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ABSTRACT

The widespread adoption of GPS-enabled tagging of social media content via

smartphones and social media services (e.g., Facebook, Twitter, Foursquare) uncov-

ers a new window into the spatio-temporal activities of hundreds of millions of people.

These “footprints” open new possibilities for understanding how people can organize

for societal impact and lay the foundation for new crowd-powered geo-social systems.

However, there are key challenges to delivering on this promise: the slow adoption

of location sharing, the inherent bias in the users that do share location, imbalanced

location granularity, respecting location privacy, among many others. With these

challenges in mind, this dissertation aims to develop the framework, algorithms, and

methods for a new class of geo-social information systems. The dissertation is struc-

tured in two main parts: the first focuses on understanding the capacity of existing

footprints; the second demonstrates the potential of new geo-social information sys-

tems through two concrete prototypes.

First, we investigate the capacity of using these geo-social footprints to build new

geo-social information systems. (i): we propose and evaluate a probabilistic frame-

work for estimating a microblog user’s location based purely on the content of the

user’s posts. With the help of a classification component for automatically identify-

ing words in tweets with a strong local geo-scope, the location estimator places 51%

of Twitter users within 100 miles of their actual location. (ii): we investigate a set of

22 million check-ins across 220,000 users and report a quantitative assessment of hu-

man mobility patterns by analyzing the spatial, temporal, social, and textual aspects

associated with these footprints. Concretely, we observe that users follow simple re-

producible mobility patterns. (iii): we compare a set of 35 million publicly shared
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check-ins with a set of over 400 million private query logs recorded by a commercial

hotel search engine. Although generated by users with fundamentally different inten-

tions, we find common conclusions may be drawn from both data sources, indicating

the viability of publicly shared location information to complement (and replace, in

some cases), privately held location information.

Second, we introduce a couple of prototypes of new geo-social information sys-

tems that utilize the collective intelligence from the emerging geo-social footprints.

Concretely, we propose an activity-driven search system, and a local expert finding

system that both take advantage of the collective intelligence. Specifically, we study

location-based activity patterns revealed through location sharing services and find

that these activity patterns can identify semantically related locations, and help with

both unsupervised location clustering, and supervised location categorization with a

high confidence. Based on these results, we show how activity-driven semantic orga-

nization of locations may be naturally incorporated into location-based web search.

In addition, we propose a local expert finding system that identifies top local experts

for a topic in a location. Concretely, the system utilizes semantic labels that people

label each other, people’s locations in current location-based social networks, and can

identify top local experts with a high precision. We also observe that the proposed

local authority metrics that utilize collective intelligence from expert candidates’ core

audience (list labelers), significantly improve the performance of local experts finding

than the more intuitive way that only considers candidates’ locations.
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1. INTRODUCTION

1.1 Motivation

The exponential growth in social media over the past decade has recently been

joined by the rise of location as a central organizing theme of how users engage

with online information services and with each other. Enabled by the widespread

adoption of GPS-enabled smartphones, users are now forming a comprehensive geo-

social overlay of the physical environment of the planet. For example, the Foursquare

location sharing service has enabled over 4.5 billion “check-ins” [40], whereby users

can link their presence, notes, and photographs to a particular venue. The mobile

image sharing service Instagram allows users to selectively attach their latitude-

longitude coordinates to each photograph; similar geo-tagged image sharing services

are provided by Flickr and a host of other services. And the popular Twitter service

sees 500 million Tweets per day, of which around 5 million are tagged with latitude-

longitude coordinates. Confirming this trend, a recent Pew Research Center report

finds that location is now an increasingly central part of the social media experience:

Location tagging on social media is up: 30% of social media users now

tag their posts with their location. For mobile location services, 74%

of smartphone owners get directions or other information based on their

current location, and 12% use a geo-social service such as Foursquare to

“check in” to locations or share their whereabouts with friends. (Pew

Research, Sept 12, 2013) [137]

Compared to proprietary location-based data collected by many entities – e.g., search

engine query logs with an associated IP address that can be resolved to a rough
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location, cell-phone call records that can pinpoint a user to a particular cell tower,

and point-of-sale data collected by retailers – these geo-social clues are inherently

voluntary and public. As a result, they provide a rich and growing body of geo-

location evidence that can potentially support basic scientific inquiry into questions

that heretofore were difficult for researchers to study. These difficulties were often due

to the proprietary nature of traditional location data, the cost of acquiring new data

through small lab-based studies (e.g., due to navigating university IRB protocols,

overcoming resistance to personal tracking devices), and the difficulty of sharing

such sensitive data with other researchers. Not only do voluntarily shared geo-

location cues provide an alternative basis for scientific inquiry, in addition, designers

of information management systems (e.g., web search systems, social media discovery,

personal information management) can integrate these new public location signals

into more robust user models, intelligent “location-aware” services, and so forth.

Indeed, we believe that the proliferation of these fine-grained (public) spatio-temporal

footprints provides an unprecedented opportunity to gain new insights into:

• The dynamics of human behavior and rhythm/pulsation of social life from local

to global levels;

• The dynamics of how ideas spread and how people can organize for societal

impact; and

• The development of new geo-social information systems that leverage these

global-scale geospatial footprints for real-world impact.

Already, we have witnessed compelling new studies along all three of these dimen-

sions, spanning many research communities – including the data mining and machine

learning [7, 21, 30, 33, 71, 98], geographic information systems [27, 45, 70, 110, 122],
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web search and information retrieval [100, 108], and the emerging computational

social science paradigm [53, 60, 75, 64, 69, 103, 112, 126]. For example, the dy-

namics of fundamental human mobility patterns have been modeled from check-ins

mined from two location sharing services – Gowalla and Brightkite – and inherent

constraints on these patterns by both geographic and social factors have been dis-

covered [21]. Facebook researchers have provided a comprehensive analysis of the

distance between Facebook users, leading to new insights into how social networks

are impacted by geography [7]. The LiveHoods [29] project has shown how to iden-

tify “living neighborhoods” based on the revealed locations and movements of social

media users. And new geo-social information systems have been proposed based on

these location cues, including earthquake detection from Twitter information flows

[100], a local search system that estimates a user’s location utilizing the aggregate

signals from the check-ins with real-time contextual information [108], and an event

discovery system that organizes spatio-temporal footprints and corresponding media

to allow consumers to travel through space and time to experience the world’s stories

[24].

1.2 Challenges

However, there are key challenges to delivering on the promise of incorporating

the collective intelligence from emerging location-based social networks into new

geo-social information systems:

Location Granularity : Many users in social media reveal broad, imprecise locations

(e.g., at the city or state level), while others provide fine-grained latitude-longitude

information. In particular, users are less likely to post precise locations such as

street addresses on Twitter and related services. How can these multiple location

granularities be integrated to account for uncertainty at different levels?
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Bias : Models based on users who do willingly share fine-grained location information

will necessarily be biased away from the general population of social media users (and

more generally, from the underlying population). How can we model and assess the

impact of this bias (and its ultimate impact on applications like local information

access or expert finding)?

Sparsity : Personal location-revealing information may be interspersed in an inher-

ently noisy stream of updates reflecting many daily interests (e.g., food, sports, daily

chatting with friends). Are there clear location signals embedded in this mix of top-

ics and interests that can be accurately extracted in order to overcome the location

sparsity per posted message or per user in online social networks?

Public versus Private Data: Social scientists and geographers have long been inter-

ested in modeling the linkages and flows between locations for better understanding

a variety of geo-spatial issues that have heavily relied on proprietary data (e.g., query

logs and transactions). Given the unprecedented access to the publicly shared data

from location-sharing services, can we use the publicly-shared location information

via location-sharing services to complement (and replace, in some cases), privately

held location information such as that in proprietary query logs?

Privacy : The ubiquity of publicly accessible traces of users via current location-based

social networks also causes serious concerns about people’s privacy. For example,

mining algorithms designed to locate a user based on information “leaked” through

social media may be easily mis-used, e.g., for crime and other exploits [34]. Consider-

able ongoing effort is needed to preserve location privacy while enjoying the benefits

of mining location-based social network data.

Lack of Understanding : Last but not the least, even the design space of geo-social

information systems is not clearly understood. Do users perceive a difference in
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ownership of their “location” in scenarios where they explicitly reveal it versus it

being inferred from large-scale data-driven approaches (e.g., by applying machine

learning approaches)? And how does information access in geo-social information

systems differ from traditional web search and friend finding in social networks?

These and related questions lead us to believe that there is a compelling need for

new techniques for mining, analyzing, and leveraging geospatial footprints in social

media. In the face of these challenges, this dissertation makes a first step toward

realizing the potential of these new geo-social systems.

1.3 Contributions

This dissertation research seeks to combine information search and mining ca-

pabilities with the collective intelligence of users from online location-based social

networks to develop new geo-social information systems. In light of the challenges

identified, this dissertation is organized around two fundamental principles: (i) inves-

tigating the capacity of geo-social data from publicly available location-based social

networks to build a new generation of geo-social information systems; and (ii) demon-

strating the potential of new geo-social information systems powered with collective

intelligence. Specifically, the dissertation makes the following unique contributions:

• Overcoming Location Sparsity: First, in order to tackle the problem of lo-

cation sparsity, this dissertation is the first to propose the challenge of content-

based location estimation in social media. Concretely, we propose and evaluate

a probabilistic framework for estimating a user’s location based purely on the

content of the user’s posts. The developed location estimator can place 51%

of Twitter users within 100 miles of their actual location, relying solely on the

public content posted by the user.

• Investigating Location Sharing Services: Second, this dissertation presents
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the first large-scale study of location sharing services through an investigation

of 22 million check-ins across 220,000 users. We present the first quantitative

assessment of human mobility patterns revealed through these services by an-

alyzing the spatial, temporal, social, and textual aspects associated with these

footprints. We find that (i) that locations can be modeled by the activity

patterns of people; and (ii) that people follow simple, reproducible patterns.

• Evaluating Public versus Private Location-Revealing Data: Third, this

dissertation evaluates the capacity of publicly-shared geo-social data to capture

real-world flows of people instead of using proprietary data. We compare a set

of 35 million publicly shared check-ins with a set of over 400 million private

query logs recorded by a commercial hotel search engine. Although generated

by users with fundamentally different intentions, we find common conclusions

may be drawn from both data sources, indicating the viability of publicly shared

location information to complement (and replace, in some cases), privately held

location information.

These first three contributions focus on investigating the capacity of investigat-

ing the capacity of the geo-social footprints from emerging location-based social

networks to build new generation of geo-social information systems. Based on

these observations, we complement these three efforts with our next two contri-

butions focused on demonstrating the potential of new geo-social information

systems powered with collective intelligence.

• Integrating Geo-Social Information into Activity-Driven Local Search:

We propose a prototype location-based search system that takes advantage of

these new location signals. We study location-based activity patterns revealed

through aggregated check-ins from location sharing services and find that these
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activity patterns can identify semantically related locations, improving both

unsupervised location clustering, and supervised location categorization. Based

on these results, we show how activity-driven semantic organization of locations

may be naturally incorporated into location-based web search.

• A Geo-spatial Approach to Local Expert Finding: Finally, we design

and evaluate a novel local expert finding system that is built over millions of

aggregated location signals. The framework relies on both crowdsourced labels

extracted from Twitter as well as expertise propagation through both explicit

and implicit social connections. We find high precision and NDCG for the

proposed approach in comparison compared to alternative approaches.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Section 2: Overcoming Sparsity: A Content-Driven Approach to

Geo-Location - To tackle the challenge of location sparsity in location-based

social networks, we propose and evaluate a probabilistic framework for esti-

mating a microblog user’s location based purely on the content of the user’s

posts.

• Section 3: Whos, Whats, and Whens of Location Sharing - Toward

better understanding of the properties of people’s geo-social footprints from

location sharing services, we investigate a set of 22 million check-ins, and report

a quantitative assessment of human mobility patterns by analyzing the spatial,

temporal, social, and textual aspects associated with these footprints.

• Section 4: Public Check-ins versus Private Queries: Measuring and

Evaluating Spatial Preference - We investigate the viability of new publicly-
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available geospatial information to capture spatial preference. Specifically, we

compare a set of 35 million publicly shared check-ins voluntarily generated by

users of a popular location sharing service with a set of over 400 million private

query logs recorded by a commercial hotel search engine.

• Section 5: Activity-Driven Local Search - We introduce a location-based

search system augmented using activity pattern mined from location-sharing

services.

• Section 6: A Geo-Spatial Approach to Finding Local Experts on

Twitter - We introduce a framework – LocalRank – that utilizes collective

intelligence to identify top local experts.

• Section 7: Conclusions and Future Directions - We conclude our disser-

tation contributions, and discuss potential research directions for the results

presented here.
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2. OVERCOMING SPARSITY: A CONTENT-DRIVEN APPROACH TO

GEO-LOCATION∗

In this section, we tackle the challenge of location sparsity for location-based so-

cial networks. The lack of user adoption of geo-based features per user or per post

signals that the promise of microblog services as location-based sensing systems may

have only limited reach and impact. Thus, we propose and evaluate a probabilistic

framework for estimating a microblog user’s location based purely on the content of

the user’s posts. Our framework can overcome the sparsity of geo-enabled features

in these services and bring augmented scope and breadth to emerging location-based

personalized information services. Three of the key features of the proposed ap-

proach are: (i) its reliance purely on publicly available content; (ii) a classification

component for automatically identifying words in posts with a strong local geo-scope;

and (iii) a lattice-based neighborhood smoothing model for refining a user’s location

estimate.

2.1 Introduction

Microblog systems like Twitter contain a huge volume of content, diversified top-

ics, and a wide user bases, which in total provide significant opportunities for mining

and exploring the real-time web. Mining this people-centric sensor data promises new

personalized information services, including local news summarized from tweets of

nearby Twitter users [126], the targeting of regional advertisements, spreading busi-

∗Reprinted with permission from “You Are Where You Tweet: A Content-Based Approach to
Geo-locating Twitter Users” by Zhiyuan Cheng, James Caverlee, and Kyumin Lee, 2010. Pro-
ceedings of the 19th ACM International Conference on Information and Knowledge Management.
Copyright 2010 by ACM. Reprinted with permission from “A Content-Driven Framework for Geo-
locating Microblog Users” by Zhiyuan Cheng, James Caverlee, and Kyumin Lee. Transactions on
Intelligent Systems and Technology, Volume 4, Issue 1, January 2013. Copyright 2013 by ACM.
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ness information to local customers [92], and novel location-based applications (e.g.,

Twitter-based earthquake detection, which can be faster than through traditional

official channels [100]).

Unfortunately, microblog users have been slow to adopt geospatial features. Tak-

ing Twitter as an example, as listed in Table 2.1, in a random sample of over 1

million Twitter users, we find that only 21% have listed a user’s location as granular

as a city name (e.g., Los Angeles, CA); only 5% have listed a location as granular as

latitude/longitude coordinates (e.g., 29.3712, -95.2104); the rest are overly general

(e.g., California), missing altogether, or nonsensical (e.g., Wonderland). In addi-

tion, Twitter began supporting per-tweet geo-tagging in August 2009. Unlike user

location (which is a single location associated with a user and listed in each Twit-

ter user’s profile), this per-tweet geo-tagging promises extremely fine-tuned Twitter

user tracking by associating each tweet with a latitude and longitude. Our sample

shows, however, that fewer than 0.42% of all tweets actually use this functionality.

Together, the lack of user adoption of geo-based features per user or per post signals

that the promise of microblog services as location-based sensing systems may have

only limited reach and impact.

To overcome this location sparsity problem, we propose that a reasonable frame-

work to predict a microblog user’s location should contain the following features:

(i) the proposed framework should be generalizable across social media sites and

future human-powered sensing systems; (ii) the framework should be robust in the

presence of noise and the sparsity of spatial cues in a microblog user’s posts; (iii)

the framework should provide accurate and reliable location estimation; and (iv) the

prediction framework should be based purely on the publicly available data from

the user, with no need for proprietary data from system operators (e.g., backend

database) or privacy-sensitive data from users (e.g., IP or user/pass).
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With these guidelines in mind, in this manuscript, we propose a framework which

is based purely on the content of the user’s posts, even in the absence of any other

geospatial cues. Our intuition is that a user’s posts may encode some location-specific

content – either specific place names or certain words or phrases more likely to be as-

sociated with certain locations than others (e.g., “howdy” for people from Texas). In

this way, we can fill-the-gap for the large portion of microblog users lacking city-level

granular location information. By augmenting the massive human-powered sensing

capabilities of Twitter and related microblogging services with content-derived loca-

tion information, this framework can overcome the sparsity of geo-enabled features

in these services and bring augmented scope and breadth to emerging location-based

personalized information services. This in turn could lead to even broader applica-

tions of social media in time-critical situations such as emergency management and

tracking the diffusion of infectious diseases.

Effectively geo-locating a microblog user based purely on the content of their

posts is a difficult task, however:

• First, microblog status updates are inherently noisy, mixing a variety of daily

interests (e.g., food, sports, daily chatting with friends). For example, as shown

in Table 2.2, User1 talks about education, C++, conversational topics, and

travel. Are there clear location signals embedded in this mix of topics and

interests that can be identified for locating a user?

• Second, microblog users often rely on shorthand and non-standard vocabu-

lary for informal communication, meaning that traditional gazetteer terms and

proper place names (e.g., Eiffel Tower) may not be present in the content of the

posts at all, making the task of determining which terms are location-sensitive

non-trivial. As we can see from User2’s posts in Table 2.2, User2 relies on
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Table 2.1: Categorization of Twitter User’s Location Field

Category Percentage Example(s)
Coordinates 5% “29.3712, -95.2104”

City-Level Locations 21% “Los Angeles, CA”, “New York City”
General / Nonsensical / Missing 74% “California”, “Wonderland”, NULL

informal language which may cause difficulty in analyzing the user’s content.

• Third, even if we could isolate the location-sensitive attributes of a user’s posts,

a user may have interests that span multiple locations beyond their immediate

home location, meaning that the content of their posts may be skewed toward

words and phrase more consistent with outside locations. For example, New

Yorkers may talk about NBA games in Los Angeles or the earthquake in Haiti.

This can also be observed from User1 and User3 in Table 2.2.

• Fourth, a user may have more than one associated location, e.g., due to travel,

meaning that content-driven location estimation may have difficulty in precisely

identifying a user’s location.

With these issues in mind, in this manuscript we propose and evaluate a proba-

bilistic framework for estimating a microblog user’s city-level location which satisfies

all the requirements we mentioned. Taking only a user’s publicly available content as

the input data, the framework is generalizable across different microblogging sites,

and other on-line social media websites. Experimentally, we select Twitter as an ex-

emplar microblogging service over which to evaluate our framework. The proposed

approach relies on three key features: (i) its data input of pure content, without

any external data from users or web-based knowledge bases; (ii) a classifier which

identifies words in status updates with a local geographic scope; and (iii) a lattice-

based neighborhood smoothing model for refining the estimated results. The system
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Table 2.2: Examples of Tweets

User Tweet Topic Location Hint

User1

More like this, please. White House sci-
ence fair: http://bit.ly/9bKI7h

Education DC

C++ celebrates 25th anniv of its first
commercial release! #TAMU

C++ College Station

@jelsas I read that as #applausability.
I am clapping for your tweet.

Conversation N/A

Off to Chicago. Found a Papasito’s in
concourse E at IAH!

Travel Chicago / Houston

User2
Shaq dmc. In the place to be. I been
doin this here since 93.

Conversation N/A

I’m n da apple store. I almost got away
a wit dat a new iphone.

Personal N/A

Vote for my boy rick fox on dancing wit
da stars.

Conversation N/A

User3
@Peter Dude, were you in San Fran-
cisco recently?

Conversation San Francisco

Got an email from a guy in Serbia ask-
ing for source code.

Personal Serbia

Really impressed by fans of the Aggies. Conversation TAMU / UC Davis
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provides k estimated cities for each user with a descending order of possibility. On

average, 51% of randomly sampled microblog users are placed within 100 miles of

their actual location (based on an analysis of just 100s of posts). We find that in-

creasing amounts of data (in the form of wider coverage of microblog users and their

associated tweets) results in more precise location estimation, giving us confidence

in the robustness and continued refinement of the approach.

The rest of this manuscript is organized as follows: Related work is in Section 2.2.

Section 2.3 formalizes the problem of predicting a microblog user’s geo-location and

briefly describes the sampled dataset used in the experiments. In Section 2.4, our

estimation algorithm and corresponding refinements are introduced. We present

the experimental results in Section 2.5. Finally, conclusions and future work are

discussed in Section 5.8.

2.2 Related Work

Studying the geographical scope of online content has attracted attention by re-

searchers in the last decade, including studies of blogs [37, 73], webpages [2], search

engine query logs [6], and even web users [83]. Prior work relevant to this manuscript

can be categorized roughly into three groups based on the techniques used in geo-

locating: content analysis with terms in a gazetteer, content analysis with proba-

bilistic language models, and inference via social relations.

Several studies try to estimate the location of web content utilizing content analy-

sis based on geo-related terms in a specialized external knowledge base (a gazetteer).

Amitay et al. [2], Fink et al. [37], and Zong et al. [138] extracted addresses, postal

code, and other information listed in a geographical gazetteer from web content to

identify the associated geographical scope of web pages and blogs.

Serdyukov et al. [105] generate probabilistic language models based on the tags
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that photos are labeled with by Flickr users. Based on these models and Bayesian

inference, they show how to estimate the location for a photo. In terms of the

intention, their method is similar to our work. However, they use a GeoNames

database to decide whether a user-submitted tag is a geo-related tag, which can

overlook the spatial usefulness of words that may have a strong geo-scope (e.g.,

earthquake, casino, and so on). Separately, the work of Crandall et al. [28] proposes

an approach combining textual and visual features to place images on a map. They

have restrictions in their task that their system focuses on which of ten landmarks

in a given city is the scope of an image.

In the area of privacy inference, a few researchers have been studying how a

user’s private information may be inferred through an analysis of the user’s social

relations. Backstrom et al. [7], Lindamood et al. [74], and Hearthely et al. [51]

all share a similar assumption that users related in social networks usually share

common attributes. These methods are orthogonal to our effort and could be used to

augment the content-based approach taken in this manuscript by identifying common

locations among a Twitter user’s social network.

Recent work on detecting earthquakes with real-time Twitter data makes use of

location information for tracking the flow of information across time and space [100].

Sakaki et al. consider each Twitter user as a sensor and apply Kalman filtering and

particle filtering to estimate the center of the bursty earthquake. Their algorithm

requires prior knowledge of where and when the earthquake is reported, emphasizing

tracking instead of geo-locating users. As a result, this and related methods could

benefit from our efforts to assign locations to users for whom we have no location

information.

As people care about the privacy issues of real-time microblog systems and

location-sharing services, we do note that researchers are working in the opposite
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direction of trying to protect a user’s location information and other sensitive in-

formation [9, 57, 42]. Our work could be helpful for researchers in the domain of

location-preserving data mining, and raise awareness of the privacy leakages and

risks associated with posting location-relevant content to microblogging services.

2.3 Preliminaries

In this section, we briefly explain our dataset, formalize the research problem and

describe the experimental setup.

2.3.1 Location Sparsity on Twitter

To derive a representative sample of Twitter users, we employed two comple-

mentary crawling strategies: crawling through Twitter’s public timeline API and

crawling by breadth-first search through social edges to crawl each user’s friends

(following) and followers. The first strategy can be considered as random sampling

from active Twitter users (whose tweets are selected for the public timeline), while

the second strategy extracts a directed acyclic sub-graph of the whole Twitter social

graph, including less active Twitter users. We combine the two strategies to avoid

bias in either one. Using the open-source library twitter4j [124] to access Twitter’s

open API [114] from September 2009 to January 2010, we collected a base dataset

of 1,074,375 user profiles and 29,479,600 status updates.

Each user profile includes the capacity to list the user’s name, location, a web

link, and a brief biography. We find that 72.05% of the profiles collected do list a

non-empty location, including locations like “Hollywood, CA”, “England”, and “UT:

40.708046,-73.789259”. However, we find that most of these user-submitted locations

are overly general with a wide geographic scope (e.g., California, worldwide), missing

altogether, or nonsensical (e.g., Wonderland, “CALI to FORNIA”). Specifically, we

examine all locations listed in the 1,074,375 user profiles and find that just 223,418
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(a) Population Distribution of the Continental United States

(b) User Distribution of Sampled Twitter Dataset

Figure 2.1: Comparison between the Actual US Population and the Sample Twitter
User Population
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(21% of the total) list a location as granular as a city name and that only 61,335

(5%) list a location as granular as a latitude/longitude coordinate. This absence of

granular location information for the majority of Twitter users (74%) indicates the

great potential in estimating or recommending location for a Twitter user.

For the rest of the section, we focus our study of Twitter user location estimation

on users within the continental United States. Toward this purpose, we filter all listed

locations that have a valid city-level label in the form of “cityName”, “cityName,

stateName”, and “cityName, stateAbbreviation”, where we consider all valid cities

listed in the Census 2000 U.S. Gazetteer [14] from the U.S. Census Bureau. Even

when considering these data forms, there can still be ambiguity for cities listed using

just “cityName”, e.g., there are three cities named Anderson, four cities named

Arlington, and six cities called Madison. For these ambiguous cases, we only consider

cities listed in the form “cityName, stateName”, and “cityName, stateAbbreviation”.

After applying this filter, we find that there are 130,689 users (with 4,124,960 status

updates), accounting for 12% of all sampled Twitter users. This sample of Twitter

users is representative of the actual population of the United States as can be seen

in Figure 2.1a, and Figure 2.1b.

2.3.2 Problem Statement

Given the lack of granular location information for Twitter users, our goal is to

estimate the location of a user based purely on the content of their tweets. Having

a reasonable estimate of a user’s location can enable content personalization (e.g.,

targeting advertisements based on the user’s geographical scope, pushing related

news stories, etc.), targeted public health web mining (e.g., a Google Flu Trends-like

system that analyzes tweets for regional health monitoring), and local emergency

detection (e.g., detecting emergencies by monitoring tweets about earthquakes, fires,
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etc.). By focusing on the content of a user’s Twitter stream, such an approach can

avoid the need for private user information, IP address, or other sensitive data. With

these goals in mind, we focus on city-level location estimation for a Twitter user,

where the problem can be formalized as:

Location Estimation Problem: Given a set of tweets Stweets(u) posted by a Twitter

user u, estimate a user’s probability of being located in city i: p(i|Stweets(u)), such

that the city with maximum probability lest(u) is the user’s actual location lact(u).

As we have noted, location estimation based on tweet content is a difficult and

challenging problem. Twitter status updates are inherently noisy, often relying on

shorthand and non-standard vocabulary. It is not obvious that there are clear loca-

tion cues embedded in a user’s tweets at all. A user may have interests which span

multiple locations and a user may have more than one natural location.

2.3.3 Evaluation Setup and Metrics

Toward developing a content-based user location estimator, we next describe our

evaluation setup and introduce four metrics to help us evaluate the quality of a

proposed estimator.

