation with respect to the above four areas is now

detailed.
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3.1.5.1 Industrial State of Art

The Fog Computing architecture is designed to process large amounts of data -

a procedure that would be difficult when using voice based low bit rate P25 radios.

This dissertation proposes new sensing and data sharing modalities. Smartphones,

for example can record HD video which can be shared with other responders, while

low power sensors periodically record and report sensor data. It is unclear how such

paradigms can be integrated into the existing equipment mandated in the FEMA

list. Our architecture is able to incorporate a wide variety of device classes, each

of which have their own PHY layers. The most important difference is that our

architecture can be fine tuned using a variety of algorithms to improve performance

metrics, while also being able to control the performance-energy trade off. To sum-

marize, these systems are unable to provide new sensing and data sharing modalities

that generate data at high temporal and spatial resolutions. Some of these require-

ments are detailed in Section 1.2 of Section 1. The design principles adopted in this

dissertation, detailed in Section 4.1, successfully incorporate these requirements.

3.1.5.2 Academic State of Art

The primary difference between the work presented in this dissertation and re-

search like WIISARD [19] or AID-N [20] is that the former is designed for the needs

of urban search and rescue personnel when operations occur over a large geographical

area. While solutions that use wireless mesh networking[21, 25, 26] in the medical

triage area are well investigated, this work addresses US&R operations like search-

ing for survivors building rubble and building monitoring using low power 802.15.4

devices. As stated in [19], the major contribution is not WCP itself, but the char-

acterization of link quality and human mobility patterns during the medical triage

phase. To summarize, this work discusses the use of delay tolerant networking in the
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larger US&R area as opposed to wireless mesh networking based solutions for the

medical triage area.

Research has proposed the use of delay tolerant networking during disaster recov-

ery [30, 31, 32]. The major contributions of this dissertation are a hardware/software

architecture that incorporates delay tolerant networking, as well as theoretical con-

tributions like algorithms and routing protocols designed to fine tune this DTN

based architecture. The work presented in [29] can be thought of as a very pre-

liminary version of the fog computing architecture. It’s major contribution was the

lack of assumptions about existing infrastructure. Solutions that enhance situational

awareness through topology management, sound detection subnetworks and a mes-

sage routing scheme. This dissertation has significantly different contributions that

include QoS aware routing and cross layer energy efficiency.

Architecture-wise, a multi layered device architecture that is able to incorporate

heterogeneous hardware is proposed in this dissertation. It’s uniqueness lies in the

fact that all functionality is pushed towards the application layer - meaning that it

can be easily extended to applications like heritage building monitoring and even

volcano detection or taking an animal census in jungles. For example, the Vibration

Sensing App in Section 5.1.4 that is ideal for DRNs could easily be replaced with a

seismic sensing application designed for detecting building vibrations. The theoret-

ical contributions like QoS aware routing and Pareto-optimal energy efficiency will

still be applicable in these scenarios. Thus, this Fog Computing architecture is much

more versatile than the state of art systems.

Applications: The set of motivating applications presented in Section 5 have

important but minor contributions. For example, the Vibration Sensing App in

Section 5.1.4 implements a kNN based classifier method. A 1024-bin FFT is chosen

to extract the characteristics of the sensed signal. This lightweight approach allows
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the algorithm to be implemented on the low resource mote itself - and only the

events are forwarded to high resource nodes, to alert first responders. The Building

Monitoring App in Section 5.1.6 utilizes 802.15.4 based motes which are capable of

sensing temperature and/or air quality - a feature that is not found in RFID tags.

Infrastructure Optimization: The key difference between the strategies presented

above and this dissertation is the mobility model. We use the Post Disaster Mobility

Model, and more specifically the Patrol Car Movement Model in this mobility model.

This is because the dissertation focuses on disaster recovery scenarios, whereas the

above work is suitable for application to general networks which are sparse and mo-

bile. The patrol car model allows us to make justified assumptions about the deploy-

ment scenario, leading to better performance improvement. Comparing with [40],

our problem formulation proposes a MIP-based solution and not a greedy one. Traffic

demand is not assumed to be known. The relaying strategy is single path and source

routing based. We deal with a slightly different problem where instead of maximizing

the data rate between mobile nodes, we focus on optimizing the throughput of data

delivered to the EOC. This objective is based on an observation that no matter how

high a data rate a mobile node has, limited vehicle movement bounds the possible

throughput, and hence, the amount of unique data passed to a vehicle has to be

maximized. Compared to [42], we do not investigate the possibility of augmenting

the DRN with base stations or mesh nodes because of the infrastructure required -

which is difficult to come by in a disaster. The relay placement strategies presented

in [42] are heuristic based and based on a general mobility model, whereas the one

in this dissertation is tailored to the PDM model and uses a mixed integer program

to solve the problem. Moreover, in the absence of any upper limit on the number of

throwboxes, we provide a quick polynomial time placement solution.
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3.2 Quality of Service and Routing in DRNs

Chapter 7 of this dissertation proposes a QoS aware routing framework, called

Raven, for DRNs. It’s unique contribution is its ability to control the variance of

the packet delivery delay in a delay tolerant network. With this mind, let us look at

related work in the area.

3.2.1 Routing in DRNs

We draw upon a large body of research experiences in the field of delay tolerant

networking (DTN). [44] advocates the use of DTN to provide situational awareness

in a disaster. The proposed system provides elementary social networking by help-

ing victims disseminate information while not overwhelming the system. Dieselnet

and the DOME testbed [45] provide rich information about implementing routing

protocols, providing services and a public DTN testbed using WiFi devices mounted

on buses covering a large area. In [46], data is collected from sensors deployed in

a wildlife tracking environment leveraging the frequent movement of zoologists and

scientists in the area.

A DTN routing protocol can be classified based on its approach towards five

major criteria:

1. Redundancy: forwarding/limited replication/unlimited replication

2. Contact Bandwidths: limited/unlimited

3. Storage Resources: limited/unlimited

4. Knowledge of Mobility: none/partial/learned/complete/oracle

5. Target Metric: mean delivery delay/ energy efficiency/other
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A short overview of recent DTN routing protocols in the context of the five cri-

teria follows. Epidemic [47] routing performs unlimited replication and relays a copy

of the message to every node possible, assumes unlimited resources and does not

attempt to leverage mobility. The authors of [48] have analyzed the trade off be-

tween replication and energy efficiency in an epidemic-like routing protocol. Spray

and Wait [49] performs limited replication of a message according to a user speci-

fied parameter, while retaining other assumptions. A mathematical analysis of this

protocol is available in [50]. Prophet [51] and MaxProp [52] leverage mobility in a

DTN by selecting relays based on historical encounters such that the likelihood of

delivery is maximized. RAPID [3] allows the user to target any metric, including

the delivery delay, and works by estimating the marginal utility gained in replicating

a packet to a host. Such protocols are often called utility based protocols since a

relaying decision is made by comparing a node’s utility to its contact’s. [53] uses

MCMC methods to perform utility based relay selection in a DTN. Scoop [54] is a

DTN multicast routing protocol which leverages locally observed information about

mobility to minimize the delivery delay. In [55], information about the social func-

tion of DTN nodes (humans) is used to perform limited replication routing. The

R3 [56] protocol unifies mesh/MANET/DTN routing paradigms by using learned in-

formation about the distribution of link delays to perform replication based routing.

DTN routing is most optimal when all future inter-node contacts are well known.

In [57] a comprehensive linear programming formulation of DTN routing with lim-

ited contact bandwidths is presented, with the assumption that interrupted transfers

can be resumed. However, it cannot be applied to opportunistic DTNs knowledge of

all future contact durations is needed. In [58], the authors mention that jitter is an

applicable QoS metric but propose two additional metrics.
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3.2.2 Stochastic Graph Theory

Problems involving graphs with either multidimensional or probabilistic edge

weights have been investigated. An overview of the shortest path problem with

probabilistic edge weights is found in [59]. In [60] a stochastic shortest path algo-

rithm is used to solve a route planning problem in the presence of uncertain traffic

delays. [61] uses expectations of link delays to solve a network routing problem.

3.2.3 Contributions of this Dissertation

3.2.3.1 DTN Routing

Raven can either forward or replicate messages, assumes limited contact band-

widths, assumes unlimited storage, possesses partial knowledge of mobility and tar-

gets the multiple metrics simultaneously. Based on the taxonomy in [3], Raven can

be placed in a new “P6” category for protocols which assume unlimited buffers and

limited contact bandwidth. The primary motivation for assuming unlimited storage

capacity is the falling price of storage cost (0.07 USD per GB in 2009; today it is

0.03 USD per GB). Recent COTS WiFi routers like the Netgear WNDR3700v2 have

a USB port, which means that several terabytes of storage can be provisioned by

connecting a USB drive. This is practically unlimited in comparison to the average

compressed HD video or photograph taken with a smartphone camera which is about

1GB and 4MB respectively. The assumption of limited contact bandwidth is justified

by the experiments in [62].

The above protocols do not allow control of the PDV, with the possible exception

of utility based routing protocols where a target metric can be specified. These util-

ity based protocols need the user to provide the protocol with a formula which can

estimate the target metric, in this case the PDV. As the complexity of the mobility

model increases, estimating this metric becomes less trivial and more challenging
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mathematically. Raven on the other hand provides the user with a single paramter

ρ which when increased, automatically lowers the PDV. Thus, no complex mathe-

matical modeling on the user’s part is needed. Additionally, the above protocols do

not allow for simultaneous and intentional control of multiple target metrics; the

effect these protocols have on the QoS metrics may be incidental. Very few proto-

cols (like SprayWait) are able to choose between forwarding (L = 1) and controlled

replication (L > 1) when required, which is important at high data loads since un-

controlled replication can be harmful. Raven controls replication using the K system

parameter. It should be noted that Raven is designed keeping the PDM mobility

model in mind and could theoretically work with mobility models; but this is outside

the scope of this dissertation and is future work. Prior art which is most similar to

Raven is [63] in the sense that it is a DTN routing protocol for disaster response

networks and uses the PDM mobility model. However, [63] focuses on reducing the

energy spent on communication whereas Raven is optimized for controlling multiple

metrics (most notably the PDV) including the energy consumption.

3.2.3.2 Stochastic Graphs

To the best of our knowledge, the K-Shortest Paths problem has not been ex-

tended to graphs with stochastic weights, and such graphs haven’t been used to model

DTNs. Note that some works use the word “stochastic” to refer to the problem of

delivering broadcast or multicast traffic to nodes with a probabilistic guarantee, but

the similarity ends there.

3.3 Energy Efficiency in DRNs

Energy efficiency is an important concern to a DTN’s user: high or non-uniform

energy consumption can lead to network failure, low performance or violation of user

constraints. Lowering the already low node density means that the node inter-contact
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time increases, decreasing the capacity of the DTN. These concerns are doubly im-

portant in highly challenged environments such as the post-disaster recovery process

and DRNs. Here we describe some recent research in the area of energy aware delay

tolerant networking.

3.3.1 Software Based Approaches

These aim to minimize radio usage by reducing neighbor discovery overhead

and/or reducing data transfers. The number of transmitted messages has been a

metric in the performance evaluation of many DTN routing protocols [49] [63]. The

scheme in [64] saves energy by adjusting the contact probing frequently optimally. For

data transfers, epidemic routing is a simple protocol where each packet is replicated

to every encountered node; this energy-inefficient approach has been the concern of

recent research. The authors of [48] model energy efficient epidemic routing as an

optimal control problem, while the authors of [65] propose that a packet be transmit-

ted only when the number of neighbors reaches a threshold so as to reduce energy.

Markov chains are used to model message dissemination performance of two routing

protocols [66], and an optimal dynamic forwarding policy is derived. Yet another

approach is to limit the maximum number of replicas a packet can have in the net-

work [49]. Network coding [67] [68] [69] reduces the number of bits transmitted and

hence the energy used by the radio. Forwarding packets to socially close nodes may

increase performance, but simultaneously causes rapid energy depletion [70].

3.3.2 Hardware Based Approaches

Such approaches are far and few. In [71], the authors propose the use of a multi-

tier platform that involves a long range, low bitrate radio that can wake up a short

range, high bitrate radio. An optimization problem maximizes the number of bytes

transferred while meeting a power consumption constraint. Using traditional low
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power, short range radios like 802.15.4 has been shown to be un-optimal for sparsely

populated DTNs [72]. Energy efficient MAC protocols are useful for traditionally

dense networks like MANETs, but inefficient for sparse DTNs with high inter-contact

times. A different approach involves controlling the mobility of nodes to alter network

performance [73], but in this dissertation we assume that node mobility is externally

controlled.

3.3.3 Contributions of this Dissertation

Intercontact routing [63] is perhaps the most similar to the work in this disserta-

tion work in the sense that it uses the post disaster mobility model as well as graphs

with stochastic weights; however the objective of this dissertation is to quantify the

effect of excluding certain nodes from routing on the performance (i.e., a hardware

based approach), and is not concerned with the number of transmitted messages.

While the above approaches aim to be awake for every contact, this dissertation

has a completely different idea of intentionally sleeping during node contacts and

examining the effect on routing performance. The work in [74] formulates the delay-

energy tradeoff as a control problem, but there is no mention of Pareto optimality.

It is also not known if the approach valid for non-probabilistic forwarding based

protocols (i.e., where a packet is forwarded to a node based on probability p, a

system parameter).

3.4 Mobile Self-localization Techniques

Existing work on localization can be classified as range-based/range-free or as

anchor-based/anchor-free, although a few techniques do not fall cleanly into these

categories. We review here a broad set of localization techniques, typically classified

as range-based or range-free.
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3.4.1 Range-based Localization Methods

These methods require an estimate of the distance or angle between two nodes

to localize and may operate in both absolute and relative coordinate systems. GPS

is a familiar range-based method that uses the time of arrival of signals from satel-

lites to obtain a precise location in latitude-longitude format. Map stitching and

graph embedding are used to localize nodes based on inter-node distances [75, 76]

but are centralized and computationally intensive. Methods requiring specialized

hardware include precise measurement of acoustic phase difference [77, 78], optical

sensors/reflectors [79, 80] and time difference of arrival (TDoA) [81, 82]. Estimation

based methods are also used to localize [83, 84]. [85, 86] uses surveying to prede-

termine RSSI values at any point in the area of deployment. Distance is inferred

from RSSI through this data. Hybrid methods have also been used [83]. [87] uses

precise infra-red ranging in combination with a grid based fuzzy logic approach. [88]

proposes using RSS-Distance fuzzy rules to perform crisp localization, when there

are anchors placed at the four corners of the deployment area. In [89], time-of-arrival

and RSS data is fused together using Bayesian inference, following which fuzzy opti-

mization is used to compute a crisp location. Typical drawbacks for these methods

include higher computational loads, increased node size, higher energy consumption

and increased cost. A lighter weight solution uses fuzzy logic to locate cellular phones

in a hexagonal grid in a cellular network [90]. It assumes a fixed number of anchors

but handles mobility very well. The computation and refining are not suitable for a

resource-constrained computation platform like a MicaZ node. This was the inspira-

tion for this work. A frequent requirement is the presence of at least three anchors

so that necessary uniqueness and geometric constraints are satisfied.
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3.4.2 Range-free Localization Methods

These methods are typically used in systems where connectivity is the metric of

choice and actual geographic distance is less important. Hop counting is a technique

frequently used in these scenarios, where the distance between two nodes is inferred

from the number of hops a packet takes and is based on some assumed or measured

average hop length [91]. A major drawback is that it fails in networks with irregular

topologies such as those with a concave shape [92, 93]. Mobility incurs large overhead

since all hop counts must be refreshed frequently. Centroid [94] performs GPS-

free indoor localization by simply averaging the co-ordinates of the anchors each

node hears. It typically requires high anchor density and fails in common geometric

configurations, like when all anchors are on the same side of the node. APIT [95] is a

similar method which divides the area of deployment into triangles formed by anchors

and then estimates the location. It assumes a large anchor density and higher radio

ranges for the anchor nodes. A hybrid method [96] that uses RSS and connectivity

is worthy of note. Other state of the art methods [97, 98, 99, 100, 101, 102, 103]

include those that use radio interferometry [104, 105, 106], use extra hardware [107]

or are event based [108]. Analysis of the minimum achievable error has also been

made [109]. [110] uses hypothesis testing to infer the location of a node, by using RSS

PDF distributions gathered by anchors nodes through surveying. The fundamental

difference between fuzzy logic and hypothesis testing is that while the former gathers

learned intelligence and applies it to a given input, the latter tests all possibilities

using tools like the Generalized Likelihood Ratio Test (GLRT).

3.4.3 Contributions of this Dissertation

Compared to the above three works, FuzLoc does not assume the presence of

additional sensing capabilities [87] [89] and provides localization solutions when there
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are less than three anchors [88] as well as computing the location as an area, a feature

not found in previous work. In [110], building each PDF by surveying requires a large

sample space. The computation involved in building the PDFs and performing the

tests is not suitable for embedded devices unlike FuzLoc. The complexity associated

with hypothesis testing increases with increasing number of anchors as well as the

deployment area, since there are more tests to be conducted (with multiple tests,

the accepted hypothesis from the previous test is used in the next test). With fuzzy

logic, the number of rules increases with the anchor density but is independent of

deployment area. Fuzzy rules require only storage while hypothesis testing requires

computation and storage.
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4. FOG COMPUTING DESIGN PRINCIPLES AND NETWORK

ARCHITECTURE

In this section the design principles behind Fog Computing are discussed. These

are general system design principles which we have adopted keeping in mind the re-

quirements to be satisfied by Fog Computing as well as some practical issues affecting

today’s disaster response efforts. Next, system network architecture that implements

these design principles is proposed. Each of the layers in this architecture has specific

functions, which are described.

4.1 Design Principles

Based on first hand accounts of USAR deployments and responder requirements,

we decide on a set of principles that govern our design of Fog Computing. A list of

applicable system design principles can be found in [111].

1. Unmodified COTS Devices: Governmental organizations are increasingly adopt-

ing COTS devices because of the available support and software, at fairly eco-

nomical prices as compared to a custom platform. In many instances, USAR

responders have used their own personal iPhones during disasters to email

photographs of rubble piles. In any case, one cannot assume a “jailbroken” de-

vice where one can have complete control, as is fairly common with hardware

platforms used in academic research. Instead, the system has to be designed

such that stock capabilities of popular COTS devices are sufficient, so that

devices can be borrowed and setup easily. A custom routing protocol or user

replaceable batteries are not possible on the iPhone, as an example.

Parts of this section reprinted with permission from “Distressnet: A disaster response system
providing constant availability cloud-like services” by H. Chenji, W. Zhang, R. Stoleru, and C.
Arnett. Ad Hoc Networks, vol. 11, no. 8, pp. 2440-2460, 2013. Copyright 2013 by Elsevier.
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2. Open Standards and Protocols: Standardized protocols, preferably of inter-

national scope, are emphasized. Certain WiFi channels are allowed in Japan

but not in the USA; such issues should be planned for. At every layer of

the system, open formats and widely supported protocols make integration of

hardware with other international teams much easier.

3. App Oriented Design: Because complexity is pushed towards the applica-

tion layer, updating the system becomes easy and does not need recompil-

ing/reflashing the entire device, especially during disasters. When deployed on

a large scale over a variety of heterogeneous devices, This design principle will

significantly reduce roadblocks encountered in platform adoption. At the same

time, simplicity in these complex apps is necessary: when a human-computer

interface is present, having more than three buttons will cause the device to be

left behind in a vehicle, instead of being used by first responders.

4. “Premature Optimization is the Root of All Evil”: With Fog Computing we

first build a proof-of-concept implementation that captures most of the required

functionality, and then iteratively optimize the system based on deployment ex-

periences. For example, we trade performance for simplicity in the source rout-

ing optimization, by using a simplistic vehicle movement model. The gained

simplicity makes it easier to deploy Fog Computing as a whole with limited

manpower, providing us with valuable experience which we can then use in the

next iteration of the source routing protocol.

4.2 High Level Network Architecture

A network architecture for Fog Computing is shown in Figure 4.1. Being de-

signed for COTS devices and open protocols, there is a necessity for incorporating

heterogeneity at all levels. For example, there are multiple protocols being used at
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Figure 4.1: System architecture

the PHY, MAC and Routing layers. 802.15.4 is a popular PHY choice for low power

sensing systems, whereas 802.11/WiFi is widely used in smartphones and COTS

end user devices. In addition, a device may or may not have additional hardware

like GPS and USB storage devices. All these components are important to the de-

sign of Fog Computing. A Coexistence layer manages and coordinates the various

PHY/MAC/Routing protocols. However, multiple protocol coexistence is not ex-

plored in this dissertation and is left as future work. The middleware layer acts an

abstraction layer to the Applications used in Fog Computing. It contains the QoS

aware routing protocol that takes data from the applications and computes the node

to which this data is to be transmitted (via the lower layers). A Localization layer

provides precise location information that may be used as data quality enhancement

by an Application, or by the Middleware layer to optimize the aggregate goodput of

the system. For localization to work, it needs low level access to hardware. Energy

Awareness is implemented as a cross-layer bus that interacts with all of the above

layers. The bus can compute a work schedule for PHY given an expected network
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usage estimate by the Middleware layer, which in turn creates its estimate from the

installed Applications and their usage pattern.

The precise functions of each of these components is enumerated below:

1. Heterogeneous Hardware: Provide basic hardware functionality to the upper

layers

2. PHY (Network Physical Layer): Provide access to the radio

3. MAC (Network Medium Access Control): Provide control primitives for the

radio to access the physical medium, provide link layer robustness to the upper

layers

4. Routing (Network Routing): Provide basic device addressing functionality,

choose a link for data forwarding

5. Multiprotocol Coexistence: Optimize and tune each PHY protocol so that

interference between multiple PHY protocols is minimized

6. Middleware: Provide Fog Computing API functionality to the applications,

provide QoS aware routing functionality to the applications, provide waypoint

placement functionality

7. Localization: Provide the geographic location of the host device

8. Applications: Provide an interface into Fog Computing for the user, provide

file sharing and social networking services to the user

9. Energy Awareness Bus: Duty cycle each hardware component based on network

performance requirements
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5. NEW APPLICATIONS AND PROOF OF CONCEPT IMPLEMENTATION

Fog Computing provides new sensing and sharing modalities to first responders

during the disaster recovery process. Some of the design requirements presented

previously can be implemented as standalone applications, presented below, while

some others need to be implemented system wide. The high level architecture from

the previous section is then instantiated on three separate device classes that rep-

resenting the whole spectrum of computing power, from ultra low power sensors to

resourceful routers. Finally we show how each of these new applications can be im-

plemented on one or more of the device classes according to resource requirements.

5.1 New Motivating Applications for Fog Computing

We now describe the conceptual working of seven new motivating applications

designed to satisfy some of the Fog Computing requirements. After describing the

hardware architecture in the next section, the implementation details of these new

apps are discussed.

5.1.1 File Sharing App

The app oriented architecture of Fog Computing enables third parties to add

piecewise functionality without worrying about lower layer functions like routing

or storage. As an example, a file storage and social networking service for first

responders can be very useful and improve situational awareness. A traditional file

storage service in the cloud has the following functionality and properties: i) The

Parts of this section reprinted with permission from “Distressnet: A disaster response system
providing constant availability cloud-like services” by H. Chenji, W. Zhang, R. Stoleru, and C.
Arnett. Ad Hoc Networks, vol. 11, no. 8, pp. 2440-2460, 2013. Copyright 2013 by Elsevier.
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ability for a client to upload a file to the cloud, without specifying a destination node;

ii) The ability for a client to retrieve a file, without specifying the location of the

file; and iii) Data robustness due to intelligent replication performed by the cloud

service back end. The file sharing application allows authenticated users to share

data with other users, or groups of users. As an example, one can imagine a team

of responders sharing the layout of an explored building along with current hazards,

with other nearby teams. An important feature that emphasizes the need for such

a service is that the destination for data sent is unknown - it is simply stored in the

Fog and accessed by anyone who connects to the Fog Computing infrastructure.

The File Sharing App can be seen as a client/front end, designed to be used by a

first responder, that connects to a File Sharing Service server/backend and authenti-

cates itself. The clients can then use the Fog API to ADD/DELETE/MODIFY files

which they own (as determined after authentication), as well as specify availability

metrics depending on the importance and criticality of the data file. They can also

share selected files with other clients or users. Examples of files that users can upload

include video taken using a smartphone’s camera. Users can also specify whether

they want to backup these files to an external storage provider like Amazon S3 or

Flickr. If a client wishes to use their own external account, an encrypted query, using

the provider’s API (S3’s API or Flickr’s API), is sent to a special device that has

both the File Sharing Service as well as internet access. The HTTP header and body

is intercepted by the File Sharing Service and sent to the internet Gateway using the

Fog’s underlying network.