2.3.3.1 Test Data

In order to be fair in our evaluation of the quality of location estimation, we

build a test set that is separate from the 130,689 users previously identified (and

that will be used for building our models for predicting user location). In particular,

we extract a set of active users with 1000+ tweets who have listed their location

in the form of latitude/longitude coordinates. Since these types of user-submitted

locations are typically generated by smartphones, we assume these locations are cor-

rect and can be used as ground truth. We filter out spammers, promoters, and other

automated-script style Twitter accounts using features derived from Lee et al.’s work
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[68] on Twitter bot detection, so that the test set will consist of primarily “regular”

Twitter users for whom location estimation would be most valuable. Finally, we

arrive at 5,190 test users and more than 5 million of their tweets. These test users

are distributed across the continental United States similar to the distributions seen

in Figure 2.1a, and Figure 2.1b.

2.3.3.2 Metrics

To evaluate the quality of a location estimator, we compare the estimated lo-

cation of a user versus the actual city location (which we know based on the city

corresponding to their latitude/longitude coordinates). The first metric we consider

is the Error Distance which quantifies the distance in miles between the actual

location of the user lact(u) and the estimated location lest(u). The Error Distance

for user u is defined as:

ErrDist(u) = d(lact(u), lest(u))

To evaluate the overall performance of a content-based user location estimator,

we further define the Average Error Distance across all test users U :

AvgErrDist(U) =

∑
u∈U ErrDist(u)

|U |

A low Average Error Distance means that the system can geo-locate users close to

their real location on average, but it does not give strong insight into the distribution

of location estimation errors. Hence, the next metric – Accuracy – considers the

percentage of users with their error distance categorized in the range of 0-100 miles:

Accuracy(U) =
|{u|u ∈ U ∧ ErrDist(u) ≤ 100}|

|U |
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Further, since the location estimator predicts k cities for each user in decreasing

order of confidence, we define the Accuracy with K Estimations (Accuracy@k)

which applies the same Accuracy metric, but over the city in the top-k with the least

error distance to the actual location. In this way, the metric shows the capacity of

an estimator to identify a good candidate city, even if the first prediction is in error.

2.4 Content-Based Location Estimation: Overview and Approach

In this section, we begin with an overview of our baseline approach for content-

based location estimation and then present two key optimizations for improving and

refining the quality of location estimates.

2.4.1 Baseline Location Estimation

First, we can directly observe the actual distribution across cities for each word

in the sampled dataset. Based on maximum likelihood estimation, the probabilistic

distribution over cities for word w can be formalized as p(i|w) which identifies for

each word w the likelihood that it was issued by a user located in city i. For example,

for the word “rockets”, we can see its city distribution in Figure 2.2 based on the

tweets in the sampled dataset (with a large peak near Houston, home of NASA and

the NBA basketball team Rockets).

Of course users from cities other than Houston may tweet the word “rockets”, so

reliance on a single word or a single tweet will necessarily reveal very little information

about the true location of a user. By aggregating across all words in tweets posted by

a particular user, however, our intuition is that the location of the user will become

clear. Given the set of words Swords(u) extracted from a user’s tweets Stweets(u), we

propose to estimate the probability of the user being located in city i as:
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p(i|Swords(u)) =
∑

w∈Swords(u)

p(i|w) ∗ p(w)

where we use p(w) to denote the probability of the word w in the whole dataset.

Letting count(w) be the number of occurrences of the word w, and t be the total

number of tokens in the corpus, we replace p(w) with count(w)
t

in calculating the value

of p(w). Such an approach will produce a per-user city probability across all cities.

The city with the highest probability can be taken as the user’s estimated location.

This location estimator is formalized in Algorithm 1.

Algorithm 1 Content-Based User Location Estimation
Input:
tweets: List of n tweets from a Twitter user u
cityList: Cities in continental US with 5k+ people
distributions: Probabilistic distributions for words
k: Number of estimations for each user
Output:
estimatedCities: Top K estimations

1: words = preProcess(tweets)
2: for city in cityList do
3: prob[city]← 0
4: for word in words do
5: prob[city]+ = distributions[word][city] ∗ word.count
6: end for
7: end for
8: estimatedCities = sort(prob, cityList, k)
9: return estimatedCities

2.4.2 Initial Results

Using this baseline approach, we estimated the location of all users in our test

set using per-city word distributions estimated from the 130,689 users shown in
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Figure 2.1b. For each user, we parsed their location and status updates (4,124,960 in

all). In parsing the tweets, we eliminate all occurrences of a standard list of 319 stop

words, as well as screen names (which start with @), hyperlinks, and punctuation

in the tweets. Instead of using stemming, we use the Jaccard Coefficient to check

whether a newly encountered word is a variation of a previously encountered word.

The Jaccard Coefficient is particularly helpful in handling informal content like in

tweets, e.g., by treating “awesoome” and “awesooome” as the word “awesome”. In

generating the word distributions, we only consider words that occur at least 50

times in order to build comparatively accurate models. Thus, 25,987 per-city word

distributions are generated from a base set of 481,209 distinct words.

Figure 2.2: City Estimates for the Word “Rockets”
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Disappointingly, only 10.12% of the 5,119 users in the test set are geo-located

within 100 miles to their real locations and the AvgErrDist is 1,773 miles, meaning

that such a baseline content-based location estimator provides little value. On in-

spection, we discovered two key problems: (i) most words are distributed consistently

with the population across different cities, meaning that most words provide very

little power at distinguishing the location of a user; and (ii) most cities, especially

with a small population, have a sparse set of words in their tweets, meaning that

the per-city word distributions for these cities are under-specified leading to large

estimation errors.

In the rest of this section, we address these two problems in turn in hopes of

developing a more valuable and refined location estimator. Concretely, we pursue

two directions:

• Identifying Local Words in Tweets: Is there a subset of words which have a

more compact geographical scope compared to other words in the dataset?

And can these “local” words be discovered from the content of tweets? By

removing noise words and non-local words, we may be able to isolate words

that can distinguish users located in one city versus another.

• Overcoming Tweet Sparsity: In what way can we overcome the location sparsity

of words in tweets? By exploring approaches for smoothing the distributions

of words, can we improve the quality of user location estimation by assigning

non-zero probability for words to be issued from cities in which we have no

word observations?

2.4.3 Identifying Local Words in Tweets

Our first challenge is to filter the set of words considered by the location estima-

tion algorithm (Algorithm 1) to consider primarily words that are essentially “local”.

24



By considering all words in the location estimator, we saw how the performance suf-

fers due to the inclusion of noise words that do not convey a strong sense of location

(e.g., “august”, “peace”, “world”). By observation and intuition, some words or

phrases have a more compact geographical scope. For example, “howdy” which is a

typical greeting word in Texas may give the estimator a hint that the user is in or

near Texas.

Toward the goal of improving user location estimation, we characterize the task

of identifying local words as a decision problem. Given a word, we must decide if it

is local or non-local. Since tweets are essentially informal communication, we find

that relying on formally defined location names in a gazetteer is neither scalable

nor provides sufficient coverage. That is, Twitter’s 140 character length restriction

means that users may not write the full address or location name (e.g., “t-center”

instead of “Houston Toyota Center”, home of the NBA Rockets team. Concretely,

we propose to determine local words using a model-driven approach based on the

observed geographical distribution of the words in tweets.

2.4.3.1 Determining Spatial Focus and Dispersion

Intuitively, a local word is one with a high local focus and a fast dispersion, that

is it is very frequent at some central point (like say in Houston) and then drops off

in use rapidly as we move away from the central point. Non-local words, on the

other hand, may have many multiple central points with no clear dispersion (e.g.,

words like basketball). How do we assess the spatial focus and dispersion of words

in tweets?

Recently Backstrom et al. introduced a model of spatial variation for analyzing

the geographic distribution of terms in search engine query logs [6]. The authors

propose a generative probabilistic model in which each query term has a geographic
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focus on a map (based on an analysis of the IP-address-derived locations of users

issuing the query term). Around this center, the frequency shrinks as the distance

from the center increases. Two parameters are assigned for each model, a constant

C which identifies the frequency in the center, and an exponent α which controls the

speed of how fast the frequency falls as the point goes further away from the center.

The formula for the model is Cd−α which means that the probability of the query

issued from a place with a distance d from the center is approximately Cd−α. In the

model, a larger α identifies a more compact geo-scope of a word, while a smaller α

displays a more global popular distribution.

In the context of tweets, we can similarly determine the focus (C) and dispersion

(α) for each tweet word by deriving the optimal parameters that fit the observed

data. These parameters C and α are strong criteria for assessing a word’s focus

and dispersion, and hence, determining whether a word is local or not. For a word

w, given a center, the central frequency C, and the exponent α, we compute the

maximum-likelihood value like so: for each city, suppose all users tweet the word w

from the city a total of n times, then we multiply the overall probability by (Cd−αi )n;

if no users in the city tweet the word w, we multiply the overall probability by

1 − Cd−αi . In the formula, di is the distance between city i and the center of word

w. We add logarithms of probabilities instead of multiplying probabilities in order

to avoid underflow. For example, let S be the set of occurrences for word w (indexed

by cities which issued the word w), and let di be the distance between a city i and

the model’s center. Then:

f(C, α) =
∑
i∈S

logCd−αi +
∑
i/∈S

log (1− Cd−αi )

is the likelihood value for the given center, C and α. Backstrom et al. also prove
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Figure 2.3: Optimized Model for the Word “Rockets”

that f(C, α) has exactly one local maximum over its parameter space which means

that when a center is chosen, we can iterate C and α to find the largest f(C, α) value

(and hence, the optimized C and α). Instead of using a brute-force algorithm to find

the optimized set of parameters, we divide the map of the continental United States

into lattices with a size of two by two square degrees. For the center in each lattice,

we use golden section search [93] to find the optimized central frequency and the

shrinking factor α. Then we zoom into the lattice which has the largest likelihood

value, and use a finer-grained mesh on the area around the best chosen center. We

repeat this zoom-and-optimize procedure to identify the optimal C, and α. Note

that the implementation with golden section search can generate an optimal model

for a word within a minute on a single modern machine and is scalable to handle

web-scale data. To illustrate, Figure 2.3 shows the optimized model for the word
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Table 2.3: Example Local Words

Word Latitude Longitude C0 α
automobile 40.2 -85.4 0.5018 1.8874

casino 36.2 -115.24 0.9999 1.5603
tortilla 27.9 -102.2 0.0115 1.0350
canyon 36.52 -111.32 0.2053 1.3696
redsox 42.28 -69.72 0.1387 1.4516

“rockets” centered around Houston.

2.4.3.2 Training and Evaluating The Model

Given the model parameters C (focus) and α (dispersion) for every word, we

could directly label as local words all tweet words with a sufficiently high focus

and fast dispersion by considering some arbitrary thresholds. However, we find

that such a direct application may lead to many errors (and ultimately poor user

location estimation). For example, some models may lack sufficient supporting data

resulting in a clearly incorrect geographic scope. Hence, we augment our model

of local words with coordinates of the geo-center, since the geographical centers of

local words should be located in the continental United States, and the count of the

word occurrences, since a higher number of occurrences of a word will give us more

confidence in the accuracy of the generated model of the word.

Using these features, we train a local word classifier using the Weka toolkit [120] –

which implements several standard classification algorithms like Naive Bayes, SVM,

AdaBoost, etc. – over a hand-labeled set of standard English words taken from

the 3esl dictionary [5]. Of the 19,178 words in the core dictionary, 11,004 occur

in the sampled Twitter dataset. Using 10-fold cross-validation and the SimpleCart

classifier, we find that the classifier has a Precision of 98.8% and Recall and F -

Measure both as 98.8%, indicating that the quality of local word prediction is good.
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After learning the classification model over these known English words, we apply

the classifier to the rest of the 14,983 tweet words (many of which are non-standard

words and not in any dictionary), resulting in 3,183 words being classified as local

words.

To illustrate the geographical scope of the local words discovered by the classi-

fier, five local word models are listed in Table 2.3. The word “automobile” is located

around two hundred miles south of Detroit which is the traditional auto manufac-

turing center of the US. The word “casino” is located in the center of Las Vegas, two

miles east of the North Las Vegas Airport. “tortilla” is centered a hundred miles

south of the border between Texas and Mexico. The word “canyon” is located almost

at the center of the Grand Canyon. The center for the word “redsox” is located 50

miles east of Boston, home of the baseball team.

In order to visualize the geographical centers of the local favored words, a few

examples are shown on the map of the continental United States in Figure 2.4.

Based on these and the other discovered local words, we will evaluate if and how

user location estimation improves in the experimental study in Section 2.5.

2.4.4 Overcoming Tweet Sparsity

The second challenge for improving our content-based user location estimator is to

overcome the sparsity of words across locations in our sampled Twitter dataset. Due

to this sparseness, there are a large number of “tiny” word distributions (i.e., words

issued from only a few cities) The problem is even more severe when considering

cities with a small population. As an example, consider the distribution for the word

“rockets” over the map of the continental United States displayed in Figure 2.2. We

notice that for a specific word, the probability for the word to be issued in a city can

be zero since there are no tweets including the word in our sampled dataset. In order
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Figure 2.4: Geographical Centers of Local Words Discovered in Sampled Twitter
Dataset

to handle this sparsity, we consider three approaches for smoothing the probability

distributions: Laplace smoothing, data-driven geographic smoothing, and model-

driven smoothing.

2.4.4.1 Laplace Smoothing

A simple method of smoothing the per-city word distributions is Laplace smooth-

ing (add-one smoothing) which is defined as:

p(i|w) =
1 + count(w, i)

V +N(w)

where count(w, i) denotes the term count of word w in city i; V stands for the size

of the vocabulary and N(w) stands for the total count of w in all the cities. Briefly
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speaking, Laplace smoothing assumes every seen or unseen city issued word w once

more than it did in the dataset.

Although simple to implement, Laplace smoothing does not take the geographic

distribution of a word into consideration. That is, a city near Houston with zero

occurrences of the word “rockets” is treated the same as a city far from Houston with

zero occurrences. Intuitively, the peak for “rockets” in Houston (recall Figure 2.2)

should impact the probability mass at nearby cities.

2.4.4.2 Data-Driven Geographic Smoothing

To take this geographic nearness into consideration, we consider two techniques

for smoothing the per-city word distributions by considering neighbors of a city at

different granularities. In the first case, we smooth the distribution by considering the

overall prevalence of a word within a state; in the second, we consider a lattice-based

neighborhood approach for smoothing at a more refined city-level scale.

State-Level Smoothing: For state-level smoothing, we aggregate the proba-

bilities of a word w in the cities in a specific state s (e.g., Texas), and consider

the average of the summation as the probability of the word w occurring in the

state. Letting Sc denote the set of cities in the state s, the state probability can be

formulated as:

ps(s|w) =

∑
i∈Sc

p(i|w)

|Sc|

Furthermore, the probability of the word w to be located in city i can be a combi-

nation of the city probability and the state probability:

p′(i|w) = λ ∗ p(i|w) + (1− λ) ∗ ps(s|w)
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where i stands for a city in the state s, and 1−λ is the amount of smoothing. Thus,

a small value of λ indicates a large amount of state-level smoothing.

Lattice-based Neighborhood Smoothing: Naturally, state-level smoothing

is a fairly coarse technique for smoothing word probabilities. For some words, the

region of a state exaggerates the real geographical scope of a word; meanwhile, the

impact of a word issued from a city may have higher influence over its neighborhood

in another state than the influence over a distant place in the same state. With this

assumption, we apply lattice-based neighborhood smoothing.

Firstly, we divide the map of the continental United States into lattices of 1 x 1

square degrees. Letting w denote a specific word, lat a lattice, and Sc be the set of

cities in lat, the per-lattice probability of a word w can be formalized as:

p(lat|w) =
∑
i∈Sc

p(i|w)

In addition, we consider lattices around (the nearest lattice in all eight directions)

lat as the neighbors of the lattice lat. Introducing µ as the parameter of neighborhood

smoothing, the lattice probability is updated as:

p′(lat|w) = µ ∗ p(lat|w) + (1.0− µ) ∗
∑

lati∈Sneighbors

p(lati|w)

In order to utilize the smoothed lattice-based probability, another parameter λ

is introduced to aggregate the real probability of w issued from the city i, and the

probability of the smoothed lattice probability. Finally the lattice-based per-city

word probability can be formalized as:

p′(i|w) = λ ∗ p(i|w) + (1.0− λ) ∗ p′(lat|w)
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where i is a city within the lattice lat.

2.4.4.3 Model-Based Smoothing

The final approach to smoothing takes into account the word models developed

in the previous section for identifying C and α. Applying this model directly, where

each word is distributed according to Cd−α, we can estimate a per-city word dis-

tribution as: p′(i|w) = C(w)d
−α(w)
i where C(w) and α(w) are taken to be the op-

timized parameters derived from the real data distribution of words across cities.

This model-based smoothing ignores local perturbations in the observed word fre-

quencies, in favor of a more elegant word model (recall Figure 2.3). Compared to

the data-driven geographic-based smoothing, model-based smoothing has the advan-

tage of “compactness”, by encoding each word’s distribution according to just two

parameters and a center, without the need for the actual city word frequencies.

2.4.4.4 Wave-Like Smoothing:

The term-localizing component works well for terms which have exactly one ge-

ographical center. However, some of the words cannot be simply represented by a

single peak. Let us still take the word “Rockets” as an example: Rockets is the name

of the NBA team in Houston, as well as a term frequently used in NASA which is

also located in Houston. Thus people tweet the word “Rockets” the most frequently

in the greater Houston area, but there are also “Rockets” associated with the Univer-

sity of Toledo in Ohio and with particular events (like the mysterious rocket launch

off the coast of California in 2010).

To handle this multi-peak issue, we can extend the one-peak spatial model to

a multiple peaks version. For each word, we generate a peak at each city where

the word is issued. In addition, each peak at a city becomes a radioactive source,

emitting wave-like impacts towards other cities over the map. The impacts from
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Figure 2.5: Wave-Like Smoothing for Word “Rockets”

each peak (i.e., source) decreases exponentially as the distance from the location

of the peak increases. Thus, the probability distribution for a word becomes an

interwoven overlapping of thousands of one-peak distributions. We visualize the

wave-like distribution for the word “Rockets” in Figure 2.5, and at least three relative

high peaks can be identified. With this wave-like smoothing, the probability of a word

w issued from city i can be formalized as:

p(i|w) =
∑
j∈Sc

 p(j|w) ∗ (d(i, j)− rj + 1)−α(w) d(i, j) ≥ rj

p(j|w) d(i, j) < rj

where p(j|w) denotes the estimated probability of word w issued from city j; d(i, j)

is the euclidean distance between city i and city j; rj is the radius of the city j;

and α(w) is the shrinking parameter of word w indicating how fast the impacting
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probability of the word w shrinks down when distance from the center increases.

With the equation above, we go through all the cities in the set of large cities Sc

and sum up the impacts from each city. Locations inside the area of each source

city will have the same probability as the city’s p(j|w), and as the distance from the

source increases, the probability decreases exponentially. As a consequence, with the

combinations of all the local words and all the cities, a highly overlapped probabilistic

distribution is generated.

2.4.5 Social Refinement

So far, we explored predicting an individual Twitter user’s geolocation based

on her tweets alone. A natural hypothesis would be: given an un-located user’s

tweets and a few of her un-located friends and their tweets, can we improve the

performance of predicting the user’s location by incorporating evidence from these

social ties? Thus, in this section we explore the possibility of geolocating a user

utilizing aggregated results from social relations. The assumption of our method is

that users have more local friends than distant friends as researchers have previously

observed in [7]. The hope is that aggregates of location predictions from a user’s social

ties will provide additional evidence for refining the user’s predicted geolocation.

For each user u, we have a collection of the user’s latest tweets Stweets(u), a list

of the user’s n friends listfriends(u) = {fj|1 ≤ j ≤ n}, and a collection of tweets

Stweets(fj) from each friend fj. Determining the appropriate choice of friends and

the number of friends to consider is something we can study experimentally.

Given the setup, the social refinement algorithm for content-driven location esti-

mation is:

• Firstly, we apply the baseline content-driven algorithm to predict the location

for each friend fj of the user u’s. Concretely, for each city i, we estimate a
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probability p(i|Stweets(fj)) for the friend fj to be located in city i based on her

tweets Stweets(fj).

• Secondly, for each city i, we get an average probability for user u to be located in

the city i based the probabilities estimated from her friends’ tweets, formalized

as p(i|Stweets(listfriends(u)) =

∑
fj∈listfriends(u)

p(i|Stweets(fj))

|listfriends(u)|
.

• Thirdly, for each city i, we predict the probability for user u to be located in

city i based on user u’s tweets Stweets(u): p(i|Stweets(u)).

• Fourthly, for each city i, the social inferred probability for user u to be located

in city i is: p(i|Stweets(u), Stweets(listfriends(u)) = α ∗ p(i|Stweets(listfriends(u)) +

(1−α)∗p(i|Stweets(u)), where α is a pre-defined weight for predicted probability

from social relations.

• Finally, according to the descending order of p(i|Stweets(u), Stweets(listfriends(u))

we rank the cities, and consider the city with the highest probability as the

predicted location for user u.

In this way, the content-driven location estimation algorithm may be enhanced

by incorporating the social ties of the underlying social network.

2.5 Experimental Results

In this section, we detail an experimental study of location estimation with local

tweet identification and smoothing. The goal of the experiments is to understand:

(i) if the classification of words based on their spatial distribution significantly helps

improve the performance of location estimation by filtering out non-local words; (ii)

how the different smoothing techniques help overcome the problem of data sparseness;

(iii) how the amount of information available about a particular user (via tweets)
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impacts the quality of estimation; and (iv) what impact social refinement has on

content-driven location estimation.

Table 2.4: Impact of Refinements on User Location Estimation

Method ACC AvgErrDist (Miles) ACC@2 ACC@3 ACC@5
Baseline 0.101 1773.146 0.375 0.425 0.476

+ Local Filtering (LF) 0.498 539.191 0.619 0.682 0.781
+ LF + Laplace 0.480 587.551 0.593 0.647 0.745

+ LF + State-Level 0.502 551.436 0.617 0.687 0.783
+ LF + Neighborhood 0.510 535.564 0.624 0.694 0.788
+ LF + Model-based 0.250 719.238 0.352 0.415 0.486
+ LF + Wave-Like 0.507 545.500 0.521 0.530 0.539

2.5.1 Location Estimation: Impact of Refinements

Recall that in our initial application of the baseline location estimator, we found

that only 10.12% of the 5,119 users in the test set could be geo-located within 100

miles of their actual locations and that the AvgErrDist across all 5,119 users was

1,773 miles. To test the impact of the two refinements – local word identification

and smoothing – we update Algorithm 1 to filter out all non-local words and to

update the per-city word probabilities with the smoothing approaches described in

the previous section.

For each user u in the test set, the system estimates k (10 in the experiments) pos-

sible cities in descending order of confidence. Table 2.4 reports the Accuracy, Average

Error Distance, and Accuracy@k for the original baseline user location estimation ap-

proach (Baseline), an approach that augments the baseline with local word filtering

but no smoothing (+ Local Filtering), and then five approaches that augment lo-

cal word filtering with smoothing – LF+Laplace, LF+State-level, LF+Neighborhood,
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LF+Model-based, and LF+Wave-Like. Recall that Accuracy measures the fraction

of users whose locations have been estimated to within 100 miles of their actual

location.

First, note the strong positive impact of local word filtering. With local word

filtering alone, we reach an Accuracy of 0.498 which is almost five times as high as

the Accuracy we get with the baseline approach that uses all words in the sampled

Twitter dataset. The gap indicates the strength of the noise introduced by non-

local words, which significantly affects the quality of user location estimation. Also

consider that this result means that nearly 50% of the users in our test set can

be placed in their actual city purely based on an analysis of the content of their

tweets. Across all users in the test set, filtering local words reduces the Average

Error Distance from 1,773 miles to 539 miles. While this result is encouraging, it

also shows that there are large estimation errors for many of our test users in contrast

to the 50% we can place within 100 miles of their actual location. Our hypothesis is

that some users are inherently difficult to locate based on their tweets. For example,

some users may intentionally misrepresent their home location, say by a New Yorker

listing a location in Iran as part of sympathy for the recent Green movement. Other

users may tweet purely about global topics and not reveal any latent local biases in

their choice of words. In our continuing work, we are examining these large error

cases.

Continuing our examination of Table 2.4, we also observe the positive impact

of smoothing. Though less strong than local word filtering, we see that Laplace,

State-level, Neighborhood, and Wave-Like smoothing result in better user location

estimation than either the baseline or the baseline plus local word filtering approach.

As we had surmised, the Neighborhood smoothing provides the best overall results,

placing 51% of users within 100 miles of their actual location, with an Average Error
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Distance over all users of 535 miles.

Comparing State-level smoothing to Neighborhood smoothing, we find similar

results with respect to the baseline, but slightly better results for the Neighborhood

approach. We attribute the slightly worse performance of state-level smoothing to

the regional errors introduced by smoothing toward the entire state instead of a local

region. For example, state-level smoothing will favor the impact of words emitted

by a city that is distant but within the same state relative to a words emitted by a

city that is nearby but in a different state. We also find that Wave-Like smoothing

performs slightly better than State-level smoothing and significantly better than the

Model-based smoothing due to its incorporation of multiple peaks per term, leading

to more refined estimates (compared to the single peak model).

As a negative result, we can see the poor performance of model-based smoothing,

which nearly undoes the positive impact of local word filtering altogether. This

indicates that the model-based approach overly smooths out local perturbations in

the actual data distribution, which can be useful for leveraging small local variations

to locate users.

To further examine the differences among the several tested approaches, we show

in Figure 2.6 the error distance in miles versus the fraction of users for whom the

estimator can place within a particular error distance. The figure compares the origi-

nal baseline user location estimation approach (Baseline), the baseline approach plus

local word filtering (+ Local Filtering), Wave-Like smoothing approach (LF+Wave-

Like), and then the best performing smoothing approach (LF+Neighborhood) and

the worst performing smoothing approach (LF+Model-based). The x-axis identifies

the error distance in miles in log-scale and the y-axis quantifies the fraction of users

located within a specific error distance. We can clearly see the strong impact of

local word filtering and the minor improvement of smoothing across all error dis-
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Figure 2.6: Comparison Across Estimators

tances. Interestingly, we see that the wave-like approach suffers from the problems

of the model-based approach for small errors, but performs nearly as well as the

neighborhood-based approach for larger errors. This suggests that the wave-like

model has good potential to be further refined to eliminate the errors at small dis-

tance (introduced most likely due to the oversimplification of the model as compared

to the more data-driven neighborhood-based approach). For the best performing

approach, we can see that nearly 30% of users are placed within 10 miles of their

actual location in addition to the 51% within 100 miles.

2.5.2 Capacity of the Estimator

To better understand the capacity of the location estimator to identify the correct

user location, we next relax our requirement that the estimator make only a single

location prediction. Instead, we are interested to see if the estimator can identify a

good location somewhere in the top-k of its predicted cities. Such a relaxation allows
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us to appreciate if the estimator is identifying some local signals in many cases, even

if the estimator does not place the best location in the top most probable position.

Returning to Table 2.4, we report the Accuracy@k for each of the approaches.

Recall Accuracy@k measures the fraction of users located within 100 miles of their

actual location, for some city in the top k predictions of the estimator. For example,

for Accuracy@5 for LF+Neighborhood we find a result of 0.788, meaning that within

the first five estimated locations, we find at least one location within 100 miles of

the actual location in 79% of cases. This indicates that the content-based location

estimator has high capacity for accurate location estimation, considering the top-5

cities are recommended from a pool of all cities in the US. This is a positive sign for

making further refinements and ultimately to improving the top-1 city prediction.