5.1.1.1 Fog API

The Fog API insulates the user, first responders in this case, from the inner

workings of the underlying network. It aims to provide a service similar to those
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offered by cloud storage services like Dropbox and Amazon S3. Three primitives

called ADD, DELETE and MODIFY provide an interface into the Fog. The ADD

primitive uploads a file into the Fog. This file could consist of a tweet as produced

by the Social Networking App (to be presented next), or a photo from the user’s

phone as produced by the File Sharing App. The MODIFY/DELETE primitives

allow users to modify or delete files that they own.

When an ADD request is sent from the File Sharing App to a nearby device

running the File Sharing Service, the file is first transferred locally to the device.

Then, the file is replicated on multiple Fog devices according to the criticality of the

data. The actual Fog devices that are chosen as endpoints depend on the output of

several algorithms to be presented later in this dissertation. A MODIFY operation

causes the File Sharing Service to send the difference between the current version of

the stored file and the new incoming file to the Fog devices which contain the original.

These devices will locally modify their copy of the file and push it to another user’s

File Sharing App upon connection. The DELETE operation simply sends a low

overhead message to the Fog device which says that the local copy of the file on the

device should be deleted. The synchronization between the devices running the File

Sharing App and File Sharing Service occurs as follows: when an App discovers a

Service nearby, it can supply a list of files stored locally and ask for changes to those

files. The Service then replies with a list of changes, which the App can apply to its

local copy.

5.1.1.2 Security

API level security is available if the user chooses external service providers - thus

providing encryption on an end to end basis for the user. Users need not disclose

their existing external credentials in order to use the Fog. We consider Amazon
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S3 as an example of an external RESTful cloud storage service provider. Files are

uploaded to S3’s servers using a published API which offers both a REST and a SOAP

interface using XML. When a user signs up, a secret key is assigned. This secret key

is then used alongside HMAC-SHA1 in order to authenticate all HTTP (optionally,

HTTPS) requests. Whenever a user wishes to place a file in S3, a challenge string is

first constructed based on a predefined ruleset, which then serves as the “message”

in HMAC-SHA1. The output, which is a base64 encoded string, forms part of the

HTTP request header. The entire HTTP header and body (if applicable) is then

sent to Amazon by the client.

5.1.2 Social Networking App

The Social Networking App is a user client that provides services like inter-team

messaging, and allows victims to publicly tweet their status. Users can communicate

with other users, or mass message other teams or team members. They can also

choose to post messages to an external Twitter account. It is important to note that

such messages will be available in the Fog, as well as on their Twitter profiles - thus,

an external service like Twitter is mirrored in the Fog. All data from Twitter is

pulled regularly by an internet gateway and sent to the Fog (Figure 5.1) so that the

data stays synchronized. Primitives specific to social networking, such as “following”

a user or replying to a messages, are handled by a Social Networking Service that

runs on the same device as the File Sharing Service, such that the Fog API is used

by the Service to synchronize data.

5.1.3 Self-Localization App

The Self-Localization App is designed for use by low power mobile nodes in GPS

denied environments. For example, a team of responders investigating a collapsed

building can deploy a Sensor on each member as well as on tools of importance, like
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a cement saw. In the event that a tool is misplaced but still within radio range, it

can be easily located using this app. The mathematical framework behind this app

is discussed in Section 9.

5.1.4 Vibration Sensing App

The FEMA US&R equipment cache list [6] mentions Delsar Life Detection sen-

sors: a steel spike (Figure 5.2) that is driven into rubble which responders can then
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Algorithm 1 k-NN Classifier

1: for each si ∈ s1 . . . sgn do

2: Compute di ←
√

(F1 − sf1i )2 + (F2 − sf2i )2

3: end for
4: r1 . . . rk ← The k smallest di
5: groups← Union of groups that each of r1 . . . rk belong to
6: G← most common group in groups

monitor for voices or knocks from victims. Upon manually probing the rubble at

different places, the victim can be localized and rescue operations can commence.

However, there are sources of noise like footsteps and vibration from nearby vehicles

which are also picked up. The goal of the Vibration Sensing App is to automati-

cally detect and classify the source of vibration. To profile these sources the steel

spike of the sensor was driven into a small wedge in a pavement outside our build-

ing on campus. Three sources of noise/data were profiled: a stone dropped from a

height, footsteps of pedestrians and a knock made by a hammer on a pavement. The

fixed-point in-place 1024-bin FFT is shown in Figure 5.3.

It is important to note that the amplitude of the signal alone cannot be used

to classify a source. Hence, two features were extracted from the FFT: (i) average

value of the frequencies weighted by their respective amplitudes (f1) and (ii) the

mean amplitude of the frequencies (f2). We then used these features in a simple

KNN (k-nearest neighbor) classifier. Suppose that we have g different types of data

G1 . . . Gg and n samples for each group, for a total of gn samples s1 . . . sgn. Let each

sample be a vector consisting of two features [f1, f2]. The KNN classifier first needs

to be trained using these samples. Training consists of storing each sample and its

corresponding group in memory. Now, given a new sample S = [F1F2] that needs to

be classified, Algorithm 1 can be used to calculate the group G that S belongs to,
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Figure 5.3: Spectrum and signal of (a) stone drop, (b) footstep and (c) hammer
strike. (d) shows the classifier results based on 2 features

thus identifying the source of the vibration.

5.1.5 Team Separation Detection App

USAR operations in an unexplored large areas with low visibility and potential

hazards (e.g., collapsed tunnel, chemical spills) are dangerous. Any incidents involv-

ing team member separation or loss of vital tools (a “cut” in the network) can slow

down the victim rescue process because of unnecessary delays. To meet the need for

a separation detection method, we develop an app that enables each team member to

monitor connectivity to a team leader multiple hops away, and warns a team member
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of physical separation from the team leader.

The Team Separation Detection App is inspired by the distributed cut detection

algorithm presented in [112]. A node in an electrical network containing a current

source will see a change in its potential when there is a partition in the network,

enabling it to detect changes in network topology. Similarly, every node n in a

computer network maintains a positive scalar value called the “state” st(n), updating

it using the formula st(n) = (
∑

N(n) st(i))/(|N(n)|+1), where N(n) is the set of one

hop neighbors of node n. A special source node S injects a value I by updating its

own state using the formula st(S) =
I+

∑
N(S) st(i)

|N(S)|+1
. The state of each node converges,

given a network topology. A node in the same partition as S after a cut will see its

state converge to a higher value, otherwise it drops to zero. The convergence time

is fast and the maximum delay in experiencing such a change is bounded, as shown

in [112]. Thus, this algorithm helps first responders detect accidental separation in

the team by using only one hop communication.

5.1.6 Building Monitoring App

The primary motivation for the Building Monitoring App was the current state

of art, where USAR personnel use paint on walls (Figure 5.4) to store information

about the current search status of a structure. This includes information like the

number of survivors inside, the location of chemical hazards if any and the most

recent date/time that the structure was searched [113]. This information is most

likely to remain constant and not change very often. A Building Monitoring Service

runs on low power sensors and stores the data programmed into it by using a client

front-end like the Building Monitoring App. One or more of these sensors can be

deployed in or around a building. Vehicles in the vicinity can automatically gather

data from these sensors and mule it using other vehicles to the EOC.
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Figure 5.4: Markings indicate that the buildings have been searched

5.1.7 Sink Election App

Imagine that the Building Monitoring App presented previously has been installed

on several sensors which are deployed around a disaster struck building. Not all of

the senors in this sensor subnetwork may have access to passing vehicles due to the

topology. It is therefore necessary to choose a single sensor from this subnetwork to

act as a data aggregator which can offload data to passing vehicles. A set of sensors

running the Sink Election App can be modeled as a set M = {m1 . . .mn} of deployed

sensor nodes. Let batt(mi) be the residual battery charge of node mi, beac(mi) the

number of beacons received from vehicles passing by, and uniq(beac(mi)) be the

number of unique vehicles encountered by mi. Now, Let sc(mi) > 0 be a scoring

function that assigns the eligibility score to any node mi based on the above three

parameters. The sink selection problem can be formulated as the choosing of a
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Algorithm 2 Sink Election

1: procedure SinkElec(For node i)
2: sc(sink)← 0
3: if ScoreTimerFired then
4: Calculate sc(mi)
5: if sc(mi) > sc(sink) then
6: Broadcast sc(mi) to DAGRoot
7: end if
8: end if
9: end procedure

10: procedure SinkElecRoot(For the DAGRoot)
11: if ElecTimerFired then
12: sink ← id(Max(receivedscores))
13: Broadcast sink to all children
14: end if
15: end procedure

particular mi such that we:

maximize sc(mi) ∧ uniq(beac(mi)) (5.1)

subject to beac(mi) > 0 (5.2)

batt(mi) > 0 (5.3)

The solution is simple: a sensor which has access to the most number of unique

vehicles is given higher priority during sink election. We make use of RPL’s routing

tree structure to perform sink election and resolve conflicts among candidates. This

ensures that there is no additional messaging overhead (e.g., for neighbor discovery),

while at the same time providing unicast communication in the subnetwork.

Algorithm 2 shows the distributed sink election using RPL’s tree structure. The

scoring function sc used was sc(mi) = 3× uniq(beac(mi)) + 2× beac(mi) + batt(mi).

This simple, computationally inexpensive function gives more weight to the number
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Figure 5.5: The hardware/software architecture of Fog Sensors.

of unique vehicles seen by the node, while at the same time preferring nodes which

frequently see vehicles. Nodes, after computing their score regularly (Step 4) and

comparing it with the current sink’s score (Step 5), send the score to the root of the

DAG structure built by RPL. Because frequent sink changes are considered resource

intensive, the root conducts election only at specified intervals. During this election

process, potential candidates are compared and the node with the highest score is

chosen (Step 12). In case of a tie, the node with the lowest id is chosen. The identity

of the new sink is then broadcast to each child node, till the leaf nodes are notified

as well (Step 13).

5.2 Hardware/Software Architecture

Here we discuss how the above high level architecture can be implemented on

various categories of devices. There exist three distinct classes of devices in the Fog:

Sensors, Smartphones and Routers. We now describe the hardware used to imple-

ment these three classes, following by a listing (Table 5.1) of the actual devices used

in Fog Computing, some of which may represent multiple device classes depending

on their functionality.
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5.2.1 Fog Sensors

Sensors are typically low power, battery powered wireless sensor network plat-

forms such as an EPIC [114] mote. The data sensed may be either mission critical

or informational. Being heavily duty cycled, they are designed to last for several

weeks with a single charge. 802.11 support is rarely found on these devices, with

802.15.4 or no networking being more common. Applications deployed on such de-

vices include sensing and services (Building Monitoring Service, Sink Election App,

Vibration Sensing App, and Self-Localization App in Figure 5.5). The BLIP stack

provides UDP connectivity over the IPv6 provided by 6lowpan. In Fog Computing,

we use RPL [115], an IPv6 routing Protocol for low power and lossy networks, as

the default routing protocol. Fog Sensors can upload data into the Fog using a Fog

Router as a proxy (to be described shortly).

5.2.2 Fog Smartphones

Smartphones refer to popular network centric consumer electronics like tablets,

smartphones and laptops which have networking capabilities, but have limited re-
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sources. Fog Smartphones are primarily used by first responders to access data stored

in the Fog. They provide a rich interface to the data collected in the field, while also

providing some functionality themselves. Not as resource constrained as Fog Sensors,

most devices have 802.11 capability and are designed to last a few days on a single

charge. Smartphones also have various sensors such as GPS, cameras, microphones

and accelerometers. They are usually incapable of routing or advanced networking

capabilities and have limited, but not scarce, resources. Apps installed on these

devices are more of data consumers than data generators. The hardware platform

used was the iPod Touch as well as the iPad. We were limited to the application

layer since the SDK does not allow non-trivial modifications to the operating system

for security reasons. The network stack on these devices consists of TCP/UDP over

IPv4/v6 and 802.11. The fact that 802.11 IBSS mode was readily supported out of

the box made us choose iOS over Android.

Fog Computing apps and services that run on Fog Smartphones including the

Building Monitoring App (BTag App in Figure 5.6) that is used to program Fog

Sensors running the Building Monitoring Service once they are deployed with relevant

information. The File Sharing and Social Networking Apps (as shown in Figure 5.6)

are also implemented on Smartphones, as is the Team Separation Detection App.

5.2.3 Fog Routers

Routers are portable, battery powered devices which provide basic wireless net-

working functionality and are deployed in the field. An example is a common 802.11

router found in most homes today. They can be assumed to have expansion ports to

provide additional functionality like persistent storage or cellular connectivity. These

can either be static or deployed inside a vehicle. The hardware platform used in the

Mikrotik RB433UAH routerboard which has 3 MiniPCI slots and 2 USB 2.0 ports,
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Figure 5.7: The hardware/software architecture of Fog Routers.

allowing for two 802.11abgn wireless cards configured for 2.4 and 5 GHz respectively.

It also has 512MB of NAND flash and 128MB of RAM. OpenWRT [116] is an open

source GNU/Linux based operating system compatible with this router, which was

chosen because of the openness and the wide range of software and support available.

The USB port can be used to provide functionality like a new physical layer such as

802.15.4 (to communicate with Fog Sensors), enhanced storage like a USB flash drive

or both. The networking stack used in is 802.11abgn below IPv6/v4 and UDP (Fig-

ures 5.7). Since most COTS WiFi compliant devices support only the 2.4GHz band,

we decided to use the 5GHz interface exclusively for routing. DHCP is provided on

the 2.4GHz interface for clients to connect. All routers have statically assigned IPs

- router n has an IP of 192.168.50.n for its 5GHz interface and 192.168.n.1 for the

2.4GHz interface. Each router can handle 255 end user devices - they are assigned

IPs in the 192.168.n.0/24 range.

Fog Routers employ delay and disruption networking. For implementing DTN

functionality, we used the IBR-DTN [117] implementation which is readily available

as a package for OpenWRT. A “Bundle” (RFC 5050) is the primary data unit in
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DTN. Each DTN node is identified by a URI like dtn : //dn.zigbeegateway1. A

client application with an ID of mote1 can connect via an API to the local “Bundle

Server”. Then, any traffic intended for this app will simply need to be addressed to

dtn : //dn.zigbeegateway1/mote1. Examples of functions provided by the bundle

server API includes registering the application name (e.g., “mote1”), setting a desti-

nation, requesting encryption or authentication or custody transfer and setting the

lifetime. All communication in the DTN layer can be encrypted and authenticated,

as defined in RFC 6527. Each DTN node first generates, pre-deployment, a 2048-

bit RSA public/private key pair. The public keys of all nodes are aggregated and

shared among all DTN nodes. This data is used for bundle encryption in a public-key

cryptography fashion. It is to be noted that bundle encryption is always between

source-destination and authentication is always on a single hop basis. Bundle au-

thentication uses the HMAC-SHA1 message authentication cipher, which encrypts

a message based on a key. In this case, the key is a pre-shared plaintext key of

arbitrary length that is different from the public/private keys.

DTN is implemented as an overlay network of nodes where multiple local clients

can connect to a local DTN server (Bundle server in Figure 5.7) in the application

layer. A special DTN app on the router which can talk to 802.15.4 based Fog Sensors

as well as the DTN server provides DTN proxying functionality (“802.11-802.15.4

Switch” in Figure 5.7). The File Sharing and Social Networking Services have the

capability to interface with Fog Smartphones by acting as a Fog API provider, while

simultaneously talking to the Bundle server in order to replicate data on other Fog

Routers.

5.3 Fog Computing Device Listing

A comprehensive listing of all the Fog Computing devices is available in Table 5.1.
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Component Class PDMM Function Installed
Apps/Services

BTag Sensor Sensor None Building Monitor-
ing Service, Sink
Election App, Self-
Localization App

Seismic Sensor Sensor None Vibration Sens-
ing App, Self-
Localization App,
Sink Election App

Smartphone Smartphone Mobile Agent
(USAR)

File Sharing App, So-
cial Networking App,
Building Monitoring
App, Team Separa-
tion Detection App

Data Waypoint Router Center None

Base Station Router Center File Sharing Service,
Social Networking
Service

Vehicle Node Router + Sensor Mobile Agent (Am-
bulance, Patrol Car,
Supply Vehicle, Vol-
unteer)

File Sharing Service,
Social Networking
Service

Sensor Proxy Router + Sensor Center File Sharing Service,
Social Networking
Service

Table 5.1: Summary of the devices in the Fog Computing Architecture, their cor-
responding device classes, their mobility pattern according to the PDMM and the
installed Apps and Services.
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6. INFRASTRUCTURE OPTIMIZATION IN FOG COMPUTING

The Fog Computing architecture [118] consists of battery powered devices that

have been deployed by responders over a large geographical area. Mobility in the

area is limited and unpredictable, while the contact bandwidth is finite. The inter-

contact time can be measured in tens of minutes or even hours. The opportunistic

nature of routing means that the optimal use of each contact opportunity is crucial

in ensuring high performance. In this section we investigate how the aggregate

throughput in the network, an important QoS metric, can be increased by increasing

the number of contact opportunities by statically placing additional hardware (Fog

Router class devices) in the area. These devices, called Data Waypoints (Table 5.1),

act as caches that can be used by mobile nodes in the area to store data. By carefully

placing devices at optimal locations, like those that are frequented by vehicles, one

can increase the number of contact opportunities.

6.1 Introduction

First we introduce the data flow model in Fog Computing so that the data work-

load can be quantified. The unique nature of Fog data flows, where the destination

is simply the Fog and not a concrete address consisting of a hostname, is expressed

in the form of firm and potential flows.

6.1.1 Data Production and Consumption Model

The main idea behind servicing apps in Fog Computing, as shown in Figure 6.1,

is to mirror a traditional external service (like Flickr, Amazon S3 or Twitter) in

Parts of this section reprinted with permission from “Distressnet: A disaster response system
providing constant availability cloud-like services” by H. Chenji, W. Zhang, R. Stoleru, and C.
Arnett. Ad Hoc Networks, vol. 11, no. 8, pp. 2440-2460, 2013. Copyright 2013 by Elsevier.
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Figure 6.1: Firm and potential flows in Fog Computing.

a local network, containing a mixture of mobile and static vehicles and devices.

Mobile teams visit multiple points of interest (Centers in PDMM parlance) in the

affected area. Devices may be deployed at various locations/points of interest for

unsupervised monitoring of the environment - for example, a Seismic Sensor along

with a Sensor Proxy (Table 5.1). These points of interest eventually act as sources

and destinations of data in the Fog. As shown in Figure 6.1, special points of

interest are the EOC, and an internet gateway (a Base Station in Table 5.1) which

may or may not be co-located with the EOC. The internet gateway provides access

to traditional cloud services, but using a high cost link. Internet access for large

amounts of data may be high cost and resource demanding. Therefore, and this is

a key idea in Fog Computing, the remote cloud’s services are provided locally in the

Fog (i.e., the instantiation of a cloud in the intermittently connected Fog). Because

accessing services directly from the Cloud incurs a high cost, if at all possible, it is

much more efficient to instead access services from the Fog.

6.1.2 Firm and Potential Flows

As shown in Figure 6.1, there are several data flows (source-destination pairs).

Some flows are firm flows : these have a pre-decided destination and source, while

other flows are potential flows. These potential flows represent data to be stored
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somewhere in the Fog, without a specific destination. For each potential flow, there

is an associated availability metric which ranges from 0-100% and denotes the im-

portance of the data. An availability of 100% means that data will be available on

all Fog devices, whereas an availability of 25% means that data will be available on

at most a quarter of Fog devices. More critical data will have higher availability.

Examples of data and its availability metric include data generated by BTag Sen-

sors (Table 5.1), which is not critical and has an availability of 33% (i.e., the BTag

Sensor Data will be probabilistically stored on about 30% of existing destinations

in the Fog), and data generated by Seismic Sensors (Table 5.1) which is critical and

requires 100% availability (i.e., the Seismic Sensor Data will be stored on all existing

destinations in the Fog). These firm and potential flows can be specified by the user.

6.2 Problem Formulation

Suppose that the current scenario is represented by an instance of the Post Dis-

aster Mobility Model (PDMM). Based on the movement patterns of Mobile Agents

in the area as well as data flows in the Fog, a set of candidate locations for placing

Data Waypoints can be computed. From this candidate set, an optimal set that

maximizes the aggregate throughput can be computed. For ease of modeling, we as-

sume a reduced version of the Post Disaster Mobility (PDM) Model [4] that consists

of only Patrol Cars. The newly placed Data Waypoints will be treated as Centers in

PDMM parlance (Table 5.1).

6.2.1 Preliminaries

Consider n patrol cars V = {V1 . . . Vn}, with the path of each vehicle being a loop

and hence representable by a closed polygon. For a vehicle v ∈ V , let this polygon

be called Path(v), the speed of the vehicle be Speed(v), the time taken by a vehicle
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to go from point A to point B both on Path(v) and along it, be

T ime(A,B, Path(v)) = Dist(A,B, Path(v))/Speed(v)

Let the set of data sources be S and the set of destinations, D. Each source or

destination is compulsorily present in the set of Centers of the PDMM instance.

Any deployment additionally has a set of firm flows F , with each flow Fi ∈ F having

a data source F src
i ∈ S, a destination F dst

i ∈ D and the size of the data F data
i that

can be sent from the source to the destination. Note that a node may act as a source

as well as a destination in different flows. A similar set of potential flows P is also

defined, but each potential flow Pi ∈ P has only a source P src
i ∈ S, an availability

0 < P avail
i < 1, the maximum data size P data

i but no destination. We construct the

set of modified potential flows Q, from P such that each flow Pi ∈ P is assigned each

destination d ∈ D. Let Z ⊆ (F ∪Q) be the final set of selected flows such that:

• Every firm flow is included, i.e, F ⊆ Z

• The availability of each potential flow is satisfied. Mathematically, for every

Pi ∈ P , there are at least |D| × P avail
i flows in Z, for which the source is P src

i ,

chosen from Q.

A “waypoint” is a router placed at the intersection of the paths of two vehicles

v, w ∈ V such that data can be dropped by v and picked up by w or vice versa.

Let X be the set of all possible waypoint locations (which is where ever the paths of

any two vehicles intersect). A solution set for each flow Zi ∈ Z means a sequence of

alternating vehicles and data waypoints that are capable of carrying data from the
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source to the destination, i.e, a set

{Zsrc
i , v1i , x

1
i , v

2
i , x

2
i . . . Z

dst
i }, vi ∈ V and xi ∈ X

The time taken for data to flow using the solution set for a Zi will then be

T (Zi) = T (Zsrc
i , x1

i , Path(v1i )) + · · ·+ T (xn
i , Z

dst
i , Path(vni ))

The maximum size of data that can be transferred on a flow depends upon the

Data Transferred per Contact (DTC) quantity of each contact in its solution set:

Zdata
i can now be defined as

Zdata
i = min(contact(v1i ), contact(v

2
i ) . . . contact(v

n
i ))

where contact(v) is the maximal DTC that is possible between a node and the vehicle

v traveling at a speed Speed(v). The DTC is determined experimentally, as explained

in the next section.

The Waypoint Placement problem is now defined as follows - given an upper

boundXmax on the number of waypoints (e.g., limited available hardware), we choose

X∗ ⊆ X such that:

• For each flow Zi ∈ Z, the solution set contains vehicles which are found in V

and waypoint locations which can be found in X∗

• The aggregate throughput
∑

z∈Z

zdata

T (z)
is maximized

• Optionally, the cardinality of X∗ is less than Xmax

To efficiently solve the above problem, we first create a representative graph G.

To construct this graph, first create a vertex for each unique source and unique
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destination. Next, create a vertex for every possible waypoint location x ∈ X . Draw

an edge between any two vertices mi and mj whenever a single vehicle v passes

through both the vertices. The key intuition here is that the weight of this directed

edge is nothing but the time taken by the vehicle v to physically transport the data

from mi to mj . In order to account for the periodic movement of vehicles, let the

time taken by v to arrive at mi, called arr(v) be a function of Path(v)/Speed(v).

The weight of the edge in question will then be arr(v) + T ime(mi, mj , Path(v)).

T (Zi) can then be modified to take this into account by adding arr(v) to each term

appropriately.

Let a binary selection vector c = [c0, c1 . . . , c|X|] denote whether a possible lo-

cation xi ∈ X is chosen to be a data waypoint (1) or not (0). Let the subgraph

G∗ denote the graph formed by G by removing vertices indexed by a 0 in c. The

problem is now to find a binary vector c such that, operating on G∗ we:

maximize

|Z|
∑

i=0

Zdata
i

T (Zi)
(6.1)

subject to T (Zi) 6=∞ (6.2)

|X|
∑

i=0

ci ≤ Xmax (6.3)

Constraint 6.2 ensures that there is always a path in G∗ between the source

and destination for each flow. This is because the delay for a nonexistent edge

will be set to inf, or equivalently, G∗ can be made fully connected with the newly

created edges having a very large weight. Constraint 6.3 ensures that the number of

waypoints deployed is less than or equal to the maximum possible. This problem can

be recognized as a binary integer programming problem. Popular heuristics include

the branch-and-bound algorithm, which is available in MATLAB as bintprog or
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Figure 6.2: Schematic showing the layout of Disaster City

various algorithms available in ILOG/CPLEX.

6.3 Performance Evaluation

In this section we present the performance evaluation of some of the Fog Com-

puting Apps as well as the waypoint placement algorithm. The accuracy of the

Vibration Sensing app has been evaluated in Disaster City (Figure 6.2), which is

a comprehensive 52-acre training facility for emergency responders with extremely

realistic wrecks, including several rubble piles of wood and concrete.

First, we describe how the Fog can be deployed in Disaster City, following a

hypothetical disaster. The deployment effort needed from first responders, as well as

the data needed from the deployment area is discussed. We progressively evaluate the

system and the service internals by first finding the optimal payload size (DTC) for

802.11 and 802.15.4 transfers for a given speed. Then, after verifying the correctness
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Figure 6.3: Map of deployment at Disaster City during Summer 2012

of the Sink Election algorithm using EPIC motes, we perform a simple experiment

(Expt 1) which does not attempt to optimize the DTC. A simulation helps us choose

the best routing protocol for this experiment. In a second deployment (Expt 2)

we then show the improvement in aggregate goodput even in the presence of DTN

security overhead, by the use of optimal payload size, source routing and optimal

Data Waypoint placement. These experiments involved three vehicles and various

data sources, and was conducted on our campus. The accuracy of the Vibration

Sensing App w.r.t classifying the source of noise is shown.

6.3.1 Deployment Scenario

The Fog was deployed in Disaster City during Summer 2012 as part of an ex-

ercise involving first responders. The objective of this deployment was to test the

practicality of deploying during a disaster, and not to test the performance over

many days. At 10 A.M. on May 17, the Incident Commander convened a meeting
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at the Command Post (EOC in Figure 6.3). Participants consisted of various groups

specializing in technology such as UAVs, ground robots, marine robots and delay

tolerant networking. The situation summary was as follows:

A major train derailment involving an estimated 12 cars of a freight

train has occurred in the SE sector of Disaster City, TX. The derailment

is adjacent to a producing oil well, underground oil distribution line,

above and below ground power lines, commercial and private residences.

Unknown at this time: damage to utilities and infrastructure but power

is out in the area. Unknown if any car(s) are leaking but residents in the

area report burning eyes and difficulty breathing per EMS/Fire dispatch.

Unknown casualties. Engineer stated that train had radiological cargo;

however the manifest has not yet been obtained. A full RECON by

HAZMAT and aerial surveillance must be conducted in order to establish

appropriate DECON. Winds are out of the north west. Initial HOT

Zone has been established, see map. Any RECON by personnel shall

be coordinated with HAZMAT. Responder medical and Command post

located next to EOTC.

The area of the disaster was 0.081 square miles. No human movement was allowed

in the HOT zone due to danger of contamination. Any robot entering the HOT

or WARM zones had to be decontaminated at DECON before being handled by

a human. The objective of our team was to provide networking in the area, so

that data from the DECON area (DECON in Figure 6.3) could reach the command

post. The only travel route to the DECON area was through a dirt road (TRAVEL

ROUTE in Figure 6.3). Additionally, data from the marine robots (location “3” in

Figure 6.3) also needed a path to make it to the Command Post. Location 2 had
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a collapsed strip mall that the US&R team would have investigated. After a group

huddle, we decided to deploy four routers in the area (locations 1,2,3,4 in Figure 6.3).

Location 1 was a Data Waypoint, location 2 was a Sensor Proxy due to the presence

of BTag Sensors nearby, and location 3 was a Data Waypoint. A Base Station (4)

was placed at the EOC. The entire deployment effort took about two hours including

travel time. Deploying a node was easy, since they were all mounted on tripods and

were battery powered. BTag Sensors were attached to the strip mall rubble using

duct tape and were programmed using Smartphones/BTag App carried by our team.

Additionally, a few pictures were sent using Smartphones/File Sharing App from the

node at location 1 to the Base Station 4 at the EOC. Service optimization using

source routing was not performed due to the limited time available and the small

size of the deployment area. Epidemic routing was used to route packets. The entire

experiment, including setup and debugging took about six hours.

6.3.2 Optimizing the DTC: 802.11 Based

The amount of data transferred between a static and mobile node is dependent on

the size of the payload and the speed of the vehicle, keeping other factors constant.

This important observation that the data transferred per contact (DTC) depends

on the payload size enables us to design better data aggregation algorithms. Two

separate experiments show the effect of speed and payload size upon both 802.11

and 802.15.4 transfers.

6.3.2.1 Effect of Vehicle Speed

The DTC for Wifi contacts is shown in Figure 6.4(a,b). We observe that as

speed increases, the DTC decreases, for both secure and insecure transfers. This

is to be expected since increased mobility results in lesser contact time and also

degradation of link quality. Considering a base speed of 15mph, an increase of
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Figure 6.4: Per-contact performance for WiFi: the DTC without security (a) and
with security (b); the number of bundles transferred without security (c) and with
security (d).

1.3x/2x to 20/30mph should intuitively result in a throughput decrease of 0.75x/0.5x

respectively. Without security and when averaged over all bundle sizes, these ratios

were in practice found to be 0.86x (+14.67%) and 0.63x (+26%). With security

enabled, they were 0.72x (-4%) and 0.42x (-16%) - this is expected since security

incurs overhead. The number of bundles transferred can be seen in Figure 6.4(c,d).

The ratios for insecure transfer were 0.91x/0.63x, whereas for secure transfers, it

was 0.81x/0.49x. We conclude that the number of transferred bundles decreases

sub-linearly with increase in speed.
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Figure 6.5: Zigbee contact performance - (a) data transferred per contact and (b)
packet loss per contact.

6.3.2.2 Effect of Payload Size

The payload size affects the number of unique bundles created in each node’s

queue. A large number of bundles stored on a router demands more resources for

local processing. As a result, DTC is low at small bundle sizes. We also observe a

flattening of the goodput curve at larger payload sizes (Figure 6.4(a,b)), above around

200KB. This implies that bundles with at least 200KB are optimal for transferring

between routers. Concretely, with a baseline of 20KB, the expected ratios for 80,

200, 500, 800 are 4x/10x/25x/40x. Without security, these ratios when averaged

over all speeds are: 1.77x/2.49x/2.63x/2.68x. With secure transfers, we achieve

2.15x/3x/2.25x/2.73x. These results lead us to believe, based on empirical data,

that the DTC increases with the square of the expected ratio up to a “critical”

bundle size, after which it remains constant. A similar effect holds true for the

number of bundles transferred - the number stays almost constant once a threshold

bundle size is reached.
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6.3.3 Optimizing the DTC: 802.15.4 Based

The effect of payload size and mobility on the DTC two nodes over 802.15.4

can be seen in Figure 6.5. A stationary node was placed 5 feet above the ground,

while a mobile node was placed in the passenger seat of a vehicle. The vehicle made

multiple, regular runs at speeds of 15, 20 and 30mph, transferring at each run multiple

packets. These packets had a payload size between 10 and 90B. The software used was

IPv6/UDP using Blip2 on TinyOS. The maximum MTU for 6lowpan/IPv6 is 100B -

however, fragmentation was found to be unstable and hence unusable. Therefore, we

limited our payload size to roughly 100B in our experiments. Each transferred packet

used application layer acknowledgments. Each data point represents two separate

runs using identical parameters.

6.3.3.1 Effect of Vehicle Speed

The effect of vehicle speed upon DTC can be seen in Figure 6.5a. As expected,

DTC decreases with increasing speed. DTC shows degradation consistent with speed:

the ratios for 20/30mph considering 15mph as the baseline are 0.76x/0.55x, which are

+1.3%/+10%. Packet losses (Figure 6.5b) are independent of speed: the respective

ratios are 0.99x and 1.01x when averaged across all payload sizes. We conclude

that speed has a marked, linear effect on DTC, but packet loss percentages are

independent of speed and constant.

6.3.3.2 Effect of Payload Size

The effect of payload size upon DTC is surprising: given the same contact

time/speed, it increases with increasing payload size. This means that there is a

constant overhead involved in the processing, sending and ACKing of packets - in-

creasing the payload size does little to affect this overhead, but results in a large DTC.
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Figure 6.6: Evaluation of latency, delivery rate, overhead and average hop count for
four different DTN routing protocols in simulation.

Given a baseline of 10B, the ratios for 30/50/70/90B (3x/5x/7x/9x) are 2.74x, 4.97x,

6.33x, 10.22x. The respective change against their expected ratios (assuming a linear

relationship) are -8.65%, -0.61%, -9.51%, 13.54%. Thus, choosing the biggest possi-

ble payload size results in maximal DTC (within the limits of fragmentation). For

packet loss (%), the ratios were 1.2x/1.15x/1.45x/0.9x - showing that empirically,

the largest payload size will suffer relatively fewer losses.

6.3.4 Simulation Based Evaluation

The DTN simulator chosen for the task of choosing a routing protocol was the

Opportunistic Network Environment simulator (TheONE). The paths of vehicles

were digitized using the Google Earth GIS software. The entire setup in simulation

consists of 26 nodes - 5 data sources each at Sources 1 and 2, three routes with 5

vehicles on each route and a EOC node. The vehicles move at a speed uniformly

chosen between U(19, 21) mph by default. The transmission range is 13m, in order

to allow for a multi hop network. Each data source sends a packet of size U(95,

105)KB every U(20, 30) seconds to the EOC. The total simulation time for each

scenario is 1h unless specified otherwise.
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The combined performance of four DTN routing protocols can be seen in Fig-

ure 6.6. Epidemic routing aims to deliver messages by delivering a copy of the data

to every neighbor that it encounters. It has one of the highest delivery rates and

the lowest latency. A caveat is the overhead which is the number of extra messages

created while routing per delivered packet, and the average hop count. In PRoPHET

routing, each node maintains the probability of each of its neighbors being able to

deliver a packet to a given destination. The delivery rate is same as that of Epidemic,

but the latency is 26 seconds higher. SNW refers to the Spray and Wait protocol

which aims to bound the number of copies of a packet in the network by a given

parameter. For 2 values of 10 and 6, the SNW protocol has a very low overhead and

hop count, but has a low delivery rate and high latency. We chose Epidemic routing

for its high delivery rate and low latency.

6.3.5 Throughput Optimization and Waypoint Placement

6.3.5.1 Setup

In order to evaluate the waypoint placement algorithm, we designed a deploy-

ment (Figure 6.7) involving three cars and three flows with three data produc-

ing/consuming nodes. Flow1 in the following text refers to data sent from Source1 to

the Base, Flow2 is from Source2 to the Base, and Flow 3 is from Source1 to Source

2. Flows 1 and 2 were firm flows, whereas Flow3 was a potential flow from S2 to

the Fog with a 33% availability. For the sake of flow diversity, Flow3 was made

firm by choosing S2 as a destination. Two possible waypoint locations were WP1

and WP2. There are four configurations possible with two locations: none (config0),

both (config3), WP1 only (config1) and WP2 only (config2). The goodput for each

flow was experimentally measured for all possible waypoint configurations.
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6.3.5.2 Expt. 1: Epidemic Routing Without DTC Optimization

For this experiment all nodes performed epidemic routing. Results for the good-

put and delay are presented in Figure 6.8(a,b). Payload size was chosen to be 100KB,

each flow generated data at every 20 seconds, vehicles moved at around 20mph. It

has to be noted that the sources themselves act as data waypoints due to the nature

of Epidemic routing - hence, the goodput improvement between the configurations is

not that high as compared to the following experiment. config3 proved to be optimal

by providing the highest aggregate goodput across all the flows. If we consider only

flows 1 and 2, since Flow3 does not need any additional waypoints (since the same

vehicle passes through sources 1 and 2), configs 1 and 3 are almost equal.

74



 12

 14

 16

 18

 20

 22

 24

 26

 28

config0 config1 config2 config3

E
n
d
-t

o
-e

n
d
 d

e
la

y
 p

e
r 

fl
o
w

 (
m

in
)

Waypoint Configuration

Flow1
Flow2
Flow3
First 2 flows
All

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

config0 config1 config2 config3

G
o
o
d
p
u
t 

(K
B

p
s
)

Waypoint Configuration

Flow1
Flow2
Flow3
1,2 only
All

(b)

Figure 6.8: Expt. 1: DWP performance in terms of (a) latency and (b) goodput.
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Figure 6.9: Expt. 2: DWP performance in terms of (a) latency and (b) goodput.

6.3.5.3 Expt. 2: Source Routing With DTC Optimization

For this experiment, values from the WiFi and 802.15.4 contact experiments were

used to determine the payload sizes of flows. In addition to source routing replacing

Epidemic routing of the previous experiment, security at the DTN layer was enabled.

Flow2 was converted to a 802.15.4 flow with the vehicle picking up data from Source2

using 802.15.4 instead of Wifi. Flow1 was still Wifi based - this meant all deliveries to

75



Source2 were made over Wifi. The payload sizes for Wifi and 802.15.4 were chosen to

be 300KB and 90B respectively. However, once a vehicle picked up 90B packets, they

were marshaled into 300KB DTN bundles. Data was generated every 30 seconds.

As a result (Figure 6.9) we see a marked increase in the aggregate goodput as

compared to the previous experiment. Because of source routing, unnecessary copies

of bundles were not created, leading to efficient and non-redundant per-contact data

transfer. However, the maximum delay in config0 is high because there is no data

replication (and only opportunistic contact between vehicles), but when waypoints

are present, the delay is comparable in spite of the increased payload size and over-

head due to security. We conclude that using source routing and choosing the payload

size optimally results in a 2x increase in goodput.

6.3.6 Apps: Vibration Monitoring

We evaluated the Vibration Sensing App in Disaster City on three different rubble

piles: one consisting of wooden rubble (Figure 6.10a), one of concrete, and another

with a combination of concrete and mud. In the latter one, the soft mud dampens

the vibrations caused inside the pile and hence makes detection with a seismic sensor

difficult. Samples for different types of events were gathered at each of these piles: a

stone drop, a footstep and a hammer strike. Half of the samples were used to train

the KNN classifier, and the other half to evaluate performance. All samples were

taken at slightly different strike intensities and distances from the sensor.

Results are shown in Figure 6.10b. “wood1” represents samples taken at the

wooden pile with the default sensitivity threshold of 25 and “wood2”, at a threshold

of 50. A higher threshold implies lower sensitivity. This higher threshold was not

possible on the two other piles since the sensor could not register soft knocks and

events. We conclude that a k = 3 provides for optimal performance from the KNN
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Figure 6.10: (a) Wooden rubble pile in Disaster City and (b) KNN classifier accuracy
as a function of k

classifier with an average detection of accuracy of 73.33% independent of type of

rubble, strike intensity and the distance from the seismic sensor.

6.3.7 Apps: Separation Detection

The effect of separation upon the state of a team member is shown in Figure 6.11.

An experiment was conducted inside an urban building where iPod touches running

the separation detection app were given to each member. “One” is the team leader

and hence injects a constant state into the network. Initially, all the team members

were present in a single room until time 30. Then, One and Two separated from

Three by going into another room. As a result, the state of Three drops to zero since

it is no longer connected to One, and the states of Two as well as One increase and

converge (time 40− 60).

Then, One and Two move around in the large room with lot of metallic wall sized

objects, causing disconnection. This disconnection is temporary and does not signal

a separation. Later, Two returns to the same room as Three at time 95. As a result,

the state of Three increases for time 100 − 110 due to the residual state brought

by Two, but both of them quickly decrease to zero at 110 since they are no longer
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Figure 6.11: Graph of state versus time for a team of three responders.
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Figure 6.12: Sink election evaluation.

connected to One. Finally, One reunites with Two and Three at 140 causing all

of their states to converge once again to their initial values. The average detection

delay, looking at each of the three separation events and the corresponding state

at that time, is (45−30)+(98−95)+(143−140)
3

= 7s. The detection delay for separation as

opposed to rejoining is a little longer because of the guard interval before a node

declares a neighbor as disconnected.
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6.3.8 Apps: Sink Election

The results of running a sink election algorithm using RPL/Blip2/TinyOS on

EPIC motes is shown in Figure 6.12. Four BTag Sensors were deployed outdoors,

while a fifth node in a vehicle acted as a beacon with an interval of 2 seconds.

The battery voltage was read every 2 seconds, the election was conducted every 10

seconds, and data was generated every 60 seconds. Because the experiment was

conducted outdoors, we had to set the transmission power to -15dBm (9.9mA draw)

to simulate a multi hop network. The vehicle drove in loops at around 10mph first

around nodes 1 and 2, then around nodes 3 and 4 starting at iteration 10. We see

that the node with the highest score elected as the sink (Node 1 first, and then Node

4) - this verifies the correct execution of our algorithm. Interestingly, Node 3 was

able to receive a few stray beacons due to radio irregularities. However, this did

not disturb the election or cause a switch in the elected sink in the long run (up to

iteration 45).
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7. QOS AWARE ROUTING FOR FOG COMPUTING

As defined previously in this dissertation, DRNs are disruption tolerant networks

designed to deliver mission critical data during disaster recovery, while operating

with limited energy resources. While QoS is desired, it is difficult to offer guarantees

because of the unpredictable nature of mobility in such DRNs. The variance of

the packet delivery delay (PDV, more commonly called jitter), an important QoS

metric which in DRNs is measured in tens of minutes instead of milliseconds, has not

been sufficiently addressed in recent research. Smartphones used by first responders

generate large data workloads, causing the PDV to further degrade. Reducing packet

replication at these workloads will lower energy consumption, but reduces the packet

delivery ratio (PDR). The complex interplay between these QoS metrics remains

unclear, making their control difficult. In this section we present Raven [119], a

routing protocol for DRNs that offers control over QoS metrics, especially the PDV.

Stochastic graph theory which deals with probabilistic edge weights having a mean

and variance is used to model PDMM. A stochastic version of the K-Shortest Paths

algorithm routes data over multiple paths simultaneously. The dynamics between

performance and energy consumption is analyzed mathematically, and its control is

demonstrated.

Parts of this section reprinted with permission from “Raven: Energy aware QoS control for
DRNs” by H. Chenji, L. Smith, R. Stoleru, and E. Nikolova. In the 2013 IEEE 9th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon,
France, 2013. Copyright 2013 by IEEE.
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7.1 Introduction

Natural disasters cause loss of power and communication infrastructure in the

affected area, and make the recovery process challenging. Search and rescue is one of

the Emergency Support Functions as described by the Federal Emergency Manage-

ment Agency in the U.S.A; Urban Search and Rescue (USAR) is a sub-function that

deals with collapsed structures in urban areas. Since USAR first responders have

always communicated using traditional means such as paper and paint on walls, re-

cent research [1] has looked at providing them with new sensing modalities like low

power wireless sensors and smart phones. DRNs use concepts from delay tolerant

networking (DTN) research to build a networking infrastructure that integrates these

modalities and allows responders to share data. These DTNs are expected to han-

dle data created by sensors that can be measured in kilobytes, to multiple gigabyte

videos generated by smartphones. Such heterogeneous data can adversely affect the

performance of DTNs that are not designed for carrying such workloads.

It is difficult for DTNs to provide hard QoS guarantees primarily because mobility

in the area, which is leveraged by the DTN to mule data, is inherently unpredictable

and random. This unpredictability makes it very difficult to accurately estimate the

node inter-contact time, which is the primary component of the end-to-end packet

delivery delay [2], and remains an open problem. Limited buffers and bandwidth

contribute to the complexity of estimating the PDR and energy consumption for a

given workload. Recent DTN research has looked at algorithms which improve, but

not guarantee, traditional QoS metrics like the average packet delivery delay (PDD)

and PDR. However, the PDV metric un-addressed. Why is the PDV important? In

traditional networks, the PDD/PDV is typically measured in milliseconds - but in

DTNs it can range from tens of minutes (trace based experiments in [3]) to even
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hours. This means that some packets may have a delivery delay much higher than

the average delay. Since sensed data from the field is used to make decisions at the

Emergency Operations Center (EOC), a large PDV becomes problematic since some

critical data may arrive very late.

Designing a DRN now poses several challenges: Is it possible to control the PDV

in a DTN? If so, what are the implications on the PDD, PDR & energy consump-

tion? Recent research [48][49][47] has shown that packet replication, used to combat

uncertain mobility through redundancy, reduces PDD but results in higher PDR &

energy consumption. Forwarding based techniques have lesser overhead but need

more a priori information (which is difficult to obtain in an opportunistic DTN) to

outperform replication based protocols. Analysis of the PDD/PDR/energy in DTNs

have not included the PDV to the best of our knowledge. In research related to

finance and traffic engineering, decision making in the presence of uncertainty is

called risk-aversion. A risk-averse user will prefer a strategy whose reward has lower

variance (i.e., more predictable) but a higher mean (i.e., lower reward). It is this

concept of risk-aversion that we wish to make available to a first responder who is

using an opportunistic DTN during disaster recovery (reward here is the PDD and

the PDV represents uncertainty). Unfortunately, there is neither a DTN framework

that jointly analyzes PDD, PDV, PDR & energy, nor an algorithm that is able to

control the quantities simultaneously.

The Raven routing framework provides its users with the ability to control QoS:

PDD & PDV via risk-aversion, PDR & energy consumption via replication. Raven

(Risk AVersE routing in dtNs) models mobility in the disaster area using the Post

Disaster Mobility (PDM) model [4]. A “stochastic multigraph”, where multiple edges

with probabilistic weights is possible between vertices, represents a mathematical

abstraction of the PDM scenario. Important geographical locations in a disaster
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called Centers are mapped to vertices, and DTN data mules (called Mobile Agents),

to edges. The risk associated with each path between source and destination is

calculated using a mean-risk model. Source routing is performed by selecting the

least risk paths between the two vertices, using a K-Safest Paths algorithm. In order

to route data between USAR responders around a Center, a forwarding decision is

made wherein a packet is passed to the responder who represents the least risk in

reaching the destination.

7.2 Motivation

The mobility model used in this section is the Post Disaster Mobility Model

(PDMM) [4], which has been defined in Section 2. First, a simple example scenario

that uses PDMM is constructed, and the corresponding stochastic multigraph is

calculated. The concept of least risk path is then introduced as a generalization of

the shortest path when both the mean and variance of the delay are considered.

7.2.1 Example PDMM Scenario

An example scenario is depicted in Figure 7.1. Following a disaster, the EOC has

been setup, a collapsed building (RUBBLE) has been identified for search and rescue

operations and a medical TRIAGE area has been setup resulting in three Centers.

For simplicity only three categories of MAs are shown: ambulances, supply vehicles

and USARs. USARs move around the Triage and Rubble in an area of fixed radius

shown by the dotted line.

7.2.2 Risk as an Alternate Path Optimality Metric

Using the above example scenario, we now illustrate how the shortest path ac-

cording to the PDD metric changes when its variance (PDV) is taken into account.