Similarly, Figure 2.7a shows the error distance distribution for varying choices

of k, where each point represents the fraction of users with an error in that range

(i.e., the first point represents errors of 0-100 miles, the second point 100-200 miles,

and so on). The location estimator identifies a city in the top-10 that lies within

100 miles of a user’s actual city in 90% of all cases. Considering the top-1, top-3,

top-5, and top-10, we can see that the location estimator performs increasingly well.

Figure 2.7b continues this analysis by reporting the Average Error Distance as we

consider increasing k. The original reported error of around 500 miles for the top-1

prediction drops as we increase k, down to just 82 miles when we consider the best

possible city in the top-10.

2.5.3 Estimation Quality: Number of Tweets

An important question remains: how does the quality of estimation change with

an increasing amount of user information? In all of our experiments so far, we have

considered the test set in which each user has 1000+ tweets. But perhaps we can
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find equally good estimation results using only 10 or 100 tweets?

To illustrate the impact of an increasing amount of user data, we begin with

a specific example of a test user with a location in Salt Lake City. Figure 2.8

illustrates the sequence of city estimations based on an increasing amount of user

tweet data. With 10 tweets, Chicago has the dominant highest estimated probability.

With 100 tweets, several cities in California, Salt Lake City and Milwaukee exceed

Chicago. By 300 tweets, the algorithm geo-locates the user in the actual city, Salt

Lake City; however there is still significant noise, with several other cities ranking

close behind Salt Lake City. By 500 tweets, the probability of Salt Lake City increases

dramatically, converging on Salt Lake City as the user data increases to 700 tweets

and then 1000 tweets.

To quantify the impact of an increasing amount of user information, we calculate

the distribution of Error Distance and the Average Error Distance across all of the

test users based on the Local Word filtering location estimator relying on a range of

tweets from 100 to 1000. Figure 2.9a shows the error distance distribution, where

each point represents the fraction of users with an error in that range (i.e., the

first point represents errors of 0-100 miles, the second point 100-200 miles, and so

on). The errors are distributed similarly; even with only 100 tweets, more than 40%

of users are located within 100 miles. In Figure 2.9b, we can see that with only

100 tweets that the Average Error Distance is 670 miles. As more tweets are used

to refine the estimation, the error drops significantly. This suggests that as users

continue to tweet, they “leak” more location information which can result in more

refined estimation.
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2.5.4 Impact of Social Refinement

In this section, we explore the opportunity of incorporating social tie information

into the content-driven location predictor (as described in Section 2.4.5). We are

interested to understand whether social refinement can improve location estimation.

Using the test set described in Section 2.3, we randomly select a set of 354 users

with 10 to 20 strong connected friends, where we define a strong connected friend of

a user as one who is both following and followed by the user. For each of the 354

users, we crawl the user’s strong connected friends, and their latest 500 tweets. In

total, we have 3,137,233 tweets from 6,502 users who are strong connected friends of

the 354 users. Recall that for each of the 354 users, we have the user’s location in

the form of latitude/longitude coordinates. Over this set of 354 users and their latest

1,000 tweets, we apply the best content-driven approach identified in the previous

experiments – Local Words Filtering + Neighborhood Smoothing. We find that this

content-driven approach (with no social refinement) results in an accuracy of 54.26%

and an average error distance of 472.26 miles.

2.5.4.1 Quality of Estimator: Varying α

In the social refinement algorithm, the parameter α indicates the percentage of

location estimate information for a target user based on the social ties of the target

user versus the target user’s own content. A value of 1.0 for α means the prediction

is totally based on a user u’s social relations, without any input from the user u’s

own tweets. On the other hand, a value of 0.0 for α means the prediction is based

only on user u’s tweets. We tune the parameter α from 0.0 to 1.0 with an interval

of 0.1 to study to what extent more information from a user’s social relations can

help locate the target user. In Figure 2.10a, the result shows that although we

can get the highest accuracy either with an α value of 0.0 or 0.2, generally higher
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weights of social refinement (i.e., larger α values) produce worse results in terms of

accuracy. Similarly, we show results for average error distance over different values for

parameter α in Figure 2.10b. The best average error distance we get is 466.20 miles

with α value 0.2, which is a 1.28% increase over the non-social refinement based

algorithm (472.26 miles). Interestingly, we see the same trend that incorporating

some additional evidence from a target user’s social ties results in better location

estimation, but over-reliance on social ties results in poorer location estimation.

Surprisingly, even in the extreme case when none of a target user’s content is used

for location estimation (when α = 1.0), the social ties alone still yield an estimate

that is within 10% of the case when the target user’s content is actually included in

the estimator.

2.5.4.2 Quality of Estimator: Number of Tweets

In the second study of social refinement, we consider the impact of knowing more

about the target user via additional tweets. Fixing α = 0.2 based on the results

from the previous experiment, we fix the number of tweets per social tie at 500, but

vary the number of tweets for the target user from 0 to 1,000. Again, we see that

even when no content is available for the target user, that the social-based estimator

still achieves reasonable results (46% of users with error distance less than 100 miles;

average error distance of 466 miles). As the amount of content for the target user

increases, Figure 2.11a shows the improvement in accuracy, ultimately achieving

around 54% accuracy. Similarly, Figure 2.11b shows how – after an initial increase

from using a target user’s own content – that additional content from the target user

results in an improved average error distance, which echoes the results described in

our location estimation experiments without social refinement (recall Figure 2.7).

Together, these experiments on social refinement of content-driven location es-
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timation suggest a great possibility for propagating estimated user locations along

social ties to target user’s for whom we have no (or little) content information. We

are also interested to explore more sophisticated variations of the social refinement

algorithm, for example, by selectively considering only neighbors of a target user

for whom we have high confidence (rather than including all neighbors) as well as

PageRank-style iterative refinement approaches that aggregate not just one-hop so-

cial ties, but consider multi-hop social ties.

2.6 Summary

The promise of the massive human-powered sensing capabilities of Twitter and

related microblogging services depends heavily on the presence of location informa-

tion, which we have seen is largely absent from the majority of Twitter users. To

overcome this location sparsity and to enable new location-based personalized in-

formation services, we have proposed and evaluated a probabilistic framework for

estimating a microblog user’s city-level location based purely on the publicly avail-

able content of the user’s posts, even in the absence of any other geospatial cues. The

content-based approach relies on two key refinements: (i) a classification component

for automatically identifying words in tweets with a strong local geo-scope; and (ii) a

lattice-based neighborhood smoothing model for refining a user’s location estimate.

We have seen how the location estimator can place 51% of Twitter users within 100

miles of their actual location.
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(a) Error Distance Distribution

(b) Average Error Distance

Figure 2.7: Capacity of the Location Estimator: Using the Best Estimation in the
Top-k
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(a) 10 Tweets (b) 100 Tweets

(c) 300 Tweets (d) 500 Tweets

(e) 700 Tweets (f) 1,000 Tweets

Figure 2.8: Example: Location Estimation Convergence as Number of Tweets In-
creases
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(a) Error Distance Buckets with Different # of Tweets

(b) Average Error Distance with Different # of Tweets

Figure 2.9: Refinement of Location Estimation with Increasing Number of Tweets
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(a) Impact on Accuracy

(b) Impact on Average Error Distance

Figure 2.10: Quality of Socially Refined Estimator: Tuning Parameter α
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(b) Impact on Average Error Distance

Figure 2.11: Capacity of the Socially Refined Estimator: Varying the Number of
Tweets from the Target User
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3. WHOS, WHATS, AND WHENS OF LOCATION SHARING∗

In this section, we tackle the challenge of lack of understanding of the properties

of people’s geo-social footprints from location sharing services. Specifically, we inves-

tigate 22 million check-ins across 220,000 users and report a quantitative assessment

of human mobility patterns by analyzing the spatial, temporal, social, and textual

aspects associated with these footprints.

3.1 Introduction

We are beginning to see a similar rise of location sharing services like Foursquare,

Facebook Places, and Google Local. As the one of the front runners for location

sharing services, the Foursquare service alone claims over 40 million registered users,

and over 4.5 billion check-ins in total, with millions more every day [40]. Since

Twitter started to support location geotagging associated with tweets since 2009,

Twitter boasts a collection of billions of geotagged tweets [97].

Like similar services, Foursquare allows users to “check in” at different venues

(e.g., grocery stores, restaurants), write tips, and upload pictures and videos. While

users of Foursquare and related location sharing services may not be a represen-

tative cross-section of the whole human society, the data revealed through these

services provides a fascinating and unique opportunity to study large-scale volun-

tarily contributed human mobility data, which could impact the design of future

mobile+location-based services, traffic forecasting, urban planning, and models of

disease spread.

Toward understanding the spatial, temporal, and social characteristics of how

∗Reprinted with permission from “Exploring Millions of Footprints in Location Sharing Services”
by Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Z. Sui, 2011. in Proceedings of the
5th International AAAI Conference on Weblogs and Social Media. Copyright 2011 by AAAI.
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people use these services, we present in this section a large-scale study of location

sharing services. Concretely, we study the wheres and whens of over 22 million check-

ins across the globe. We study human mobility patterns revealed by these check-ins

and explore factors that influence this mobility, including social status, sentiment,

and geographic constraints.

3.2 Related Work

The role of geography and location in online social networks has recently at-

tracted increasing attention. Facebook researchers analyzed the distance between

Facebook users’ social relations, and utilized locations of a user’s friends’ to predict

the user’s geographical location [7]. Characterizing network properties in relation to

local geography is studied in [126]. User behavior with regard to the location field in

Twitter user profiles has been studied in [53]. [75] analyzed how and why people use

location sharing services, and discussed the privacy issues related to location shar-

ing services. Besides locations, researchers have also explored temporal dynamics

associated with on-line social activities [47].

Analyzing and modeling mobility patterns has long attracted attention by re-

searchers in fields like statistical physics, ubiquitous computing, and spatial data

mining. For example, an analysis of 100,000 cellphone users’ trajectories [48] showed

that human mobility displayed simple reproducible patterns. The authors of [13] an-

alyzed the circulation of bank notes in the US and concluded that human traveling

behavior can be described mathematically on many spatio-temporal scales by a two

parameter continuous time random walk model. A 93% potential predictability in

user mobility was found across 50,000 cellphone users in [109]. [136] proposed a sys-

tem to mine interesting locations and travel sequences from users’ GPS trajectories.

Researchers of [55] observed Lèvy Flight search patterns across 14 species of ma-
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Table 3.1: Distribution of Sources of Check-ins

Name Percentage

Foursquare 53.5%

UberTwitter 16.4%

Twitter for iPhone 10.2%

Twitter for Android 3.4%

TweetDeck 3.1%

Gowalla 2.9%

Echofon 2.0%

Gravity 1.3%

TwitBird 1.1%

Others 6.0%

rine predators, with a few individuals switching between Lèvy Flight and Brownian

motion as they traversed different habitat types.

Different from cellphone data and trajectories derived from GPS trackers, check-

ins have several unique features: (i) they are inherently social, since users reveal

their location to their friends, meaning that social structure and its impact on human

mobility can be directly observed; (ii) check-ins are associated with particular venues

(e.g., a restaurant), allowing for greater analysis of venue type; (iii) check-ins can

be augmented with short messages, providing partial insight into the thoughts and

motivations of users of these services.

3.3 Gathering Check-ins

To begin our study, we first require a collection of check-ins. Since personal check-

in information on location sharing services like Foursquare, Gowalla, and Facebook

Places is typically restricted to a user’s immediate social circle (and hence unavailable

for sampling) we take an approach in which we sample location sharing status updates

from the public Twitter feed. Twitter status messages support the inclusion of geo-

tags (latitude/longitude) as well as support third-party location sharing services like
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Foursquare and Gowalla (where users of these services opt-in to share their check-ins

on Twitter). We monitor Twitter’s gardenhose streaming API (∼1% of the entire

Twitter public timeline), and retrieve users who post geo-tagged status updates. For

each sampled user, we crawl up to a maximum of the most recent 2,000 geo-labeled

tweets.

The location crawler ran from late September 2010 to late January 2011, resulting

in a total collection of 225,098 users and 22,506,721 unique check-ins. The 22 million

check-ins were posted from more than 1,200 applications, and the distribution of

sources is displayed in Table 3.1. More than 53% of the check-ins are from Foursquare,

and most of the other check-ins are from Twitter’s applications on mobile platforms

like Blackberry, Android, and iPhone. A few hundred thousands check-ins are from

other location sharing services like Gowalla, Echofon, and Gravity.

3.3.1 Format of the Data

Each check-in is stored as the tuple checkin(userID, tweetID) = {userID, tweetID,

text, location, time, venueID}. An example check-in tuple is: checkin(14091113,

9710376274) = {14091113, 9710376274, “I’m at MTA - Atlantic Ave-Pacific St

Subway Station. http://4sq.com/2nWVD0”, 40.685307, -73.980719, “2010-02-26

21:42:04”, “cd979d2e352c4f54”}. We additionally store a user as the tuple: user(userID)

= {userID, status count, followers count, followings count}; for the example check-

in, the user has 2,771 total status updates, 255 followers and is following 926 users.

3.3.2 Filtering Noise

Many location sharing services provide some mechanism to verify that a user is

actually at or near the venue where they are checking in (e.g., by cross-checking with

a user’s cellphone GPS) [39], however, there can still be incidents of false check-ins.

Hence, we additionally filter out all check-ins from users whose consecutive check-ins
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Figure 3.1: Global Distribution of Check-ins

imply a rate of speed faster than 1000 miles-per-hour (or faster than an airplane).

In total, we filtered 294 users (0.1%) with sudden moves, yielding a final collection

of 224,804 users and 22,388,315 check-ins. More than 72% users have fewer than 100

check-ins; 7.8% users have more than 300 check-ins; and 3.6% users have more than

500.†

3.3.3 Locating Each User’s “Home”

Some of the analysis in the following sections requires that we first associate each

user with a natural “home”, so, for example, we can compare the properties of all

users “from” New York City versus users “from” Los Angeles. Since users of location

sharing services are not required to register a home location, we must algorithmically

determine the home location. Note that choosing a user’s home based on the center

of mass of all check-ins suffers from splitting-the-difference, by placing a user from

Houston who occasionally travels to Dallas somewhere in between the two cities;

alternatively, directly considering the user’s most frequently checked-in venue may

†Data are available at http://infolab.tamu.edu/data/
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overlook a cluster of closely-located but less individually checked-in venues. To avoid

these drawbacks, we propose a simple method to geo-locate a user’s home based on

a recursive grid search. First, we group check-ins into squares of one degree latitude

by one degree longitude (covering about 4,000 square miles). Next, we select the

square containing the most check-ins as the center, and select the eight neighboring

squares to form a lattice. We divide the lattice into squares measuring 0.1 by 0.1

square degrees, and repeat the center and neighbor selection procedures. This process

repeats until we arrive at squares of size 0.001 by 0.001 square degrees (covering

about 0.004 square miles). Finally, we select the center of the square with the most

check-ins as the “home” of the user.

3.4 Spatio-Temporal Analysis of Check-ins

In this section, we begin our study of large-scale location sharing services with an

investigation of the temporal and geographic characteristics of how people use these

services.

3.4.1 Wheres of the Check-ins

First, we plot the locations of the 22 million check-ins in Figure 3.1, where we see

that while check-ins are globally distributed, the density of check-ins is highest in

North America, Western Europe, South Asia, and Pacific Asia. Zooming in on the

US, Figure 3.2 shows the reach of location sharing services, revealing the boundaries

of cities and the lines of highways. Further zooming in, we can see in Figure 3.3

how New York City is densely covered by more than half a million check-ins. While

these figures convey the scale and density of location sharing services, we can further

explore the nature of these check-ins by aggregating keywords across all 22 million

check-in tuples. The aggregated view in Figure 3.4 shows that the most popular

check-in venues are restaurants, coffee shops, stores, airports, and other venues re-
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Figure 3.2: Detail: Check-ins in the United States

flecting daily activity (e.g., fitness, pubs, church).

3.4.2 Whens of the Check-ins

Considering the temporal distribution of check-ins, we can uncover both the ag-

gregate daily patterns of users of location sharing services and their weekly patterns.

By normalizing the timestamps of every check-in so that all local times are treated

as the same time (i.e., aggregating all check-ins at 1pm, whether they be in Chicago

or Tokyo), we show in Figure 3.5 the mean check-in pattern per day. This pattern

provides a glimpse into the global daily “heartbeat”, with three major peaks: one

around 9am, one around 12pm, and one around 6pm. The diurnal pattern is clearly

displayed as more people are active during the daytime than at night.

To illustrate the potential of location sharing services as sociometers of city health

and activity, we show in Figure 3.6, the disaggregated daily check-in patterns of users
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Figure 3.3: Detail: Check-ins in New York City

in New York City, Los Angeles, and Amsterdam. The check-in patterns show that

Amsterdam’s daily “heartbeat” reflects an early-rising city, with more activity than

either LA or New York in the morning hours. LA peaks around noon, whereas New

York has the highest check-in rate during the night (“The City That Never Sleeps”).

We are interested to further explore the reasons for these differences. Are the daily

differences artifacts of local culture? Or the proclivity of users in certain locations

to more willingly reveal certain aspects of their daily lives than others (e.g., check-in

in while at work, but not at play?) Or do the differences reflect biases in the data,
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Figure 3.4: Venue Cloud for Check-ins

Figure 3.5: Mean Daily Checkin Pattern

so that certain demographics are over-represented in one city versus another?

Moving from the daily pattern to the weekly pattern, we see in Figure 3.7 the

aggregate global patterns over the days of the week. Weekdays clearly indicate two
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Figure 3.6: Daily Checkin Patterns: NYC, LA, Amsterdam

peaks during lunch time and dinner time, while over the weekend these two peaks

blend, reflecting a fundamentally different weekend schedule for most users of location

sharing services. We can also observe that the relative daily activity increases from

Monday to Friday, peaking on Friday evening.

3.5 Studying Human Mobility Patterns

Given the global coverage of location sharing services and the potential of user

check-ins to reveal temporal patterns of human behavior, we next turn to an ex-

amination of mobility patterns reflected in the check-in data. We consider three

statistical properties often used in the study and modeling of human mobility pat-

terns – displacement, radius of gyration, and returning probability. Taken together,

these properties can inform whether humans follow simple reproducible patterns, and

can have a strong impact on all phenomena driven by human mobility, from epidemic

prevention to emergency response, urban planning and agent-based modeling.
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Figure 3.7: Mean Weekly Checkin Pattern

3.5.1 User Displacement

We begin with an investigation of the distance-based displacement of consecu-

tive check-ins made by users. Considering all pairs of consecutive check-ins yields

22,163,511 separate displacements, reflecting the distance between these consecu-

tive check-ins (and hence, how far a user has traveled). We plot the distribution

of displacement for the dataset on a log-log scale in Figure 3.8. The x-axis is the

displacement in miles, and the y-axis is the frequency of displacements in the same

bucket. The trend is approximated by a power-law:

P (δr) ∝ δ−βr

where δr represents the displacement and β = 1.8845. The formula indicates that

human motion modeled with check-in data follows a Lévy Flight [96], in which a
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Figure 3.8: Distribution of Displacements

random walk proceeds according to steps drawn from a heavy-tailed distribution. A

Lévy Flight is characterized by a mixture of short, random movements with occa-

sional long jumps. Flight models with a similar scaling exponent have been observed

separately in a study of displacements based on cellphone call data with β = 1.75

[48] and in a study of displacements based on bank note dispersal with β = 1.59 [13].

3.5.2 Radius of Gyration

Second, we consider the radius of gyration of each user, which measures the

standard deviation of distances between the user’s check-ins and the user’s center of

mass. The radius of gyration measures both how frequently and how far a user moves.

A low radius of gyration typically indicates a user who travels mainly locally (with

few long-distance check-ins), while a high radius of gyration indicates a user with

many long-distance check-ins. The radius of gyration for a user can be formalized
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Figure 3.9: Distribution of Radius of Gyration

as:

rg =

√√√√ 1

n

n∑
i=1

(ri − rcm)2

where n is the number of check-ins of the user, and (ri−rcm) is the distance between

a particular check-in ri and the user’s center of mass rcm (which is a simple average

location over all check-ins). We calculate the radius of gyration for each user in our

collection and the distribution of radius of gyration is displayed on A log-log scale in

Figure 3.9. The x-axis identifies the radius of gyration in miles and the y-axis shows

the number of users with that radius of gyration. The trend in Figure 3.9, like the

distribution of displacements, also follows a power-law:

P (rg) ∝ r−βg
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where rg represents the radius of gyration, and β = 0.9864. 34.5% of all users display

a radius of gyration of less than 10 miles, while only 14.6% have a radius of gyration

larger than 500 miles.

To illustrate how radius of gyration can give further insight into the dynamics of

cities, Figure 3.10 plots the average radius of gyration of users in major cities (with

100,000+ population and at least 20 users in the check-in dataset) in the continental

US. The red bubbles are cities with a radius of gyration larger than 500 miles; blue

ones are cities with a radius larger than 250 miles; cyan ones have a radius larger

than 125 miles, and yellow ones are the rest of major cities. Users in coastal cities

tend to have a higher radius of gyration than users in inland cities, and people in

central states tend to have a high radius of gyration due to long distance travels

to the coasts. Even so, there are some interesting regional variations worth further

study, for example, the low radius of gyration for El Paso compared to the higher

radius for nearby Albuquerque.

3.5.3 Returning Probability

The third property we study – returning probability – is a measure of periodic

behavior in human mobility patterns. Periodic behavior is common in people’s daily

life (e.g., visits to work or school every weekday; visits to the grocery store on

weekends) and echoes periodic behavior observed in animal migrations when animals

visit the same places at the same time each year. Do users of location sharing services

display a similar periodicity?

We measure periodic behavior by the returning probability (or, first passage time

probability), which is the probability that a user returns to a location that she first

visited t hours before. Grouping all returning times of all check-ins into buckets of

one-hour, we plot the distribution of returning times in Figure 3.11, in which the
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Figure 3.10: Mean Radius of Gyration for Users in US Cities

x-axis represents the bucket of returning time, and the y-axis is the corresponding

frequency for a bucket. For example, at 168 hours, the returning probability peaks,

indicating a strong weekly return probability. Similarly, we see daily return prob-

abilities. As time moves forward, the returning probability shows a slight negative

slope, indicating the aggregate forgetfulness of visiting previously visited places (that

is, the return probability is strongest for places we have visited most recently).

3.6 Exploring Factors that Influence Mobility

In this final section, we turn our attention to exploring the factors that may im-

pact human mobility. While factors like geography and economic status are natural

to investigate, the unique properties of location sharing services provide an unprece-

dented opportunity to consider heretofore difficult to measure aspects of human
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Figure 3.11: Distribution of Returning Probability

behavior. For example, does social status as measured through popularity in these

services impact a user’s radius of gyration? Does user-generated content implicitly

reveal characteristics of the mobility of users?

3.6.1 Geographic and Economic Constraints

We begin by illustrating how geographic and economic constraints can influence

human mobility patterns as revealed by location sharing services. We focus on users

who are located in US cities with a population of more than 4,000. As one type

of geographic constraint we consider population density and compare the radius of

gyration for users from cities of differing density.‡

As shown in Figure 3.12, we can clearly see that people in the densest areas

travel much more than people in sparse areas, but that people in the sparsest areas

‡Data for each US city is parsed from www.city-data.com.
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Figure 3.12: Average Rg versus City Population Density

travel farther than people in slightly denser areas. One possible explanation for both

of these observations can be that: people living in metropolitan areas have more

opportunities to travel for business to distant cities or countries; and people living

in sparse areas (small towns) require longer travel to nearby mid-size cities.

Similarly, we can examine the economic properties of a city to understand whether

economic capacity inhibits or encourages more travel by its residents. Specifically,

we measure the influence of a city’s average household income on its residents’ radius

of gyration, which is plotted in Figure 3.13. The figure shows that people in wealthy

cities travel more frequently to distant places than people in less rich cities. In the

meantime, people in cities with the least incomes travel slightly more than people in

richer cities.

What is encouraging about both these example observations is that location shar-

ing services provide a new window for measuring and studying fundamental proper-
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Figure 3.13: Average Rg versus City Avg Household Income

ties of cities and their residents.

3.6.2 Social Status

We next turn to one of the more exciting possibilities raised by the social structure

inherent in location sharing services. Does social status impact human mobility? We

consider two simple measures of status. The first is a simple measure of popularity,

where we count the user’s number of followers from their Twitter profile (recall

the data collection method described earlier in the section; followers are one-sided

friendships). The second is a measure of status that considers the ratio of a user’s

number of followers to the number of users that the user follows (followings):

status(u) =
nfollowers(u)

nfollowings(u)

High-status users have many followers but follow very few other users themselves.
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Figure 3.14: Average Rg versus Popularity

Figure 3.14 and Figure 3.15 show the relationship between both of these social status

factors and the radius of gyration. We see that in both cases highly social users have

higher radii of gyration than less social users. Our initial hypothesis is that users

who travel have more chances to meet friends, and thus get involved in more social

activities. But perhaps users with lower measured “status” engage with these social

media technologies differently? For example, some Twitter users may primarily only

follow other users as a form of news gathering, rather than treating Twitter as a

social network of friends, resulting in lower measured status. We are interested to

explore these and related questions in our ongoing research.

3.6.3 Content and Sentiment Factors

Finally, we turn to an analysis of user-generated content in location sharing ser-

vices and its impact on mobility. Users of location sharing services, in addition to
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Figure 3.15: Average Rg versus Social Status

recording their location, can also post short messages, tips, and other annotations

on the locations they visit. Unlike purely GPS-driven or cellphone trace data, these

short messages provide a potentially rich source of context for better understanding

how users engage with location sharing services.

3.6.3.1 Significant Terms vs. Radius of Gyration

Our first goal is to identify significant terms for users associated with varying de-

grees of radius of gyration, much like in our previous studies of economic, geographic,

and social factors. Do high mobility users describe the world differently than low

mobility users? We focus our study here on English-language messages only by using

the language identification component in the NLTK toolkit [77]. We find that 49%

of all users (110,559) in our collection are primarily English-language users.

To identify significant terms for these users, we identify terms with high mutual
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information for each category of radius of gyration. Mutual information is a standard

information theoretic measure of “informativeness” and, in our case, can be used to

measure the contribution of a particular term to a category of radius of gyration.

Concretely, we build a unigram language model for each category of radius of gyration

by aggregating all posts by all users belonging to a particular category of radius

of gyration (e.g, all users with a radius of gyration between 0 and 10). Hence,

mutual information is measured as: MI(t, c) = p(t|c)p(c)log p(t|c)
p(t)

where p(t|c) is the

probability that a user which belongs to category c has posted a message containing

term t, p(c) is the probability that a user belongs to category c, and p(t) is the

probability of term t over all categories. That is, p(t) = count(t)/n. Similarly, p(t|c)

and p(c) can be simplified as p(t|c) = count(c, t)/count(c) and p(c) = count(c)/n

respectively, where count(c, t) denotes the number of users in category c which also

contain term t, and count(c) denotes the number of users in category c.