This example motivates the need for an alternate path optimality metric that in-
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Figure 7.1: A simple scenario with 3 Centers and 3 Mobile Agents: ambulances,
supply vehicles and USARs. Numbers next to a path indicate the (mean,variance)
of the travel delay in minutes along that path, for the category of Mobile Agent
represented by the line type (solid vs dashed).

corporates the second moment, the PDV metric in this case, in addition to the first

moment or the PDD. Suppose that data is routed from one Center to another, fol-

lowing a “route by area” paradigm. The travel delay is a major contributor to the

delivery delay. Minor contributors like queuing delay are neglected. The travel time

between Centers is different for each type of Mobile Agent (MA) - and has a mean

and a variance because the speed has a min and max, and this distribution is unique

because of the different movement models. The scenario in Figure 7.1 is represented

using a stochastic multigraph in Figure 7.2. A stochastic multigraph in this context

is a graph whose vertices represent Centers and an edge represents a MA category

that visits the two incident Centers. Assuming that the travel time distributions

are Gaussian, the delay distribution of a path is the sum of the distributions of its

constituent edges. The PDD and PDV for multiple paths from Rubble to EOC in

84



(10,5)

(8,3)

(2
,3
)

(6
,2
) (7

,3
)

(1
0
,5
)

Figure 7.2: Stochastic multigraph for the above example scenario in Figure 7.1.
Vertices R, T and E correspond to the Rubble, Triage and EOC centers respectively.
The edges represent Mobile Agents and have the same weights.

the above scenario (Figure 7.2) is shown in Table 7.1. When the data has a deadline

of 8 minutes, path 1 is optimal since it has the highest probability that the delay will

be less than 8 minutes. However, when the deadline changes to 6 minutes, path 2

is optimal. What if there is no specified deadline? How can one determine the best

(w.r.t delay) path in such a scenario? One solution is to use a combination of the

mean and variance, called risk, as a path optimality metric instead of just the mean.

The best path will then be the “least risk path”.

7.2.3 Effect of Large Data Workload

Here we make a case for the necessity of QoS control at large data workloads.

High quality data like 1080p video when recorded during disaster recovery can be

valuable but can also run into several gigabytes. First responders who use DTNs dur-

ing disaster recovery can be expected to use smart phones which have such recording

and storage capabilities. However, in state of art research that contain experiments
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Path Leg1 Leg2 PDD PDV P(X<6)% P(X<8)%
1 R→E SV - 8 3 25.2493 50 ⋆
2 R→T→E Amb SV 9 6 30.8538 ⋆ 43.3816
3 R→E Amb - 10 5 21.1855 34.4578
4 R→T→E Amb Amb 12 6 15.8655 25.2493
5 R→T→E SV SV 13 5 8.0757 15.8655
6 R→T→E SV Amb 16 7 7.6564 12.6549

Table 7.1: Enumerating the mean and variance of the delivery delay along multiple
paths for routing data from R to E. All values are in minutes. SV stands for supply
vehicle, Amb stands for ambulance. Path 2 is optimal for a deadline of 6 minutes,
while path 1 is optimal for a deadline of 8 minutes. What is optimal for a deadline
of 6 minutes is not necessarily optimal for a deadline of 8 minutes.

performed on real DTN testbeds, the load imposed on these systems can be mea-

sured in a few kilobytes (Table 3 in [56] and 1.5KB per packet). We examine the

performance of several DTN routing protocols as the load on the network is increased

to a few GBs. The results are shown in Figure 7.3. The mobility model used was

the Post Disaster Mobility Model (PDMM) [4] and the setup simulated a disaster in

a large city with a street map, consisting of an EOC, a Triage and seven collapsed

buildings. The protocols chosen were Prophet [51], MaxProp [52], SprayWait [49]

(L=3, binary mode) and RAPID [3]. The load on the network (X axes in Figure 7.3)

was spread across three flows, and all packets were generated at t = 0. As the total

load increased from 30MB to 3.6GB, both the PDD (Figure 7.3a) and PDV (Fig-

ure 7.3a) increased by about 150% on average. The reason that the PDD (which is

calculated for delivered packets only) remains constant after 1.8GB is that the DTN

becomes saturated and delivers the same number of packets irrespective of the load;

it is confirmed by the fact that the PDR (not shown) decreases from 40% at 1.8GB

to 20% at 3.6GB. To conclude, the quality of service rapidly deteriorates as the DTN

capacity saturates - and there is a need for a routing framework which allows a user
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Figure 7.3: Performance of several DTN routing protocols as data workload increases:
(a) PDD and (b) standard deviation of PDD. Radio bandwidth was 4MBps (approx.
TCP throughput on 802.11 54Mbps) and the buffer size was 1TB.

to prioritize one QoS metric, including the PDV, over another.

7.3 The Raven Routing Framework

In this section we first present the problem formulation followed by a detailed

explanation of how Raven works, culminating in a distributed protocol. This section

poses two research questions: 1) Is it possible to incorporate risk-aversion in a DTN

by controlling the PDV? If so, how can it be done using a routing protocol? Is

replication necessary? and 2) What are the effects of enabling risk-aversion and

replication on quantities like PDR and energy consumption? This section addresses

question 1, whereas the second question is answered in the following Section. In the

context of the PDM mobility model, the routing problem can be seen as the union of

two subproblems: routing between Centers and routing within Centers. Following a

description of these subproblems, the process of building the stochastic multigraph

by estimating the travel time distributions is discussed. A formal definition of risk

is then derived, followed by the K Safest Paths algorithm.
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7.3.1 Preliminaries

A set of centers C and their locations Lc is known. The set of Mobile Agent

categories is M , and each category m has nm agents. For each category m, the min

and max speeds of the agent are known. The radius R around each Center in which

USAR agents operate is specified. Collectively, these quantities are called the PDM

scenario P. The risk-aversion factor ρ and the number of paths K is provided by the

user. The scenario is not completely known because of the randomized movement.

Previous research has shown that replication, where data is sent on multiple paths,

improves performance in scenarios where the movement is random, contacts are

sparse, and the node inter-contact time is large [49][47]. Thus, we design Raven to

include replication.

7.3.2 Problem Formulation

The problem formulation involves the PDM model, stochastic multigraphs re-

sulting from the PDM model, and risk-aversion. In a scenario represented by the

PDM model, there are two types of data flows possible: between Centers and within

Centers. Statically deployed chemical sensors deployed around a Center, for exam-

ple, need to report data to the EOC periodically. Such a data flow is an example of

the Center to Center model. Data from sensors is first collected on the static node

at the Center and is then sent to the static node at the EOC using Mobile Agents

other than USARs. The EOC on the other hand, may choose to push information to

the USAR agents working at a Center. This is an example of a hybrid flow, because

data from the EOC is first sent to the static node at the Center, where it will be

disseminated among USAR agents using the “within Centers” flow.
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7.3.2.1 Problem Formulation (General)

Given a DTN scenario represented by the PDM mobility model with Centers C

and Mobile Agent categories M , calculate the K ≥ 1 least risk paths between source

S ∈ C ∪MUSAR and destination D ∈ C ∪MUSAR. The risk associated with a path is

calculated based on a user defined risk-aversion coefficient ρ ≥ 0, where ρ = 0 means

the PDD should be minimized over the PDV and ρ→∞ means the PDV should be

minimized over the PDD.

This formulation optimizes the risk but not the PDR & energy consumption

because varying K (replication) only has a coarse grained effect on PDR/energy,

whereas varying ρ (risk-aversion) has fine grained effects on PDD & PDV. Now the

general problem formulation can be split into 2 subproblems because of hybrid flows:

7.3.2.2 Problem Formulation (Routing Between Centers)

For a source cs ∈ C and destination cd ∈ C, calculate K least risk paths where

each path P is a set of alternating Centers and Mobile Agents.

7.3.2.3 Problem Formulation (Routing Within Centers)

Given a Center c, a set of USAR agents MAU around c, perform a binary for-

warding decision when a USAR agent u1 ∈ MAU carrying a packet (with source in

c ∪MAU and destination in c ∪MAU ) encounters another agent u2, such that the

risk in delivering the packet is minimized.

Routing between Centers has been explained in the previous section. Here we

provide a short overview of routing within Centers. An example scenario is shown

in Figures 7.4a and 7.4b. USAR agents U1 and U2 move using Random Waypoint

around a Center. In Figure 7.4a, agent U1 is carrying a message for the Center, and

is in contact with U2. We assume that agents know their current waypoint - in this
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Figure 7.4: Routing within Centers: when two USAR agents U1 and U2 meet, with
current waypoints A and B respectively, U1 decides whether or not to forward a
packet to U2. (a) If the message is destined for the Center, the decision is made
based on the risk present in the travel time to the Center from A and B. (b) If
destined for another USAR agent U3, the decision is made based on the risk in the
expected travel time between A or B to U3.

case it is the point A for U1 and B for U2. U1 computes the mean and variance of

the travel time from A to C, and from B to C. The result is two sets of means and

variances. The decision to forward the packet to U2 is made if the A-C path has a

lesser risk than the B-C path. Similarly, in Figure 7.4b, U1 has a message destined

for another mobile agent U3. The decision to forward is made based on the travel

time from A-U3 and B-U3. These two scenarios show the need for hitting times and

meeting times respectively (explained below).

7.3.3 The Stochastic Multigraph and its Construction

A stochastic multigraph S maps the Centers C of the PDM model to vertices

and Mobile Agent categories M to edges, while the edge weights are not scalars but

random variables. In a stochastic multigraph S = G(V,E) each edge e ∈ E has an
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associated mean µe and variance σ2
e corresponding to the travel time distribution.

The weight of an edge We is defined as a pair of scalars We = (µe, σ
2
e). We only

consider stochastic time-independent graphs where We do not change over time. A

stochastic path p in S is a graph path whose edges and vertices are present in S. The

weight of this path Wp is the sum of the distributions of the edges in the path. If

the distributions are Gaussian:

Wp =
∑

e∈p

We = (µp, σ
2
p) = (

∑

e∈P

µe,
∑

e∈p

σ2
e) (7.1)

Prior to constructing S, the travel time distributions for each Mobile Agent category

between each pair of Centers need to be calculated. In recent mobility model research,

the time taken for two nodes to meet each other when starting from different positions

is called the meeting time (if both nodes are mobile) or the hitting time (if one node

is mobile) [50]. In the PDM mobility model, we define the meeting time between

any two Mobile Agents u1 and u2 as the time taken for them to come in contact

with each other when starting from different positions Lu1(0) and Lu2(0) and moving

according to their respective movement models. If their radio range is R,

MT (u1, u2) = min
t
{t : ||Lu1(t)− Lu2(t)|| < R} (7.2)

The hitting time (HT) as defined in [50] is a special case of the meeting time, defined

when one of the nodes is static. In the context of PDM, HT is defined between a

Mobile Agent and a Center:

HT (ma1, c) = min
t
{t : ||Lc − Lma1(t)|| < R} (7.3)
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7.3.3.1 Routing Between Centers

In the stochastic multigraph as shown in Figure 7.2, each edge represents the

travel time between the two Centers, through a particular category of Mobile Agent.

That is to say, the mean and variance of each edge is the time taken for an Ambulance

(for example) to travel from the Rubble to the Triage. This is nothing but the

hitting time (Equation 7.3), where ma1 is an ambulance and c is the Triage. Since

the ambulance starts at the Rubble, Lma1(0) = Lrubble and Lc = Ltriage. The PDM

model is map based and hence closed form solutions for HT are highly dependent

on the underlying map as well as the locations of the Centers. Therefore, values for

HT, and hence the edge weights, need to be derived from simulation. The TheONE

DTN simulator, when given a map and the list of Centers, can place Mobile Agents

at any intersection and calculate the travel time to another Center. The Dijkstra

algorithm is used to choose the shortest path between two points in the map. This

way, the HT values can be stored in a lookup table and accessed later.

7.3.3.2 Routing Within Centers

USAR agents move using the Random Waypoint (RWP) mobility model in a

fixed radius around a Center. RWP has been analyzed mathematically in recent

research - including closed form formulae for HT and MT. However, closed forms

for the distribution of HT/MT are not available. We present some results from our

work on the HT/MT distributions for RWP that is in progress. Suppose that USAR

agents whose radio range is R move using the RWP model in a square area with area

A and side d with average velocity v̄ (the Center c is at the center of this square as

in Figure 7.4a). The average leg length in RWP has been shown to be L = 0.5214d

and the corresponding time taken is t = L
v
. If the Center c is at location (x, y), then
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Algorithm 3 Construction of S
Input: PDM scenario P, ρ, K
Output: Stochastic graph S
1: Create |C| vertices in S
2: Draw |M | edges between each pair of vertices in S
3: for edge e(a, b,m) where a, b ∈ C and m ∈M do
4: if Movement model of m does not involve a or b then
5: Delete e and continue
6: end if
7: µ(e), σ2(e)← HT(m, Lb) s.t Lm(0) = La ⊲ By simulation
8: e← µ(e), σ2(e)
9: end for

10: return S

the hitting time for a USAR agent u1 is:

E[HT (c, u1)] = p1h · t1h +
t

π2Rf(x, y)
· (1− p1h) (7.4)

f(x, y) =
36

d6
xy(d− x)(d− y) and p1h =

2RL

A

V ar[HT (c, u1)] =
1− p1h
p21h

· t2 (7.5)

where p1h is the probability that u1 hits c in the first leg itself and t1h is the time

taken to do so. The analysis for meeting time (Figure 7.4b) is similar, but in this

case the location of u3 is not available to u1 or u2 (as opposed to the location of

the Center in the previous paragraph). To overcome this shortcoming, we average

MT (u1, u3) over all possible starting locations of Lu3(0) = L0
u3
:

MT (u1, u3) =
1

A2

∫

A

MT (u1, u3) dL
0
u3

(7.6)

Because of the complexity of the above formula, values are obtained from simulation.

The algorithm for constructing S is shown in Algorithm 3. First, a vertex is
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created for each PDM Center (Step 1). Since each edge represents a Mobile Agent

category, |M | edges are drawn between each pair of vertices (Step 2). However, some

edges (Step 3) are redundant - for example, a Patrol Car may not visit all Centers.

Therefore it is necessary to cull some edges based on whether the movement model

allows for agent to visit those two Centers (Steps 4-6). If the edge is allowed, the

mean and variance to be assigned is first calculated (Step 7). This is nothing but

the hitting time HT for an agent m1 of category m, when it starts at Center a and

hits Center b (Equation 7.3). The mean and variance of the HT is assigned to that

edge (Step 8).

7.3.4 Quantifying Risk

A stochastic path is considered “risky” if there is a high probability that a sample

from N (µp, σ
2
p)) will deviate far from the expected value (µp) [120]. In order to

quantify this “risk”, we adopt the mean-risk probability model [121]. The risk Re of

an e in S is defined as Re = µe + ρ ∗ σe where the risk-aversion coefficient ρ ≥ 0 is a

user specified quantity. It represents how important the variance of the path weight

is to the user. A ρ of zero in stochastic routing chooses the path with the least mean.

Similarly, for a path p its risk Rp is defined as Rp = µp + ρ ∗ σp. However, it is not

equal to the sum of the risks of its edges:

Rp =
∑

e∈p

µe + ρ ∗
√

∑

e∈p

σ2
e ⇒ Rp 6=

∑

e∈p

Re

In order to choose K least risk paths, we adopt the K-Shortest Paths (KShP)

problem in deterministic graphs to stochastic graphs. A “safe” path of two paths

p1 and p2 is the one with the lower risk min(Rp1 , Rp2). The objective of KSfP is

to choose the K safest paths of a stochastic graph S, given a source node and a
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Algorithm 4 K-Safest Paths Algorithm (KSfP)

Input: Stochastic multigraph S, K, source s, dest. d
Output: K, a set of K paths in S between s and d
1: for edge e in edges(S) do
2: weight(e) ← µe + ρ ∗ σ2

e ⊲ Modified Risk Formula
3: end for
4: S ′ ← S with edge weights as above
5: K←− Apply K-Shortest paths on S ′ with src/dest s/d
6: return K

destination node. K is a natural number. Existing algorithms for KShP (classical

version) include a modified Bellman-Ford algorithm that stores the top K short-

est paths at each pass instead of storing only the shortest (JGraphT library), and

Yen’s algorithm [122]. Certain shortcomings of the Bellman-Ford algorithm, such as

the diversity and disjointness of computed paths, are outside the current scope and

left as future work. A better algorithm can serve as a drop-in replacement. The

stochastic shortest path problem (KSfP with K = 1) is a non-convex combinatorial

problem [60]. A dynamic programming approach is incorrect since sub-paths of op-

timal paths are not optimal. The risk of a path is not a linear combination of the

risks of the edges, but is in fact non-linear as seen above (Rp 6= ΣRe). We therefore

propose the use of variance instead of the standard deviation for simplicity. While

dimensional homogeneity is not present due to the use of variance which is the square

of the standard deviation, the implementation of KSfP becomes straightforward and

simple. The algorithm is shown in Algorithm 4. The stochastic graph is first con-

verted into a deterministic graph (Steps 1-3). The edge weight is computed using

the modified risk formula Rp = µp + ρ ∗ σ2
p. Each edge e in the stochastic graph

S is assigned a deterministic edge weight (Step 2). The modified graph S ′ is now

completely deterministic (Step 4). Any KShP algorithm can now be applied (Step

5). The result is a set of paths K that have the least risk.
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Algorithm 5 The Raven Routing Protocol (includes RbC)

Input: PDM scenario P, ρ, K, source s, destination d
1: Build S using Alg 3 input P, ρ,K
2: if s and d are Centers then ⊲ Routing Between Centers
3: K← Use Alg 4 input S,K, s, d
4: Source route along the paths in K

5: else if s is a USAR, d is a Center then
6: cs ← the Center around which s works
7: Use Alg. 6 with input s, cs, ρ till packet reaches cs
8: Apply Raven at cs with input P, ρ,K, cs, d
9: else if s is a Center, d is a USAR then

10: cd ← the Center around which d works
11: K← Use Alg 4 with input S,K, s, cd
12: Source route along K still packet reaches cd
13: Use Alg. 6 at cd with input cd, d, ρ till packet reaches d
14: else if s is a USAR, d is a USAR then
15: cs, cd ← the Centers around which s, d work
16: if cs = cd then
17: Use Alg. 6 with input s, d, ρ till packet reaches d
18: else if then
19: Use Alg. 6 with input s, cs, ρ till packet reaches cs
20: Apply this algorithm at cs with input P, ρ,K, cs, d
21: end if
22: end if

7.3.5 The Raven Routing Protocol

The main algorithm is shown in Algorithm 5. It is performed when a packet is

generated at a source node s which may be a USAR Mobile Agent or a Center. The

first step constructs the stochastic multigraph S (Step 1) using Algorithm 3 which is

explained below. The next steps implement the hybrid data flow model as explained

in Section IIIA. The first possibility is that both source and destination are centers

(Step 2). This is essentially Routing Between Centers (RbC). The K Safest Paths

algorithm is used (Step 3) to find the set of K paths as explained in the previous

section. The packet is then source routed along these paths. If the source is a USAR

agent (Step 5), the packet is first routed to the agent’s Center (Steps 6-7) using
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the Routing Within Centers (RwC) algorithm which is explained below, and then

the RbC algorithm is used as if the packet was created at the agent’s Center. The

workflow is similar if the destination is a USAR agent (Steps 9-13). If both source

and destination are USAR agents working at the same Center (Steps 14-16), then

the RwC algorithm is applied (Step 17). If not, then a combination of the previous

strategies is applied (Steps 18-20).

7.3.5.1 RwC - Routing Within Centers

The RwC algorithm is shown in Algorithm 6. Unlike RbC, it is not based on a

stochastic graph and does not replicate. If the source happens to be a Center (Step

1), then the packet is forwarded to the first USAR agent in contact (Step 2) and RwC

is applied recursively (Step 3). When a USAR agent u1 meets agent u2 (Step 5), a

forwarding decision needs to be performed. The first step in RwC is to exchange each

other’s current waypoints (Steps 6-7). The basic idea in RwC is to compute the risk

present in u1 or u2 meeting the destination. As explained before, the risk is a linear

combination of the mean and variance of the travel time distribution. Computation

of the travel time depends on whether the destination is a static Center c (Steps

8-12) or a mobile agent u3 (Steps 13-17). If the destination is static, the hitting

time is computed to yield a mean and variance for each of u1 and u2 (Steps 9-10)

and the corresponding risks are computed (Steps 11-12). Similarly, if the destination

is mobile, the meeting time formula is used (Steps 14-15) and the risks computed

(Steps 16-17). It is to be noted that since neither u1 nor u2 know the location of u3,

the average of MT is taken (as explained before Equation 7.6). Finally, if the other

agent u2 has a lower risk (Step 19), the packet is forwarded (Step 20).
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Algorithm 6 Routing Within Centers

Input: Source s, Destination d, ρ
1: if Source s is a Center c then
2: Forward packet to first USAR u in contact
3: Break and apply this algorithm with input u, d, ρ
4: end if
5: Source s is a USAR u1 in contact with USAR u2
6: A← Current waypoint of u1
7: B ← Current waypoint of u2
8: if Destination d is a Center c then
9: µ1, σ

2
1 ← HT(u1, Lc) where Lu1(0) = LA ⊲ Equation 7.4

10: µ2, σ
2
2 ← HT(u2, Lc) where Lu2(0) = LB ⊲ Equation 7.4

11: R1 ← µ1 + ρ× σ2
1 ⊲ Modified Risk Formula

12: R2 ← µ2 + ρ× σ2
2 ⊲ Modified Risk Formula

13: else if Destination d is a USAR agent u3 then
14: µ1, σ

2
1 ← MT(u1, Lu3) where Lu1(0) = LA ⊲ Equation 7.6

15: µ2, σ
2
2 ← MT(u2, Lu3) where Lu2(0) = LB ⊲ Equation 7.6

16: R1 ← µ1 + ρ× σ2
1 ⊲ Modified Risk Formula

17: R2 ← µ2 + ρ× σ2
2 ⊲ Modified Risk Formula

18: end if
19: if R2 < R1 then
20: Forward packet to u2
21: end if

7.4 Analysis

In this section mathematical analysis on the coexistence of risk-aversion and repli-

cation as well as their effects on the QoS metrics is presented and the performance

evaluation is discussed. The interdependence of ρ and K is shown in Table 7.2.

Borrowing terminology from [3], an intentional effect changes a metric by design,

whereas an incidental effect does so indirectly.

7.4.1 General Problem Formulation

Suppose that we have n normal distributions in the set {P} (representing the

paths from a given source to a given destination in the stochastic multigraph).

Each of these distributions Pi has an associated mean and variance (E[Pi], V [Pi]) =
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PDD PDV PDR Energy

ρ Intentional Intentional Incidental Incidental

K Incidental Incidental Intentional Intentional

Table 7.2: The type of effect each Raven parameter (in rows) has on the QoS metrics
of interest (in columns).

(µi, σ
2
i ). A risk-aversion coefficient ρ ≥ 0 assigns a scalar quantity called risk

(= µi + ρ ∗ σi) to each Pi according to the mean-risk probability model. When

one wants to be risk-averse, this set of n paths is ordered according to the risk of

each path, resulting in a set {Q} such that:

{Q} = Q1, Q2, Q3, . . . , Qn where Qi ∈ P

i < j ⇒ (E[Qi] + ρ ∗
√

V [Qi]) < (E[Qj ] + ρ ∗
√

V [Qj ])

Without replication, data will be sent only on the pathQ1. However, with replication,

the first K ≥ 1 elements of {Q} which are {QK} = {Q1, Q2, . . . , QK} are chosen.

The delivery delay will now have a mean of mean(ρ,K) = PDD = E[W ] and a

variance of var(ρ,K) = PDV = V [W ] where W = min{Q1, Q2, . . . , QK}. These

paths can be assumed to be i.i.d because of the assumptions of 1) infnite buffer and

2) the physical travel is the major contributor to the packet delivery delay. The c.d.f

of the minimum of a set of independent distributions is defined as follows:

P (W ≤ x) = 1− P (Q1 > x)P (Q2 > x) . . . P (QK > x)

= 1−
K
∏

i=1

P (Qi > x) = 1−
K
∏

i=1

(1− P (Qi ≤ x))

= 1−
K
∏

i=1

(1− Φ

(

x− E[Qi]
√

V [Qi]

)

) = 1−
K
∏

i=1

(1− Φi) (7.7)
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where Φ(x) is the c.d.f of the standard normal distribution and Φi is, with abuse

of notation, defined as scaling Φ(x) to a distribution with non-standard mean E[Qi]

and variance V [Qi]. Once we have the c.d.f, the mean and variance are:

P (W ≤ x) = FW (x) and fW (x) = F ′
W (x)

mean(ρ,K) = E[W ] =

∫ ∞

−∞

xfW (x) dx (7.8)

var(ρ,K) = V [W ] =

∫ ∞

−∞

(x− E[W ])2fW (x) dx (7.9)

7.4.2 Results

Result R1: ρ has an incidental effect on PDR & energy while K has an intentional

effect. For a given K, ρ and a packet/source/destination, a set of paths {QK} is

constructed. Let J be the union of all the Centers present on these K paths. The

number of relayed messages, and hence the energy, is proportional to the cardinality

|J |. This is because if a Center is present on multiple paths, the packet will be relayed

to it only once since infinite buffers are assumed. Similarly the PDR is proportional

to the number of paths K. For two different ρ, there is no guarantee that |J | or K

will change since ρ only changes the order of paths and not the number of paths.

Thus, ρ only has an incidental effect on the PDR & energy. K has an intentional

effect on the energy/PDR since the number of paths as well as |J | (converges to the

total number of Centers) are guaranteed to increase.

R2: mean(ρ,K) → −∞ as K → ∞. This is because as K increases, the min-

imum of K normally distributed random variables will decrease. While the result

is intuitive, a proof of this statement for the general case is difficult owing to the

complexity of solving Equation 7.8 for a non-standard normal distribution. However,

this result has been proved for K standard normal distributions [123] and is known
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as the extreme first order statistic. Suprisingly, such a result for variance does not

seem to hold even for two random variables [124]. This result has been confirmed

by the authors using Monte Carlo simulations on stochastic multigraphs extracted

during simulation. As a corollary, mean(ρ,K1) < mean(ρ,K2) if K1 > K2.

R3: As K →∞, the effect of ρ will be less and less pronounced. In other words,

it is difficult to be risk-averse at high K. This is because 1) the order of Φi in

Equation 7.7 does not matter since it is a product, and 2) ρ only changes the order

but not the number of selected random variables.

R4: m1 ≤ mean(ρ,K = 1) ≤ m2 as ρ→∞, where m1 is the mean of the Pi with

the smallest mean and m2 is the mean of the Pi with the smallest variance. The

proof is trivial since an increasing ρ chooses a lower variance by definition.

R5: If ρ1 > ρ2, mean(ρ1, K = 1) > mean(ρ2, K = 1). In order to understand this

slightly counter-intuitive result, imagine the µ − σ Pareto frontier of a graph where

each distribution Pi corresponds to a point (x, y) = (µi, σi). As ρ goes from 0 to ∞,

the distribution minimizing µ + ρ ∗ σ will be the one with smallest mean, then the

next one on the µ−σ Pareto frontier, and so on until the bottom-most distribution is

selected. Using this graph, it is easy to see thatmean(ρ1, K = 1) > mean(ρ2, K = 1).

7.5 Performance Evaluation

Evaluations were performed in simulation using TheONE simulator, with the

PDM mobility model, using the Helsinki street map. Trace based evaluation is

difficult since movement traces of first responders are not readily available. A large

disaster in the city has was simulated. An EOC and TRIAGE are setup, with

7 collapsed buildings where urban search and rescue is to be performed, resulting

in 9 total Centers. 3 ambulances and 3 supply vehicles move in the city using their

respective mobility models. Both categories have a speed of (0,40)m/s. 10 volunteers
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move using the Volunteer Mobility Model with their home centers as the EOC and

a speed of (0,4) m/s. A patrol car moves using its mobility model among collapsed

buildings 1, 2 and 4 with a speed of (0,40) m/s. A speed multiplier simulation

parameter changes the min and max speeds of each Mobile Agent proportionately.

Data is sent on three flows simultaneously and all packets are created at t = 0. Unless

specified, the default load is 1GB per flow and the bandwidth of each node’s radio is

4MBps. The simulated time is 10000 seconds and each data point is averaged over

25 random runs. It took about 75 processor-hours of wall clock time to gather data

for this section. The four metrics of interest are the three QoS metrics (PDD, PDV,

PDR) and the energy consumed by the system. The number of relayed messages is an

indication of the latter since the on board radio draws a large current (as compared

to the storage device, for example). For reasons of dimensional homogeneity, we

compare the standard deviation of PDD (called PDS for brevity) instead of the PDV.

First, the effect of varying K and ρ upon the PDD and PDV is measured. With an

increasing ρ, the PDV should decrease because risk-aversion favors a lower variance.

Based on the results, we tune Raven by choosing a particular K and ρ for comparison

with other state of the art protocols. The following sections demonstrate the effect

of increasing load, increasing node speed and increasing radio bitrate upon the four

metrics of interest. The protocols chosen for comparison are RAPID [3], Prophet [51],

MaxProp [52] and SprayWait [50] (with L = 3). We chose L = 3 to demonstrate that

simply fixing replication at a low number will not improve performance at high loads.

RAPID is a utility based routing protocol tuned to minimize the PDD based on the

marginal utility of replicating a packet, whereas Prophet and MaxProp attempt to

characterize the mobility and replicate packets only to better hosts, i.e., those with

a higher probability of meeting the destination.
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Figure 7.5: Behavior of the QoS metrics as ρ and K change at a workload of 1GB
per flow, 4MBps bitrate and 1x speed.

7.5.1 Tuning Raven

For a fair evaluation, two variants of Raven are constructed: RavenMean and

RavenVar, which are designed to minimize the PDD and PDV respectively. In order

to configure the two variants with appropriate K and ρ, experiments were conducted.

The performance for varying K and ρ is shown in Figure 7.5. One immediate ob-

servation is that as ρ increases, the PDV decreases (Figure 7.5b) but at the cost of

increased PDD (Figure 7.5a). This is an expected result since a higher ρ places more
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emphasis on the variance of the paths and causes the algorithm to choose paths with

lesser risk. Increasing ρ causes marked improvement at lower values while only incre-

mental improvement is observed at higher ρ. The value at which ρ saturates depends

upon the topology, which decides the Pareto frontier for the paths. Thus, choosing

a ρ is highly dependent on the topology: the number of Centers as well as the speed

of Mobile Agents. The PDR is very low (Figure 7.5c) since the simulation time was

10000 seconds (166 mins) and the increasing PDD causes packets to be delivered

outside the simulation window. The PDD in (Figure 7.5a) is calculated based on the

delivered packets only ; since the PDR is high for high K, so is the PDD for high

K. Result R3 is confirmed in the sense that at K, the effect of ρ decreases causing

the metrics to stay constant. R1 is demonstrated since ρ has only an incidental and

minor effect on the energy consumption (Figure 7.5d), causing the metric to stay

fairly constant compared to the PDR. With an increase in K the amount of replica-

tion in the network increases. As expected, since a single packet travels on more and

more paths simultaneously, the PDD decreases with increasing K (Figure 7.5a) and

the PDR increases as well (Figure 7.5c). But this comes at a cost - both the PDV

(Figure 7.5b) and the energy consumption increase with K (Figure 7.5d) for a given

ρ. An infinite K is equivalent to Epidemic - a packet travels on all possible paths

through the network. When a packet is flooded, the limited contact bandwidths

are used inefficiently through redundant data transfers, causing some packets to be

delivered quickly while other packets stay in the queue. As before, K follows the law

of diminishing returns, showing only incremental changes at high K. Based on the

above experiments, we choose ρ = 0, K = 100 for RavenMean and ρ = 10, K = 1 for

RavenVar.
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Figure 7.6: Behavior of the QoS metrics as load per flow changes. Workload per flow
was 1GB, speed multiplier was 1x and bitrate was 4MBps unless changed.

7.5.2 Effect of Load

Figure 7.6 shows the effect of steadily increasing load (the data generated per flow)

on the four QoS metrics of interest. Before discussing the PDD, one needs to keep the

PDR (Figure 7.6c) as reference since the PDD is calculated only for delivered packets.

PDR decreases as load increases because the contact bandwidth is finite. RavenMean

has the highest PDR since it has a very large K, while RavenVar has the lowest, since

K = 1. All other protocols, except SprayWait, perform uncontrolled replication and
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hence suffer at high loads. At the reference value of 1GB, RavenMean has 3x the

PDR of other protocols. The contact bandwidth between nodes is finite and limited

and so, packets have to wait longer in the transmission queue at each node as the size

of the queue increases along with the load. Therefore, the PDD increases with load

(Figure 7.6a). The PDD for RavenMean is the more than other protocols (2x more)

- but only because it delivers more packets. The other protocols have comparable

PDR and thus have comparable PDD. Normally, the PDV is proportional to the PDD

- but because of risk-aversion, RavenVar can force a lower PDV in exchange for a

higher PDD (Figure 7.6b). Because of low K, RavenVar is unaffected by the load.

Since all of the presented DTN routing protocols treat packets as independent and

do not tune their replication based on the load, the energy consumed increases for

increasing load (Figure 7.6d). RavenMean consumes 1.5x more energy than Rapid,

but delivers 3x as many packets. MaxProp replicates while waiting for an ACK to

clear a message from its buffer, causing it to have the highest energy consumption

among other protocols.

7.5.3 Effect of Radio Bitrate

The contact bandwidth is the major bottleneck in modern DTNs: while mass

storage devices have become cheaper and faster leading to larger on-node buffers, the

bandwidth of wireless devices has not kept pace. The effect of increasing radio bitrate

on performance is shown in Figure 7.7. With increasing contact bandwidth, nodes

can transfer more data during an opportunistic contact. The PDR increases almost

linearly (Figure 7.7c). MaxProp takes maximum advantage of the increase, causing

its PDR to appreciate by almost 4x. In comparison, RavenMean’s PDR increases

1.5x because it has a fixed value of K that does not change with the workload. SnW3

is able to show only a 2x since its replication factor does not change, while Rapid and
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Figure 7.7: Behavior of the QoS metrics as bitrate changes. Workload per flow was
1GB, speed multiplier was 1x and bitrate was 4MBps unless changed.

Maxprop show a 3x increase. The PDD (Figure 7.7a) decreases as expected but not

for RavenVar since its K does not change. Its PDV (Figure 7.7b) is fairly constant but

the PDV of other protocols decreases. As the contact bandwidth increases towards

infinity, the PDV should decrease towards zero. The number of relayed messages

(Figure 7.7d) increases since the node buffers are cleared more frequently owing to

increased bandwidth, allowing more data to be moved in the DTN.
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Figure 7.8: Behavior of the QoS metrics as node speeds change. Workload per flow
was 1GB, and bitrate was 4MBps.

7.5.4 Effect of Node Speed

Changing the nodes’ speed gives an opportunity for other protocols to improve

their estimates of node mobility patterns. This is because as speed increases, the

length of each contact opportunity decreases proportionately, keeping the total con-

tact duration across all node pairs roughly constant (barring randomness since the

movements are not cyclical). However the number of contacts increases. Protocols

which maintain state can improve the quality of their metadata by exchanging it

with more and more contacts. However, uncontrolled replication (i.e. replicating till

an ACK is received for the packet) hinders the protocols’ performance (Figure 7.8).
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Both the minimum and maximum speed of each Mobile Agent was multiplied by the

factor shown on the X axis. While multipliers of 2.5 are impractical (100mph road

speed in a disaster struck area), it is shown for completeness. The PDR (Figure 7.8c)

for RavenMean and RavenVar remain constant since a source routing approach is

used and the travel time distributions in the stochastic multigraph change propor-

tionately with changes in node speed. RAPID sees an increase from 21% to 31%

since it is utility based and higher speeds mean more contact opportunities during

which a replication decision is to be made. Similarly Prophet and MaxProp, which

update their estimates of delivery likelihood at each contact, are able to replicate to

better hosts and make more efficient use of contact bandwidth. Number of relayed

messages (Figure 7.8d) include the control channel packets of very low size that these

protocols use to exchange metadata; hence it increases with increasing contact op-

portunities. It stays somewhat constant for RavenMean/RavenVar/SprayWait since

they do not exchange metadata and the replication factor is fixed. The PDD (Fig-

ure 7.8a) decreases by about 150s for the other protocols since they are able to make

better routing decisions. Similarly, the PDV (Figure 7.8b) increases for protocols

which display a decrease in PDD.

7.6 Conclusion

We have presented Raven, a DTN routing protocol that allows the user to control

the PDV as well as other QoS metrics. It uses multigraphs with stochastic weights

to model the PDM mobility model. K least risk paths are chosen by a node using

the K Safest Paths algorithm, and is used to perform source routing. USAR hosts

forwarding packets to each other based on the risk involved in delivering the message

to their Center. Mathematical analysis of Raven shows several interesting properties

that describe the coexistence of risk-aversion and replication. Raven is able to out-
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perform other protocols based on metrics chosen by the user. When configured for

minimizing PDD, it is able to deliver 3x more packets than other protocols.
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8. ENERGY EFFICIENCY IN FOG COMPUTING

Disaster Response Networks (DRNs) are designed to assist first responders dur-

ing the recovery period following a large scale disaster, where the lack of end to end

paths as well as unpredictable mobility is common. The system lifetime of deployed

DRNs is critical to successful recovery, as are performance metrics such as packet

delivery delay. As a node sleeps more and more, the number of contact opportuni-

ties are reduced, impacting performance. In this section we investigate this Pareto

frontier [125] between system lifetime and network performance. Given a desired

deployment duration, the system is tuned to extract the best possible performance.

8.1 Introduction

Energy consumption patterns in wireless ad hoc networks have been studied ex-

tensively. Reducing usage of the radio interface saves energy. The radio is mainly

used for two purposes in a DRN: relaying messages and discovering contacts. Be-

cause of sparse node density and large node inter-contact times, it is imperative that

a node not miss any contacts. The number of relayed messages can be reduced using

various techniques at the routing layer. Optimal node wakeup intervals can be de-

termined either by an algorithm or by using external hardware that alerts the node

when a contact is in range.

This section aims to not just reduce the energy consumption, but to quantify

the effect on system performance while doing so. The existence of a Pareto front

Parts of this section reprinted with permission from “Pareto optimal cross layer lifetime op-
timization for disaster response networks” by H. Chenji and R. Stoleru. In the 2014 Sixth Inter-
national Conference on Communication Systems and Networks (COMSNETS), Bangalore, India,
2014. Copyright 2014 by IEEE.
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is motivated, and later proved using simulation. The ability to operate a DRN at

various Pareto-optimal points means that the users (first responders in this case)

can actively control the performance/energy tradeoff. One of the requirements for

discovering this front is the ability to mathematically model both the energy con-

sumption and performance of the routing protocol in terms of the protocol-specific

parameters. Raven, which is the routing framework used in the Fog, uses stochas-

tic multi-graphs to model mobility in the area. Using this graph, a user-specified

number of the most optimal paths between source and destination are computed,

and a packet is routed on these paths simultaneously. The source routing approach

used by Raven makes it easy to compute an expectation of system performance as

well as energy consumption. A genetic algorithm is used to solve the dual objective

problem and discover the Pareto-optimal points. The contributions of this section

are as follows: 1) the first (to the best of our knowledge) framework that is able to

discover the Pareto front between performance and energy consumption and models

it as a dual objective optimization problem, and 2) an algorithm to estimate the

performance and energy consumption of Raven.

8.2 Motivation

In this section we motivate this section by analyzing various methods to save

energy at the system level in a DRN, positing the existence of a Pareto front, and

finally investigating the possibility of operating at various Pareto optimal points on

this front.

In a DRN, mobile vehicles are used to mule data to and from static nodes (de-

ployed at collapsed buildings, for example). Being spread over a large geographical

area with few resources, the mobility in a DRN is very sparse. As a result, the node

inter-contact time is on the order of tens of minutes or even hours: it is typical for
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Figure 8.1: Schematic showing the Pareto front between system performance and
energy consumption. Points A-F show where state of art methods lie.

a node to spend only about 20% of its lifetime in contact with at least one other

node. This quantity is henceforth called the contact time (CT). This means that a

node can afford to sleep in the inter-contact time (about 80%) and still not affect

the performance by missing any contacts.

One of the trivial methods of energy saving in a DRN is to not save any at all -

each node stays awake all the time. Network performance is maximal, but so is the

energy consumed (“A” in Figure 8.1). One simple optimization is to have the node

sleep in the inter-contact time. Either mobility prediction or hardware assistance

can be used to wake up the node. For example, [41] uses long range auxiliary radios

to detect a vehicle and subsequently wake up the node. In such a scheme (“E” in

Figure 8.1), there is a reduction in energy consumed but no loss in performance.

These prediction schemes are not completely optimal; replacing it by an oracle (“D”

in Figure 8.1) could possible save a little more energy.

It is important to note that saving energy purely in software (by minimizing the

number of transmitted messages at the routing layer) or only on the radio interface
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Device Radio Power Base Power

Sensor 0.06W 0.006W

Smartphone 0.7W 0.2W

Router 0.72W 3W

Table 8.1: Power profiles of various devices. Sensor: based on a 3V Epic mote with
802.15.4. Smartphone - based on 3.7V HTC Evo 4G with 802.11. Router - based on
12V Mikrotik RB433UAH router with 802.11.

(by enabling 802.11 PSM mode) will not save much energy. This is because the

energy consumed by the radio interface in a typical WiFi router is much less than that

consumed by the base board. Low power sensor networks, however, have the opposite

characteristic. Table 8.1 compares a WSN mote, a hand held WiFi smartphone and

a WiFi router. As we can see, the power consumed by a router’s radio (0.72W)

can be 5x smaller than the base board (3W). A scheme that aims to minimize the

number of relayed messages, as compared to “A”, will have low performance but will

save a little energy (“B” in Figure 8.1).

Depending on the routing protocol that is used, not all contacts may involve

transfer of data. For example, in Rapid [126] a node transfers packets only to a

node with higher utility. An optimization that could be performed here is to have

a low cost low capacity backhaul link, such as a satellite link, that nodes can use

to query the buffer contents of any other node and thus calculate the utility or any

similar metric. As a result, a node can infer whether a vehicle has any packets that

could be transferred; if not, it can sleep through the contact. Such a scheme (“F” in

Figure 8.1) represents the most energy that can be saved without any performance

penalty. The percentage of contact time that involves useful transfer of data in

relation to the node lifetime is called the useful contact time (UCT).

Given the above background, we investigate in this section the existence of a
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Pareto front in a DRN. The major intuition is that if some nodes can be excluded

from the routing process, then those nodes can save energy by sleeping. However

there is a performance penalty involved; it is the aim of this section to quantify

this trade off and investigate the feasibility of operating at various points on the

Pareto front. It has to be mentioned that knowledge of data flows in the network

is essential. If every node in the network is either a source or destination, then no

Pareto front exists. However, if some nodes simply route data and are neither a

source or destination, then such a Pareto front exists.

8.3 Preliminaries and Problem Formulation

In this section the problem is formulated and a solution is derived. First, the

concepts of firm and potential flows are introduced. These flows are nothing but

source-destination pairs which quantify the data workload in the network. We then

introduce our previous work Raven, which is a risk-averse routing framework for

DRNs. Finally the problem formulation, which incorporates the sub-problem of

converting potential flows to firm flows, is quantified. A genetic algorithm based

solution is then proposed.

8.3.1 Problem Formulation

The major insight in this section is that if a Fog device (such as a Data Waypoint)

is not on one of the paths chosen by Raven to route data, it can sleep and save

energy. Thus, the number of unique nodes present in the set of paths for all flows is

an indicator of the energy consumption. This number can be reduced in a variety of

ways: in the process of converting potential flows to firm flows (choosing Centers such

that flows overlap) or in Raven (by reducing K or by choosing a set of paths other

than the shortest). However, these techniques affect the system’s performance - and

therefore, there is a Pareto frontier between performance and energy consumption.
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Additionally, the user can control the operating point along this frontier by simply

changing system parameters like those used by Raven.

The disaster area consists of c centers C1 . . . Cc and is represented by the stochas-

tic multigraph S. There are f firm flows F1 . . . Ff and their sources {F S
i } and

destinations {FD
i }. p potential flows P1 . . . Pp have their availabilities A1 . . . Ap and

sources {P S
i }. Thus the total number of flows is h = f +

∑P

i=1⌈cAi⌉. Each of these

h flows has an associated parameter k1 . . . kh that is used by Raven (the number of

paths to compute). The user has specified a global Raven parameter K: as a result,

1 ≤ ki ≤ K. When Raven computes paths for each of these h flows, let the number

of unique Centers in the union of these paths be c̄ ≤ c.

Now since S is stochastic, each path in this graph has an associated mean and

variance (equal to the sum of means/variances of the constituent edges), and is

hence a distribution. The path weight represents the packet delivery delay because

the physical travel delay in a DTN is a major component of the packet delivery

delay [2]. When a packet is sent on k paths simultaneously, the expected delay is the

minimum of the delays of the k individual paths; it follows that the per-flow packet

delivery delay is the minimum of k normally distributed random variables. For the

flow numbered i with paths parameter ki, the delay is:

Di = min{Di1, Di2, . . . , Diki} (8.1)

where each D is a distribution and not a scalar. A closed form expression for this

minimum of several random variables is not trivial. For h flows, the overall packet

delivery delay distribution is:

D =

∑h

i=1Di

h
(8.2)
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where to re-emphasize, all quantities except h are normally distributed random vari-

ables with a mean and a variance. Using the mean-risk probability model, the risk

of this distribution D is

risk(D) = E[D] + ρ ∗
√

V [D] (8.3)

Given the above notation, our objective is to minimize the delay (which is called

risk when variance is taken into account, i.e., risk(D) := E[D] when ρ = 0) as well as

c̄. There are three parts to this problem: (1) the conversion of potential flows to firm

flows, (2) applying Raven to each of the firm flows so that the delay distribution D

can be estimated, and (3) tuning Raven’s K parameter so that energy and risk(D)

are minimized. The above three problems are solved in a single optimization problem

as follows. To convert a potential flow Pi into ⌈cAi⌉ firm flows, consider a binary

vector V of length c. The ith element Vi corresponds to Center Ci: Vi = 0 if the

Center is not chosen as a destination, and Vi = 1 otherwise. The sum of this bit

vector should be ⌈cAi⌉. Repeating this procedure for p potential flows, the length of

V becomes pc. Because Raven needs a K parameter for each flow, V is augmented

with h more integers. Thus, the vector V of length (pc + h) can now be used as

input. It is a dual objective non-linear program:

min
V

Risk(V), Uniq(V) (8.4)

s.t.
c
∑

j=1

V(i−1)c+j = ⌈cAi⌉, i = 1 . . . p (8.5)

1 ≤ Vi ≤ K, i = (pc+ 1) . . . (pc+ h) (8.6)

Constraint 8.5 deals with potential flows. It stipulates that the total number of
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firm flows created (by setting a Center’s bit) for each potential flow equals ⌈cAi⌉.

Constrain 8.6 makes sure that the K parameter needed by Raven cannot exceed the

global value of K specified by the user. Equation 8.4 involves two procedures Risk

and Uniq which calculate risk(D) and c̄ respectively.

Procedure 7 details the calculation of the two objectives. Steps 1-7 involve the

creation of firm flows from potential flows: for each potential flow (Step 1), if the

bit corresponding to a Center is set (Step 3), a new firm flow is created (Step 4).

Now that all h firm flows have been created, Raven is applied to each of these (Step

9) along with the Raven parameter K (Step 10). The resulting set of ki paths are

collected and duplicates are removed (Step 11). The number of unique vertices in

these paths is nothing but the number of unique Centers (Step 13) since each vertex

in the stochastic multigraph corresponds to a Center. The delay distribution, which

is the path weight of each of these paths is calculated (Step 14), averaged (Step 15)

and the risk is calculated (Step 16).

8.3.2 Solution

Equation 8.4 is a dual objective, non-linear optimization problem. Because of its

complexity, a stochastic optimization approach is preferred, as opposed to a deter-

ministic one. Evolutionary algorithms are specially suited to solve multi-objective

problems - and genetic algorithms (GAs) are the most popular variety of evolution-

ary algorithms. We use the NSGA-II algorithm to solve Equation 8.4, owing to its

speed and low complexity. It is also able to handle disconnected Pareto fronts.

The input to the algorithm, vector V , is referred to as a “chromosome” in GA

parlance. It is a string of numbers, either binary or real valued (in this case, integer

valued). Through multiple GA operations like crossover, selection and mutation,

new candidate solutions are generated in a stochastic fashion. The current set of
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Procedure 7 Risk(V) and Uniq(V)

Input: vector V , firm flows {F}, K, ρ
1: for i := 1 . . . p do
2: for j := 1 . . . c do
3: if V(i−1)c+j == 1 then

4: F ← F ∪ (a new firm flow between PS
i and Cj)

5: end if
6: end for
7: end for
8: paths← Φ
9: for i := 1 . . . h do

10: {Qk} ← (Raven with s/d FS
i & FD

i , k-parameter Vpc+i)
11: paths← paths ∪ {Qk}
12: Di ← min{Q1, Q2, Q3 . . . QK}
13: end for
14: Uniq(V) = c̄← unique nodes in paths
15: Risk(V) ← (

∑h
i=1E[Di] + ρ ∗

√

V [Di])/h
16: return Risk(V),Uniq(V)

candidate solutions (the “population”) is evaluated (the “fitness” is calculated) and

filtered to retain only non-dominated solutions. NSGA-II gives preference to Pareto

optimal points that are situated far away, so as to capture both extremes of the

front. The crossover operator used is Simulated Binary Crossover (SBX), since the

chromosome is real valued. Mutation occurs according to the Polynomial operator.