In Table 3.2, we report the top-10 most significant terms from users with dif-

ferent radii of gyration. In the table, we can clearly see the differences between

frequent travelers with a large radius of gyration and the more local people with

a small radius of gyration. Travelers talk a lot about long journey related terms:

“international airport” (and abbreviations of international portals: “SFO”, “JFK”),

major metropolitan areas (e.g., New York, San Francisco, London, Paris, Los An-

geles), “flight”, and “hotel”. At lower levels of mobility, we see significant words

like “railway station” and “bus”, as well as discussion of “home”, “work”, “church”,

grocery stores (e.g., HEB, Walmart, “mall”), “college”, and “university”. People

with different mobility patterns significantly differ in the topics they talk about and

terms they use, indicating a fruitful area of further study.
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Table 3.2: Top 10 Significant Terms for Each Radius of Gyration Rg Category

Rg (miles) Top 10 Terms

(1000,+∞)
international airport New York San Francisco London terminal

SFO flight JFK Jakarta Paris

(500,1000]
international airport San Francisco New York Las Vegas Los Angeles

Chicago hotel Seattle terminal Washington

(300,500]
international airport Chicago Dallas New York hotel

Lake Austin Beach Orlando Seattle

(100,300]
airport Chicago Atlanta Jakarta hotel
Berlin church center bar beach

(50,100]
mayor railway station Pittsburgh university Stockholm
church Madrid Greenville center college

(10,50]
mayor station home work Bangkok
house HEB school Walmart road

(0,10]
Singapore home Jakarta Indonesia university

center mall bus woodlands road

3.6.3.2 Capturing User’s Sentiment

We can additionally measure the relative viewpoint of users and their locations by

considering the sentiment of each user’s posted messages. To capture the sentiment

associated with the check-ins, we use the public SentiWordNet [35] thesaurus to

quantify sentiment for each English speaking user. For each message, we extract

the words that have a quantified sentiment value in SentiWordNet and consider the

sentiment of the post as the mean value for the sentiments for words in the post. For

each user, the user’s sentiment is calculated as the mean value of the sentiments of all

the user’s posts. In this way, we capture the sentiment for each of the 110,559 English

speaking users in the dataset. The distribution of sentiment of the users is plotted

in Figure 3.16, and we can clearly see that most users have a neutral sentiment, and

only a small portion of users express strong sentiment when using location sharing

services.

When we drill down to see which words are associated with a positive, neutral, and

negative sentiment (again, using mutual information) we see in Table 3.3 that most
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Figure 3.16: Frequency of Users in Categories of Sentiment

Table 3.3: Top-10 Significant Terms for Sentiment Category

Sentiment Top 10 Terms

(0.1, 1.0]
good like love lol well

thanks great haha awesome nice

(−0.1, 0.1]
ave mayor street New York park
road blvd airport center home

[−1.0,−0.1]
not hate bad f**k s**t

damn wrong hell stupid hiv

of the top neutral terms are likely to be extracted from the auto-generated check-ins.

In the two categories with non-neutral sentiment, we can clearly see typical words

which indicate strong positive and negative sentiment.

However, when we filter the top-100 most positive and most negative terms to

only consider location-related terms, we find that there are no location-specific pos-

itive terms, but there are many location-specific negative terms. Examples of the
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Table 3.4: Top-20 Location Terms with Negative Sentiment

MTA Jersey Redmond Memphis
Winooski Ridgewood Toronto Greece
Chicago Cleveland Calgary Scottsdale

Beaumont Petersburg Ashburn Buffalo
Richmond Montreal Durham Eugene

words are listed in Table 3.4. On further inspection of the messages containing these

words, we can clearly see the strong negative sentiment associated to the content.

For example, when people talk about “MTA”, they complain a lot about price in-

creases of MTA’s tickets, and its poor service (e.g., “Ticket to the country home has

increased by $3. NJTransit is worse than the MTA! (@ New York Penn Station w/

23 others)”, and “I know the MTA is a disaster but 2 of 4 machines being unable

to read credit cards at AirTrain station is a new low.”). This preliminary analysis

indicates that users are more likely to express negative sentiment about location,

and that locations and location-related concepts associated with negative sentiment

can be automatically identified based on location sharing services.

3.7 Summary

In this section, we tackle the challenge of lack of understanding of the geo-social

footprints from location sharing services, by providing a large-scale quantitative anal-

ysis and modeling of over 22 million check-ins of location sharing service users. Con-

cretely, three of our main observations are: (i) LSS users follow simple reproducible

patterns; (ii) Social status, in addition to geographic and economic factors, is cou-

pled with mobility; and (iii) Content and sentiment-based analysis of posts can reveal

heretofore unobserved context between people and locations.
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4. PUBLIC CHECK-INS VERSUS PRIVATE QUERIES: MEASURING AND

EVALUATING SPATIAL PREFERENCE∗

In this section, we resolve the challenge of lack of understanding of whether

publicly-shared geo-social data help complement (and replace, in some cases) pri-

vately held location information. Specifically, we investigate the viability of new

publicly-available geospatial information to capture spatial preference. In the exper-

iments, we compare a set of 35 million publicly shared check-ins voluntarily generated

by users of a popular location sharing service with a set of over 400 million private

query logs recorded by a commercial hotel search engine.

4.1 Introduction

Social scientists and geographers have long been interested in modeling the link-

ages and flows between locations for better understanding a variety of geo-spatial

issues including: why and how migration flows among countries, regions, and cities;

to model commerce flows and explain trade relations among trading partners; to

design more efficient roadways and traffic forecasting; to develop epidemiological

models of disease spread; and so forth. This spatial interaction is a cornerstone

of geographic theory, “encompassing any movement over space that results from a

human process” [50]. Traditional methods for modeling these flows and the spatial

preference of users in one location for another location have typically relied on expen-

sive and hard-to-maintain data sources, like the 10-year US Census, which collects

massive statistics about the connections between people and between cities in the

∗Reprinted with permission from “Public Checkins versus Private Queries: Measuring and Eval-
uating Spatial Preference” by James Caverlee, Zhiyuan Cheng, Wai Gen Yee, Roger Liew, and
Yuan Liang, 2012. in 5th ACM SIGSPATIAL International Workshop on Location-Based Social
Networks. Copyright 2012 by ACM.
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United States.

As a point of excitement, the rise of the web over the past ∼20 years has seen

a commensurate rise in the low-cost collection of implicit linkages and flows among

users and locations. For example, millions of people share their location information

passively while using on-line services like video streaming services (e.g., Amazon

Instant Video, and Netflix), search engines (e.g., Google, Bing), e-commerce sites

(e.g., eBay, and Amazon), and travel planning sites (e.g., Orbitz, Expedia, and

Priceline). By tracking IP addresses, plaintext queries, and other location identifiers,

these proprietary services have been harvesting huge databases of spatial interaction.

For example, by aggregating user search and purchase decisions, Amazon can identify

the interest level of users in one location for another location (e.g., more customers

in California are buying Texas guidebooks, which may be an early indicator of future

migration). However, the excitement over these sources of spatial interaction must

be tempered by the proprietary nature of the data.

Fortunately, the past few years have seen the widespread voluntary sharing of

location information by users of location-sharing services like Twitter, Foursquare,

and Google Local. This voluntary sharing about their life, interests, and footprints in

real-time provides unprecedented opportunities to study people in different regions,

and the connections between people and places. In comparison with expensive,

proprietary, and often times unavailable resources, this publicly-shared data offers

the promise of new methods appealing not only to geographers and social scientists,

but to computational researchers and practitioners seeking to create and improve

location-based recommendation systems, travel planners, search engines, and other

emerging mobile applications.

Hence, in this section, we investigate the viability of new publicly-available geospa-

tial information to capture spatial preference. Concretely, we explore the spatial
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preference of users from two large-scale datasets: a set of private query logs for ho-

tels automatically recorded by a commercial on-line hotel search engine (Orbitz),

and a set of publicly available check-ins voluntarily generated by users from a typ-

ical location sharing service (Gowalla). The check-in data includes over 35 million

check-ins from 1.2 million users from Gowalla. The hotel query log data includes all

the queries and bookings for hotels from the hotel search engine in 2011, which in

total includes over 400 million records from over 20 million unique IPs. We explore

in this section the commonalities and the differences between these two sources of

spatial preference – generated by different user bases with fundamentally different

intentions.

Concretely, this section makes three contributions:

• First, we model the spatial preference of users across both datasets and measure

the relative geo-spatial “footprint” of different locations via three localness met-

rics: the mean contribution distance, the radius of gyration, and the city locality.

We find that though the absolute values of these metrics differ across datasets,

the relative values are surprisingly consistent.

• Second, we develop a PageRank-like method for identifying spatially significant

locations based on the spatial preference of users. Through a random walk over

the spatial preference graph linking locations, we find that both datasets reveal

similar significant locations.

• Third, we investigate the potential of mining related clusters of locations from

both datasets based on the spatial preferences of users. In a comparison against

a ground truth of 800 hand-curated lists of related cities, we find similar perfor-

mance across both public and private datasets.

These results indicate the viability of publicly shared location information via
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check-ins to complement (and replace, in some cases), privately held location in-

formation such as that in proprietary query logs. The potential of publicly shared

location information serving as a substitute for privately held information could pro-

vide new avenues of research for social scientists, geographers, as well as computer

scientists interested in the geo-spatial flows of ideas, memes, and geo-targeted appli-

cations.

4.2 Related Work

Researchers have been investigating the spatial properties of large-scale data for

many years. In the context of query logs, there have been several efforts typically

targeted at the spatial properties revealed through text-based queries to large search

engines. For example, Backstrom et al. [6] introduced a model of spatial variation

for analyzing the geographic distribution of queries using Yahoo’s query logs. The

authors proposes a generative probabilistic model in which each query has a geo-

graphic focus on a map (based on an analysis of the IP-address-derived locations of

users issuing the query). Gan et al. [44] conduct an analysis of 36 million queries

from AOL, and identified typical properties for queries with a geographic intention.

In addition, they built a classifier that can accurately classify queries into geographic

and non-geographic queries.

With the rise of online social networks, there has been a similar rise in analyz-

ing the spatial patterns revealed. For example, Facebook researchers [7] observed

that Facebook users have more local friends than distant friends, and that they can

predict a Facebook user’s location with high accuracy given the location for the

users’ friends. McGee et al. [85] investigate the relationship between the strength

of the social tie between a pair of friends and the distance between the pair with a

set of 6 million geo-coded Twitter users and their social relations. They observed
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that users with stronger tie strength (reciprocal friendship) are more likely to live

near each other than users with weak ties. Hecht et al. [52] study the localness

of user generated content in Flicker and Wikipedia, and they observe that the con-

tent generated by Flickr users is more local comparing to the content generated by

Wikipedia editors. A host of related work has also focused on mining interesting

trajectories [136], modeling periodic behaviors and mobility patterns [48, 13], and

studying the correlation between people’s social relations and their mobility patterns

[21]. Others have focused on location recommendation at the point of interest (POI)

level based on queries and bookings for hotels [99], and check-ins in location sharing

services [128, 129, 107]. In the granularity of city-level, researchers have studied the

interaction between cities via on-line social relations [64].

4.3 Data

As the basis of this investigation, we consider two large-scale datasets: a set of

private query logs and a set of publicly available check-ins.

4.3.1 Private Spatial Resource: Query Logs

The hotel query log data includes a large set of both queries and bookings for

hotels randomly sampled from a commercial on-line hotel search engine – Orbitz. The

dataset includes over 400 million records, from over 20 million unique IPs all over

the world. Each query (or booking) includes an IP address which can be translated

to a city-level location where the query (or booking) is issued. We call this the origin

location. Each query (or booking) also contains another city-level location indicating

the destination (i.e., the city where the queried hotel is located).

To focus on legitimate users of the Orbitz search engine, we filter out IP addresses

accounting for an anomalous number of searches (greater than 2,000 queries each).

For example, several thousand IPs generate from thousands to millions of queries
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Figure 4.1: Distance versus Frequency: Check-ins tend to be more local; 80% of all
check-ins are within 100 miles of a user’s home location. In contrast, query (and
booking) locations are more distant; only 25% are within 100 miles of a user’s home
location.

each; most likely, these are search engine crawlers or bots from other travel search

engines). Additionally, we focus on queries (and bookings) originating from the

Continental United States. Considering each unique IP as a unique user, we consider

the corresponding city-level location for the IP as the home location for the user,

resulting in 69 million queries and 1.1 million bookings.

4.3.2 Public Spatial Resource: Check-ins

The check-in dataset includes over 35 million check-ins from about 1.2 million

users from Gowalla, a popular location-sharing service. Each of the check-ins includes

a fine granular point of interest (POI) location (i.e., where the check-in happened),
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a timestamp (i.e., when the check-in happened), and a piece of short text (i.e., what

the check-in is about). Each check-in’s POI location links to a particular city, which

allows us to group the check-ins into city-level locations. For each user, we simply

consider the city which has the most check-ins from the user as the home location.

Similar to the query log data, the check-in data also reveals each user’s interest in

other “destinations”, in this case by considering check-in locations outside of the

user’s home location. For example, a user from Los Angeles who checks-in in New

York City indicates that user’s interest in New York. As in the case of the query

log data, we focus only on locations within the Continental United States and we

filter out users with fewer than 20 check-ins each. The filtering leaves a set of almost

70,000 users and over 15 million check-ins from the users.

4.3.3 Private versus Public

These two resources – one private and one public – are naturally quite different.

Users of these two services vary in their demographics since location sharing service

users tend to be young with access to a mobile device, while hotel search engine users

are more often representative of the general public with access to a desktop com-

puter. And of course, users of these two services have fundamentally different goals.

Hotel queries reflect a user’s future intent; check-ins reveal a user’s current physical

movement. Hotel query logs are more likely to reveal long-distance travel intentions,

whereas check-ins are typically a more local phenomenon reflecting a user’s inter-

est in local restaurants, bars, and stores [18]. Users of location sharing services are

also intentionally sharing their location information, whereas users of search engines

are not consciously sharing their location with others (though these search engines

may log and analyze the user’s queries, IP address, and other location-revealing ar-

tifacts). With these many differences in mind, we next turn to an investigation of
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(a) New York City (Queries) (b) New York City (Check-ins)

(c) Los Angeles (Queries) (d) Los Angeles (Check-ins)

(e) Corpus Christi (Queries) (f) Corpus Christi (Check-ins)

(g) West Lafayette (Queries) (h) West Lafayette (Check-ins)

Figure 4.2: (Color) Spatial Preference for Example Cities. Figures in the left-column
are derived from private query logs. Figures in the right-column are derived from
public check-ins. The color and size of the dots indicate the intensity of the spatial
preference from the origin to the destination: top 2% (red); 2-20% (blue); 20-50%
(cyan); and the bottom 50% (yellow). 82



the spatial preference embedded in these two sources and whether we can find any

commonalities between them. Finding such commonalities could demonstrate the

potential of publicly shared location information serving as a substitute for privately

held information.

4.4 Exploring Spatial Preference

We begin our investigation by exploring the spatial preference revealed through

both datasets. We model the spatial preference and measure the relative geo-spatial

“footprint” of different locations via three localness metrics: mean contribution dis-

tance, radius of gyration, and city locality.

4.4.1 Preliminaries

Each query (or booking) in the private dataset and each check-in in the public

dataset reveals a bidirectional relationship between an origin location and a destina-

tion location. In the case of queries (or bookings) the origin is the city-level location

of the user issuing the query; the destination is the city-level location of the hotel.

In the case of the check-ins, the origin is the user’s home location (which we define

as the city with the most check-ins by the user); the destination is the city-level

location of the current check-in.

To start with, we are interested in investigating the basic properties of these

origin-destination relationships. For each set of queries, bookings, and check-ins, we

bucket all the distances between origins and destinations into groups. Figure 4.1

plots the cumulative frequency of the pairs of origin and destination bucketed into

groups of distance. The patterns of the bookings and the queries are almost identical

to each other, with over 5% of the queries (bookings) for hotels within 10 miles, and

about 30% within 100 miles. On the other hand, the check-ins are much more local

comparing to the hotel queries (bookings). Over 65% of the check-ins are within 10
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miles to the users’ home locations, and over 80% are within 100 miles. This difference

is our first sign that these two resources reflect fundamentally different usages: that

people use hotel search engines to look for hotels to stay during their business trips

or vacations, and people use location sharing services to share the real-time status

of their daily activities.

4.4.2 Spatial Preference

Given pairs of origin location and destination location extracted from queries

(bookings) and check-ins, we quantify the spatial preferences for each of the cities

with a spatial preference probabilistic distribution. Spatial preference is intended

to reflect the aggregate interest level of users in an origin location for a particular

destination location.

Spatial Preference: Let li be an origin location and let lj be a destination location.

Let S(li) be a set of all pairs of origin-destination records in the dataset that originate

from location li, and let S(li, lj) be a set which includes all pairs of origin-destination

records that originate from location li with a destination in lj. Then the spatial

preference for location li toward location lj is:

p(li, lj) =
|S(li, lj)|
|S(li)|

Example: For example, suppose we have 10 total records (either from the query

data or the check-in data) with an origin location of A. Of these, there are three

occurrences of ¡A, A¿, two occurrences of ¡A, B¿, and five occurrences of ¡A, C¿.

Then, the spatial preferences for location A toward locations A, B, and C are:

p(A,A) = 3
10

= 0.3, p(A,B) = 2
10

= 0.2, and p(A,C) = 5
10

= 0.5. Hence, users

in location A have the strongest preference for location C, and the weakest prefer-

ence for location B.
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Table 4.1: Average Value for Cities’ Localness Metrics

Localness Metric MCD (miles) Rg (miles) CL

Queries 869.346 549.904 0.560

Bookings 809.456 522.644 0.569

Check-ins 380.121 134.477 0.614

Given the definition of spatial preference, we map the spatial preference originat-

ing from four cities across both the private query data and the public check-in data.

Figure 4.2 highlights the spatial preference of New York City, Los Angeles, Corpus

Christi (Texas), and West Lafayette (Indiana). In each of the figures, the color and

size of the dots indicate the intensity of the spatial preference from the origin to the

destination: red indicates the top 2% most preferred cities; blue indicates the top 2%

to 20%; cyan indicates the top 20% to 50%; and yellow indicates the bottom 50%.

As we observe in the figures, the private query data is much denser compared

to the check-in data. This is partially an artifact of the data collection limits we

faced but is also a reflection of the relative density of these two sources – query

logs are inherently a much larger potential collection than are check-ins. Even with

this difference in density, we note the relative similarity of the spatial preferences

measured across source. People from New York are most interested in the northeast

corridor; people from Los Angeles are most interested in the west coast; similar

observations can be made for the much smaller locations of Corpus Christi and West

Lafayette.

Additionally, we observe that queries balance their locality with many distant

locations. For example, Figure 4.2a shows that New Yorkers have many queries for

hotels in the New England area, but they are also interested to travel to the Florida

and to the west coast. Similarly, Figure 4.2c also shows a a balance between local

queries and for more distant ones. In comparison, the check-in data – though of
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a national scale for both New York and Los Angeles – is much more local (further

confirming the relative localness of check-ins versus queries in Figure 4.1). Queries for

hotels are relatively more local for the two smaller cities, as we can see in Figure 4.2e

and Figure 4.2g. In comparison, the check-in spatial preferences are much sparser

and more focused around the origin location.

4.4.3 Comparing Localness

Given the spatial preference probabilistic distribution for a specific location, we

can describe each location by measuring its localness. The goal of such a localness

measure is to encode the entire distribution of spatial preferences into a single sum-

mary metric. By evaluating each location, we can directly compare the localness of

locations as described by private query logs and by public check-ins. Toward this

goal, we adopt three complementary measures of localness:

4.4.3.1 Mean Contribution Distance (MCD)

Proposed by Hecht et al. [52], the MCD measures the weighted average of the

distances between an origin location and multiple target locations:

MCD(li) = Σlj∈S

(
d(li, lj) ∗ |S(li, lj)|

|S(li)|

)

where S includes all locations of interest and d(li, lj) denotes the distance between

the origin location li and a target location lj. A small value indicates strong localness

for a city; most users in the origin location either query for or check-in to nearby

locations. A large value indicates more global interest; users either query for or

check-in to distant locations.
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(a) Distribution of Mean Contribution Distance

(b) Distribution of Radius of Gyration

(c) Distribution of City Locality

Figure 4.3: Distribution of Localness Metrics
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Table 4.2: Values of Localness Metrics for Example Cities

Localness Metric MCD (miles)
City Name Queries Bookings Check-ins

New York City 812.384 932.113 310.563
Los Angeles 627.814 619.859 174.568

Corpus Christi, TX 435.364 356.841 172.819
West Lafayette, IN 599.479 543.760 121.559
Localness Metric Rg (miles)

City Name Queries Bookings Check-ins
New York City 1278.979 1360.094 747.878

Los Angeles 1056.731 1017.116 541.458
Corpus Christi, TX 693.989 565.083 432.333
West Lafayette, IN 887.397 818.425 282.017
Localness Metric CL

City Name Queries Bookings Check-ins
New York City 0.418 0.389 0.334

Los Angeles 0.551 0.552 0.637
Corpus Christi, TX 0.581 0.618 0.231
West Lafayette, IN 0.510 0.539 0.476

4.4.3.2 Radius of Gyration (rg)

Adopted for location analysis by Gonzalez et al. [48], the rg measures the stan-

dard deviation of distances between an origin location and target locations:

rg(li) =

√
1

|S(li)|
∑
lj∈S

(d(li, lj))2 ∗ |S(li, lj)|

In essence, the radius of gyration measures both how frequently and how far people

from the origin travel. A low rg typically indicates a location whose residents travel

mainly locally, while a high radius of gyration indicates a location with many long-

distance travelers.
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4.4.3.3 City Locality (CL)

The third measure of “localness” is city locality, proposed by Scellato et al. [103].

The city locality for city (li) is formally defined as:

CL(li) =
1

|S(li)|
∗
∑

lj∈S(li)

|S(li, lj)| ∗ e−d(li,lj)/β

where β is a scaling factor used to normalize the values of localities so that city

localities can be compared using different data and geographic sizes. The city locality

is always normalized between 0 and 1. A city with high localness has a higher value of

city locality. In practice, the scaling factor β is picked as the mean distance between

all the pairs of spatial preference between different cities.

Provided the three localness metrics above, we compare the localness between

different cities via their localness metrics. To calculate the localness metrics for each

of the cities, we firstly filter out cities without dense data. Specifically, for queries (or

bookings), cities with fewer than 1000 queries are filtered out. Similarly, for check-

ins, cities with fewer than 1000 check-ins are filtered out. Based on the remaining

cities, we calculate each of the three localness measures across queries, bookings, and

check-ins.

Table 4.1 shows the average values of the three localness metrics for cities in the

three datasets. We see that the private queries (and bookings) naturally reveal a

larger scope of interest as compared to public check-ins. The MCD is around 400

to 500 miles greater; the radius of gyration is around 400 miles greater, and the

city locality measure is lower (indicating less localness in comparison). Intuitively, it

seems reasonable that check-ins are much more local since they are more constrained

by physical mobility (e.g., I have to travel to the location, then reveal my location).
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As a side note, we see that queries are even less local than bookings, suggesting the

exploratory possibility of querying, versus the reality of actually booking a hotel (e.g.,

it’s fun to consider far-flung trips, but in actuality we tend to book more reasonable

destinations).

Further confirming this intuition, we show in Figure 4.3, the complete distribution

for each of the three localness measures across the private queries (and bookings)

versus the public check-ins. We see that the distributions are approximately Gaussian

with the check-in distribution resulting in smaller mean contribution distance and

smaller radius of gyration, relative to the others. The city locality for check-ins is

also skewed more rightward, again conveying the more localness of the check-in data.

Connected to the earlier side note, we can see that the bookings are more local than

queries based on their distributions.

Finally, we can revisit our four example cities – New York City, Los Angeles,

Corpus Christi, and West Lafayette – in terms of the three localness metrics. As

shown in Table 4.2, comparing to an average city, people from New York City really

travel to a lot of distant cities even farther than the places they searched for. For

Los Angeles, the bookings are only slightly more local compared to the queries,

while the differences between bookings and queries for Corpus Christi and West

Lafayette are even larger than the average gap between queries and bookings. Here

our hypothesis is that the gap between localness of queries, and bookings for a

particular city might be correlated with the city’s demographic information such as

population and economy, plus impacted by geographic constraints (e.g., Los Angeles

is on the ocean, whereas West Lafayette is in the middle of the country).

90



4.4.4 Summary

So far, we have modeled the spatial preference of users across both datasets and

measured the relative geo-spatial “footprint” of different locations via their mean

contribution distance, the radius of gyration, and the city locality. We have observed

that the private queries (and bookings) are less local than the public check-ins, which

casts doubt on the possibility of publicly shared location information serving as a

substitute for privately held information. On an encouraging note, though, we have

seen that the relative localness values are surprisingly consistent. Continuing this

exploration of the spatial preference, we next turn to two studies designed to leverage

spatial preference:

• In the first study, we develop a PageRank-like random walk for identifying spa-

tially significant locations based on the spatial preference of users. Do we find

that – in spite of their fundamental differences – that the two datasets reveal

similar significant locations?

• In the second study, we investigate the potential of mining related clusters of

locations from both datasets based on the spatial preferences of users. Do we

find comparable performance across datasets? Or does one perform significantly

better than the other?

4.5 Study 1: Spatial Impact

In this section, we explore the possibility of aggregating spatial preference in-

formation from multiple locations to provide a global perspective on the most “im-

pactful” locations. Automatically deriving the significant locations from a location

dataset is an important problem, and one that has potential applications in urban

planning (e.g., what neighborhoods are highly-preferred and potentially facing an

influx of new residents?), in location-based advertising (e.g., what points-of-interest
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Table 4.3: Examples of Impact Metrics

Impact Metric ImpactRank

City Name Queries Bookings Check-ins

New York City 0.035931 (2) 0.017182 (2) 0.010677 (1)

Los Angeles 0.013607 (9) 0.006141 (11) 0.005895 (7)

Corpus Christi, TX 0.001476 (62) 0.001271 (89) 0.000458 (146)

West Lafayette, IN 0.000073 (726) 0.000065 (1628) 0.000121 (535)

Impact Metric D-ImpactRank

City Name Queries Bookings Check-ins

New York City 0.038831 (2) 0.019854 (2) 0.016864 (1)

Los Angeles 0.016910 (6) 0.008049 (8) 0.009194 (6)

Corpus Christi, TX 0.001077 (74) 0.001019 (103) 0.000309 (206)

West Lafayette, IN 0.000064 (747) 0.000063 (1575) 0.000101 (534)

are more important for a particular demographic target group?), among many others.

In the following, we formally define two approaches for extracting the significant

locations from a location dataset and then we examine the locations identified over

the private query dataset and the public check-in dataset.

4.5.1 Two Methods for Finding Spatial Impact

For a collection of locations L, our goal is to find an ordering over the locations

in L corresponding the relative spatial impact of locations, so that higher-ranked

locations are deemed more significant than lower-ranked locations. While the notion

of spatial impact is difficult to evaluate, we examine two approaches grounded in

popular web link analysis and assess the orderings generated by each:

4.5.1.1 ImpactRank

The first approach propagates the spatial preference from one location to another,

so that in aggregate the locations that are most preferred by locations that are

themselves highly-preferred are the most “impactful”. Similar to the PageRank

approach for aggregating web links to assign a global importance score to web pages,
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ImpactRank can be viewed from the perspective of a biased random walker. At

each location, the random walker chooses to visit a subsequent location based on

the spatial preference of the current location. As in PageRank, the random walker

occasionally loses interest in his travels and randomly picks a new starting location.