Selection happens in a Binary Tournament fashion.

8.4 Performance Evaluation

In this section we present the performance evaluation of our energy saving scheme.

First, the existence of the Pareto front is confirmed by implementing NSGA-II and

solving Equation 8.4, for a given scenario with Centers, Mobile Agents, potential

and firm flows. Using a DTN simulator, the mathematical modeling is validated

by running Raven at the Pareto points and verifying that the delay decreases when

energy increases and vice-versa. Two of these points (the extremes) are chosen, and
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the Raven protocol is then evaluated at each of these Pareto optimal points, and

compared with state of art DTN routing protocols such as MaxProp, RAPID and

Prophet. Metrics used for comparison are packet delivery delay (PDD), the packet

delivery ratio (PDR), the number of relayed messages (REL), and the total awake

time (TAT). REL refers to the total number of packet transfers in the network across

all nodes. TAT is the sum total of the awake time across Centers only, assuming that

nodes stay awake only during those contacts where is transfer of data and that Mobile

Agent nodes are powered by the vehicle’s battery. The former assumption is justified

by the existence of a low bitrate backhaul link which allows nodes to determine each

other’s buffer contents, as explained in Section 2.1. We have chosen REL in addition

to TAT for fair comparison: only Raven is optimized for Center-only energy savings

(TAT) while other protocols aim to reduce REL across all nodes. TAT is a better

metric that UCT since the TAT represents all nodes of interest (namely Centers),

whereas UCT is an average across all nodes.

8.4.1 Obtaining the Pareto Front

On the Helsinki street map, an EOC, a Triage and 25 Centers (collapsed build-

ings) were setup, their locations chosen randomly. A firm flow was setup from Build-

ing 1 to 9 as well as a potential with availability of 0.1 originating at the EOC, for

a total of 4 (= 1 + ⌈27 × 0.1⌉) flows. Three ambulances, three supply vehicles and

10 volunteers moved according to their respective mobility models. The stochastic

multigraph for this scenario was computed.

A Java implementation of NSGA-II was provided by the jMetal package: the

parallel version where each chromosome is evaluated in a separate thread was chosen.

After implementing Algorithm 7 within the jMetal framework, a Pareto front with

22 points was obtained and is shown in Figure 8.2. As expected, energy consumption
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Figure 8.2: The Pareto front as obtained from simulation.

(Y axis) can be minimized only at the cost of increased delay (X axis). Pareto Point

1 utilizes all the 27 (= 25 shown on the graph + 2 source/destination) Centers with

K values of [197 164 196 144] for each of the 4 flows, while Point 22 used only 4

Centers with K values of [2 4 3 4].

This setup initially had long run times, due to the fact that the constraint han-

dling extensions of NSGA-II were not implemented. The probability of obtaining

a randomly generated chromosome that satisfied the potential flow conversion con-

straints (Equation 8.5) was low, and decreased as the number of Centers increased.

We developed an improved chromosome generation subroutine that produced high

quality initial solutions. First, elements 1 . . . pc of the input vector V were set to

zero. Then, for each sub-vector of V corresponding to each of the p potential flows,

⌈cAi⌉ elements were randomly chosen and set to unity, satisfying Equation 8.5. As a

result, each generation (iteration) in NSGA-II had valid chromosomes that were not
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Figure 8.3: The effect of operating at different Pareto optimal points upon (a) packet
delivery delay, (b) packet delivery ratio and (c) the total awake time.

discarded, leading to evaluation of more and more chromosomes, and the discovery of

many more Pareto-optimal points. The run time was reduced dramatically, resulting

in quicker experimentation.

8.4.2 Verifying the Pareto Front

The performance of Raven as it is made to operate at various Pareto points

is shown in Figure 8.3. Data for this and subsequent sections was obtained using

TheONE, a Java based opportunistic network emulator at the packet level and not

NSGA-II. The data workload per flow was 300MB, all created at t = 0 and the radio
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bitrate was 8MBps. The entire simulation lasted for 166.67 minutes and each data

point is averaged over 200 random runs. Point 1, as defined in Figure 8.1 optimizes

the PDD at the cost of high energy consumption. This is confirmed in simulation

since the PDD for Point 1 (Figure 8.3a) is the lowest, whereas the TAT (Figure 8.3c)

is the highest. The TAT represents the system-wide energy consumption of the nodes

at Centers - thus a high TAT means high energy consumption. A similar observation

holds for Point 22, confirming the correctness of the problem formulation presented

in Equation 8.4. Surprisingly, the PDR (Figure 8.3b) is fairly constant across all

Pareto points. This can be explained by the fact that each potential flow results in

a different set of firm flows for each Pareto point. The TAT decreases by about 66%

as we move towards the energy-optimal end of the Pareto front, since the average

K value per flow decreases. To summarize, the NSGA-II based optimizer provides

the user with a variety of Pareto-optimal points, each of which represents a unique

balance between performance and energy consumption: for a ∼5 minute increase in

PDD, the average energy consumption across all active nodes is decreased by ∼66%.

8.4.3 Delay Optimal Raven

We first operate Raven at the delay optimal Pareto point (Point 1 in Figure 8.2),

and compare it with state of art protocols. Increasing the data workload per flow

will saturate the network while the contact opportunities remain the same, resulting

in higher PDD and lower PDR. Increasing the radio bitrate increases the amount of

data that can be transferred per contact - the expected result is that PDD should

be lower and PDR higher. The results are shown in Figure 8.4.

8.4.3.1 Effect of Workload

The PDD of Raven is higher than the other protocols (Figure 8.4a) but only

because it delivers more packets than the others (Figure 7.6c), and the PDD is only
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Figure 8.4: Delay optimal Raven: effect of increasing workload per flow on the
performance of several DRN routing protocols: (a) PDD (b) PDR (c) number of
relayed messages and (d) total awake time. Raven operated at Pareto Point 1, bit
rate was 8MBps.

calculated for delivered packets. Raven is able to deliver ∼15% more packets than

the nearest competitor. MaxProp replicates packets till an ACK is received - as

a result it relays more packets than others (Figure 8.4b): this number grows with

the data work load. However, due to excessive replication and redundant packet

transfers, the capacity of the network is not used optimally and the PDR is lower

as a result. Nodes need to stay awake for longer durations to relay more packets

- MaxProp has the highest energy consumption (Figure 8.4d). Both Prophet and
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Figure 8.5: Delay optimal Raven: effect of increasing radio bitrate on the perfor-
mance of several DRN routing protocols: (a) PDD (b) PDR (c) number of relayed
messages and (d) total awake time. Raven operated at Pareto Point 1, workload was
300MB.

RAPID perform selective forwarding, relaying packets to only those nodes with a

higher probability of reaching the destination (Prophet) or based on the marginal

utility of relaying a packet (RAPID). Since RAPID makes a relaying decision based

on the decreasing order of marginal utilities for each packet in the buffer, it relays

more packets than Prophet. To summarize, Raven has the highest PDD, but it also

delivers more packets and consuming less energy than MaxProp.
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8.4.3.2 Effect of Bitrate

Increasing the radio bit rate allows more data to be transferred per contact,

while keeping the total amount of contact time constant. Increasing this metric

measures how effective a protocol is at prioritizing packets at each contact. In general,

all protocols show reduced PDD (Figure 8.5a), increased PDR (Figure 8.5b) and

increased number of relayed packets (Figure 8.5c). The decrease in TAT (Figure 8.5d)

can be explained as follows. Each node only transfers those packets that the other

node does not have. With increasing radio bit rate, nodes are able to disseminate all

of the generated data (note that no new data is generated after t = 0). Therefore,

towards the end of the deployment, the number of contacts which involve transfers

of unique packets decreases - thus decreasing the TAT. To summarize, Raven has the

highest PDD, but delivers 20% more packets than MaxProp, while showing a 50%

reduction in system wide energy consumption.

8.4.4 Energy Optimal Raven

Next, we operate Raven at the Pareto point which guarantees the highest energy

savings at the cost of PDD (Point 22 in Figure 8.2), and compare it with state of art

protocols. Compared to the previous subsection in which Raven operated at Point

1, the endpoints chosen for conversion of potential flows to firm flows are different

but still satisfy the availability constraints. State of art protocols are evaluated with

the same final firm flows as Raven for fairness. Results are shown in Figure 8.6. The

axes in each of the figures is identical to Figure 8.5 for ease of comparison.

8.4.4.1 Effect of Workload

Raven has the least energy consumption, both in terms of the number of relayed

packets (Figure 8.6c), as well as the total awake time metric (Figure 8.6d), across all
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Figure 8.6: Energy optimal Raven: effect of increasing workload per flow on the
performance of several DRN routing protocols: (a) PDD (b) PDR (c) number of
relayed messages and (d) total awake time. Raven operated at Pareto Point 22, bit
rate was 8MBps.

data workloads. Additionally it delivers the most packets (Figure 8.6b) compared to

other protocols. However, the delay is higher than the others (Figure 8.6a), but only

because it delivers more packets while spending less energy. Compared to Figure 7.6a,

the average delay for Raven is higher by a few minutes. This is a very small price

to pay for having the least energy consumption. MaxProp, an epidemic-like routing

protocol has the least delay and second best PDR, but at the cost of high energy

consumption. For comparison, MaxProp relays 5x as many packets as Raven and
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Figure 8.7: Energy optimal Raven: effect of increasing radio bitrate on the perfor-
mance of several DRN routing protocols: (a) PDD (b) PDR (c) number of relayed
messages and (d) total awake time. Raven operated at Pareto Point 22, workload
was 300MB.

based on TAT, has 5x the energy consumption. Even then, it does not deliver as

many packets as Raven can.

8.4.4.2 Effect of Bitrate

Once again, compared to the delay optimal variant (Figure 8.7), Raven has the

least energy consumption both in terms of the number of relayed packets (Figure 8.7c)

as well as the total awake time of Centers (Figure 8.7d), while delivering the most
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packets (Figure 8.7b). Similar trends are observed, such as increasing PDR, decreas-

ing PDD, increasing REL and decreasing TAT with an increase in radio bitrate.

Raven is found to consume almost 80% less energy than MaxProp, while delivering

about 10% more packets.

8.5 Conclusions

We have presented a framework to characterize the Pareto front between system

performance and energy consumption. Certain nodes in the network which only relay

data but do not produce or consume it, can be excluded from the routing process

to save energy - at the cost of performance. A dual objective non-linear program is

formulated with Raven as the underlying routing protocol, and is then solved using

NSGA-II. A set of Pareto optimal points is found, along with the respective network

settings (potential flow endpoints and K values for each firm flow). For a 5 minute

increase in delivery delay, a 3% decrease in energy consumption can be achieved.

The setup is evaluated using TheONE simulator and compared against state of art

protocols.
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9. MOBILE SELF-LOCALIZATION IN FOG COMPUTING

In this section we present the working of the Localization App that was discussed

earlier. As mentioned before, this app is designed for the Sensor class of devices

since they typically do not have on board GPS owing to cost and energy constraints.

When these Sensors are deployed indoors or in GPS-denied environments, there is

a need for a self-localization technique that will allow each device to accurately

determine its location. Self-localization refers to the process of a node estimating its

own location in a distributed fashion, using a small number of nodes as “anchors”

(nodes that already know their location). This Localization App can be effectively

used in scenarios such as responders exploring a collapsed building, where a Sensor

device is present on each responder as well as each of their tools, like cement saws.

The location of each responder/tool, in addition to data generated by them, can be

used as high quality informational data that can be used at the EOC for a variety

of purposes.

Received signal strength (RSS) based ranging is a popular localization technique.

Since the RSS is inversely proportional to the distance between transmitter and

receiver, the RSS can theoretically be used to recover the distance. However, in

complex environments such as a collapsed building, the RSS is inaccurate due to radio

phenomenon like interference and reflections off cement surfaces. Therefore, since the

RSS is inaccurate, the computed range also suffers, leading to inaccurate location

estimation. FuzLoc is based on the premise that the location can be computed

Parts of this section reprinted with permission from “Toward accurate mobile sensor network
localization in noisy environments” by H. Chenji and R. Stoleru. In IEEE Transactions on Mobile
Computing, vol. 12, no. 6, pp. 1094-1106, June 2013. Copyright 2013 by IEEE.
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more precisely as an area instead of an imprecise 2-dimensional point, when given

imprecise RSS data. Fuzzy Logic is used to convert traditional variables like RSS

into fuzzy variables called bins which represent a range of values. Then, learned

intelligence is used to associate fuzzy RSS bins with fuzzy distance bins, which are

subsequently used in a non-linear system of equations to compute an area instead of

a 2-D point.

This work [127] improves upon our previous work [128] by considering 2-hop

anchors. Using multi-hop anchors increases the localization accuracy, since using

more anchors for a multi-lateration based localization method will increase accuracy.

Network messaging overhead is minimal, and computing/storage overhead is almost

non-existent. Compared to [128], all the simulations have been re-done considering

2-hop anchors instead of single hop anchors.

9.1 Introduction

Wireless sensor networks are increasingly a part of the modern landscape. Dis-

ciplines as diverse as volcanic eruption prediction [129] and disaster response [118]

benefit from the addition of sensing and networking. A common requirement of many

wireless sensor network (WSN) systems is localization, where deployed nodes in a

network discover their positions. In some cases, localization is simple. For smaller

networks covering small areas, fixed gateway devices and one-hop communications

provide enough resolution. Larger networks may be provisioned with location infor-

mation at the time of deployment [130].

However, in many common environments, localization is more difficult. GPS-

based localization may be unreliable indoors, under forest canopies, or in natural and

urban canyons. For example, GPS is used for high-precision asset tracking in [131]

but fails indoors. Signal strength-based solutions similarly fail when there is a high
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degree of RF multi-path or interference. [132] relies on accurate measurement of

RF TDOA and distance traveled and quickly degrades as accuracy decreases. Radio

interferometry localizes nodes to within centimeters in [106] but fails in multipath

environments. Mobile beacons roam an outdoor environment in [133] but localiza-

tion requires a dense network and assumes favorable conditions. All these solutions

rely on stable environments with low multi-path, where measured or sensed ranges

(which are typically obtained by time of arrival, angle of arrival or received signal

strength techniques) reliably predict the actual distance between two nodes. For low

multi-path environments, accurate models have been proposed for estimating time

of arrival, angle of arrival and received signal strength [134].

Mobility complicates the localization problem since node to node distance vari-

ations and environment changes (e.g., due to node mobility or interference from an

external source) introduce additional effects, such as small scale fading. Due to the

relative motion between mobile nodes, each multipath wave experiences an apparent

shift in frequency (i.e., the Doppler shift), directly proportional to the direction of

arrival of the received multipath wave, and to the velocity/direction of motion of the

mobile [135]. Due to environment changes (i.e., objects in the radio channel are in

motion), a time varying Doppler shift is induced on multipath components. Con-

sequently, in such environments affected by small scale fading, it is challenging to

use simple connectivity (which itself can vary dramatically [136]) or Received Signal

Strength (RSS) for accurate localization.

Fuzzy logic offers an inexpensive and robust way to deal with highly complex

and variable models of noisy, uncertain environments. It provides a mechanism to

learn about an environment in a way that treats variability consistently. In one well-

established fuzzy system, the Sendai railroad [137], fuzzy logic allowed the integration

of noisy data related to rail conditions, train weight, and weather into acceleration
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and braking algorithms. Fuzzy logic can similarly be applied to localization. Empiri-

cal measurements are made between participating anchors in predictable encounters.

These measurements are analyzed to produce rules that are used by the fuzzy infer-

ence systems, which interpret RSS input from unlocalized nodes and other anchors.

The output of this process recovers the actual distance, compensated for variability

in the local environment. This basic technique is employed in two constituent sub-

systems of FuzLoc - the Fuzzy Multilateration System (FMS) and the Fuzzy Grid

Prediction System (FGPS).

9.2 Motivation

FuzLoc is motivated by our interest in a localization technique for a mobile sensor

network, deployed in a harsh environment and a set of interesting/surprising results

obtained from simulations of two state of the art localization techniques for mobile

sensor networks, namely MCL [138] and MSL [139]. We define a harsh environment

as one in which the distance between sender and receiver cannot be accurately de-

termined from the RSS alone, due to environmental phenomena such as multipath

propagation and interference.

For more complete problem formulation we mention that the aforementioned

localization techniques assume that given a set of mobile sensor nodes, a subset of

nodes, called anchors, know their location in a 2-dimensional plane. Also, nodes

and anchors move randomly in the deployment area. Maximum velocity of a node

is bounded but the actual velocity is unknown to nodes or anchors. Nodes do not

have any knowledge of the mobility model. Anchors periodically broadcast their

locations. All nodes are deployed in a noisy, harsh environment and they do not

have any additional sensors except their radios. MCL gathers samples using Monte

Carlo methods and filters them using a particle filter, with the criteria being that
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Figure 9.1: Illustration of radio patterns for two different degrees of radio irregularity
(DoI)

each sample should be within range of a 1 hop anchor (with respect to itself) while

at the same time, not being in range of a 2-hop anchor. Samples are assigned weights

over successive iterations. MSL improves upon MCL by using criteria involving all

neighbors and not just anchors. MSL is also adaptable to static scenarios if the nodes

are allowed to exchange their samples and weights.

Using simulators developed by the authors of [138] [139], we developed a scenario

with highly irregular radio ranges, typical of harsh indoor or extremely obstructed

outdoor environments. The irregularity in the radio range is modeled in these sim-

ulators as a degree of irregularity (DoI) parameter [138]. The DoI represents the

maximum radio range variation per unit degree change in direction. An example,

depicted in Figure 9.1, when DoI=0.4 the actual communication range is randomly

chosen from [0.6r, 1.4r].

Simulation results, for a network of 320 nodes, 32 anchors deployed in a 500×500
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Figure 9.2: (a) The effect of DoI on localization error in MSL, MCL and Centroid;
and (b) the effect of anchor density on localization error, at DoI=0.4, for MSL, MCL
and Centroid.

grid and moving at 0.2r (r, the radio range) are shown in Figures 9.2a and 9.2b. Fig-

ure 9.2a demonstrates that the DoI parameter has a significant negative effect on the

localization accuracy. At DoI=0, MCL and MSL achieve localization errors of 0.2r

and 0.5r. With an increase in the DoI to 0.4, their localization error increases 400%.

More surprisingly, as depicted in Figure 9.2b, at a high DoI value, an increase in the

number of anchors has a detrimental effect on localization accuracy. This result is

counter-intuitive since access to more anchors implies that nodes have more oppor-

tunities to receive accurate location information, as exemplified by the performance

of Centroid (which computes the location as the average of the coordinates of all

anchors in its vicinity), in the same figure. A similar observation is made in [133]

although no further study was performed. Our results and also those of [140, 141]

suggest that large errors are detrimental to the Monte Carlo method since the sam-

ples get successively polluted with time. In [141], a proposed Mixture-MCL method

uses odometry to gather samples and then uses sensor data to assign weights, en-
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abling it to recover quickly from such errors, while [140] does the same based on error

correction based on learnt paths and topological constraints. In the specific case of

MCL, the nodes used for filtering the samples may not be actual neighbors because

of the non-uniformity in the radio range varies in every direction. The number of

polluted samples increases with increasing anchor density. Simply increasing the size

of the particle filter in MCL (to 1000 from the current value of 50) does not improve

the accuracy significantly, as can be seen in Fig. 10 of [138].

9.3 A Fuzzy Logic-Based Node Localization Framework

The challenges identified above were partially addressed in recent work in sensor

network node localization [142, 96]. The authors create hybrid localization mecha-

nisms that make use of range-based localization primitives (e.g., RSSI) to validate

and improve the accuracy of range-free techniques.

In a similar vein, we propose to formulate the localization problem as a fuzzy

inference problem by using RSSI to obtain distance, in a fuzzy logic-based localiza-

tion system where the concept of distance is very loose, such as “High”, “Medium”

or “Low”. The core intuition is that accurate ranges can be determined by learn-

ing about the local RF environment and developing rules based on this knowledge.

Fuzzy logic provides a simple and computationally inexpensive way to accomplish

this learning. In other, similarly dynamic scenarios like rail transportation [137]

and photovoltaic power generation [143], fuzzy logic provides mechanisms that allow

simple systems to smartly adapt to rapidly changing environments.

In our proposed fuzzy logic-based localization system, distances between a mobile

sensor node and anchor nodes are fuzzified, and used, subsequently in a Fuzzy Mul-

tilateration procedure to obtain a fuzzy location. In case two or more anchors are

not available for performing localization using fuzzy multilateration, the sensor node
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employs a new technique, called fuzzy grid prediction, to obtain a location, albeit

imprecise. In the Fuzzy Grid Prediction method, the node uses ranging information

from any available anchor to compute distances to several fictitious “virtual anchors”

which are assumed to be located in predetermined grids or quadrants. This allows

the node to locate the grid/quadrant in which it is present.

In conventional localization schemes, the location of a node is typically repre-

sented by two coordinates that uniquely identify a single point within some two-

dimensional area. Localization using fuzzy coordinates follows a similar convention.

The two dimensional location of a node is represented as a pair (X, Y ), where both

X and Y are fuzzy numbers and explained below. However, instead of a single

point, the fuzzy location represents an area where the probability of finding the node

is highest, as depicted in Figure 9.3. This section develops the theoretical founda-

tion behind the computation of this fuzzy location, using imprecise and noisy RSSI

measurements.
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9.3.1 Fuzzy Logic Preliminaries

Fuzzy logic revisits classical set theory and modifies it to have non-rigid, or fuzzy,

set boundaries. Where classical set theory is concerned with collections of discrete

objects, a fuzzy set, sometimes called a fuzzy bin, is defined by an associated mem-

bership function µ, which describes the degree of membership 0 ≤ µ(x) ≤ 1 of a crisp

(regular) number x in the fuzzy set. The process of calculating the membership of a

crisp number for many fuzzy sets is called the fuzzification process.

A fuzzy number is a special fuzzy bin where the membership is 1 at one and

only one point. A fuzzy number represents a multi-valued, imprecise quantity unlike

a single valued traditional number. One popular µ(x) function, is the triangular

membership function:

µ(x) =















































0 if x < a

(x− a)/(b− a) if a ≤ x ≤ b

(c− x)/(c− b) if b ≤ x ≤ c

0 if x > c

(9.1)

where (a, b, c) defines a triangular bin. We chose a triangular membership function

because, in addition to being a good substitute for the more widely used Gaussian

function, it has linear components only and computing membership is less resource

intensive, suitable for our resource constrained sensor nodes. Since not all triangular

memberships are symmetric, we use the triangular function in its most general form.

As shown in Figure 9.4, the WEAK fuzzy set can be represented as (-90, -70,

-50) and MEDIUM as (-70, -50, -30). A crisp number, RSSI = -55dBm has a

membership of 0.25 in WEAK and 0.75 in MEDIUM .
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Figure 9.4: Fuzzification of a crisp value of -55dBm into fuzzy bins WEAK,
MEDIUM and STRONG having triangular membership functions: WEAK,
MEDIUM and STRONG with degrees of membership of 0.25, 0.75 and 0.0 re-
spectively.

A fuzzy system translates a crisp input into a fuzzy output using a set of fuzzy

rules which relate input and output variables in the form of an IF-THEN clause.

Typically the IF clause contains the input linguistic variable (e.g., RSSI) and the

THEN clause contains the output linguistic variable (e.g., DISTANCE). An example

rule is:

IF RSSI is WEAK THEN DISTANCE is LARGE

9.3.2 Fuzzy Multilateration

As shown in Figure 9.5, consider a node S that wants to be localized, in the

vicinity of three anchor nodes Aj (j = 1, 3). Each anchor node is equipped with a

set of fuzzy rules that map fuzzy RSSI values to fuzzy distance values:

Rule i: IF RSSI is RSSIi THEN DIST is Disti
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D2
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Figure 9.5: A sensor node S with fuzzy coordinates X and Y , to be located using
three anchors at (x1, y1), (x2, y2) and (x3, y3).

where RSSIi and Disti are fuzzy linguistic variables (e.g. WEAK, MEDIUM ,

HIGH).

A fuzzy rule is created when two anchors can communicate directly. Since anchors

know their locations, they can find the distance between themselves and also measure

the RSSI. The anchors then fuzzify the crisp RSSI and distance values into two fuzzy

bins RSSIi and Disti respectively, through the process of fuzzification. The chosen

fuzzy bin is the one in which the crisp value will have the highest membership value.