In the limit, this random walk results in a global ordering over all locations based

on the time spent by the random walker in each location.

Let S be the set of all locations, and let S(→ li) be the set of all locations

that express a non-negative spatial preference in li, such that p(lj, li) is the spatial

preference probability of lj toward li. The ImpactRank for location li, denoted by

IR(li), is then given by:

IR(li) = d
∑

lj∈S(li)

IR(lj)p(lj, li) + (1− d)
1

|S|

where d is a damping factor (fixed as 0.85 in our experiments). The ImpactRank

scores may be updated iteratively using the power method.

4.5.1.2 D-ImpactRank

ImpactRank measures the impact of a particular location purely based on the

spatial preference matrix (which is essentially a transition matrix defined over lo-

cations), but without consideration for the actual distance between locations. Our

goal is to incorporate this distance so that more distant locations are more rewarded

for the same degree of spatial preference than closer locations. For example, suppose

the spatial preference from A to B is 0.2 and from A to C is 0.2. If A and B are

neighboring cities, but A and C are separated by 100s of miles, then this method can

reward city C more since it has attracted interest from farther away. Thus, we ex-

tend ImpactRank to D-ImpactRank, by incorporating the physical distance between

locations.

93



Specifically, we calculate the mean contribution distance (MCD) between all

pairs of locations. Then for each spatial preference probability from an origin li to

a destination lj, we multiply the original probability by a weight of the distance

between li and lj divided by the weighted average distance. The distance weighted

spatial preference probability p′(lj, li) from lj to li is defined as:

p′(lj, li) = p(lj, li) ∗
dist(lj, li)

MCD

Then the D-ImpactRank scores are calculated with the distance weighted spatial

preference matrix, and the D-ImpactRank scores for cities are expected to reveal

both the cities’ spatial impacts and the distance of their impacts’ reach. The D-

ImpactRank for location li can then be defined as in ImpactRank but with updated

transition probabilities:

DIR(li) = d
∑

lj∈S(li)

IR(lj)p
′(lj, li) + (1− d)

1

|S|

4.5.2 Measuring Impact

Given the two approaches for measuring spatial impact, we calculate both over

the private queries (and bookings) and the public check-ins. We apply each method

to the cities in the Continental United States with dense spatial preference data. As

before, we filter cities with fewer than 1000 queries (or bookings) and cities with

fewer than 1000 check-ins.

We begin by continuing with our earlier example cities – New York City, Los

Angeles, Corpus Christi, and West Lafayette – and listing their spatial impact scores

and ranks (in parentheses) in Table 4.3. The relative rankings across both approaches

and across all three datasets are remarkably consistent with New York ¿ Los Angeles
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Table 4.4: Top 10 Most Impactful Cities By ImpactRank

Queries Bookings Check − ins

No.1 Las Vegas Las Vegas New York

No.2 New York New York Austin

No.3 Orlando Chicago Orlando

No.4 Miami Orlando San Francisco

No.5 Chicago San Diego Las Vegas

No.6 San Francisco Miami Chicago

No.7 San Diego New Orleans Los Angeles

No.8 Phoenix Washington, DC Bay Lake, FL

No.9 Los Angeles San Antonio Anaheim

No.10 Washington, DC Atlanta Seattle

Table 4.5: Top 10 Most Impactful Cities By D-ImpactRank

Queries Bookings Check − ins

No.1 Las Vegas Las Vegas New York

No.2 New York New York Austin

No.3 Orlando San Francisco San Francisco

No.4 San Francisco Chicago Orlando

No.5 Miami San Diego Las Vegas

No.6 Los Angeles Seattle Los Angeles

No.7 San Diego Los Angeles Chicago

No.8 Chicago New Orleans Seattle

No.9 New Orleans Washington, DC Bay Lake, FL

No.10 Washington, DC Miami Anaheim

¿ Corpus Christi ¿ West Lafayette. This is an encouraging result and one that fits well

with our intuition (especially considering that Corpus Christi is a popular regional

tourist destination as compared with the college town of West Lafayette).

We next list the top-10 cities with the highest spatial impact in Table 4.4 and

Table 4.5, again considering both approaches and all three datasets. Focusing on

Table 4.4, we see that five of the ten cities are common between the public check-in

dataset and the private query dataset: New York, Orlando, San Francisco, Chicago,
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Figure 4.4: (Color) Rank Correlation between List of Most Impactful Cities

and Los Angeles. Note that Austin is the original home of the Gowalla location

sharing service and so it receives a large “home field advantage”. Bay Lake, Florida

is the home of Walt Disney World next to Orlando and so could be considered a sixth

similar location across the public and private datasets. Similarly, we see in Table 4.5

comparable rankings for the distance-weighted D-ImpactRank with respect to the

original ImpactRank.

Comparing between ImpactRank and D-ImpactRank for only the top-10 reveals

little difference. Hence, we next measure the rank correlation across approaches

using Spearman’s ρ, which ranges from 1 to -1, with higher values indicating that

two ranked lists are in relative agreement. As we can see in Figure 4.4, the rank

correlation between approaches and between different datasets varies quite a bit. The

series of red, green, and blue indicate the rank correlations between lists of top-K

most impactful cities ranked by their ImpactRank scores. The series of cyan, yellow,
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and magenta indicate the rank correlations between lists of top K most impactful

cities ranked by their D-ImpactRank scores. We are encouraged to see that the rank

correlation for D-ImpactRank for queries versus check-ins performs very well over

the top-20 results (meaning that the top-20 are highly correlated based on these

two datasets). For bookings versus check-ins over ImpactRank (in blue), the rank

correlation is the worst for K up to 100. At higher values of K, the rank correlation

in all cases converges to around 0.0 primarily due to data sparsity at the bottom of

the ranked list (leading to essentially random rankings at the bottom of the list).

Based on this experimental study, we find that in some cases both datasets reveal

similar significant locations. This result is somewhat surprising considering the key

differences between the public check-ins and the private queries, but is encouraging.

In our following study, we continue this exploration of the viability of substituting

publicly-released data for private data with an examination of extracting similar

cities from location datasets.

4.6 Study 2: Finding Similar Cities

In previous sections, we characterized a location by its spatial preference and by

the spatial impact derived from aggregating over these spatial preferences. In this

section, we examine whether these spatial characterizations can be used to automat-

ically extract groups of similar locations. Finding related groups of locations has

potential impact for optimizing online advertising (e.g., if users in location A click

on an ad, then perhaps users in the similar location B will also do so), for improv-

ing web search and mobile applications (e.g., a user querying for a nearby tourist

destination can be recommended other similar spots), and so forth.

Toward finding similar cities, we first define a ground truth of city similarity,

define two metrics for evaluating city similarity, and then measure city similarity
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Table 4.6: Performance for Identifying Similar Cities

Queries Bookings Check-ins

Feature Set P@10 N@10 P@10 N@10 P@10 N@10

Spatial Preference 25.17% 56.11% 28.06% 59.81% 24.2% 60.1%

Spatial Impact 22.22% 50.43% 24.71% 52.86% 31.2% 64.7%

Spatial Preference + Impact 28.04% 59.42% 28.97% 60.38% 31.6% 65.2%

using a vector space interpretation of spatial preference and spatial impact.

4.6.1 Defining the Ground Truth

What makes two locations similar? While there are many possible answers, we

adopt a systematic method for finding relationships among cities by mining 800

expert-curated lists of top cities across particular categories. The data is available

from [1] and lists 101 top cities for each category. For example one of the lists includes

the top cities with the most people having a Doctorate degree; for this list the top

cities are Palo Alto (CA), Bethesda (MD), Brookline (MA), Cambridge (MA), and

Davis (CA). From this perspective, these five cities can be considered similar. In

this same fashion, we extract the top cities lists for a total of 800 separate city lists.

For each pair of cities, we consider their total number of co-occurrences among the

top city lists as the similarity between the pair of cities. For example, if two cities

co-occur in 400 out of the 800 lists, then their similarity is 1
2
. Cities that never

co-occur on a list will have a similarity of 0. In addition, for city li, we rank the

other cities according to their similarities (co-occurrences in top city lists) with city

li in descending order.

A similar approach was undertaken in the context of free-text web search engine

queries in [106]. Rather than considering spatial preference as in this section, the au-

thors looked for common clues in the text of search engine queries to group related

cities. Information revealed through text queries is a strong indicator of similar-
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ity (e.g., if many users in two locations are both querying for “molecular biology”,

“PhD”, and “grad school”, then there is good evidence of a relationship between

locations). In contrast, spatial preference is a less clear indicator of city similarity

since only relative interest in other locations is available for comparison.

4.6.2 Approach and Metrics

To find related cities, we apply the standard cosine similarity to vectors based

on the spatial preference and the spatial impact of city pairs. That is, for city

i and city j, we can represent each city by a vector (e.g., based on the spatial

preference probabilities). Cosine similarity is a similarity measurement between the

two vectors – in this case, the vectors associated with city i, ~vi, and with city j, ~vj:

cos(~vi, ~vj) =
~vi·~vj
|~vi||~vj | .

With this approach and the ground-truth data, we use Average Precision@10

(P@10) and Average NDCG@10 (N@10) to evaluate the predicted top similar

cities. For each city, we first extract the top K% of the most similar cities to it in

the ground truth data as the relevant cities to the given city. Then, we calculate

the Precision@10 for the city which measures the percentage of the top 10 predicted

similar cities that also belong to the top K% of the relevant set, which can be formally

defined as:

P@10 =

∑
li∈S

|Stop10(li)∩Stop k% gt(li)|
10

|Sc|

where S refers to the set of all the cities in the datasets; li denotes a specific city;

Stop10(li) denotes the top 10 similar cities of li predicted using the similarity metric;

and Stop k% gt(li) denotes the top K% similar cities for li in the ground-truth data.

A high value of AvgPrecision@10 indicates that the location preferences or lo-

calness modeled from the data really reveal semantic information for the city, and

hence provide hints to find similar cities. Similarly, we apply Average NDCG@10
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to evaluate the performance considering both the precision of the predicted similar

cities and the positions of the truly similar cities in the predicted similar city list.

In practice, we extract 10% of the ground truth similar cities for each city as its

ground truth relevant cities. To make sure we have dense data for each of the cities,

for both the queries and bookings, we only pick the cities in Continental United

States with a minimum of 5000 queries from each of the city; and for the check-

ins, we only pick the cities in Continental United States with a minimum of 1000

check-ins.

4.6.3 Evaluation

Table 4.6 shows the performance using features of different combinations of spatial

preference and spatial impact associated with the private queries (and bookings) and

the public check-ins. We additionally consider a combined vector representation that

is simply an average of the normalized spatial preference and the normalized spatial

impact vectors. Using cosine similarity to calculate the similarity between these

three representations of cities, we observe strikingly similar results across the public

check-ins and the private queries, as well as fairly stable relative ordering with the

combined representation always yielding the best results.

Focusing on precision@10, we see that about 28% of the top-10 predicted similar

cities are considered similar (based on the ground truth data) based on the query

data, but that about 32% are similar based on the check-in data. Focusing on the

average NDCG@10, we see a similar behavior – with the query data yielding a 60%

result, but the check-ins performing slightly better with 65%.

Based on this experimental study, we find that across these two fundamentally

different datasets, that similar performance may be achieved for automatically iden-

tifying groups of related locations. Coupled with the observations in the previous
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section, this is a second encouraging result considering the key differences between

the two datasets.

4.7 Summary

In this section, we have investigated two different sources of spatial preference:

a set of private query logs recorded by a commercial hotel search engine and a set

of publicly shared check-ins voluntarily generated by users of a popular location

sharing service. Although generated by users with fundamentally different inten-

tions, we find common conclusions may be drawn from both data sources, indicating

the viability of publicly shared location information to complement (and replace,

in some cases), privately held location information. This is especially encouraging

since many location preference data sources are expensive, proprietary, and often

times unavailable. In contrast, publicly-shared data offers appealing new avenues of

research. Since modeling and exploiting spatial preference is critical for geographers,

social scientists, as well as computer scientists interested in improving location-based

recommendation systems, travel planners, search engines, and other emerging mo-

bile applications, these conclusions are a starting point for further research on the

strengths and weaknesses of relying on publicly available datasets.
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5. ACTIVITY-DRIVEN LOCAL SEARCH∗

In both section 5 and 6, we talk about the new geo-social information systems

we propose. In section 5, we first introduce a location-based search system aug-

mented using activity pattern mined from location-sharing services. Concretely, we

get started from studying location-based activity patterns (also referred to as traf-

fic patterns) revealed through location sharing services, and find that these activity

patterns can identify semantically related locations. Based on this observation, we

propose and evaluate a activity-driven location clustering algorithm that can group

semantically related locations with high confidence. Through experimental study of

12 million locations from Foursquare, we extend this result through supervised lo-

cation categorization, wherein traffic patterns can be used to accurately predict the

semantic category of uncategorized locations. Based on these results, we show how

activity-driven semantic organization of locations may be naturally incorporated into

location-based web search.

5.1 Introduction

The emerging check-ins from location sharing services – along with other user-

generated descriptors supported by these services like tags, ratings, and comments –

have resulted in billions of explicit “geo-semantic” markers that link people, places,

and their activities. As these services continue to grow, there are great opportunities

for extremely granular temporal and spatial mining of human mobility, as well as new

mobile+location-based services, augmented traffic forecasting, and urban planning.

∗Reprinted with permission from “Toward Traffic-Driven Location Based Web Search” by
Zhiyuan Cheng, James Caverlee, Krishna Kamath, and Kyumin Lee, 2011. in Proceedings of
the 20th ACM International Conference on Information and Knowledge Management. Copyright
2011 by ACM.
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In this section, we propose one direction in which location-sharing services may

have strong impact – in augmenting traditional location-based web search. Location-

based web search (also known as local search) has drawn intensive attention in both

industry (Google Maps, Yelp, Yahoo! Local, and Yellow Pages), and the academic

community (e.g., [15, 32, 84]). Nearly all the current location-based search systems

typically provide rankings for nearby venues based on a user’s query and current

location. For example, a local search for “coffee” may return a map and an asso-

ciated ranked list of nearby coffee shops and coffee bean wholesalers. Some of the

factors that location-based search engines use for ranking venues in response to a

query include: (i) the distance between the user and the target venue; (ii) category

analysis of venues (e.g., to group all coffeeshops in a pre-processing step); (iii) the

overall ratings for the venue (which are often available for commercial places of busi-

ness like restaurants); (iv) query and click popularity of the venue’s associated web

page (e.g., Starbucks may be considered more popular from its web presence than

a local coffee shop); (v) reputation of the location via PageRank-style link analysis

of the web graph; and (vi) content-based relevance between the query and the loca-

tion’s description (e.g., via information retrieval similarity between the query and a

summary of the venue on Yelp or the content from a location’s web presence).

In many ways analogous to how clickstreams [56, 123, 23] have been successfully

incorporated into traditional search systems based on content similarity [101] and link

analysis [62] by connecting real-world user actions (clicks) to relevance, this section

proposes that the temporal dynamics embedded in the check-ins from location sharing

services have great potential to augment traditional location-based search systems

by connecting real-world actions (check-ins) to relevance. To illustrate:

• Mike wants to make a reservation for a tennis court on Saturday afternoon so that
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he can teach his son to play tennis without being disturbed by nearby players.

Hence, a local search for “tennis courts” could be augmented with the temporal

dynamics mined from location-sharing services to indicate which courts are at

off-peak times in terms of player traffic.

• Tina and her friends are going to celebrate their graduation on a Thursday evening

and are looking for late-night hot spots. Which local bars are at-peak in terms

of traffic? Or will be peaking by the time Tina and her friends arrive?

• John plays a lot of basketball. He usually goes to Williams Park during Wednes-

day early evening, and Saturday afternoon, which are both free time for him and

peak times for other players to get together and play basketball. Suppose John

moves to a new neighborhood and wants to find places nearby that have similar

traffic patterns, so that he can meet new friends there and play basketball. A

traffic-driven location-based search can also easily handle this kind of queries by

returning semantically correlated venues with similar traffic patterns.

In all three cases, factors traditionally considered for loca- tion-based web search

– like distance, overall venue reputation and popularity – are less important than

fine-grained temporal dynamics of the traffic patterns of the target venues. Hence,

there is an opportunity to augment these traditional approaches with real-world user

actions revealed through location sharing services.

In this section, we propose to study the potential and viability of mining traffic

patterns revealed through location sharing services to augment traditional location-

based search. As a first step, we propose to model each venue by a traffic pattern

– essentially a frequency function corresponding to each venue. Two essential and

open questions are (i) whether such a model, as compared to traditional content-

based and popularity-based models of location-based search, encodes semantically
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meaningful information; and (ii) whether there is wide enough coverage of location

sharing services to support large-scale application of traffic patterns to location-based

search. With these questions in mind, this section makes the following contributions:

• First, we present in this section a large-scale study of every venue in Foursquare,

totaling 12 million unique venues annotated by users of Foursquare via check-ins.

Based on this study, we propose and evaluate a traffic pattern-based model of

venues through an investigation of the location-based traffic patterns mined from

22 million check-ins from Foursquare and other location sharing services.

• Second, we propose a measure of semantic correlation across venues for orga-

nizing venues according to the traffic patterns revealed through location sharing

services. Based on this measure, we propose and evaluate a traffic-driven location

clustering algorithm that can group semantically related locations with a best-

effort performance of F1-Measure 0.675, and Purity 0.764, a critical function for

a location-based search engine.

• Third, we observe significant sparsity of check-in data for venues on the “long

tail”, and so we propose and evaluate a traffic pattern-driven approach for super-

vised location categorization, wherein traffic patterns can be used to accurately

predict the semantic category of uncategorized locations with a F1-Measure of

almost 0.8.

• Finally, based on these results, we show how traffic-driven semantic organization

of locations may be naturally incorporated into location-based web search through

two example scenarios.

5.2 Related Work

Increasing focus has been put on location sharing services in recent years. Ye

et al. [128] proposed friend-based collaborative filtering algorithms to recommend
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locations utilizing a dataset scraped from Foursquare; Lindqvist et al. [75] analyzed

how and why people use location sharing services; and Noulas et al. [88] analyzed

user check-in dynamics, and user activities in location sharing services. Compared to

these previous studies, this section focuses on analyzing the temporal traffic patterns

revealed from location sharing services and how the traffic patterns can be utilized

to enhance traditional location-based search.

Several studies have analyzed the temporal dynamics of on-line social networks

and other web corpuses. Golder et al. [47] explored the temporal dynamics associated

with on-line social tagging activities. Researchers in [63] studied how queries, their

associated documents, and the query intent change over time by analyzing query

log data. Temporal evidence was incorporated into models of semantic relatedness

for words in [95]. Yang et al. [125] proposed a clustering algorithm that groups

temporal patterns associated with online content, and studied how the popularity

of the content grows and fades over time. A temporal correlation measure was

introduced and applied to study semantic similarity between queries by Chien et al.

[20].

Related to our temporal model of traffic patterns, in terms of time series data

analysis, Fu [43] provides comprehensive summary on the existing time series data

mining literature including representation, indexing, similarity measure, segmenta-

tion, visualization and mining. A numerosity reduction component was proposed by

Xi et al. [121] and proved to speed up the best performing classifier of one-nearest-

neighbor with Dynamic Time Warping (DTW). [72] provided a survey for techniques

in time-series data clustering, and corresponding evaluation metrics.

Location-based web search has drawn intensive attention in both industry (Google

Maps, Yelp, Yahoo! Local, and Yellow Pages), and the academic community. Early

research efforts (e.g., [15, 32, 84]) mainly focused on the extraction of geographic
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information from page content and structure. Several studies [44, 4, 102] showed that

more than one fifth of the queries in general web search systems were geographical

relevant queries. Geotagging and gazetteers have been widely used in [81, 115, 117] to

augment location-based web search. Watters and Amoudi [118] proposed a method

to assign location coordinates to URLs, and a corresponding framework for location-

based ranking of search results.

5.3 Location Sharing Services

In this section, we introduce the location sharing service data, present our sam-

pling strategy, and provide a characterization of the venue data collected from

Foursquare.

5.3.1 Sampling Check-in Data

eo start with, firstly we need a set of check-ins. While Foursquare, Facebook

Places, and other related location sharing services are rich resources, all restrict access

to a user’s immediate social circle and hence are unavailable for public sampling.

Hence, we adopt a data collection technique that relies on sampling location sharing

status updates from the public Twitter feed. While users of location sharing services

in general and the subset who choose to advertise their location via Twitter may not

be a representative sample, these status updates are inherently public (mitigating

concerns over privacy violations that would arise from mining services like Facebook

Places) and offer a rich vein of check-in data. Specifically, we monitor Twitter’s

public streaming API and search API from October 2010 to January 2011, and

collected a set of more than 22 million check ins. Worth mentioning, our data is

available on-line at http://infolab.tamu.edu/data/.

Each check-in contains a fine-granularity location (latitude and longitude) and

a timestamp. More than 62% (∼14 million) of the check-ins are associated with a
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Figure 5.1: Distribution of # of Check-ins Per Venue

venue, and in total 603,796 venues are referenced. Note that since each venue has

on average only ∼23 check-ins (with a skewed distribution, where some venues are

heavily “checked in” to, but the majority have only a handful of check-ins as plotted

in Figure 5.1), we aggregate all check-ins for venues based on the venue name (e.g.,

grouping all instances of “Starbucks”) for the analysis in the rest of the section.

Venues in the set may be associated with varying degrees of spatial granularity based

on the bounding box linked to the venue – from country to province / state to city

to district and finally to points-of-interest. In this section, we mainly focus on the

check-ins corresponding with the 515,862 point-of-interest venues, each of which is

finely geo-labeled with a latitude and longitude.
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5.3.2 Crawling Foursquare Venues

Each venue posted to Twitter has a corresponding “venue page” hosted by

Foursquare. To retrieve more information about the venues, we crawled the entire

Foursquare-sphere, resulting in nearly 20 million “venue pages” in HTML format.

Based on our best-effort parser, we successfully parse 12,677,314 html pages of venues.

Specifically, each venue is stored as the tuple venue(venueID) = {venueID, name,

latitude, longitude, address, city, region, postal code, categories, tags} An example

tuple of a venue is: venue(877) = {877, “once upon a tart”, 40.7267, -74.0019, “135

sullivan st”, “new york”, “ny”, 10012, “sandwiches, salad, bakery”, “salads, roast

pork sandwich, strawberry lemonade ginger iced tea, tarts, desserts”}.

5.3.2.1 Venue Characterization

Among the 12 million venues, 56.4% (i.e., 7,147,755) of the venues are voluntarily

assigned by users of Foursquare at least a single category. And there are 7,753,274

occurrences of 833 unique categories identified in the dataset. Based on Foursquare’s

3-level categorization system, we group the 833 categories into 8 coarse groups: Arts

& Entertainment, College & University, Food, Great Outdoors, Home, Work and

Other, Nightlife Spot, Shop, and Travel Spot. The distribution of the eight categories

is listed in Table 5.1. Among the categorized venues, the category of Home, Work

and Other presents almost one third (31.7%) of the venues. Venues in the category

of Food (24.3%) and the category of Shop (17.1%) are also popular. The other

five categories (Travel Spot, Great Outdoors, Nightlife Spot, Arts & Entertainment,

and College & University) possess similar percentages (around 5% for each) in the

dataset.

Besides the category information for venues, about 7.8% (i.e., 989,281) of the

venues are labeled with at least a single tag. The tags are user-generated keywords
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Table 5.1: Distribution of Venue Categories

Category Percentage # of Venues
Home, Work and Other 31.7% 2,457,172

Food 24.3% 1,886,875
Shop 17.1% 1,329,185

Travel Spot 7.0% 541,482
Great Outdoors 6.4% 493,635
Nightlife Spot 5.7% 438,400

Arts & Entertainment 4.3% 334,700
College & University 3.5% 271,825

posted by users of the location sharing service. Based on inspection, tags typically

contain information such as category of the venue (e.g., coffee, food, and bar); items

provided by the venue (e.g., burgers, flu shot, and long island iced tea); features of

the venue (e.g., free wifi, 24 hrs, and pet friendly); location of the venue (e.g., houston

downtown, bridge street); and users’ comments for the venue (e.g., awesome, good

deal, and great food). Each of the tagged venues is assigned with an average of 3.37

tags. Different from the categorization system, the tagging feature in Foursquare

gives users more freedom to generate appropriate tags. In total, we find 615,457

unique tags that are collectively used a total of 3,329,641 times across all venues.

Together, these user-assigned tags and the top-level categories provide descriptive

information about specific venues and provide clues to study the semantic correlation

between venues. Recall that one of the key pre-processing steps in location-based

search is category analysis of venues – to group together semantically-related venues

– but in isolation we can see that the category assignments are fairly sparse (56%)

and at a coarse-level; similarly, the tag information is even sparser (8% of all venues),

and both tags and categories provide only descriptive information about the venues.

Our goal in the rest of the section is to consider the traffic-driven temporal patterns
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revealed through check-ins to augment this semantic grouping based on the real-world

behaviors of users of these services.

5.4 Exploring Semantic Correlation between Venues

In this and the following two sections, we begin an exploration of the temporal

dynamics of venues as revealed through location sharing services. Given the large-

scale chec-kin data, we propose to model venues through traffic-based patterns and

seek to answer the following questions:

• Can we measure semantic correlation between venues based on associated traffic

patterns?

• Can we cluster venues into semantically correlated groups based on traffic pat-

terns?

• Can we use traffic patterns to accurately predict the semantic category for un-

categorized locations?

We begin in this section by defining a traffic pattern and its frequency func-

tion. We discuss metrics to measure semantic similarity between traffic patterns,

and we apply the temporal correlation measure to quantify the semantic relatedness

between traffic patterns. Based on this initial study, we identify semantically corre-

lated groups of venues based on measuring the pairwise temporal correlation between

the venues’ associated traffic patterns.

5.4.1 Modeling Venues

A Traffic Pattern (T Pattern) T for a venue over n time units is defined as the

temporal dynamic of check-ins during the time period. It can be measured by its

Frequency Function FT formally defined as FT = (ft1 , ft2 , ..., ftn), in which fti is

the frequency for time unit ti over the whole series of T. More specifically, for each
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Figure 5.2: Daily Traffic Pattern for Walmart

venue, we generate a daily mean traffic pattern and a weekly mean traffic pattern

given the timestamps of check-ins in the venue. The Daily (Mean) Traffic Pattern

contains 24 time units in which each of the time unit represents an hour in a day.

Similarly, the Weekly (Mean) Traffic Pattern contains 70 time units in which

each unit represents one tenth of a day. Examples of daily traffic pattern and weekly

traffic pattern for Walmart are plotted in Figure 5.2 and Figure 5.3 respectively.

The daily t pattern shows that customers tend to go shopping in Walmart in the

afternoon and early evening, and the weekly t pattern indicates that there is a bigger

crowd at Walmart over the weekends than on weekdays.

5.4.2 Temporal Similarity Measures

Given a traffic pattern for a venue, can we identify related venues based solely

on this pattern? This is an important step for semantically grouping venues for
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Figure 5.3: Weekly Traffic Pattern for Walmart

improved location-based search. But perhaps traffic patterns do not vary much from

venue to venue, meaning that traffic patterns could have only limited impact.

The most straightforward similarity measures for time-series data are Euclidean

Distance [36] and its variants based on the common Lp − norms (L1 – Manhattan

Distance, and L2 – Euclidean Distance). These metrics can be easily implemented

and are surprisingly competitive with other complex measures with a large training

set. However, these distance measures are sensitive to noise and misalignments

in time. Another effective temporal correlation measure is a temporally-grounded

variation of the correlation coefficient. Given two traffic patterns Tp, Tq and their

frequency functions FTp and FTq, the temporal correlation TCorr(FTp, FTq) between

the two traffic patterns Tp and Tq is:
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TCorr(FTp, FTq) =
1

n

∑
i

(
ftpi − µ(FTp)

σ(FTp)
)(
ftqi − µ(FTq)

σ(FTq)
)

where µ(FTp), µ(FTp) are the mean frequencies, and σ(FTp), σ(FTq) are the standard

deviations for the two traffic patterns Tp and Tq. A version of this same metric

was shown to be effective by Chien et al. [20] for measuring the similarity of search

engine queries by comparing their frequency functions.

5.4.3 Mining Semantic Correlation between Venues

To study the semantic correlation between venues based on their traffic patterns,

we sample a set of 271 venues from the check-ins dataset with a criteria of at least

100 branches and 100 check-ins to ensure the density of the traffic patterns. For each

of the 271 venues, we retrieve both a mean daily traffic pattern and a mean weekly

traffic pattern to capture their traffic. Then, we calculate the pairwise temporal

similarity for all the pairs in the 271 venues set. After sorting the pairs of venues

based on the descending order of temporal correlation measure, we find quite a

few interesting pairs of venues that have obvious semantic correlation. Using the

results for calculations based on daily mean traffic patterns only, we show the top-10

similar pairs of venues in Table 5.2. Each pair of venues in the table has obvious

semantic correlation: both “Walgreens” and “CVS Pharmacy” are 24 hour pharmacy

stores; both “Subway” and “Jason’s Deli” are chain fast food restaurants; and both

“Starbucks” and “Caribou Coffee” are coffee shops. The results listed in the table

clearly indicate that the traffic pattern of a venue reveals its semantic category, and

the temporal correlation between traffic patterns of two venues can help measure the

semantic relatedness between venues.

Having all pairwise temporal similarities between venues, we are also interested to

see whether we can find inherent groups of venues that belong to the same semantic
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Table 5.2: Top Pairs with Highest Temporal Correlation

Pair of Venues Correlation

Target – Borders 0.949

Walgreens – CVS Pharmacy 0.947

Panda Express – Five Guys Burgers and Fries 0.947

Pizza Hut – California Pizza Kitchen 0.947

Chipotle – Five Guys Burgers and Fries 0.946

Staples – Apple Store 0.946

Target – Barnes & Noble 0.946

Subway – Jason’s Deli 0.945

Chili’s – Ruby Tuesday 0.944

Starbucks – Caribou Coffee 0.944

category. For example, do all the coffee shops have similar temporal traffic patterns?

We model the venues and temporal similarities as vertices and weights for edges in a

graph. An edge between two vertices (venues) exists when the temporal correlation

between traffic patterns of the two venues exceeds a pre-defined threshold. In this

way, a graph modeling the semantic relationship between venues is generated. Instead

of focusing on the whole graph itself, we are more interested in the strong connected

components in the graph, which are potential candidates for semantic categories of

venues.

As an example, when we set the pre-defined threshold for minimum temporal

similarity as 0.93, a graph with 68 vertices, and 12 strong connected components

is generated. Six example components are plotted in Figure 5.4. One component

(plotted in Figure 5.4a) contains “Jason’s Deli”, “McAlister’s Deli”, “Qdoba Mex-

ican Grill”, “Subway”, and “Zaxby’s” which are all chain restaurants. The traffic

patterns of the “steakhouse” component is displayed in Figure 5.4b. Both the sub

restaurants and the steakhouses have two peaks (lunch time and dinner time), though

the frequencies differ dramatically. The major crowd arrives at sandwich shops at
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noon to grab lunch, while many more people choose to have steaks for dinner rather

than lunch. Similar comparisons are plotted in Figure 5.4c and Figure 5.4d, in which

traffic patterns for the component of coffee shops and ice cream shops are featured

respectively. People buy coffee in the early morning, and the busyness for the coffee

shops gradually decreases during the day. However, people tend to have ice cream in

the afternoon, and the ice cream shops are especially crowded in the early evening

after dinner. Figure 5.4e and Figure 5.4f plot the components corresponding to office

supply stores, and to a component of book store and pharmacies. Both the com-

ponents have quite similar traffic patterns, and traffic patterns for book stores and

pharmacies decrease from their peaks slower than the traffic patterns for the group

of office supply stores. The other strong connected components are also highly se-

mantically connected: there is a group of pizza restaurants, a group of juice shops,

a group of chained family restaurants, and two groups of fast food restaurants. All

the examples validate our hypothesis that measuring temporal correlation between

traffic patterns can identify groups of venues that are semantically connected.

5.5 Clustering Venues

Motivated by the results shown in last section, a natural step to utilize the traffic

patterns is to group the venues into similar categories. For example, clustering the

traffic patterns may lead to clusters of categorized groups of venues, such as “coffee

shops”, “steakhouses”, “hotels”, and “gyms”. Specifically, in this section, we apply

several different clustering methods and different similarity metrics to cluster the

venues based on features of traffic patterns.

5.5.1 Methods

The graph modeling method we used in mining the semantically group of venues

is one way to cluster the venues. However, it heavily relies on the value of the
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(a) Comparison between T Patterns of “Sub”
Shops

(b) Comparison between T Patterns of “Steak-
houses”

(c) Comparison between T Patterns of “Coffee”
Shops

(d) Comparison between T Patterns of “Ice
Cream” Shops

(e) Comparison between T Patterns of “Office
Supply Stores”

(f) Comparison between T Patterns of “Book
Stores and Pharmacies”

Figure 5.4: Comparisons between T Patterns in Different Strong Connected Groups

pre-defined correlation threshold, and it is difficult to control the number of strong

connected components by tuning the threshold. Thus, in this section, we apply

K-means and EM clustering algorithm for grouping the venues given their traffic

patterns. We apply features of daily traffic pattern, weekly traffic pattern, and daily
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+ weekly traffic pattern respectively in clustering the venues. We also explore using

the tags for the venues to group the venues into semantically correlated categories.

5.5.2 Experimental Setup

To evaluate the clustering results, a ground truth category is retrieved for each

of the venues from the venues dataset collected from Foursquare. For K-means algo-

rithm, we apply Euclidean Distance, Manhattan Distance, and Temporal Distance.

Worth mentioning, the temporal correlation discussed earlier ranges between -1 and

1, with higher values indicating higher correlation. Since clustering requires a dis-

tance measure, we rescale the temporal correlation to define a metric Temporal

Distance, where TDist = 1.0 − TCorr+1
2

. This temporal distance ranges between 0

and 1, with larger values indicating less similarity (greater distance). In evaluating

the results for the clustering, we use the F1-Measure and Purity, which are both

standard metrics to evaluate the quality of a clustering. Specifically, F1-Measure

balances both the precision and recall of clustering. Purity measures the ratio of the

total number of correctly clustered venues over the total number of venues.

Additionally, four test sets are generated to evaluate the clusters based on the

criteria of minimum number of check-ins (500+, 300+, 200+, and 100+) for each

venue. Venues with more check-ins are expected to have denser traffic patterns, and

thus contain stronger indication of semantic information. The four test sets include

148, 242, 383, 585 venues respectively. For each venue, two feature sets are generated:

traffic patterns, and vector space models generated from tags. For the traffic patterns,

we use daily traffic pattern, weekly traffic pattern, and daily plus weekly traffic

pattern respectively. For the vector space models, we retrieve tags for the venues

from the venue dataset, and generate features of tf, idf, and tf-idf values for the tags

respectively. To normalize the features, we apply L2 normalization on both vectors
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of traffic patterns and for the vector space model. In the four testsets, only venues

of the categories “Food”, “Shop”, “Home, Work, and Other”, and “Travel Spot”

(among the eight categories in categorization system of Foursquare) have sufficient

check-ins. Thus, in both K-means and EM algorithm, we pre-specify the number of

clusters to be 4.

5.5.3 Experimental Results

5.5.3.1 Clustering with the Traffic Patterns

Results for K-means and EM algorithms evaluated by F1-Measure and Purity

using the four test sets (with 500+, 300+, 200+, and 100+ check-ins respectively)

are listed in Table 5.3. In most of the cases, clustering with the daily traffic pattern

itself performs the best. Combining both daily and weekly traffic patterns performs

better than using weekly traffic pattern alone. Among combination of method and

metric, K-means plus Temporal Distance performs the best with a significant increase

(around 15% to 20% increase) over K-means with the other two metrics, as well as the

EM algorithm. K-means with Manhattan Distance performs better than K-means

with Euclidean Distance. And they both outperform the EM algorithm when the

venues have the sufficient check-ins. However EM algorithms performs competitively

when the venues have fewer check-ins.

The best performing methods and their results are extracted from Table 5.3 and

plotted in Figure 5.5. As we can see from Figure 5.5, generally, test sets with denser

traffic patterns reach better performance in F1-Measure, and Purity. Results for

the dataset with least check-ins suffer from lack of sufficient data in traffic patterns.

We also observe that the dataset with the most check-ins do not reach the best

performance. This is partly due to the lack of number of venues (only 2) in the

category of travel spots.
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Table 5.3: Results for Traffic Pattern Clustering

Dataset Features Daily T Pattern Weekly T Pattern Daily + Weekly T Pattern
Method / Metric F1 Purity F1 Purity F1 Purity

500+
K-means + Euclidean 0.495 0.595 0.419 0.534 0.412 0.520

K-means + Manhattan 0.502 0.608 0.442 0.554 0.451 0.574
K-means + T Distance 0.539 0.608 0.603 0.689 0.608 0.635

EM 0.424 0.541 0.43 0.554 0.416 0.534

300+
K-means + Euclidean 0.427 0.504 0.465 0.533 0.466 0.562

K-means + Manhattan 0.502 0.566 0.435 0.533 0.476 0.583
K-means + T Distance 0.675 0.764 0.586 0.674 0.616 0.698

EM 0.465 0.537 0.467 0.579 0.47 0.562

200+
K-means + Euclidean 0.416 0.483 0.463 0.441 0.456 0.535

K-means + Manhattan 0.498 0.527 0.446 0.504 0.477 0.548
K-means + T Distance 0.671 0.700 0.566 0.621 0.527 0.585

EM 0.482 0.512 0.412 0.452 0.408 0.446

100
K-means + Euclidean 0.415 0.525 0.435 0.535 0.427 0.444

K-means + Manhattan 0.437 0.535 0.406 0.504 0.437 0.515
K-means + T Distance 0.571 0.667 0.552 0.658 0.599 0.706

EM 0.477 0.568 0.403 0.487 0.464 0.405

Figure 5.5: Comparison of Best Results over Different Test Sets
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5.5.3.2 Clustering with the Vector Space Models

As mentioned, we retrieve tags for the venues in the four test sets from the venue

dataset collected from Foursquare. We apply the same clustering methods using the

features of vector space models (tf, idf, tf-idf) modeled from the tags respectively.

However, for different methods over different training sets, all the venues tend to

converge to a single large cluster, primarily due to the sparseness of the tags in the

datasets.

Together, these results show that modeling venues by traffic patterns and using

temporal correlation to measure venue similarity are viable alternatives to traditional

content-based clustering methods.

5.6 Supervised Venue Categorization

While clustering of venues by traffic-based temporal correlation can provide a

foundation for organizing venues for improved location-based search, there is still the

challenge of sparsity for venues on the “long tail”. Hence, in this section, we propose

and evaluate a traffic pattern-driven approach for supervised location categorization,

wherein traffic patterns can be used to accurately predict the semantic category of

uncategorized locations. Given a set of venues with known category labels, and their

corresponding traffic patterns, are we able to train classifiers with the labeled set

to categorize incoming venues with their corresponding traffic patterns? As in our

study of clustering, we also consider an alternative tag-based model as a point-of-

comparison.
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5.6.1 Training Set and 10-Fold Cross Validation

The training set contains a set of the 271 most popular venues which all have at

least 100 branches and over 100 check-ins in the check-ins dataset. As mentioned

earlier, we retrieve the ground-truth labels for the venues from Foursquare venue

data. The 271 venues are grouped into four categories (all belong to the category

system mentioned before): Food; Home, Work & Other; Shop; and Travel Spot. We

adopt the same two set of features as in the clustering work: traffic pattern (including

daily traffic pattern weekly traffic pattern, and daily plus weekly traffic patterns),

and vector space models (tf, idf, and tf-idf values) for tags associated to the venues.

We apply the features in training classifiers of Naive Bayes, 1NN (we iterate k from

1 to 5 for kNN, and 1NN always perform the best, so we fix k to 1 in the following

experiments), AdaBoostM1, and SimpleCart. We also apply L2 normalization on

both vectors of traffic patterns and for the vector space model. To evaluate the

effectiveness of the classifiers, we use 10-fold cross validation and the F1-Measure.

5.6.1.1 Traffic Pattern Features

Results for traffic pattern features are plotted in Figure 5.6. Using either daily

traffic pattern or the weekly traffic pattern displays a strong indication of the category

of the venue, reaching an F1-Measure higher than 0.8 with 1NN classifier. The other

three classifiers – Naive Bayes, AdaBoostM1, and Simple Cart – seem incompatible

with the time series data. Combining both daily traffic pattern and weekly traffic

pattern gives a boost of 6.5% for Simple Cart, 1.7% for 1NN, and 0.6% for Naive

Bayes. Overall, the 1NN classifier still performs best with an F1-Measure of 0.820

slightly above AdaBoostM1 and SimpleCart with a best F1-Measure of 0.819. These

results agree with the observations in Xi et al.’s work [121] that 1NN classifier has

excellent performance in time-series classification.
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Figure 5.6: 10-Fold Cross Validation of 271 Venues Classification With T Patterns

5.6.1.2 Vector Space Model Features

Traditionally, an alternative way to categorize locations is using the social tags

associated with the locations. As in the clustering approach, we again apply the

vector space model features using tf, idf, and tf-idf respectively. Results in Figure 5.7

significantly differ from the results shown in Figure 5.6: for both tf and tf-idf, Naive

Bayes, AdaBoostM1, and SimpleCart perform much better than 1NN, which verifies

our previous assumption that those classifiers work well with text-driven features.

Classifiers trained by tf or tf-idf models significantly outperform ones trained by

idf models. Furthermore, classifiers trained by tf-idf and tf have very similar results,

which shows that enriching with the idf information could not help classify the venues.

Besides, the best result for the vector space model based classifiers performs a little

better (1.3%) than the best result for traffic pattern based classifiers.
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Figure 5.7: 10-Fold Cross Validation of 271 Venues Classification With Vector Space
Models

5.6.1.3 Combination of the Two Sets of Features

To answer the question of whether enriching information from tags could help fa-

cilitate venue categorization, we train classifiers on both sets of features (each set of

features are normalized independently with L2-normalization before being merged).

Unexpectedly, the results using both sets of features (daily + weekly t pattern, and

tf-idf vector models) perform similar or even a little bit worse than the best per-

forming classifiers trained by either set of features (results listed in Table 5.4). We

attribute this drop in performance to the inclusion of possibly unhelpful countervail-

ing features (94 temporal features, and 10,324 vector space model features). Thus,

we apply feature selection to reduce the number of features by filtering irrelevant

and redundant features.
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Table 5.4: 10-Fold Cross Validation of 271 Venues Classification With Traffic Pattern
and Vector Space Models

Metric Naive Bayes 1NN AdaBoostM1 SimpleCart

F1-Measure 0.831 0.59 0.66 0.753

5.6.1.4 Feature Selection

We apply the standard Chi-Square feature selection method to reduce the number

of vector space model features from 10,324 to 358 by filtering insignificant and redun-

dant features. All traffic pattern features are considered significant by Chi-Square

and so remain for the following classification experiments. Thus, we get exactly

same results for traffic patterns comparing to results in Figure 5.6. The results for

vector space model features are displayed in Figure 5.8. Comparing to the results

without feature selection, classifiers trained by idf features, AdaboostM1 trained by

tf features, and tf-idf features still perform the same. 1NN classifier trained with

tf features and tf-idf features outperform with an almost 158.4% increase over the

previous results. Besides, Naive Bayes classifiers trained with tf features and tf-idf

features also have a 3.2% increase in their performance; as well as the Simple Cart

with over 1% increase. The best performing classifier so far becomes Naive Bayes,

which reaches a F1-Measure of 0.861.

Feature selection also shows its effectiveness when we train the classifiers using

both the traffic pattern features and vector space model features. Comparing to re-

sults in Table 5.4, results in Table 5.5 show increase of performance for 1NN (29.7%),

and Naive Bayes (4.2%).
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Figure 5.8: 10-Fold Cross Validation of 271 Venues Classification With Vector Space
Models + Feature Selection

Table 5.5: 10-Fold Cross Validation of 271 Venues Classification With Traffic Pattern
and Vector Space Model + Feature Selection

Metric Naive Bayes 1NN AdaBoostM1 SimpleCart

F1-Measure 0.866 0.765 0.66 0.75

5.6.2 Evaluation on Test Set

Based on the 10-fold cross validation on the training set, we only use 1NN as

the classifier to classify venues based on the feature of traffic patterns. The test set

of venues are generated based on the criteria of at least 10 branches with certain

number of check-ins above a pre-defined threshold. We set the threshold as 10, 30,

50, 100, 200, 300, and 500 respectively, and the corresponding number of venues in
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the test sets are listed in Table 5.6. As we can see from the table, with a relaxed

criteria of only 10 check-ins and above, the test set contains 1,392 venues, and with a

strict criteria of 500 check-ins and above, the test set only contains 21 venues. Note

that the test sets are disjoint with the training set.

We train the 1NN classifier on the training set using daily traffic pattern, weekly

traffic pattern, and daily plus weekly traffic patterns respectively, and evaluate test

sets with corresponding features. The results for the classification are plotted in

Figure 5.9 (each tick in x axis represents a test set). As we can see in the figure, with

more check-ins required for a venue in a test set, the results get better for the classifier

trained by daily traffic pattern, and it reaches its peak with an F1-Measure of 0.742.

However, it gets worse performance for the tests requiring at least 300 check-ins and

500 check-ins. This is probably caused by the lack of venues in the two test sets,

and a small number of mis-classified venues can significantly affect the results. For

the classifier trained by weekly traffic pattern and daily plus weekly traffic pattern,

the results generally get better with test sets which only contain venues with dense

traffic patterns. With weekly traffic pattern features, the classifier works much better

overall than the one trained by daily traffic patterns. The classifier trained by daily

plus weekly traffic patterns works slightly better than the one trained by weekly

traffic patterns with test sets with relaxed condition, falls behind a little bit for test

set 100, and test set 200, and finally catches up for test set 300 and test 500. In

the figure, we can see that with only 50 or more check-ins input per venue, the 1NN

classifier can reach a F1-Measure almost 0.75, which shows its good performance in

venue categorization.
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Table 5.6: Number of Venues in Test Sets

Min # of Check-ins 10 30 50 100 200 300 500

# of Venues 1392 983 695 353 142 60 21

Figure 5.9: Evaluation of 1NN Trained by Traffic Patterns on Test Sets

5.7 Augmenting Location-Based Search

So far, we have seen that the traffic patterns for venues revealed through location

sharing services contain rich information about the venues’ semantic category. And

we have successfully taken advantage of these traffic patterns for both unsupervised

semantic group clustering and supervised venue categorization. In this section, we

show how we can incorporate venues’ traffic patterns and their category information

into traditional location-based web search.
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5.7.1 Answering Queries for Traffic

Traffic patterns and category information for venues can be easily incorporated

into traditional location-based search to answer the information need for traffic. One

scenario for answering the traffic-driven query is: Karen is searching for a restaurant

which is off-peak during dinner time between 5 - 7 PM, so that she can enjoy the quiet

environment talking with her friends. Knowing the traffic patterns and category for

venues, the system could easily retrieve the venues nearby in the category of food,

and rank the results by the descending order of busyness. Example results are plotted

in Figure 5.10. For example, Karen can choose IHOP and Denny’s where the crowd

usually come in the early morning, lunch time, and late in the evening; she can also

go to fast food venues like Jimmy Johns, and Chipotle which are crowded in during

lunch time; besides, Karen can also choose grill & bars which are more popular in

late evening like Jack Astor’s Bar & Grill.

5.7.2 Location Recommendation based on Traffic

Another potential application is recommendation of venues having similar traffic

patterns. For example, Jerry plays a lot of basketball, and tennis. He usually goes

to the Williams Park during Wednesday early evening, and Saturday afternoon,

which are both free time for him and peak times for guys to get-together and play

basketball and tennis. Recently, he moves to a new neighborhood, and wants to

find places nearby that have similar traffic patterns, so that he can meet new friends

there and play some basketball or tennis. A traffic-driven location-based search can

also easily handle this kind of queries. Given the name of the venue, the system

calculates temporal similarity between traffic patterns of the venue and other venues

in the same category (or in other categories as well), and return the locations with

the highest temporal similarities. The example results are plotted in Figure 5.11,
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(a) T Patterns for IHOP and Denny’s

(b) T Patterns for Jimmy John’s, Whataburger, and Subway

(c) T Pattern for Jack Astor’s Bar & Grill

Figure 5.10: Traffic Patterns for Venues Off-Peak between 5-7 PM
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Figure 5.11: Example Showing Venue Recommendation based On T Pattern

which shows the comparison of traffic patterns of Williams Park and two similar

nearby venues Anderson Park and Rec Sports Center.

5.8 Summary

In this section, we propose to mine activity patterns revealed through location

sharing services to augment traditional location-based search. Strong indication of

semantic information are found in the activity patterns generated from 22 million

check-ins from location sharing services. Then, we take advantage of the activity

patterns and successfully cluster venues into semantically correlated groups, and

categorize incoming venues based on the associated activity dynamics. Based on the

results, we also provide two examples to show how activity-driven semantic orga-

nization of locations may be naturally incorporated into traditional location-based

search.
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6. A GEO-SPATIAL APPROACH TO FINDING LOCAL EXPERTS ON

TWITTER

6.1 Introduction

We tackle the problem of finding local experts in social media systems like Twit-

ter. Local experts bring specialized knowledge about a particular location and can

provide insights that are typically unavailable to more general topic experts. For

example, a “foodie” local expert is someone who is knowledgeable about the local

food scene, and may be able to answer local information needs like: what’s the best

barbecue in town? Which restaurants locally source their vegetables? Which pubs

are good for hearing new bands? Similarly, a local “techie” expert could be a con-

duit to connecting with local entrepreneurs, identifying tech-oriented neighborhood

hangouts, and recommending local talent (e.g., do you know any good, available web

developers?). Indeed, a recent Yahoo! Research survey found that 43% of partici-

pants would like to directly contact local experts for advice and recommendations

(in the context of online review systems like Yelp), while 39% would not mind being

contacted by others [3].

And yet finding local experts is challenging. Traditional expert finding has fo-

cused on either small-scale, difficult-to-scale curation of experts (e.g., a magazine’s

list of the “Top 100 Lawyers in Houston”) or on automated methods that can mine

large-scale information sharing platforms. Indeed, many efforts have focused on find-

ing experts in online forums [133], question-answering sites [76], enterprise corpora

[8, 16], and online social networks [19, 46, 90, 119, 132]. These approaches, however,

have typically focused on finding general topic experts, rather than local experts.

In this section, we investigate new approaches for mining local expertise from
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social media systems like Twitter. Our approach is motivated by the widespread

adoption of GPS-enabled tagging of social media content via smartphones and social

media services (e.g., Facebook, Twitter, Foursquare). These services provide a geo-

social overlay of the physical environment of the planet with billions of check-ins,

images, Tweets, and other location-sensitive markers. This massive scale geo-social

resource provides unprecedented opportunities to study the connection between peo-

ple’s expertise and locations and for building localized expert finding systems.

(a) @BBQsnob (b) @JimmyFallon

Figure 6.1: Heatmap of the Location of Twitter Users Who Have Listed @BBQsnob
or @JimmyFallon

Concretely, we propose a local expertise framework – LocalRank – that integrates

both a person’s topical expertise and their local authority. The framework views a

local expert as someone who is well recognized by the local community, where we

estimate this local recognition via a novel spatial proximity expertise approach that

leverages over 15 million geo-tagged Twitter lists. To illustrate, Figure 6.1a shows a

heatmap of the locations of Twitter users who have labeled Daniel Vaughn (@BBQs-

nob) on Twitter. Vaughn – the newly-named Barbecue Editor of Texas Monthly –

is one of the foremost barbecue experts in Texas. We can see that his expertise is
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recognized regionally in Texas, and more specifically by local barbecue centers in

Austin and Dallas. In contrast, late-night host Jimmy Fallon’s heatmap suggests he

is recognized nationally, but without a strong local community. Intuitively, Daniel

Vaughn is recognized as a local expert in Austin in the area of Barbecue; Jimmy

Fallon is certainly an expert (of comedy and entertainment), but his expertise is

diffused nationally.

Toward identifying local experts, this section makes the following contributions.

• First, we propose the problem of local expert finding in social media systems

like Twitter and propose a novel expertise framework – LocalRank. The framework

decomposes local expertise into two key components: a candidate’s topical authority

(e.g., how well is the candidate recognized in the area of Barbecue or web devel-

opment?) and his local authority (e.g., how well do people in Austin – the area of

interest – recognize this candidate?).

• Second, to estimate local authority, we mine the fine-grained geo-tagged linkages

among millions of Twitter users. Concretely, we extract Twitter list relationships

where both the list creator and the user being labeled have revealed a precise location.

The first local authority method considers the distance between an expert candidate’s

location and the location of interest, capturing the intuition that closer candidates

are more locally authoritative. However, in many cases, an expert in one location

may actually live far away – e.g., Daniel Vaughn is an expert in Austin Barbecue

although he lives 200 miles away in Dallas. To capture these cases, we propose

and evaluate a local authority method that considers the distance of the candidate

expert’s “core audience” from the location of interest (that is, to reward candidates

who have many labelers near the location of interest, even if the candidate lives far

away). So, if many people in Austin consider Daniel Vaughn an expert, then his

Austin local authority should reflect that.
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• Third, to estimate topical authority, we adapt a well-known language modeling

approach to expertise identification, but augment it to incorporate the distance-

weighted social ties of 24 million geo-tagged Twitter users. In this way, topical

expertise can be propagated through the social network to identify local experts

that are well connected to, and recognized by the local community in the topic.

• Finally, we evaluate the LocalRank framework across 56 local expertise queries

coupled with 11,000 individual judgments from Amazon Mechanical Turk. We see

a significant improvement in performance (35% improvement in Precision@10 and

around 18% in NDCG@10) over the best performing alternative approach. We ob-

serve that the local authority approaches that consider the locations of a candidate’s

“core audience” perform much better than an alternative that only considers the

distance between the candidate’s location to the query location. In addition, we see

that the expertise propagation through the social network can improve the baseline

local expert finding approach.