For a more general case, when the node S is within radio range of n anchors,

the node localization problem can be formulated as a fuzzy multilateration problem.

The following:

F1 = (X − x1)
2 + (Y − y1)

2 −D2
1 = 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2 = 0

. . .

Fn = (X − xn)
2 + (Y − yn)

2 −D2
n = 0

(9.2)
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defines a non-linear system of equations describing the relation between the locations

of the nodes and anchors and the distances among them. The variables X , Y and Dk

(k = 1, n) are fuzzy numbers representing the location of the node and the distance

to anchors respectively, while (xk, yk) (k = 1, n) are crisp numbers representing the

crisp location of the anchors. The objective is to minimize the mean square error

over all equations.

9.3.3 Fuzzy Inference

A definition of the process of obtaining the fuzzy distance Dk between node and

anchor is needed before solving the system of equations. This process, called fuzzy

inference, transforms a crisp RSSI value obtained from a packet sent by a node

and received by an anchor into a fuzzy number Dk. Figure 9.6 depicts an example

for the fuzzy inference process. As shown, an RSSI value of -62dBm has different

membership values µ(RSSI) for the fuzzy bins WEAK and MEDIUM . The two

fuzzy bins, in this example, are mapped by a fuzzy rule base formed by two fuzzy

rules:

Rule i: IF RSSI is MEDIUM THEN DIST is MEDIUM

Rule j: IF RSSI is WEAK THEN DIST is LARGE

These two fuzzy rules define the mapping from the RSSI fuzzy sets to the DIST

fuzzy sets. As shown in Figure 9.6, the two fuzzy rules indicate the membership

µ(DIST ) in the DIST domain. Pi and Pj indicate the center of gravity of the trape-

zoid formed by the mapping of the RSSI into fuzzy bins MEDIUM and LARGE,

respectively.

Typically, a single RSSI value triggers multiple fuzzy rules (the membership value

of the crisp value in the input bin of the fuzzy rule is non-zero), resulting in multiple

distance bins. Assume that the fuzzy rule base maps an RSSI value to a set of
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Figure 9.6: The fuzzy inference process for an input RSSI value of -62dBm. In this
example, the fuzzy rule base maps this value through two rules: “Rule i” and “Rule
j”. The dotted lines represent fuzzy inference: finding the membership (vertical line
on left), applying the same membership to the output bin (horizontal line towards
right) and defuzzification (the lines intersect the triangles to form a trapezoid).

m fuzzy Dist bins. The set of centers of gravity Pl (l = 1, m) is denoted by P =

{P1, P2 . . . Pm}. The output fuzzy number Dk is calculated as follows: First, calculate

the centroid of all points in P - call it Pc. Next, take the centroid of all points in

P whose abscissa is less than that of Pc i.e., L = {Pn|x(Pn) ≤ x(Pc)}. Similarly, G

= {Pn|x(Pn) ≥ x(Pc)} is the set of points whose abscissa is greater than that of P .

The abscissae of three points P , L and G represent the resulting fuzzy distance Dk,

formally described as (subscript x denotes abscissa):

Dk = (a, b, c) =

((∑

Ln

|L|

)

x

, (Pc)x,

(∑

Gn

|G|

)

x

)

(9.3)

This definition of obtaining a fuzzy number through fuzzy inference produces a fuzzy

number while giving more “weight” to the centroid by eliminating some possibilities

at the edge. To truly represent the result one would need to compute a smooth

and continuous function like the Gaussian membership function, but the triangular

approximation has the advantage of reduced computation complexity.
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A2S
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Figure 9.7: Illustrating the multi-hop case for fuzzy multilateration: a node S local-
izes itself using A2 and A1.

Equation 9.3 limits its analysis to situations where the anchors and the node

desiring localization are one hop from each other. This constraint limits the degree of

accuracy that can be achieved. Two hops provide a good trade off between messaging

overheads and accuracy as explained later. Consider an anchor A2 (Figure 9.7) which

is 2 hops away from a node S. Suppose that a regular node S1 and an anchor A1

are neighbors of both S and A2. The aim is now to find the distance DSA2. In a

2-dimensional space, a straight line between two points is also the shortest possible;

hence a good approximation is the minimum of all known distances between the 2

points. Applying this fact, we can now calculate:

DSA2 = min(DSS1 +DS1A2 , DSA1 +DA1A2) (9.4)

The distances in Equation 9.4 are fuzzy values, as the result of defuzzification by

either A1 or A2 depending on the sender. Addition of two triangular fuzzy numbers

(a, b, c) and (d, e, f) is well known in fuzzy logic theory [144] to be the sum of their
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individual parameters:

(a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f)

The smallest fuzzy number, to be computed in Equation 9.4 is simply the fuzzy

number with the lowest center value [144]:

min((a, b, c), (d, e, f)) =















(a, b, c) if min(b, e) = b

(d, e, f) if min(b, e) = e

(9.5)

The minimum of many fuzzy numbers can be recursively computed in the case

of multi hop multilateration; it is beyond the scope of this section. In order to solve

the non-linear system of Equations 9.2, in two fuzzy variables, the fuzzy variant of

the iterative classical Newton method based on the Jacobian matrix [145] is used.

To accomplish this, the fuzzy numbers are expressed in their parametric form X =

(X,X) where X and X are continuous bounded non-decreasing and non-increasing,

respectively, functions. These functions effectively represent the “left half” and “right

half” of the membership function.

For a triangular membership function, such as defined in Equation 9.1, a para-

metric representation in r ∈ [0, 1] is:

X = (a+ (b− a)r, c− (c− b)r) (9.6)

The system of Equations 9.2 is, therefore, represented in the parametric form.

Without loss of generality, assume that X and Y are positive. Then, the system can
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be split into:

F1 = (X − x1)
2 + (Y − y1)

2 −D1
2 = 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2 = 0

. . .

Fn = (X − xn)
2 + (Y − yn)

2 −Dn
2 = 0

(9.7)

and

F1 = (X − x1)
2 + (Y − y1)

2 −D1
2
= 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2
= 0

. . .

Fn = (X − xn)
2 + (Y − yn)

2 −Dn

2
= 0

(9.8)

The Jacobian J is constructed as:

J =


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




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





















(9.9)
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Simplifying,

J =







































2(X − x1) 0 2(Y − y1) 0

0 2(X − x1) 0 2(Y − y1)

2(X − x2) 0 2(Y − y2) 0

0 2(X − x2) 0 2(Y − y2)

... ... ... ...

2(X − xn) 0 2(Y − yn) 0

0 2(X − xn) 0 2(Y − yn)







































(9.10)

Initial guesses of X and Y can be updated as follows. For every iteration compute

a matrix ∆:

∆ =

[

h(r) h(r) k(r) k(r)

]T

(9.11)

where h, h, k and k are defined as incremental updates to the initial guess:

X(r) = X(r) + h(r)

X(r) = X(r) + h(r)

Y (r) = Y (r) + k(r)

Y (r) = Y (r) + k(r)

(9.12)

The set of equations evaluated at the initial guess is:

F =

[

F1 F1 . . . Fn Fn

]T

(9.13)

The equation that connects them is ∆ = −J−1F . The initial guess (X0, Y0) is

computed from the average of the coordinates of the anchors. Then, J and F are

computed for this initial guess. The incremental update ∆ is calculated and applied
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Figure 9.8: (a) A sensor S and the grid cells in its vicinity, is within radio range of
anchor A3; and (b) average distance between sensor S and virtual anchor VAj .

to X and Y . J and F are computed for the new values and the process is repeated

until ∆ converges to 0 within ǫ.

9.3.4 Fuzzy Grid Prediction

The multilateration technique presented in the previous section assumes the pres-

ence of a sufficient number of anchors, typically three or more. However, in mobile

sensor networks with low anchor densities, it might frequently be the case that a

node does not have enough anchors for multilateration. To address this problem we

extend our fuzzy logic-based localization framework to predict an area, e.g., a cell in

a grid, where the node might be. The idea is inspired from cellular systems [146]. We

propose to virtualize the anchors, so that a node is within a set of Virtual Anchors

at any point in time. A Virtual Anchor is a fictitious anchor which is assumed to

located at a known, fixed location in the field of deployment, the distance to which
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can be found in an approximate way from the node. In FuzLoc, we place virtual

anchors at the center of every square cell that the field is divided into, as described

below. The key idea is that the nearer a node is to a virtual anchor, the more likely

it is that the node can be found in that cell.

Consider the area in which the network is deployed to be subdivided into a grid

of G cells, as depicted in Figure 9.8a. Denote the probability that a node S is in a

cell j (j = 1 . . .G) by pj . To infer these probabilities, we construct a fuzzy system,

whose input is the distance dj between S and the center of cell j, and the output is

a scalar 0 < pj < 1 for each j. A rule in our fuzzy system is as follows:

Rule i: IF (DISTgrd1 is Di1) and . . . and (DISTgrdG is DiG) THEN (PROBgrd1 is

Pi1) and . . . and (PROBgrdG is PiG)

where Dij is the fuzzy bin representing the distance between the node and the center

of cell j, and Pij is the fuzzy bin representing the probability that node S is in cell

j.

For each rule i, we calculate pj by first fuzzifying dj, applying it to the rule, and

then defuzzifying the aggregate, as we described in Section 9.3.3. Once the most

probable cell is found, the location of the node can be computed as the intersection

between this cell and a circle with a radius of r around the anchor.

It is paramount to remark that we can obtain pj only if the node S has at least

one anchor in its vicinity, i.e., we can estimate Dij . The technique we propose for

estimating Dij is described in Section 9.3.4.1.

Before proceeding with the description of how we computeDij, we describe how to

update pj when no anchor is in the vicinity of node S. Since there is a high correlation

between the current and previous cell a node is in, we construct a Recursive Least

Squares (RLS) filter which predicts the cell in which the node S might be. For each
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cell j, we store a buffer xj(k) = [pj(k) pj(k − 1) . . . pj(k − m)]T of m previous

samples. We then define an RLS filter, updated whenever a new sample p(k + 1) is

available, as:

xj(k + 1) = wT
j (k)xj(k) (9.14)

where wj(k) = wj(k−1)+aj(k)gj(k) is a vector of coefficients, computed as follows:

aj(k) = xj(k)− wT
j (k − 1)xj(k)

gj(k) = Pj(k − 1)xj(k){λ+ xT
j (k)Pj(k − 1)xT

j (k)}−1

Pj(k) = λ−1Pj(k − 1)− gj(k)x
T
j (k)λ

−1Pj(k − 1)

(9.15)

where 0 ≤ λ ≤ 1 is the forgetfulness factor, a design parameter. Pj(0) is initialized

to δIj, where I is the identity matrix of size (m + 1)× (m+ 1) and δ is a typically

large value.

9.3.4.1 Calculation of Dij

The fuzzy system requires that we calculate the distance from the node to the

virtual anchor. We have to find the average distance instead, because we do not

know the node’s location. These average distances can be calculated only when at

least one anchor is in the node’s vicinity.

Consider a node and a sole anchor A3 which is its neighbor, as illustrated in

Figure 9.8b. Take the set of all virtual anchors and discard the ones which are

at a distance of more than 2R from the anchor where R is the radio range of the

anchor, since this is the most distant virtual anchor the node can hear in the limiting

case where the node is between the anchor and the virtual anchor. To calculate the

average distance D from the node to a virtual anchor V Aj in cell j, we estimate the

average distance from V Aj to all points on the circumference of a hypothetical circle
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Figure 9.9: Three anchors and a node used in the numerical example.

around A3. The radius r of this circle is the defuzzified distance obtained from the

fuzzy multilateration system. If the distance between A3 and V Aj is R, the average

distance D can be calculated as follows:

D =
1

2π

∫ 2π

0

√

(R − r cos θ)2 + (r sin θ)2 dθ (9.16)

=
(R − r)

π
E
[

π| −4Rr

(R− r)2
]

(9.17)

where E[x|m] is the incomplete elliptic integral of the second kind [147].

This distance D to a virtual anchor in cell k for node S is nothing but dj. When

calculated for all j, it becomes the input to the fuzzy system. The output will be

a set of probabilities pj pertaining to each cell. The center of gravity of the lamina

defined by the intersection of a circle around the anchor of radius r with the most

likely cell is calculated, as explained above. Thus, a location is obtained.
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9.3.5 Fuzzy Multilateration Numerical Example

A numerical example elaborates the concept of fuzzy multilateration. Consider

three anchors forming an isosceles triangle (Figure 9.9) - (0, 0), (10, 0) and (5, 15). Let

the node to be localized be at the centroid which is (5, 5). The actual distances to the

anchors would be 5
√
2, 5
√
2, 10 respectively. Assume that because of defuzzification,

the node calculates the fuzzy distances as (6, 7, 8), (6, 7, 8), (9, 10, 11) respectively.

Then the system of equations can be expressed as:

F1 = (X − 0)2 + (Y − 0)2 − (6, 7, 8)2 = 0

F2 = (X − 10)2 + (Y − 0)2 − (6, 7, 8)2 = 0

F3 = (X − 5)2 + (Y − 15)2 − (9, 10, 11)2 = 0

(9.18)

The actual fuzzy location (X, Y ) of the node is (5, 5, 5), (5, 5, 5). Assume the

initial guess of (X, Y ) to be (5, 6, 7), (5, 6, 7) for the purposes of demonstration, which

by the process of convergence should ideally yield the actual location. The parametric

form would then be (5 + r, 7− r). Expanding only F1 for brevity,

F1 = (X − 0)2 + (Y − 0)2 − (6, 7, 8)2

F1 = (X − 0)2 + (Y − 15)2 − (6, 7, 8)
2

(9.19)

which can then be simplified to

F1 = (5 + r − 0)2 + (5 + r − 0)2 − (6 + r)2

F1 = (7− r − 0)2 + (7− r − 15)2 − (8− r)2
(9.20)
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Similarly the Jacobian can now be constructed as (first 2 rows only):

J =







2(5 + r) 0 2(5 + r) 0

0 2(7− r) 0 2(7− r)






(9.21)

The pseudo-inverse of a matrix with symbolic elements is computationally ex-

pensive, especially for embedded sensor nodes. Instead of inverting J which contains

a symbolic element r, two non-symbolic inverses can be computed (for r = 0 and

r = 1) and the results combined. This alternate computation incurs a loss of accu-

racy because the solution will be a perfect triangular fuzzy number and not a fuzzy

number with little variation. However, the accuracy lost is extremely small.

A simple substitution of r = 0 and r = 1 in J and F yields:

∆0 = J−1
0 F0 and ∆1 = J−1

1 F1 (9.22)

Given a solution (X, Y ) expressed in simple form as (xA, xB, xC) and (yA, yB, yC),

then:

∆0 =



















δxA

δxC

δyA

δyC



















and ∆1 =



















δxB

δxB

δyB

δyB



















(9.23)

where δxA is the incremental update to xA. This is obvious since the left half of

any fuzzy number in parametric form (a + (b − a)r) evaluates to a when r = 0.

The same argument holds for the right half. After this step, the new (xA, xB, xC)

and (yA, yB, yC) are the input for the next iteration. The process is repeated until

sufficient accuracy is obtained. Upon running our algorithm for 10 iterations with

the above initial guess, the final location of the node was calculated as (5.0, 5.0, 5.0),
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Figure 9.10: The fuzzy logic based localization system design with the (a) training;
and (b) localization phases.

(4.72, 4.97, 5.14). The value that would have been used for comparison with algo-

rithms that do not compute an area as a node’s location will be the center values of

the two fuzzy numbers, i.e, (5, 4.97).

9.4 Localization System Design

The node localization system (called FuzLoc) that implements the proposed

fuzzy logic-based localization framework is depicted in Figure 9.10. As shown, the

localization system runs on both anchor and sensor nodes. The pseudocode for

the localization protocol, as executed by anchors and sensor nodes, is shown in
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Algorithm 8 and Algorithm 9, respectively.

Figure 9.10a depicts the training phase of Fuzloc while Figure 9.10b, the local-

ization phase. Training happens with the participation of anchors only, while the

localization phase involves both anchors and nodes. The components required for the

fuzzy multilateration subsystem (FMS), as well as the fuzzy grid prediction subsys-

tem (FGPS) are implemented on both anchors and nodes. The fuzzy rules required

for these subsystems are created during the training phase. Anchors are assumed

to have more computing power than ordinary nodes; they can then maintain these

fuzzy rules.

The FuzLoc localization system uses two types of messages - a Hello-type mes-

sage which anchors use to train the localization system (i.e., anchors broadcast their

location and build rules), and a Help-type message which nodes use for localization

(i.e., nodes notify 1-hop and 2-hop anchors and nodes that they need to localize).

The remaining part of this section describes the localization system training (and

its use of Hello messages) and the localization protocol execution (and its use of

Help-type messages).

9.4.1 Localization System Training

The training of the localization system takes place every time two anchors come

within communication range with each other. The anchors know their locations,

hence, an anchor can compute the distance between it and the other anchor. The

key observation here is that since an anchor can also measure the RSSI of an incoming

message, it can build the fuzzy rules required for both FMS and FGPS. Figure 9.10a

depicts the training phase where a single Hello message is used to the build the

rulesets for both FMS and FGPS.
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9.4.1.1 FMS - Training

Anchors exchange Hello messages (Algorithm 8, step 2). As shown in Fig-

ure 9.10a, the RSS of an incoming Hello message (“Input RSS”) is fuzzified by

choosing the fuzzy set with the highest membership µ(RSSI) (Figure 9.10a, Path

1). The distance between anchors (“Input Dist”) is fuzzified into a distance fuzzy

set (Figure 9.10a, Path 2). The result of the training populates the rule base, i.e.,

“RSS-Dist Rules” (Figure 9.10a, and Algorithm 8, step 7).

9.4.1.2 FGPS - Training

When an anchor receives a Hello message, it calculates the distances between

the sender and each virtual anchor, using Equation 9.17 (Path 3). This calculation

is shown in Algorithm 8, step 9. These distances are then fuzzified (“Distance Fuzzi-

fier”, Path 3). Additionally, the probabilities for the anchor being in each grid are

updated, as shown in Algorithm 8, step 10. The probabilities are updated based on

anchor’s real movement, as presented in Section 9.3.4 (Figure 9.10a, Path 4). The

computed probabilities are then fuzzified and used for populating (Algorithm 8, step

11) the rules set “Grid-Prob Rules” (Path 4).

9.4.2 Localization Protocol

The localization phase which runs on both anchors and nodes is shown in Fig-

ure 9.10b. In order to obtain its location, a node sends a Help2 message (Algo-

rithm 9, step 2). A Help2 message is meant to trigger actions in nodes/anchors

which are 1-hop away. These nodes/anchors perform some calculations (explained

below), then rebroadcast a Help1 message, meant to trigger actions in the 2-hop

anchors.

When an anchor receives a Help2 message (shown as “Help Msg” in Fig. 9.10b),
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Algorithm 8 FuzLoc Protocol - Anchors

1: [V A]← FGPS.getVirtualAnchors ⊲ VA of self
2: BroadcastHello(VA)
3: procedure RecvHello

4: rss← Radio.getRSS()
5: loc← Message.parseLocation() ⊲ Loc of sender
6: dist← Distance to sender
7: FMS.train(rss, dist)
8: [V A]← Message.parseVA() ⊲ VA of sender
9: [dist]← Calculate distances to virtual anchors
10: [prob]← Calculate probabilities
11: FGPS.train(dist, prob)
12: end procedure
13: procedure RecvHelp2 ⊲ Intermediary anchor
14: Check for cache
15: rss← Radio.getRSS()
16: [ReplyMsg]← BroadcastHelp1() ⊲ Rebroadcast
17: dist← FMS.getDist(rss)
18: [V A]← FGPS.getVirtualAnchors
19: [V A.dist]← FPGS.getDists(VA)
20: [V A.prob]← FPGS.defuzzify(VA.dist)
21: Radio.reply(VA.prob,dist,ReplyMsg)
22: Cache result
23: end procedure
24: procedure ReceiveHelp1(rss1) ⊲ 2 hop anchor
25: rss2← Radio.getRSS()
26: dist1← FMS.getDist(rss1)
27: dist2← FMS.getDist(rss2)
28: Radio.reply(dist1,dist2)
29: end procedure

it uses the RSSI of the packet in two ways. First, using Equation 9.3, the anchor

computes the fuzzy distance (“FMS FIS”) between itself and the node (Algorithm 8

step 17) (Paths 1, 2, 3, 11). This sequence of steps represents the anchor’s implemen-

tation of the FMS subsystem. These fuzzy distances, from multiple anchors, are then

used by the node to compute its location using the nonlinear system of equations

(“Fuzzy Multilateration” box).

Secondly, the anchor defuzzifies the fuzzy distance (from Path 4) into a crisp
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Algorithm 9 FuzLoc Protocol - Nodes

1: procedure Localize

2: [info]← BroadcastHelp2() ⊲ 2 hop HELP
3: anchors← Count(info)
4: if anchors = 0 then
5: [prob]← Filter.predict()
6: grid← Max(prob).index
7: loc← center(grid)
8: else if anchors = 1 then ⊲ FGPS
9: [prob]← info[0].parseVAProb()
10: TrainFilter(prob)
11: grid← Max(prob).index
12: dist, center ← info[0].parseAnchorLoc()
13: circle← ConstructCircle(dist, center)
14: loc← SolveIntersection(grid,circle)
15: else ⊲ FMS
16: [dists]← info.parseDistances()
17: [centers]← info.parseLocations()
18: loc← solveFMS(dists,centers)
19: end if
20: end procedure
21: procedure ReceiveHelp2 ⊲ Intermediary Node
22: Check for cache
23: rss← Radio.getRSS()
24: [ReplyMsg]← BroadcastHelp1(rss) ⊲ Rebroadcast
25: Radio.reply(ReplyMsg)
26: Cache result
27: end procedure
28: procedure ReceiveHelp1

29: return ⊲ Only for anchors
30: end procedure

value by taking the center value of the fuzzy bin (“Defuzzifier”, Path 4). This is

needed since the elliptic integral method can handle crisp values only. Based on

this crisp distance, the anchor calculates the distances between the node sending the

Help message and (Section 9.3.4.1) its virtual anchors (step 19) using the incomplete

elliptic integral method (Figure 9.10b, Paths 5, 6). This set of crisp distances serves

as the input (Section 9.3.4) to the FGPS FIS (Algorithm 8 step 20) (Figure 9.10b,
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Path 7). The FGPS FIS then computes a vector or grid probabilities using the

Dist-Prob ruleset (Figure 9.10b, Paths 7, 8) obtained using FGPS training.

This vector of probabilities is then defuzzified to a crisp value (by defuzzifying

the individual elements) and compiled into the reply message to be sent back to

the node (Paths 10). In the reply to the Help2 message, as mentioned above, the

anchor also includes the fuzzy distance between it and the node (Figure 9.10b, Path

11). A vector containing the probabilities for the node being in each of the grids

(Algorithm 8 step 21) (Figure 9.10b, Path 10), which is essentially the output of

FGPS FIS and the reply for the Help1 message that was broadcast.

The anchor then rebroadcasts aHelp1message with an empty body (Algorithm 8

step 16). When an anchor receives a Help1 message, it performs the same steps as

before: it defuzzifies the RSSI of the received packet into a distance, and replies with

the same (Algorithm 8 steps 25-28). A 2-hop anchor does not invoke its FGPS FIS.

In case the Help1 message contains an RSSI in the body (which happens when the

intermediary node is a non-anchor), both the contained RSSI and the packet RSSI

are defuzzified and included in the reply.

Once a node receives response(s) to its Help2 message it decides to compute or

predict its location (Algorithm 9 steps 4-18). If the node does not receive a response,

it uses the RLS filter to predict the most probable grid it is in (Algorithm 9 steps

5-7). If the node receives a response from one anchor, it computes the center of

gravity of the area obtained by intersection between: a) the grid with the maximum

probability; and b) the circle with a center at the anchor location and with radius

equal to the distance between the anchor and the node (Algorithm 9 steps 9-14). If

the node receives two or more responses, it uses fuzzy multilateration to iteratively

compute its location (Algorithm 9, steps 16-18).

A node can also be on the receiving end of a Help2 message - when it is an
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intermediary node. In this case, the node first detects the RSSI of the received mes-

sage (Algorithm 9 step 23) and then packages into a Help1 message and broadcasts

it (Algorithm 9 step 24). Any response(s) to this message will be sent back to the

sender as a reply to the original Help2 message that was sent by the node intending

to localize. A node ignores any Help1 message it receives, since it is meant only for

anchors (Algorithm 9 step 29).