These results demonstrate the viability of mining fine-grained geo-social signals

for expertise finding, and highlight the potential of future geo-social systems that

facilitate information flow between local experts and the local community.

6.2 Related Work

The emergence of online geo-social systems provides unprecedented opportunities

to bridge the gap between people’s online and offline presence [22, 59]. However there

are key challenges associated with these opportunities including location sparsity

[7, 17, 78] and location privacy [26, 130]. Given the geo-social footprints from these

services, researchers have analyzed the spatio-temporal properties of these footprints

[79, 103, 104], studied the semantics associated with these footprints [127, 94], and

investigated new location recommendation systems [87, 129, 134, 135].
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Expert finding is an important task that has seen considerable research. Lappas

et al. [66] provided a comprehensive survey about expert finding in social networks,

and grouped the related work into two categories: (i) using text content posted by

expert candidates; and (ii) using the expert candidates’ online social connections. For

example, Balog et al. [8] proposed two generative probabilistic models – a user model

generated using documents associated to an expert, and a topic model generated

using documents associated to the topic – to detect topic experts. Based on their

evaluation over the TREC Enterprise corpora, the authors observed that the topic

model outperforms the user model and other unsupervised techniques. On the other

hand, Zhang et al. [133] applied link analysis approaches like PageRank and HITS to

identify top experts in a Java forum, observing that both link analysis and network

structure are helpful in finding users with extensive expertise.

Along the direction of expert finding in online social networks, Weng et al. [119],

proposed a link-analysis based approach to identify top experts in a topic. They

considered both topical similarity between users and social connections. The au-

thors observed their approach outperforms Twitter’s system, PageRank, and topic-

sensitive Pagerank. Similarly, Pal and Counts [90] introduced a probabilistic clus-

tering framework to identify top authorities in a topic using both nodal and topical

features. The Cognos system built by Ghosh et al. [46] leveraged Twitter lists to

identify the candidate’s expertise, and the authors reported that their system works

as well as Twitter’s official system (i.e., WTF: Who To Follow) to identify top users

for a particular topic. Other works include expert finding in online forums [133],

question-answering sites [76], enterprise corpora [16, 8], and online social network

services [19, 46, 90, 119, 132].

In the context of local experts, Antin et al. [3] recently presented a survey de-

signed to examine people’s attitudes about local knowledge and personal investment
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in local neighborhoods. They observed that over 52% of the participants claimed

having both local knowledge and personal investment in their local area. And in

an encouraging direction, they found that many participants would like to contact

local experts for advice (43%) and many would not mind being contacted by others

(39%).

6.3 LocalRank: Problem Statement and Solution Approach

In this section, we are interested to find local experts with particular expertise in a

specific location. We assume there is a pool of expert candidates V = {v1, v2, ..., vn},

that each candidate vi has an associated location l(vi) and a set of areas of expertise

described by a feature vector ~vi. Each element in the vector is associated with a

expertise topic word tw (e.g., “technology”), and the element value indicates to what

extent the candidate is an expert in the corresponding topic. We define the Local

Expert Finding problem as:

Definition 1 (Local Expert Finding) Given a query q that includes a query topic

t(q), and a query location l(q), find the set of k candidates with the highest local

expertise in query topic t(q) and location l(q).

A location l(q) can correspond to different spatial granularities, depending on the

goal of expert finding – a region (e.g., Texas), a city (e.g., Austin), a neighborhood

(e.g., downtown), or a latitude-longitude coordinate.

6.3.1 Topical vs. Local Authority

Identify a local expert requires that we can accurately estimate not only the

candidate’s expertise on a topic of interest (e.g., how much does this candidate know

about barbecue), but also that we can identify the candidate’s local authority (e.g.,

how well does the local community recognize this candidate’s expertise). Hence,
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Figure 6.2: Our Goal is to Identify Local Experts (the Red Stars in the Top-right
Section)

we propose to decompose the local expertise for a candidate vi into two related

dimensions:

• Topical Authority: which captures the candidate’s expertise on the topic

area t(q).

• Local Authority: which captures the candidate’s local authority in query

location l(q).

To illustrate, Figure 6.2 shows example candidates in this two-dimensional space

for a particular topic (say, Barbecue) and a particular location (say, Austin):

• Nobodies [bottom-left] : For a particular area of interest, these candidates have

both low topical authority and low local authority.
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• Locals [bottom-right] : These candidates have high local authority, but low top-

ical authority. E.g., an author or artist living in Austin.

• Experts [top-left] : Candidates with high topical authority, but low local au-

thority. These candidates are certainly experts on a topic, but are not well

recognized locally for this expertise. E.g., an expert in pork barbecue originat-

ing in North Carolina, but not beef barbecue in Texas.

• Local Experts [top-right: red stars] : both great topical authority and local

authority. E.g., Daniel Vaughn, the Barbecue Editor of Texas Monthly.

Note that a candidate is evaluated per-topic and per-location, so a local expert

in one place may be considered as just an expert or even a nobody in a different

location.

6.3.2 Local Expertise in Twitter Lists

To identify these local experts (the red stars), we propose to exploit the geo-social

information embedded in Twitter lists to find candidates who are well recognized by

the local community. Twitter lists are a form of crowd-sourced knowledge, whereby

aggregating the individual lists constructed by distinct users can reveal the crowd

perspective on how a Twitter user is perceived [46]. Concretely, for each expert can-

didate vi, we assume that there is a set of people Vl(vi) that recognize vi’s expertise,

and label vi in their own lists. We refer to the set of people as candidate vi’s list

labelers or more concisely labelers. Candidate vi is the labelee. Critical for our study,

for each labeler vj (such that vj ∈ Vl(vi)), we assume that vj’s location l(vj) is known.

But how do we sample such geo-tagged list relationships? Are there sufficient

users to support local expertise finding? And if so, do these lists actually reveal

topics of potential expertise interest, or are they focused mainly on other dimensions
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(e.g., for organizing a user’s friends)? In the following, we present our Twitter

geo-tagged data collection (summarized in Table 6.1) and address the potential of

geo-tagged lists to support local expertise finding, before turning to the development

of our local expert finding approach.

6.3.2.1 Geo-Locating Users

We sample 54 million Twitter user profiles based on the ID range of 12 (starting

from Twitter co-founder Jack Dorsey @Jack) to 100 million, as well as 3 billion geo-

tagged tweets [58]). For each user, we seek to assign a home location; however, it is

widely observed that many Twitter users reveal overly coarse or no location at all

in the self-reported location field (see, e.g., [17]). Hence, we adopt a home finding

method that relies on a user’s geo-tagged tweets akin to a similar approach previously

used for check-ins and geo-tagged images [18, 86]. First, we group the user’s locations

where he posted his tweets into squares of one degree latitude by one degree longitude

(covering about 4,000 square miles). Next, we select the square containing the most

geo-tagged tweets as the center, and select the eight neighboring squares to form a

lattice. We divide the lattice into squares measuring 0.1 by 0.1 square degrees, and

repeat the center and neighbor selection procedures. This process repeats until we

arrive at squares of size 0.001 by 0.001 square degrees (covering about 0.004 square

miles). Finally, we select the center of the square with the most geo-tagged tweets

as the “home” of the user. In total, we geo-locate about 24 million out of the 54

million users (about 45.1%) with fine-grained latitude-longitude coordinates.

6.3.2.2 Geo-Labeled List Relationships

Of the 24 million geo-tagged Twitter users, we sample 13 million lists that these

users occur on or that these users have created. In total, the 24 million users occur

86 million times in the 13 million lists. Among these 86 million occurrences of a user
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Table 6.1: Geo-tagged Twitter Data

Data Type Total # of Records
User Profiles 53,743,459
Geo-Tagged User Profiles (45.1%) 24,252,450

Lists 12,882,292
User List Occurrences 85,988,377
Geo-Tagged List Relationships (17.2%) 14,763,767

Friendship Links 166,870,858
List-peer Relationships 430,186,408

in a list, almost 15 million of them are geo-tagged, indicating a direct link from a

list creator’s location to a list member’s location. In addition to this network of list

relationships, we additionally collect two additional networks around these users: (i)

167 million friendship links connecting these geo-tagged users; and (ii) 430 million

links connecting a pair of geo-tagged users that co-occur in the same list.

6.3.2.3 Expertise Potential of List Names

We parse the list names that are associated with all 14 million geo-tagged list

labeling relationships (i.e., links connecting list creator to list member). Table 6.2

shows the most frequent unigrams. We are encouraged to see that 15 of the 21 most

frequent unigrams are related to either people’s expertise or interests (the others

focus on friendship and celebrity); as has been observed by Kwak et al. [65], Twitter

serves as a form of news media as well as a social network, so there is good potential

for expertise mining.

6.3.2.4 Spatial Patterns of Expertise

What do these geo-tagged lists reveal? For four example topics – “tech”, “en-

tertain”, “travel”, and “food” – we plot in Figure 6.3 the cumulative distribution
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Table 6.2: Most Frequent Words in List Names of Geo-tagged List Labeling Rela-
tionships

news 2.66% media 1.87% music 1.71%
twibe 1.27% tech 1.11% people 1.06%
celeb 1.04% social 1.04% sport 1.01%

design 0.84% market 0.81% politic 0.80%
follow 0.70% celebrity 0.69% food 0.61%
art 0.58% business 0.55% friend 0.52%

entertain 0.50% web 0.48% travel 0.47%

of frequency of list labeling relationships over distance. That is, how far apart are

list labelers from the list labelees? We observe almost 40% of Twitter users who are

labelees in a “food”-relevant list are within a hundred miles to the labelers. However,

only about 10% to 15% of the labelees in a list of other three topics are within a

hundred miles to their labelers. In addition, the average distance between a pair of

list labeler and list labelee for “food” is also much smaller than the average distance

for other topics. These observations suggest that certain topics are inherently more

“local” and that identifying local experts in topics that are inherently more local

could be easier than identifying local experts in other topics.

6.3.3 Local Expert Finding with LocalRank

Based on these encouraging observations – (i) that there is a wealth of geo-tagged

list data in Twitter; (ii) that these lists tend to focus on areas of potential expertise;

and (iii) that distance impacts list labeling (and possibly revealing the localness

of particular topics) – we turn in the next two sections to developing methods for

identifying local experts.

Recall that we propose to measure a candidate vi’s local expertise by a combina-
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Figure 6.3: Cumulative Frequency of List Relationship Distances

tion of both the candidate’s topical authority and local authority. While there are

many ways to integrate these two scores, we propose a simple combination in this

first study. We formally define candidate vi’s LocalRank (LR) s(vi, q) in query q

as:

s(vi, q) = sl(l(vi), l(q)) ∗ st(~vi, G, t(q))

where sl(l(vi), l(q)) denotes the Local Authority of vi in query location l(q), and

st(~vi, G, t(q)) denotes the Topical Authority of vi in query topic t(q) that is estimated

using the candidate’s expertise vector ~vi, and the social graph G that the candidate

is involved in. In the following two sections we investigate how to estimate these

values.
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(a) Candidate Proximity (b) Spread-based Proximity (c) Focus-based Proximity

Figure 6.4: Three Methods for Estimating Local Authority

6.4 Estimating Local Authority

In this section, we present three approaches for estimating a candidate expert’s

local authority. The first local authority method considers the distance between an

expert candidate’s location and the location of interest, capturing the intuition that

closer candidates are more locally authoritative. The latter two approaches leverage

the fine-grained geo-tagged linkages among the sampled Twitter users as revealed

through list relationships, where both the list creator and the user being labeled

have revealed a precise location.

6.4.1 Candidate Proximity

The first (and perhaps most intuitive) approach to estimate candidate vi’s local

authority for query q is to use the distance between candidate vi’s location l(vi)

and the query location l(q). For example, if we are looking for experts on Austin

Barbecue, then all candidates located in Austin will be considered more authoritative

than candidates outside of Austin. We define this Candidate Proximity (slCP
) as:

slCP
(l(vi), l(q)) =

(
dmin

d(l(vi), l(q)) + dmin

)α
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where d(l(vi), l(q)) denotes the distance between l(vi), and l(q) (using the Haversine

formula which accounts for the curvature of the earth), and we set dmin = 100 miles.

In this case α indicates how fast the local authority of candidate vi for query location

l(q) diminishes as the candidate moves farther away from the query location. This

first local authority approach captures the intuition that closer candidates are more

locally authoritative. Figure 6.4a shows a candidate expert in Baltimore (the green

pentagon); if we are looking for an expert in New York (the gold star), such a Balti-

more candidate’s local expertise will be a function of the distance from Baltimore to

New York. While simple, this approach cannot capture local expertise of candidates

who do indeed live far from a location of interest. As we have mentioned before,

Daniel Vaughn is an expert in Austin Barbecue although he lives 200 miles away in

Dallas.∗

To capture these cases where expertise is not dictated solely by distance from a

candidate to an area of interest, we next propose two local authority methods that

consider the distance of the candidate expert’s “core audience” from the location of

interest (that is, to reward candidates who have many labelers near the location of

interest, even if the candidate lives far away).

6.4.2 Spread-based Proximity

The first of these geo-tagged list methods is the Spread-based Proximity that

measures the “spread” of a candidate’s core audience’s locations compared to the

query location:

slSP
(L(Vl(vi)), l(q)) =

∑
vlj∈Vl(vi)

slCP
(l(vlj), l(q))

|Vl(vi)|
∗In addition, the home location of an expert candidate may not even be accurate: recall that

our home locator estimates a location based on a single user’s geo-tagged tweets. In contrast, the
following two local authority methods consider the aggregated perspectives of many list labelers,
so there is a clearer signal of a candidate’s location of expertise.
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where vlj denotes one of the core audience Vl(vi) of candidate vi. Basically, the

“spread” it measures considers how far candidate vi’s core audience are from the

query location l(q) on average. If the core audience of a candidate is close to a query

location on average, the candidate gets a high score of slSP
. For example, in Figure

6.4b, the green pentagon and the gold star represent the expert candidate’s location

and the query location, respectively. However, the spread-based proximity for the

candidate in the query location emphasizes the distance of the links (plotted as red

arrows) between the candidate’s list labelers’ locations (plotted as blue dots) and the

query location.

6.4.3 Focus-based Proximity

In some cases, the spread-based proximity approach may underestimate a can-

didate’s local authority. For example, for a couple of “foodies” va and vb both in

New York City, suppose va has a large audience in New York City recognizing his

food expertise, and is well appreciated by a lot of people on the west coast, and

even abroad; while vb is much less well recognized by the local community in New

York City, but has more people recognizing his expertise in mid-east United States,

North Carolina, and Florida. Despite a much better local community recognition

in New York, user va has a lower value of spread-based core audience query spatial

proximity, due to the higher spatial spread of his labelers. To overcome this type of

expertise underestimation, we propose the Focus-based Proximity as:

slFP
(L(Vl(vi)), l(q)) =

|{vlj |d(l(vlj), l(q)) ≤ r(l(q))}|
|Vl(vi)|

where r(l(q)) represents a radius around a location l(q). This focus-based proximity

measures how focused a candidate’s audience is in the query location by measuring

the percentage of the core audience that resides within the radius of the query loca-
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tion. For example, in Figure 6.4c, 4 out of 7 labelers (blue dots) for the candidate

(green pentagons) are within the radius (plotted as the red dashed circle) of the

query location (gold star), and the focus-based proximity in this case is 4
7
≈ 0.57.

These two local authority methods – the spread-based and focus-based approaches

– are designed to capture the expert candidate’s spatial influence measured via col-

lective intelligence contributed by the people who labeled the candidate.

6.5 Estimating Topical Authority

In this section, we discuss how we estimate the topical authority score of candidate

vi being as a local expert in query q. Specifically, we propose to use both the crowd-

sourced geo-tagged labels and the social connections between people to quantify a

candidate’s topical expertise score given a query.

6.5.1 Directly Labeled Expertise

We begin with a topical authority approach that leverages the directly labeled

expertise of candidate vi, as revealed through the sampled Twitter lists. Specifically,

we adapt the user-centric model that Balog et al. proposed in [8] to estimate the

Topical Authority Score st(~vi, G, t(q)) of vi with respect to the query topic t(q) (ig-

noring for now the social graph G). Balog et al. applied the user-centric model to

identify an expert’s knowledge based on the documents (emails and web pages) that

they are associated with. In our scenario, we apply the user-centric model to identify

expert candidates’ expertise based on the list labels that the crowd has applied to

them.

The model is built on standard language modeling techniques: a user vi can be

represented by a multinomial probability distribution over the vocabulary of topic

words (i.e., p(tw|θvi), where θvi denotes a user model). In this case, for each user vi,

we infer a user model θvi such that the probability of a topic word t to occur in user
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vi’s list labels can be estimated via p(tw|θvi).

Given user vi’s user model θvi , for a query q, user vi’s Topical Authority Score

st(~vi, G, t(q)) in query q is measured as the probability of query text t(q) to be

generated from the users’ user model:

st(~vi, G, t(q)) = p(t(q)|θvi) =
∏

tw∈t(q)

p(tw|θvi)

where tw denotes a topic word in query text t(q).

Since we are expecting that most of the users will be labeled by a small number

of unique labels, most of the topic words will have zero probabilities for a particular

user vi. Thus we smooth p(tw|θvi) using the probability of the topic word to occur

in the whole corpus of labels p(tw|θCv) when estimating p(tw|θvi):

p′(tw|θvi) = (1− λ) ∗ p(tw|θvi) + λ ∗ p(tw|θCv)

Here λ represents the extent of smoothing. A large value of λ indicates that the

probability p(tw|θvi) is more weighted towards the probability of the topic word tw

to occur in the corpus p(tw|θCv). In the experiments, we fix the value of λ to 0.1.

6.5.2 Expertise Propagation

In addition to the directly labeled expertise derived from our collection of geo-

tagged Twitter lists, we are interested to explore whether the social and list-based

connections of Twitter users also provide strong signals of expertise. Specifically, we

consider three graphs that include three types of connections: (i) User Friendship; (ii)

List-labeling Relationship; and (iii) List-peer Relationship (see the data collection

described in Table 6.1). Recall that each user vi is characterized as a vector ~vi of

his topical expertise generated from the directly labeled expertise method. Can we
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Figure 6.5: Examples of Social and List-based Connections

enrich the expertise signals from the Twitter lists by propagating expertise along

these three graphs? The intuition is that people with particular expertise have a

higher likelihood to be connected to other people with the same expertise.

6.5.2.1 User Friendship

The first expertise propagation approach is based on user friendship, as repre-

sented by a direct link e(vi, vj) from user vi to user vj. In Figure 6.5, we show nine

expert candidates (plotted as blue dots that are labeled from v1 to v9). Here, a

friendship link (plotted as an orange arrow) connects a candidate to another candi-

date that he follows, and an example would be the orange arrow on the bottom left
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from v4 to v8. The motivation for propagation along friendship links is that a can-

didate has a higher likelihood to be an expert in query topic t(q) if he has friend(s)

that are also expert(s) in query topic t(q).

Given users’ friendship linkages, we can generate the friendship graph Gf (V,E)

for a set of users V , and a set of friendship links E that connect users in V . For every

edge ef (vi, vj), the weight wf (vi, vj) is simply 1
|Eout(vi)| , where Eout(vi) represents the

set of out links from user vi.

In addition, from the perspective of the “First Law of Geography” [113] that

“everything is related to everything else, but near things are more related than

distant things”, we hypothesize that a user knows a friend nearby better than a

friend farther away. Thus, we generate an alternative Gf
′(V,E) to reflect the effect

of distance between a pair of connected users vi, and vj on how well user vi knows

vj (i.e., how much credit vj gets from vi), by introducing the local authority score to

the calculation of the weight wf
′(vi, vj) for edge e(vi, vj):

wf
′(vi, vj) =

sl(l(vi), l(vj))

|E(vi)|

6.5.2.2 List-labeling Relationship

The second expertise propagation approach considers the list-labeling relationship

derived from the sampled Twitter lists. The motivation for the propagation here is:

if an expert vi in a topic t(q) labels another user vj as an expert in the same topic,

user vj also has a high likelihood to be an expert in the topic.

For example, user vi lists user vj as a tech expert in one of his lists on Twitter,

generating a direct link el(vi, vj) from vi to vj indicating a relationship connected by

expertise recognition. In this way, a graph Gl capturing the expertise recognition

can be constructed. Returning to Figure 6.5, we show this list-labeling relationship
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(plotted as a red arrow) that links a list labeler to the candidate that he listed, and

an example would be the red arrow on the top left from v1 to v2 with a list label

“geek”.

As in the friendship case, we can similarly construct two graphs – one with the

weight wl(vi, vj) and the other one with the distance-based weight wl
′(vi, vj) for the

link el(vi, vj) according to the number of out links from vi in Gl, and Gl
′ respectively.

6.5.2.3 List-peer Relationship

Finally, we can propagate expertise along peers that appear on the same list.

Returning to Figure 6.5, this list-peer relationship (plotted as a blue arrow) indicates

a connection between two candidates that appear on the same list, and examples in

the figure are the blue arrows in the middle between v5 and v6 with a list label

“tech”. The list peer relationship carries an important signal to infer a list member’s

expertise for being peers on the same list with top experts. For example, a user who

co-occurs with several top tech experts on lists also has a good chance to be a tech

expert.

Here, we have the link elp(vi, vj) that directly connects user vi to user vj in a list

on Twitter. We can measure the weight wlp(vi, vj) for the link elp(vi, vj) according

to the number of out links from vi in Glp. Using all the list peer relationship, we

generate a social graph Glp that captures the signals of expertise propagated from

list peers. We can also generate the corresponding distance-weighted list peer graph

Glp
′.

6.5.2.4 Topical Authority Score from Expertise Propagation

Given these three perspectives, we propagate expertise along these graphs through

a random walk based on topic-sensitive PageRank (TSPR) [49]. Again, our intuition

is that people with particular expertise have higher likelihood to be connected to
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other people with the same expertise. The random walk approach leverages this

intuition by propagating expertise along links in the graph, and by resetting back to

the candidates with high directly labeled expertise. Thus, for each particular social

graph G described above (that is: Gf / Gf
′, Gl / Gl

′, or Glp / Glp
′), we apply TSPR

on the specific social graph to identify the most influential users for a particular

query topic t(q). The stabilized TSPR score for each user vi is considered as user

vi’s topical authority score st(~vi, G, t(q)) in query topic t(q). In our experiments, we

explore using both the general social graph, and the distance weighted social graph

to identify top local topical experts for a given query.

6.6 Evaluation

In this section, we evaluate the proposed local expert finding framework. We seek

answers to the following questions:

• What impact does the choice of local authority have on the quality of local

expert finding in LocalRank? How much do crowdsourced geo-tagged list labels

impact local authority (and ultimately the quality local expert finding)?

• Do the three types of expertise propagation over social and list-based connec-

tions of Twitter users provide strong signals of topical expertise? And if so, to

what degree over directly labeled expertise?

• How well does LocalRank perform compared to alternative local expert finding

approaches? Is integrating topical and local authority necessary?

• Finally, how do the approaches perform in finding top local experts for finer

topics? Do we see consistent performance in comparison with more general

topics?
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6.6.1 Experimental Setup

In this subsection, we first describe the location + topic queries and then intro-

duce the specific expert finding approaches we tested. We discuss how we gathered

ground truth to evaluate these approaches, and how we measured approach effec-

tiveness.

6.6.1.1 Queries

In total, we evaluate local expert finding using 56 queries (16 general topic queries

and 40 finer topic queries). We consider four general query topics coupled with four

locations, totaling 16 topic-location queries. Specifically, we look for local experts in

the areas of “technology”, “entertainment”, “food”, and “travel” in New York City,

Houston, San Francisco, and Chicago. We also consider 10 refined topics under the

general umbrella of “food” and “startup”, again in the same locations, totaling 40

topic-location queries. These refined topics are “barbecue”, “seafood”, “pizza”, “win-

ery”, and “brewery” under the “food” scenario, and “venture capital”, “incubator”,

“founder”, “entrepreneur”, and “angel investor” under the “startup” scenario. By

considering both general-topic and finer-topic local expertise queries, our goal is to

investigate differences in local expertise finding at varying granularities of expertise.

6.6.1.2 Approaches for Finding Local Experts

In addition to the proposed local expert finding approaches presented in this

section, we consider five alternative baselines. The first considers only a candidate’s

topical authority (ignoring local authority):

• Directly Labeled Expertise (DLE ): Rank candidates by topical authority in the

query topic.
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The next three consider only a candidate’s local authority (ignoring topical au-

thority):

• Nearest (NE ): Rank candidates by distance to the query location.

• Most Popular in Town by Followers Count (MP (follower)): Rank candidates

from the query location by follower count.

• Most Popular in Town by Listed Count (MP (list)): Rank candidates from the

query location by the number of lists the candidate appears on.

The final baseline combines simple versions of topical and local authority:

• Most Popular in Town by Listed Count on Topic (MP (on-topic)): Rank can-

didates from the query location by the number of on-topic lists the candidate

appears on.

We compare these five baselines with the proposed LocalRank approach presented

in this section. For LocalRank, we investigate the three approaches for estimating

local authority – by Candidate Proximity (CP), Spread-based Proximity (SP), and

Focus-based Proximity (FP) – and the Directly Labeled Expertise (DLE) and Exper-

tise Propagation (EP) approaches for estimating topical authority. When applying

both the Candidate Proximity, and Spread-based Proximity, we preset the dmin to be

100 (miles), and alpha to be 2.0. We calculate the local expertise score using the

normalized topical authority score and the normalized local authority score.

6.6.1.3 Gathering Ground Truth

Since there is no explicit data that directly specifies a user’s local expertise given

a query (location + topic), we gather ground truth by employing human raters

on Amazon Mechanical Turk. For each of the experimental settings (an approach
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+ a query topic + a query location), we retrieve the corresponding top-10 local

expert candidates with the highest local expertise scores, and have human raters on

Mechanical Turk label to what extent an expert candidate has local expertise in the

query topic and the query location. For each expert candidate, 5 turkers (human

raters) label the candidate’s local expertise using a four-scale local expertise rating:

• Extensive Local Expertise [+2]: The candidate has extensive expertise in the

query topic, and is locally well recognized in the query location for his expertise.

• Some Local Expertise [+1]: The candidate has some expertise in the query

topic, and also has some influence in the query location

• No Evidence [0]: The candidate has no clear evidence to be considered as

having expertise in the query topic, or influence in the query location.

• No Local Expertise [-1]: The candidate has neither any expertise in the query

topic, nor influence in the query location.

For each assessment, we provide the turker with the candidate’s user profile, a

word cloud generated using the labels that people used to describe the candidate,

a heatmap showing the locations of the candidate’s labelers, the candidate’s most

retweeted 5 tweets and 5 most recent tweets. To ensure the quality of these as-

sessments, we follow the conventions suggested by Marshall and Shipman [82]. Each

individual HIT (Human Intelligence Task) includes 10 query / expert candidate pairs

randomly selected from all the pairs of query and expert candidate. 2 out of the 10

pairs for each HIT are manually labeled by domain experts in order to evaluate the

quality of the feedback from turkers. If a turker picks a significantly different answer

comparing to ours for either one of the two particular pairs, the feedback for the HIT

will be discarded. For a particular pair of query and expert candidate, we use the
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best judgment (i.e., the most voted rating) out of the 5 turkers as the final rating

for the pair.

We investigate the inter-judge agreement using both kappa statistic and Accu-

racy. Since we have more than two annotators (five in our scenario) for each query-

candidate pair, we adopt Fleiss’ kappa [38], which ranges from 0 (when the agreement

is not better than chance) to 1 (when the two annotators agree with each other per-

fectly). Following Brants [12] and Nowak et al. [89], we define Accuracy as:

Accuracy(Qpairs) =

∑
qpair∈Qpairs

# of votes for the majority rating
# of votes for qpair

|Qpairs|

where Qpairs represents the set of query and candidate pairs, in which each pair

qpair includes both a query q, and an expert candidate c. An ideal Accuracy would

be 1.0 that all the turkers pick the same local expertise rating for every particular

pair of query and candidate. For example, an Accuracy of 0.6 indicates that for a

query-candidate pair, 60% of the human raters voted for the majority choice.

6.6.1.4 Metrics

To evaluate each local expert finding approach, we measure the average Rating@k,

Precision@k, and NDCG@k across all queries in our testbed. For the following

experiments, we consider all the 0 and -1 ratings as 0s.

Rating@k measures the average local expertise ratings by the human-raters for

the top k ranked local experts across all the queries:

Rating@k =

∑
q∈Qpairs

(
k∑
i=1

rating(ci, q)/k)

|Qpairs|

where Qpairs represents the set of all query pairs, and rating(ci, q) denotes the most

voted local expertise rating for candidate ci in query q. Rating@k ranges between 0

to 2, and an ideal approach will have a Rating@k value 2, which all identifies local
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experts with extensive local expertise in the query topics and locations. Conversely,

the worst performing approach will have a Rating@k value 0, indicating that the

approach only identifies local experts as those with no local expertise or no evidence.

Precision@k measures the average percentage of candidates that are relevant to

the query topic and query location in the top k candidates across all the queries. It

is defined as:

Precision@k =

∑
q∈Qpairs

|{ci|rating(ci,q)>0}|
k

|Qpairs|

In this section, we consider expert candidates with both “extensive local expertise”,

and “some local expertise” as relevant, while we consider both “no local exper-

tise” and “no evidence” as irrelevant. A perfect local expertise estimator has a

Precision@k value of 1.0.

NDCG@k (Normalized Discounted Cumulative Gain@k) measures how well the

predicted local expert rank order is compared to the ideal rank order (i.e., candidates

are ranked according to their actual local expertise) for the top k results across all

the query pairs. NDCG@k ranges between 0 and 1, and a higher value indicates an

approach that generates better rank orders.

6.6.2 Agreement of Local Expertise

Before evaluating the proposed local expert finding framework, we are interested

to study how consistent and reliable the results from Mechanical Turk are. Overall,

we have 11,285 individual judgments made by the human raters. Is local expertise

discernible? And is local expertise assessment consistent across topics and locations?

To start with, we report the kappa (κ) and Accuracy values in Table 6.3. When

considering 3 rating categories for each pair (2: “extensive local expertise”, 1: “some

local expertise”, and 0: either “no local expertise” or “no evidence”), the overall
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Figure 6.6: Kappa Value by Query for Binary Rating Categories

Table 6.3: User Agreement for Overall Judgments

3 Rating Categories 2 Rating Categories

Overall
Accuracy κ Accuracy κ

0.716 0.280 0.822 0.397

General Topics
Accuracy κ Accuracy κ

0.715 0.279 0.818 0.393

Finer Topics
Accuracy κ Accuracy κ

0.717 0.281 0.825 0.401

Accuracy for agreement is 0.716, indicating that for a pair of query and candidate,

on average 71.6% of the human raters voted for the majority vote. This demonstrates

good user agreement and is significantly higher than accuracy by chance (33.3% for

three categories). When considering only 2 rating categories (2 and 1 as relevant,

and 0 as irrelevant), the overall Accuracy increases to 82.2%, which is also much
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higher than the accuracy by chance (50% for two categories). For kappa, we see

that the overall value is 0.280 in the 3 rating category case. For the binary rating

case, the overall kappa value is 0.397. Both kappa statistics are typically considered

“fair” inter-judge agreements. Together, these kappa and Accuracy values suggest

that these human raters have a fairly good agreement. And we observe both much

higher Accuracy and kappa value for binary rating categories, which indicates that

raters find it easier to decide whether a candidate has local expertise or not, rather

than determining the extent of a candidate’s local expertise.

Decomposing expertise into our four locations of interest (NYC, Chicago, Hous-

ton, and San Francisco), we see in Figure 6.6 that inter-judge agreement varies greatly

by both location and by topic. Some locations are much easier to assess (Chicago)

than other locations (NYC). Looking into the top local experts identified for New

York City, we observe that some of them are national celebrities from NYC, which

makes it trickier for human raters to decide whether they are really local experts

or not. Confirming our observation of “food” being a more local topic as revealed

through Twitter lists in Figure 6.3, we see that local “food” expertise is easier to

agree upon, whereas other topics are more difficult. For the candidate and query

pairs for finer topics, we observe slightly higher values of Accuracy and kappa. In

terms of kappa values for particular query topics, “angel investor” and “brewery”

have the highest kappa value of 0.461, and 0.532 for “startup” and “food” scenario.

These results show that some topics are inherently more local, and thus could be

easier for human raters to judge the expertise of candidates in those topics.

6.6.3 Comparing Local Expert Finding Approaches

In this subsection, we seek answers for the questions brought up in the beginning

of this section, with four set of experiments: (i) evaluating the performance of local
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Table 6.4: LocalRank: Evaluating the Three Local Authority Approaches

Local Authority Rating@10 Precision@10 NDCG@10
CP 0.952 0.553 0.685
SP 1.330 0.830 0.903
FP 1.334 0.842 0.896

authority metrics; (ii) studying the impacts of expertise propagation; (iii) comparing

the performance of baseline approaches and the LocalRank approaches; and (iv)

evaluating the performance of expert finding via finer topics.

6.6.3.1 LocalRank: Evaluating Local Authority

To begin with, we seek to understand the impact of the local authority approach

on the quality of local expert finding in LocalRank. Specifically, we fix the Local-

Rank topical authority as the Directly Labeled Expertise, while we vary the local

authority across the three approaches presented in Section 6.4: Candidate Proximity

(CP), Spread-based Proximity (SP), and Focus-based Proximity (FP). Our goal is

to understand to what degree the local authority affects local expert finding, and

to assess if (and how much) the crowdsourced geo-tagged list labels impact local

authority.

We present in Table 6.4 the Rating@10, Precision@10, and NDCG@10 for each

of the three local authority approaches. We observe that both of the approaches (SP

and FP) that utilize the locations from the candidates’ core audience significantly

improve the performance of local expert finding in comparison with the candidate

proximity approach (CP) that only takes the candidate’s physical location into con-

sideration. Using candidate proximity (CP), the LocalRank approach only identifies

true local expert 55% of the time on average among the top 10 candidates. Similarly,
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we see comparatively low values of Rating@10 as 0.952, and NDCG@10 as 0.685.

In contrast, the Spread-based Proximity (SP) and Focus-based Proximity (FP) ap-

proaches reach Precision@k of almost 85%, Rating@10 over 1.33, and NDCG@10

of 0.90. This indicates the core audience for an expert candidate is crucial to estimat-

ing a candidate’s local authority. And in absolute terms, the rating scores for both

approaches range between “some local expertise” (1) and “extensive local expertise”

(2), indicating that these approaches can identify candidates who are actually local

experts. Interestingly, we see for this evaluation framework that the two approaches

perform nearly equally well, although they capture two different perspectives on lo-

cal authority (recall that SP considers the average distance of labelers, whereas FP

considers the fraction of labelers within a radius).

6.6.3.2 LocalRank: Impact of Expertise Propagation

Given these results for local authority, we next consider the impact of exper-

tise propagation on the topical authority (and ultimately on the quality of local

expert finding). As described in Section 6.3.2, we explore whether the three types

of social and list-based connections of Twitter users do indeed provide strong sig-

nals of expertise. We consider the (i) friendship graph, (ii) list-labeling relationship

graph, and (iii) list-peer relationship graph. For each graph (both with and without

distance-weighted edges), we apply the topic-sensitive PageRank algorithm to prop-

agate expertise. For each particular graph as well as a particular type of edge weight,

we iterate the damping factor from 0.10 to 0.30 to 0.50 to study how the damping

factor affects the task of finding top local experts. A smaller damping factor indi-

cates less score propagation and more random walking among more topic-relevant

nodes in the graph. We find that the conventional damping factor value (0.85 or

0.90) finds only national celebrities like @JimmyFallon (Jimmy Fallon, host of talk
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Figure 6.7: Precision@10 with Friendship as Input Graph

show Late Night with Jimmy Fallon), @TheEllenShow (Ellen Degeneres, host of the

Ellen Degeneres Show), and @Jack (Jack Dorsey, Twitter and Square co-founder) no

matter what the query topic is. With a smaller value of damping factor, we hope to

identify more topical relevant local experts.

We present in Figure 6.7 the local expertise results for expertise propagation using

the Friendship graph as input, coupled with corresponding parameter settings. We

vary the choice of local authority (CP, SP, and FP), the use of distance-weighted links

or not, as well as the choice of damping factor. This figure focuses on Precision@10,

while the subsequent Table 6.6 in p. 165 includes Rating@10, Precision@10, and

NDCG@10 for all graph types. First, in terms of the damping factors, we see

that across all settings (0.10, 0.30, and 0.50), that the best performing result is

comparable. However, we do observe a significant performance drop for damping
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factor 0.50 using regular edge weight that does not consider distance between the

nodes as a factor. Upon investigation into the top local expert candidate under this

setting, we observe that many of the top local candidates are national celebrities (e.g.,

@JimmyFallon, @TheEllenShow, and @Jack), compared to the candidates retrieved

using a damping factor of 0.10 or 0.30. We attribute this result to the higher weight

on score propagation through general friendship edges. On the other hand, for a

damping factor 0.10 or 0.30, most of the scores are propagated through topic-relevant

nodes via random walking.

Second, we observe a slight improvement for distance-based edge weight when

using a damping factor of 0.10 or 0.30 rather than using the regular edge weight.

And we observe a dramatic improvement of performance for distance-weighted edge

weight using a damping factor of 0.50 than the alternative version. This indicates

that giving local friends more credit (in terms of expertise propagation flowing more

strongly to nearby friends than far away ones) does help improve the likelihood to

find better top local experts.

Third, in terms of the choice of location authority metric, we observe a similar

result to what we observed in the previous section – that the approaches (SP and FP)

that utilize the locations from the candidates’ core audience significantly improve the

performance of local expert finding.

Finally, compared to the simpler approach of not propagating expertise at all, but

just using the directly labeled expertise, we see that the results are quite similar (with

Precision@10 near 0.84). Given this result, we compared the lists of top-10 local

experts returned by LocalRank using directly labeled expertise versus LocalRank

using each one of the expertise propagation approaches. While the overall precision

is similar, the experts that each approach finds are different: we find an average

Jaccard coefficient between local expert lists of around 60 to 80%. In other words,
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on average, 20 to 40% of the top-10 local experts for the same query are different,

when we compare the directly labeled expertise approach versus a particular expertise

propagation approach. This indicates that the expertise propagation approaches are

bringing in new signals of local expertise from the social and link-based connections

of users; in our continuing work we are investigating methods to integrate these

two types of topical authority by finding more diverse experts from each of these

alternative approaches.

Table 6.5: Comparing LocalRank to Five Alternatives

Approach Rating@10 Precision@10 NDCG@10
DLE 0.225 0.088 0.199

NE 0.141 0.114 0.487
MP (followers) 0.058 0.031 0.234
MP (list) 0.070 0.038 0.301

MP (on-topic) 1.059 0.628 0.750

LR: SP + DLE 1.334 0.842 0.896

LR: SP + EP + Friendship 1.354 0.838 0.884

6.6.3.3 Comparing LocalRank versus Alternatives

So far we have investigated the impact of local authority and the impact of topical

authority on the quality of local experts found by the LocalRank framework. In this

section, we compare LocalRank to the five alternative local expert finding approaches

described in the experimental setup over the set of 10 general topics.

We first report the results for the five baselines in Table 6.5. We see that relying

solely on topical authority – Directly Labeled Expertise (DLE) – with no notion of
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localness, results in a very low Rating@10, Precision@10, and NDCG@10. Sim-

ilarly, relying solely on local authority – Nearest (NE), Most Popular in Town by

Followers Count (MP followers), and Most Popular in Town by Listed Count (MP

list) – with no notion of topical authority also leads to very poor results. Since local

experts are defined both by their localness and their on-topic expertise, these results

confirm our intuition driving the LocalRank approach to combine both factors. The

baseline that does incorporate both factors – Most Popular in Town by Listed Count

on Topic (MP (on-topic)) – captures this notion of local expertise by rewarding can-

didates who have been listed on many Twitter lists on the topic of interest within

a particular location. We see in the table that this approach significantly outper-

forms the single factor alternatives (Rating@10 of 1.059, Precision@10 of 0.628, and

NDCG@10 of 0.750).

Table 6.6: The Impact of Expertise Propagation on LocalRank versus the Best
Performing Alternative (% of Imp: % of Improvement)

Approach Rating@10 % of Imp Precision@10 % of Imp NDCG@10 % of Imp
MP (on-topic) 1.059 – 0.628 – 0.750 –

LR: DLE + Local Authority 1.334 26.0% 0.841 33.9% 0.897 19.6%

LR: EP + Friendship Graph 1.354 27.6% 0.838 33.4% 0.884 17.9%
LR: EP + List-labeling Graph 1.354 27.6% 0.847 34.9% 0.886 18.1%
LR: EP + List-peer Graph 1.345 27.0% 0.844 34.4% 0.887 18.3%

We compare all five of these baselines to two versions of LocalRank. Both con-

sider local authority based on Spread-based Proximity (SP); one uses directly la-

beled expertise (SP + DLE), while the other uses expertise propagation (SP + EP

+ Friendship) over the friendship graph. We see similar qualitative results when

evaluating Focus Proximity (FP) and alternative expertise propagation approaches.
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Both approaches significantly outperform the four single factor baselines, as well as

significantly outperforming the best alternative incorporating both local and topi-

cal authority, MP (on-topic). We see for LocalRank (SP + DLE) a Rating@10 of

1.334, Precision@10 of 0.842, and NDCG@10 of 0.896. For LocalRank (SP + EP

+ Friendship), we have Rating@10 of 1.354, Preci

sion@10 of 0.838, and NDCG@10 of 0.884. These results confirm the effectiveness

of the LocalRank approach and the importance of carefully leveraging the large-scale

geo-tagged list relationships on Twitter.

Continuing this investigation, we report the results of the different LocalRank

approaches versus the best performing baseline in in Table 6.6. We see that the Ex-

pertise Propagation approaches generally perform slightly better than the Directly

Labeled Expertise approach in terms of Rating@10 and Precision@10. This suggests

that adding in social connections bring in more signals to identify top local experts.

In particular, LocalRank with expertise propagation coupled with the social graph of

list-labeling relationships generates the best performance, with Rating@10 of 1.354

(an improvement of 27.6% over MP (on-topic)), Precision@10 of 0.847 (an improve-

ment of 34.9%), and NDCG@10 of 0.886 (an improvement of 18.1%). However, in

terms of NDCG@10, we see that the simpler DLE approach performs slightly better.

But in all cases, the LocalRank approach outperforms the alternative.

6.6.3.4 LocalRank: Local Experts Over Finer Topics

Finally, we drill down from general topics to more fine-grained topics, to inves-

tigate the ability of local expertise finding approaches to handle these more specific

cases. Here we evaluate the proposed LocalRank approaches via the refined topics

under the “food”, and “startup” scenarios. We report the performance using the

best parameter settings for each of the proposed approaches. In this experiment, we
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Table 6.7: Comparing LocalRank versus the Best Performing Alternative over Finer
Topics

Approach Rating@10 Precision@10 NDCG@10
MP (on-topic) 0.782 0.526 0.707

LR: SP + DLE 0.924 0.583 0.851

LR: SP + EP + Friendship 0.871 0.538 0.846
LR: SP + EP + List-labeling 0.868 0.535 0.837
LR: SP + EP + List-peer 0.865 0.533 0.844

set local authority as using Spread Proximity and expertise propagation relies on a

damping factor of 0.30.

Table 6.8: How Well does LocalRank Perform on Finer Topics?

Query Topic Rating@10 Precision@10 NDCG@10
barbecue 0.631 0.404 0.787
seafood 0.825 0.525 0.868
pizza 0.775 0.425 0.712
brewery 1.178 0.738 0.928
winery 0.763 0.475 0.744

entrepreneur 1.248 0.800 0.921
venture capital 1.180 0.663 0.956
angel investor 0.923 0.638 0.846
incubator 0.660 0.413 0.732
founder 0.995 0.688 0.786

Table 6.7 presents the local expert finding results for the four types of LocalRank

versus the best performing alternative (MP (on-topic)). We observe that once again

the LocalRank approaches outperform the best-performing alternative in all cases.
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However, we notice that the performance for these finer topics is worse than what

we observed for the more general topics. For example, LocalRank with Directly

Labeled Expertise performs the best with Rating@10 of 0.924, Precision@10 of

0.583, and NDCG@10 of 0.851 over these finer topics. But the same approach over

the more general topics results in an average Rating@10 of nearly 0.4 points higher.

Similarly, we see improved performance over the other metrics in the general topic

case. We believe these results reflect two challenges: (i) First, it is fundamentally

more challenging to identify local experts for more refined topics. For example, it

may be easier to assess whether someone is a “food” expert, rather than that they

are an expert in a specific topic like “barbecue”. (ii) Second, there is inherent data

sparsity at the level of these finer topics. The number of candidates for a finer topic in

a query location is much smaller compared to the number of candidates for a general

topic in the same query location. For example, we observe that the approaches

consider the probable No. 1 barbecue expert in Texas – Daniel Vaughn – as a local

expert for barbecue for query locations of Chicago and San Francisco, in addition to

his natural expertise in Houston. For these two distant locations, Vaughn is often a

top choice since there are few barbecue candidates recognized in the location.

In our continuing work, we are investigating the contours of expertise across

the country, so that topics with a strong regional factor (like Barbecue, with its

traditional centers in Texas, North Carolina, and the Midwest) can be balanced

with topics of expertise that are found nearly everywhere (e.g., the more general

“foodies”). Along these lines, we show in Table 6.8 the results of LocalRank (SP +

DLE) for each of the fine-grained topics. As we observed in our original investigation

of Twitter lists, where we observed topics like “food” being more local than topics

like “technology”, here we see great variation in local expertise finding across these

different subtopics.
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6.7 Summary

The exponential growth in social media over the past decade has recently been

joined by the rise of location as a central organizing theme of how users engage with

online information services and with each other. Enabled by the widespread adop-

tion of GPS-enabled smartphones, users are now forming a comprehensive geo-social

overlay of the physical environment of the planet. In this section, we have argued

for leveraging these geo-spatial clues embedded in Twitter lists to power new local

expert finding approaches. We have proposed and evaluated the LocalRank frame-

work for finding local experts, by integrating both a candidate’s local authority and

topical authority. We have seen that assessing local authority based on the spread

and focus-based proximity of a candidate’s “core audience” – that is, the users who

have labeled him – can lead to good estimates of local authority and ultimately to

high-quality local expert finding. Through an investigation of 56 queries coupled with

over 11,000 individual judgments from Amazon Mechanical Turk, we have seen high

average precision, rating, and NDCG in comparison with alternatives. In our contin-

uing work, we are interested to (i) further investigate the borders of “localness” by

investigating when an expert is considered a local expert versus a regional expert; (ii)

enhance our current LocalRank approach with temporal signals to capture expertise

evolution; and (iii) incorporate the detected local experts into a prototype system

that can direct information needs to local experts who are considered authoritative

and responsive on the local topic of interest.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

We believe that the increasing ubiquity of location-based social media has the po-

tential to fundamentally disrupt basic scientific inquiry into questions that heretofore

were difficult to study and to provide the basis for new “intelligent” geo-social infor-

mation systems. Accomplishing this will require new methods, new algorithms, and

new frameworks for mining and analyzing vast fine-grained (public) spatio-temporal

footprints, as well as new systems and techniques to leverage these footprints. We

have outlined some of the challenges facing this opportunity and highlighted five

of our related efforts toward informing this emerging research area. Moving for-

ward, we believe that geo-social intelligence research is poised to make major break-

throughs in the years to come due to the growing interests of social scientists in

computational/data-intensive approaches and the 4th paradigm [67, 54] and com-

puter scientists in spatial computing [25]. We also believe that transformative re-

search in geo-social system can be accelerated along multiple fronts if we continue to

embrace and fine-tune the emerging open science paradigm [111] to promote inter-

disciplinary collaboration and improve the infrastructure for geo-social intelligence

research.

7.1 Conclusions

Specifically, in this dissertation research, we focused on investigating the real-

time geo-social footprints that connect people’s online presence to their activities in

the physical world. These real-time geo-social footprints correspond to the check-ins

on Foursquare or Google Local, geo-tagged postings, conversations, and social con-

nections on Facebook or Twitter, and so on. The access to the geo-social footprints

of hundreds of millions of people brings in unprecedented opportunities of deeper
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and more insightful geospatial understanding of the emergent collective knowledge

embedded in these geo-social footprints, and furthermore building new geo-social in-

formation systems utilizing these geo-social footprints. However, there is still a sig-

nificant gap toward understanding, and leveraging these geo-social footprints. Thus,

this dissertation made contributions towards two general directions:

First, we investigated the capacity of using these geo-social footprints to build

new geo-social information systems. Specifically, we tackled the challenges of location

sparsity, lack of understanding of these geo-social footprints, and lack of understand-

ing of the viability of the public-shared geo-social footprints to complement and even

replace traditionally more expensive proprietary data. (i): in order to tackle the lack

of user adoption of geo-based features per user or per post signals, we proposed and

evaluated a probabilistic framework for estimating a microblog user’s location based

purely on the content of the user’s posts. With the help of a classification com-

ponent for automatically identifying words in tweets with a strong local geo-scope,

and a lattice-based neighborhood smoothing model for refining a user’s location es-

timate, we have seen how the location estimator can place 51% of Twitter users

within 100 miles of their actual location. (ii): to have a better understanding of the

newly emerged location sharing services, we investigated a set of 22 million check-

ins across 220,000 users and reported a quantitative assessment of human mobility

patterns by analyzing the spatial, temporal, social, and textual aspects associated

with these footprints. Concretely, we observe: (a) users follow simple reproducible

mobility patterns; (b) social status, in addition to geographic and economic factors,

is coupled with mobility; and (c) content and sentiment-based analysis of posts can

reveal heretofore unobserved context between people and locations. (iii): to verify

whether publicly-shared data is viable to capture real-world flows of people instead

of using proprietary data, we compared a set of 35 million publicly shared check-ins
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with a set of over 400 million private query logs recorded by a commercial hotel

search engine. Although generated by users with fundamentally different intentions,

we find common conclusions may be drawn from both data sources, indicating the

viability of publicly shared location information to complement (and replace, in some

cases), privately held location information.

Second, we introduced a couple of prototypes of new geo-social information sys-

tems that utilize the collective intelligence from the emerging geo-social footprints.

Concretely, we proposed an activity-driven search system, and a local expert finding

system that both take advantage of the collective intelligence. Specifically, we stud-

ied location-based activity patterns revealed through location sharing services and

found that these activity patterns can identify semantically related locations, and

help with both unsupervised location clustering, and supervised location categoriza-

tion with a high confidence. Based on these results, we showed how activity-driven

semantic organization of locations may be naturally incorporated into location-based

web search. In addition, we proposed a local expert finding system that identify top

local experts for a topic in a location. Concretely, the system utilized semantic la-

bels that people label each other, people’s locations in current location-based social

networks, and can identify top local experts with a high precision. We also observe

that the proposed local authority metrics that utilize collective intelligence from ex-

pert candidates’ core audience (list labelers), significantly improve the performance

of local experts finding than the more intuitive way that only considers candidates’

locations.

7.2 Future Directions

In terms of the future work, we are quite interested in the following directions:
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• Modeling Group-based Mobility Patterns: In this dissertation, we ana-

lyzed a set of 22 million check-ins from location sharing services, and modeled

individual user’ mobility pattern using her check-ins. Recently, Cho et al. [21]

studied check-ins from Gowalla and Brightkite, and observe that users’ mobility

patterns are constrained by both geographical and social factors. Specifically,

they observe that social relationships can explain about 10% to 30% of all

human movement, while periodic behavior explains 50% to 70%. A natural

follow up for both ours and Cho’s work is to study group-based human mobil-

ity patterns (e.g., flock behavior). Interesting questions to study include: when

and where do people check-in with friends together more frequently? Do users

of location sharing services still follow reproducible patterns when they check

in with friends together? What are the differences between the group-based

mobility patterns and individual mobility patterns observed in location sharing

services?

• Location Privacy: In the introduction, we discussed that one of the chal-

lenges for better understanding and leveraging emerged geo-social footprints

is location privacy. Though not studied in this dissertation, location privacy

still remains a quite interesting problem that we are interested to explore.

Specifically, we are interested in three aspects that concern location privacy:

(i) learning the usage of location sharing feature adopted in current location-

based social networks; (ii) analyzing what is the percentage of users that re-

vealed their fine granular home locations; and (iii) studying spatio-temporal

anomalies (could potentially be spam or malicious manipulations of geo-tagged

content) in location-based social networks.
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• Real-Time Crowd-Powered Geo-Social System: As the next step for re-

alizing geo-social information system, we are interested to study how to “close

the loop” between “experts” in the location-based crowds and high-value stake-

holders who wish to interact with them. The key motivating idea is to link

crowdsourcing approaches popularized for human computation (e.g., Amazon

Mechanical Turk, the ESP Game, Soylent, and others [10, 11, 31, 41, 61, 80, 91,

116, 131]) to the real-time location-based crowds that manifest in the wild, for

building in situ crowd-powered geo-social systems. For example, successfully

connecting an earthquake-related crowd to recovery experts as the disaster un-

folds could dramatically improve resource allocation - To which areas should

emergency responders be sent? Where should unmanned aerial vehicles fo-

cus their data collection? – during the critical, developing moments after an

emergency when information can have the greatest impact. Beyond emergency

management, many domains can benefit from access to and engagement with

location-based crowds, including epidemiological and disease control experts

searching for evidence of new outbreaks and the reaction of the public to new

vaccines and municipalities interested in responded to local events (like the

recent Vancouver riots).

Specifically, the key challenges of the real-time crowd-powered geo-social sys-

tem include: (i) who can issue tasks; (ii) crowd matching for tasks; and (iii)

incentivizing crowds. In this dissertation research, we tackled the second chal-

lenge by introducing the collective-intelligence powered local expert finding

system, which identify potential experts to target according to both perspec-

tives of content and space. However, there is also a perspective of time that is

missing for appropriate crowd matching. In our future work, we are interested
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in extend our current research on identifying top local experts for a particular

topic (task) considering all the three perspectives of content, space, and time.

In addition, we are also interested to explore the territory of the other two

challenges to study the research questions of who can issue tasks, and how to

best incentivize experts in the crowds.
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