9.5 Performance Evaluation With Two Hop Anchors

In this section, we first demonstrate that FuzLoc can be implemented and run

on real mote hardware, then show FuzLoc’s superior performance, when compared

with state of art solutions like MCL [138], MSL [139] and Centroid [94]. Owing

to the relatively few number of robots, the difficulty in implementing MCL and

MSL on real hardware (please note that neither MSL, nor MCL have been imple-

mented/evaluated on real hardware), controlling the anchor and seed density and

the physical space constraints, we decided to compare performance of FuzLoc with

state of art solutions, in simulations using both empirical and synthetic data.

In the remaining part of this section we present FuzLoc implementation on

real-hardware, describe the empirical and synthetic RSSI-Distance mapping, and

performance evaluation results.

9.5.1 System Implementation Validation

We implemented FuzLoc/FMS on EPIC motes running TinyOS 2.1.1. Since

the matrices involved in FMS are not always square and hence they cannot be sim-

ply inverted, the fast and lightweight SVD based pseudo inverse method [147] was

implemented on the motes. Relevant portions of the GNU Scientific Library (GSL)

were ported to the MSP430 architecture in order to achieve this goal. The result was

a fast method of inverting matrices, providing 4 digits of accuracy when compared
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to a similar computation on a desktop PC. The 1,574 lines of code fit comfortably

in 18,726B.

A Fuzzy Inference System (FIS) consisting of a triangular rule set and center-

average defuzzification method was implemented in 19,932B of ROM (including the

code required to send and receive messages in the radio) and 1,859B in RAM on

EPIC motes running TinyOS 2.1.1. Whenever a packet was received on the onboard

radio, the detected RSS was applied to the pre-built ruleset and then defuzzified into

a fuzzy distance. The distance and RSSI binset consisted of 8 bins each. The de-

fuzzified distance was equal to that produced by a similar computation on a desktop

computer, within rounding errors. The execution time was less than 1 second. This

proof of concept implementation of FuzLoc on motes demonstrates its feasibility of

implementation on a mote.

9.5.2 Empirical and Synthetic RSSI-Distance Mapping

For our performance evaluation, we used RSSI-distance mappings obtained from

a static sensor network, a small mobile sensor network and from a newly proposed

DoI model. They are as follows.

9.5.2.1 Static Sensor Network

We used a static 42 node indoor testbed, in our lab. RSSI data was collected

over 500 iterations with each node beaconing in each iteration. Since the nodes were

static, inter-node distances could be calculated easily. This data was used to train

and evaluate the FIS, as will be shown in Figure 9.18b. However, since only a finite

number of unique distances are possible with a static testbed, we decided to use a

small mobile testbed as well.
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Figure 9.11: Experimental setup consisting of 6 iRobot Creates equipped with Epic
motes.

9.5.2.2 Small Mobile Sensor Network

We collected data (RSSI-distance pairs) using a mobile testbed consisting of 6

“iRobot Creates” and EPIC motes (which interfaced using the serial bus) shown

in Figure 9.11. Over a 125-iteration run, RSSI data was collected between pairs of

neighbors at every iteration. In order to get the true locations of the robots (for

calculating the distances between them) a digital video camera was used to film the

entire experiment in 1080p HD. A small program was written in C and used OpenCV

to infer the ground location of the robots using planar homography, since the camera

was not in the same plane as the robots.

Each robot has a different color since this makes it easier to track them in the

recorded video. Capturing the radio effects caused by mobility and the orientation

of the antennae on the motes in real time was the main motivation behind the

experiment. The ground locations of the robots at each step is then used to infer

the actual distance between nodes for every measured RSS between nodes. These
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Figure 9.12: (a) The DoI model with three points of interest: although A and B
are equally distant, their RSS values differ significantly in our EDoI model; and (b)
RSSI vs. distance for the radio model used in the simulator, at DoI=0.4 and 0.

RSSI-distance pairs were then used to train and evaluate the FIS as will be shown

in Figure 9.18c and described below.

9.5.2.3 EDoI Model

Since our fuzzy logic-based localization technique makes use of the RSSI, we

extended the DoI model [95]. In order to adjust the simulated RSSI for both the

actual radio range and log-normal fading, we developed the EDoI model. It combines

the general log-normal fading model with the DoI model [95]. In Figure 9.12a, OA

and OC are the radio ranges for the antenna situated at the origin O, in two different

directions as evaluated by the DoI model. Assume that the receiver sensitivity is -

94dBm i.e., if a transmitter with similar characteristics as the receiver is situated

at A or C, then the RSSI at the origin will be -94dBm. To calculate the RSSI at a

point B in the same direction as C where OA = OB, we apply a log-normal fading

model with the reference distance as OC, such that the RSSI at point C is -60dBm.
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Note that the RSSI at A is -94dBm, whereas the RSSI at an equidistant point B in

a different direction is -60dBm. On top of this, additive random noise (uniformly

distributed, min = -20dB, max = 20dB) is applied to the calculated RSSI. This

procedure is done every time a node uses this model to simulate an RSSI, ensuring

randomness in both temporal and spatial randomness. Formally:

RSSI(d) = Si ×
log10 d

log10[r(1 +DoI × rand())]
(9.24)

where Si is the receiver sensitivity, r is the ideal radio range, DoI is the radio degree

of irregularity and rand is a random number U [0, 1].

9.5.3 Simulation Setup

Through extensive simulations, we compare our solution with MCL [138], MSL [139]

and Centroid [94], since we wanted to evaluate our solution against non-centralized

solutions for non-static networks, both Monte Carlo based (MCL, MSL) and simple

(Centroid). A theoretical “Perfect FuzLoc” method shows the theoretical optimum

FuzLoc can reach, by simply bypassing the FIS and considering the actual distance

between nodes. The problem of not having enough anchors in the vicinity of nodes

causes non-zero error for Perfect FuzLoc. Data gathered from the the static and

small mobile sensor network has been used to evaluate the FIS system. Thus, the

FIS system is evaluated using simulated RSSI-Distance data as well as data from the

two experiments described before.

We simulate a set (N) of 320 sensor nodes deployed in a 500×500 area. Of the

320 nodes deployed, 32 nodes are designated anchors (set S). The radio range (r) of

a node is 50 and the default DoI is 0.4. We chose these simulation parameters for

consistency with results reported in [138, 139]. The default receiver sensitivity (Si)

is -94dBm, and a plot depicting the predicted RSSI by our EDoI model, is shown
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in Figure 9.12b. The default maximum node velocity is to 0.2r. This velocity has

been reported in [138] to be optimal. We investigate the performance of all solutions

for node velocities up to 0.5r. The node velocity is an important parameter since

MCL and MSL use it as a filtering criterion in their particle filters. The default

setup uses 10 fuzzy triangular bins and the defuzzification method is center-average.

The fuzzy location is defuzzified into a crisp location by considering only the center

values of the abscissa and the ordinate. The fuzzy bins for distance and RSSI are

uniformly distributed between (0, r) and (−40, −100) respectively, with the width of

each bin being twice the separation between peaks of two adjacent fuzzy bins. With

10 distance and RSS bins, there are 100 different combinations that can be seen in

a RSS-Dist ruleset. Rules encountered more frequently tend to affect the output

more than infrequent ones because the defuzzification method involves centroids

corresponding to the output bin of each rule. A sample set of fuzzy RSS-Dist rules

has been provided in the Supplemental Material, Section 3.

9.5.4 Radio Irregularity

We performed simulations for different DoI values with all other parameters kept

constant. Figure 9.13 depicts our results, indicating the deterioration in localization

accuracy of MCL, MSL and Centroid. The effect of compounded errors due to pol-

luted samples has been investigated as the “kidnapped robot problem” [140] in robot

localization. The kidnapped robot test verifies whether the localization algorithm is

able to recover from localization failures, as signified by the sudden change in location

due to “kidnapping”. It has been shown [140] that such uncorrected algorithms col-

lapse when the observed sample is far from the estimated sample. MSL demonstrates

an even more pronounced effect, since it also uses non-anchor neighbors for filtering,

thus leading to more pollution. Both FuzLoc and Perfect FuzLoc are unaffected by
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Figure 9.13: The effect of DoI on localization accuracy. (N=320, S=32, v=0.2r)

DoI, with the error of FuzLoc increasing by about 20% at maximum DoI compared

to MCL’s 300%.

9.5.5 Maximum Node Velocity

We investigate the effect of maximum node velocity on localization accuracy, for

velocities up to 0.5r, a reasonably fast moving speed. The performance results are

depicted in Figure 9.14. MCL and MSL assume that nodes know their maximum

velocity. Hence, they use the velocity as a filtering condition, which improves their

performance. Moreover, high velocity means having more anchors to filter against,

leading to the freshening of samples at every instance. Figure 9.14 shows that MCL

and MSL decrease their localization error from 1.4r to 0.9r, and 1.9r to 1.4r, respec-

tively. Since Centroid and FuzLoc do not use the velocity, their performance is not

expected to improve. Figure 9.14 indicates that their performance is not deteriorat-
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Figure 9.14: The effect maximum node velocity has on localization accuracy.
(N=320, S=32, DoI=0.4)

ing.

9.5.6 Anchor Density

Anchor density is a critical parameter for anchor-based localization schemes. Fig-

ure 9.15 displays the impact of anchor density on the localization schemes where the

number of anchors varies from 10% (32 anchors) to 50% (160 anchors), and the DoI

is constant at 0.4. The accuracy of MCL and MSL deteriorates because an increase

in anchor density is associated with an increase in the number of polluting sources.

The mismatch of observed and actual radio ranges causes spurious anchors to appear

as node’s direct and indirect seeds. MSL considers non-anchor neighbors, hence it

experiences higher pollution. Centroid performs better with increasing anchor den-

sity, as expected. FuzLoc also has a decrease in localization error, with a larger
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Figure 9.15: The effect of anchor density on localization accuracy at DoI=0.4
(N=320, v=0.2r)

number of anchors. We observe that FuzLoc is not significantly affected by DoI

and ranging errors.

9.5.7 Node Density

For this performance evaluation scenario we maintained the percentage of anchors

fixed at 10%. As shown in Figure 9.16, the evaluated algorithms either suffer or are

unaffected. None of the localization algorithms benefits from an increase in the node

density. As shown, Centroid and FuzLoc are not substantially affected, except by

the inherent randomness in simulation. MCL considers indirect seeds for sampling,

hence a high node density means more anchors are misreported as indirect seeds.

MSL considers non-anchor neighbors, hence at high node densities, it experiences a

huge amount of sample pollution. While non-anchor neighbors help MSL to improve
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Figure 9.16: The effect of node density on localization accuracy. (S=32, v=0.2r,
DoI=0.4)

accuracy at low DoI, they become harmful at higher DoI values.

9.5.8 Number of Bins

The number of bins in the fuzzy system is a design parameter - the greater the

number of bins, the higher the accuracy of the system. Our evaluation of the in-

fluence of the number of bins is depicted in Figure 9.17. As shown, as the number

of bins increases, the localization error of FuzLoc decreases. This is because more

and more RSSs find a bin with high membership. The change in the number of

bins, is expected to not affect MCL, MSL, Centroid, or even Perfect FuzLoc. Fig-

ure 9.17 shows that the aforementioned schemes remain invariant whereas FuzLoc

experiences decreasing error with an increase in the number of bins.
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Figure 9.17: The effect of the number of fuzzy bins on localization accuracy. (N=320,
S=32, v=0.2r, DoI=0.4)

9.5.9 Fuzzy Inference System Performance

Figure 9.18a shows the performance of the FIS engine evaluated using RSSI-

distance data generated by the EDoI model, while Figure 9.18b does the same using

data from our static testbed and finally, Figure 9.18c uses data from the small mobile

testbed. Input distance is on the X axis while the Y axis marks the center value of the

defuzzified output distance. After training the system with 30 random RSS-Distance

pairs, RSS values deduced from distances were fed into the system so that a distance

could be inferred. The straight line shows the ideal case. In order to quantify the

accuracy, the root mean squared (RMS) error was calculated and normalized to the

radio range. The values are remarkably similar: for the EDoI dataset it was 0.156,

for the static network dataset it was 0.182 and for the small mobile testbed it was
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Figure 9.18: (a) Performance of the FMS FIS subsystem, with the test input on the
X axis and the inferred distances on the Y axis; (b) performance based on real data
gathered from our indoor testbed; (c) performance based on real data gathered from
our mobile testbed consisting of 6 iRobots.

0.166. In a way, these numbers reinforce the equivalence of the simulated and real

indoor static/mobile radio models, while proving the effectiveness of the EDoI model.

9.5.10 Overhead

A typical FIS does not require much storage capacity. If there were 8 bins, for

example, a single byte could represent a bin. Hence, each FMS rule requires just 2B

of storage. Typically, an anchor creates approximately 30 rules during the period
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of deployment which translates to 60B of storage. The FGPS FIS however, requires

50B for each rule (25 bins in the input, 25 in the output). Note that regular nodes

do not store rules, only the anchors store rules. Moreover, due to the nature of

the triangular bin shapes, simple calculations are required in order to fuzzify and

defuzzify. The only caveat is the inversion of matrices that is required. As for the

filter, the node does not construct a filter for all possible cells, since it usually visits

a maximum of 4 cells per iteration. Hence, the storage required by a 3-order filter

on each non-anchor node will be (288×4×4×3) = 13,824B. MCL requires at least 50

samples for low localization error. Each sample requires a weight. Centroid does not

store any history and thus has the smallest storage requirement. Amorphous stores

announcements made by the anchors which are flooded throughout the network. If

there are 320 nodes, 32 of which are anchors, MCL requires each node to store 50

samples. Each sample has an abscissa and an ordinate, each of at least 4B. Hence,

MCL requires around (50×4×2×320) = 128,000B. Fuzzy on the other hand requires

around 1,500B for FGPS and around 60 for FMS, with 13,824B for the filters, which

sums up to (1,560×32 + 13,824) = 63,744B which is roughly 50% of the storage

MCL requires, and even less than what MSL requires, since MSL mains closeness

values.

The communication overhead for 2-hop anchor discovery is the same as that

of MCL, and less that of MSL (since MSL needs to exchange samples in addition

to anchor discovery). When FuzLoc uses only 1-hop anchors, the communication

overhead required is significantly lower since all that is needed is a simple broadcast.

Still, FuzLoc performs better than MCL as can be seen in [128]. Therefore, systems

desiring lesser communication overhead should use anchors within 1 hop only, while

those desiring higher accuracy need to consider anchors within 2 hops. In no state

will the communication overhead required by FuzLoc exceed that of MCL or MSL.
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Figure 9.19: Comparison of 1 and 2 hop FuzLoc variants at seed densities of 15%
(S=48) and 20% (S=64) in a 320 node (N) network across multiple DoIs.

9.5.11 Single Hop and Dual Hop FMS

Figure 9.19 compares the 1-hop and 2-hop variants of FuzLoc. Being a multi-

lateration based method, the presence of a sufficient number of anchors in a node’s

vicinity is crucial to reducing the error in location estimation. A simple way to

ensure this is to increase the percentage of anchors in the network. However, the

addition of anchors may be cost prohibitive. A simpler way and less costly solution

is to consider anchors which are two hops away. The additional cost incurred for this

solution is higher messaging overhead. Instead of traveling over a single hop, local-

ization request broadcasts must take two hops to reach the outer anchors. Replies

are consolidated, so no additional messaging is incurred in the reply phase. The

number of additional transmissions required vary based on node and anchor density.

Figure 9.19 shows that merely considering the 2-hop anchors results in a much lower
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error due to the increased number of anchors, than introducing more anchors, across

all DoIs. Note that although the number of messages increases, the error is more

than halved.

9.6 Conclusions

We have proposed FuzLoc, a fuzzy logic based localization method suitable for

wireless sensor nodes that are mobile in noisy, harsh environments. The constituent

systems use fuzzy multilateration and a grid predictor to compute the location of

a node as an area. The RSS is cast into bins which encode the imprecision; these

bins are subsequently used in our mathematical framework. We remark here that

the case of static anchors, considered by neither MCL, nor MSL, will be investigated

in future work.

Our method has been evaluated based on a variety of metrics. They prove that

our method is resistant to high DoI environments while providing a low localization

error without any extra hardware. Only anchors need to have a slightly higher storage

requirement. A deployment with more anchors at high DoI decreases the error. The

ability to localize using both single-hop and two-hop anchors greatly increases the

variety of topologies where localization succeeds. The system implementation proves

that the algorithm functions well on resource constrained devices.
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10. CONCLUSIONS AND FUTURE WORK

This dissertation has proposed Fog Computing, a mobile cloud architecture for

disaster response networks. Starting with a motivating scenario consisting of a nat-

ural disaster that occurs over a large geographical area, the needs of Urban Search

and Rescue workers in such a situation were analyzed. Based on these requirements,

as well as certain design principles, a high level system architecture was presented.

The research challenges in designing and implementing this architecture were enu-

merated. Heterogeneous COTS devices, ranging from low power wireless sensors to

enterprise grade wireless routers were used to build a proof of concept implemen-

tation. Some responder requirements were implemented as user level apps, while

others comprised the middleware that runs in the background.

Additional hardware were placed over the area of deployment to artificially in-

crease the contact opportunities in the underlying DRN, thereby increasing the ca-

pacity of the network. A reduced version of the Post Disaster Mobility Model was

used to formulate a problem that can be cast as a binary integer programming prob-

lem. As a result of optimal placement of devices, the aggregate throughput was

found to increase based on experiments involving multiple data flows and devices.

The impact of MTU size at the bundle and packet layers upon the total amount of

data transferred per contact was analyzed experimentally.

The Raven framework provides the user control over various QoS metrics. More

importantly, it allows the user to control the variance of the packet delivery delay,

using risk aversion techniques. A multi-graph whose edge weights are not scalars but

distributions was used to compute multiple paths between source and destination,

based on the enhanced version Post Disaster Mobility Model. Results using simula-
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tion were presented. The effect of simultaneous control of multiple QoS metrics was

analyzed mathematically.

Energy consumption profiles of fog computing devices were analyzed, and it was

determined that energy can be saved on certain routers deployed at Centers by ex-

cluding them from the routing process. Such an approach has marked effect on

the system’s performance, and this energy-performance tradeoff was investigated. A

Pareto front between energy and performance was discovered using a problem formu-

lation that involved dual non-linear objectives. The system could be made to operate

at each of these Pareto points by carefully choosing end points for potential flows,

as well as assigning a K value to each of these flows. Simulation results confirmed

that the system could be highly energy efficient at the cost of high PDD, or have a

very low PDD at the cost of high energy consumption. This scheme can outperform

state of art techniques in terms of both performance or energy consumption, but not

simultaneously due to the inherent tradeoff present.

Indoor localization for mobile sensors was one of the requirements since GPS

may not available in indoor environments due to radio shadow areas. FuzLoc, a

distributed algorithm that performs range-based localization over multiple hops was

presented. It recovers the distance between nodes using only the RSS value, and this

association is learned over time. The location of the node is computed as an area

instead of a 2-D point, using a system of non-linear equations where the variables

are not scalars but are fuzzy bins. Using 2-hop anchors, the localization accuracy

was shown to be much better than when using single hop anchors. The network

messaging overhead for two hop localization was analyzed.
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10.1 Future Work

10.1.1 Hardware Implementation

This dissertation is an academic effort that proposes many new sensing modalities

as well as mobile cloud paradigms. The scalability of this system was not completely

analyzed owing to the manpower required to conduct experiments that involve hun-

dreds of devices and tens of vehicles. System-wide software integration of various

middleware and apps is not a trivial task, and is left as future work. Newer PHY

layer protocols such as Bluetooth LE and ANT can be integrated into the network

architecture. As PHY layer diversity increases, so does the complexity. When the

Router class of devices is required to support more and more PHY layers, the power

consumption increases. An optimal duty cycling scheme that takes into account the

number of nearby devices with the same PHY layer is a research question that can be

answered. The protocols used and proposed in this dissertation can be implemented

in silicon for lower energy consumption as well as a better form factor, leading to

possible commercialization of fog computing. A new computer architecture at the

hardware level can be proposed for the fog computing network architecture. The

increasing use of SoCs and specialized hardware such as Apple’s motion co-processor

that allows continuous low power sensing should provide sufficient motivation for

this direction.

10.1.2 Security

The topic of security has not been addressed in this dissertation due to its wide

scope. Any good networking system should be designed with security in mind. DRNs

in particular handle sensitive information that could emotionally affect victims - such

information should be contained within the system. At the PHY layer, securing

802.11 IBSS mode will lead to an increase in overhead as well as a possible increase
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in setup time for inter mobile node links. This will in turn have repercussions on

the amount of data that can be transferred in a contact (i.e., the DTC). The fog

computing API can be secured at the application layer. Enterprise-level standards

compliant security enables third party developers to confidently integrate their apps

with the system.

10.1.3 Theory and Algorithms

A large complex system that implements fog computing has to function in the

face of uncertainty, due to the febrile and fast paced environment of disaster recovery.

The input provided to the various algorithms may not be precise - thus, the output

of these algorithms may have some degree of error. This error propagates throughout

the system over time, as the computed results provided by sub-systems is used as

input in other sub-systems. Theoretical analysis of error propagation in a large

complex system can help improve the performance. Certain algorithms used in the

dissertation, such as the Bellman-Ford algorithm, may not return good quality paths.

Addressing whether edge disjoint paths improve Raven’s performance is a topic for

future research.
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lightweight, modular and highly portable bundle protocol implementation,”

Electronic Communications of the EASST, vol. 37, pp. 1–11, Jan 2011.

[118] H. Chenji, W. Zhang, R. Stoleru, and C. Arnett, “Distressnet: A disaster

response system providing constant availability cloud-like services,” Ad Hoc

Networks, vol. 11, no. 8, pp. 2440 – 2460, 2013.

[119] H. Chenji, L. Smith, R. Stoleru, and E. Nikolova, “Raven: Energy aware QoS

control for DRNs,” in 2013 IEEE 9th International Conference on Wireless

and Mobile Computing, Networking and Communications (WiMob), Lyon,

France, 2013. c©2013 IEEE. Reprinted, with permission.

[120] R. P. Loui, “Optimal paths in graphs with stochastic or multidimensional

weights,” Commun. ACM, vol. 26, no. 9, pp. 670–676, Sep. 1983.

[121] E. Nikolova, “Approximation algorithms for reliable stochastic combinatorial

optimization,” in Proceedings of the 13th International Conference on

195



Approximation, and 14 the International Conference on Randomization, and

Combinatorial Optimization: Algorithms and Techniques,

APPROX/RANDOM’10, Barcelona, Spain, 2010.

[122] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Management

Science, vol. 17, no. 11, jul 1971.

[123] O. Barndorff-Nielsen, “On the limit behaviour of extreme order statistics,”

The Annals of Mathematical Statistics, vol. 34, no. 3, pp. 992–1002, sep 1963.

[124] A. Ker, “On the maximum of bivariate normal random variables,” Extremes,

vol. 4, no. 2, pp. 185–190, 2001.

[125] H. Chenji and R. Stoleru, “Pareto optimal cross layer lifetime optimization

for disaster response networks,” in 2014 Sixth International Conference on

Communication Systems and Networks (COMSNETS), Bangalore, India,

2014. c©2014 IEEE. Reprinted, with permission.

[126] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Replication

routing in DTNs: A resource allocation approach,” IEEE/ACM Trans. Netw.,

vol. 18, no. 2, pp. 596–609, Apr. 2010.

[127] H. Chenji and R. Stoleru, “Toward accurate mobile sensor network

localization in noisy environments,” Mobile Computing, IEEE Transactions

on, vol. 12, no. 6, pp. 1094–1106, June 2013.

[128] ——, “Mobile sensor network localization in harsh environments,” in

Proceedings of the 6th IEEE International Conference on Distributed

Computing in Sensor Systems, DCOSS’10, Santa Barbara, CA, 2010. c©2010

IEEE. Reprinted, with permission.

196



[129] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz,

and J. Lees, “Deploying a wireless sensor network on an active volcano,”

IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, Mar. 2006.

[130] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou,

Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh,

“Vigilnet: An integrated sensor network system for energy-efficient

surveillance,” ACM Trans. Sen. Netw., vol. 2, no. 1, pp. 1–38, Feb. 2006.

[131] D. Balakrishnan, A. Nayak, P. Dhar, and S. Kaul, “Efficient geo-tracking and

adaptive routing of mobile assets,” in High Performance Computing and

Communications, 2009. HPCC ’09. 11th IEEE International Conference on,

Seoul, Korea, June 2009.
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