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ABSTRACT

The aim of the current work is to develop a Bayesian approach to model and

simulate the behavior of materials with nonlinear mechanical response in the presence

of significant uncertainties in the experimental data as well as the applicability of

models. The core idea of this approach is to combine deterministic approaches by

the use of physics based models, with ideas from Bayesian inference to account for

such uncertainties.

Traditionally, parameters of models in mechanics have been identified through de-

terministic approaches to obtain single point estimates. Such methods perform very

well for linear models and are the preferred approach in identifying model param-

eters, especially for precisely engineered systems such as structures and machinery.

But in the presence of large variations such as in the response of biological materi-

als, such deterministic approaches do not sufficiently capture the uncertainty in the

response. We propose that the model parameters need to encode the spread that

is observed in the data in addition to modeling the physics of the system. To this

end, we propose the idea of probability distributions for model parameters in order

to incorporate the uncertainty in the data.

We demonstrate this probabilistic approach to identifying model parameters with

the example of two problems: the characterization of sheep arteries using data from

inflation experiments and the problem of detecting an inhomogeneity in a cantilever

beam. The parameters in the artery characterization problem are the model param-

eters in the constitutive models and in the cantilever problem the parameters are

the stiffnesses of the inhomogeneity and the material of the beam. For each of these

problems, we compute the probability distribution of the parameters using Bayesian
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inference.

We show that the probability distributions of parameters can be used towards two

kinds of diagnostics: assigning probability to a hypothesis (inhomogeneity detection

problem) and using the probability distribution for classifying newly obtained data

(characterization of artery data). For the inhomogeneity detection problem, the

hypothesis is a statement on the ratio of the stiffnesses and it is observed that the

probability of the hypothesis matches well with the data. In the case of the artery

characterization problem, new data was successfully classified using the probability

distributions computed with training data.
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1. INTRODUCTION

The aim of the current work is to develop a general procedure based on Bayesian

techniques to model and simulate the behavior of materials with nonlinear response,

when there is significant uncertainty associated both with the applicability of the

model as well as variability in experimental data. The idea behind this approach is

to “embrace the uncertainty” and replace the traditional purely deterministic outlook

of mechanics that seeks to eliminate variability by creating ever more complex models

with an approach that augments the deterministic approach of mechanics with ideas

from Bayesian inference to account for and propagate the uncertainty.

1.1 Motivation

Physics based models are the principal means of predicting the behavior of a wide

range of systems for purposes of design and failure analysis and avoidance. Tradition-

ally such approaches have been used for the modeling of precisely engineered systems

such as structures and machinery where there is substantial control over dimensions,

properties etc. Furthermore, most of these applications have been in bodies that are

considered “almost rigid” so that linearized models have been sufficient. But with the

recent interest in extending these ideas to biological systems, a number of new chal-

lenges have arisen. For example, biological systems are not controllably engineered,

with huge variance across samples. Furthermore, unlike engineered systems that can

be monitored in situ by embedding sensors during manufacture, in-vivo monitoring

is rather minimal. The significant non-linearity in the response is another factor

that compounds the difficulties. A key step in the development of models is the

estimation of model parameters.

The estimation of model parameters in mechanics is traditionally done using
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deterministic approaches to compute single point estimates. The core idea behind

computing such point estimates is to optimize the value of the model parameters

so that the “distance” between the data and model predictions is minimized. Least

squares estimates and maximum likelihood estimates (in the context of statistical

models) are examples of a larger class of point estimators known as M-estimators.

M-estimators are extreme values of some chosen function of the data and model.

(The reader is referred to [2] for detailed analysis of such M-estimators, with special

reference to the robustness of such approaches.) If this function is chosen as the norm

of the error (difference between data and model predictions), then the point estimate

is the least squares estimate and if the function is a particular choice of likelihood

function, then the estimate is known as the maximum likelihood estimates. Both the

maximum likelihood estimates and least square approaches are popular in mechanics

and it is well known that for linear models, such approaches perform very well and

are the de facto choice (see for eg. [3, 4, 5, 6, 7]).

In the presence of large variations in measurements, as is observed in the me-

chanical response of biological materials (see for example in figure 1.1 (a)-(e) from

[8, 9, 10, 11, 12] respectively), it is not sufficient to use point estimates for average

response because, due to the spread in data, there is no reason to believe that the

averaged response represents a “typical” response. Moreover, fitting parameters for

the average response results in losing any information that may be contained in the

spread (see Chapter 37 [13]). On the other hand, computing model parameters for

each (or some chosen) experiment is inadequate and incomprehensive since the point

estimates do not provide any information about the robustness of the fit or the ability

to predict any future experiments. To put it differently, a deterministic approach,

while capable of representing each experiment with a point estimate for the model

parameters, does not contain any information to predict the possible response of a
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new sample.

The issues discussed above are exacerbated if the models are nonlinear. In par-

ticular, the response of biological materials, the mechanical response is known to be

nonlinear [14, 15, 16, 17]. Since, for example, the least squares approach solves an

optimization problem (minimizing “distance” between the data and model predic-

tions), the use of nonlinear models, may result in a non-convex optimization problem,

and therefore a unique value of the parameters for a given data set cannot be guar-

anteed. Furthermore, a nonlinear least squares estimate for the parameters does not

provide any measure of robustness and hence errors in such estimates propagate into

the characterization of the system (for details see for example chapters 10 and 11 in

[18]).

(a) The data presented in [12] – circumferential stress vs. strain

of porcine coronary artery. The envelopes include all individual

response curves at in situ axial stretch (λz = 1.3)

Figure 1.1: A sample of experimental data from the literature on biomaterials, show-
ing large variations
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(b) The data shows the plot of pressure vs tr(C) for the inflation

under constant stretch for a circumflex coronary artery [8]. Notice

that there is a spread in the data (measured at different locations

on the same sample) while the correlation within each curve is

clear.

(c) The figure shows the pressure–diameter experimental data of

canine arteries reported in Cox et al. [9]. Notice that the X-axis

shows the normalized diameter plot, and the error bars are re-

ported for the diameter variable only.

Figure 1.1: Continued.

4



(d) The data from [10] shows the internal pressure vs circumfer-

ential stretch at constant axial stretch for of human aorta and

compared with model predictions (with the averaged data) using

the Holzapfel model [19]

(e) The data from [11] shows the uniaxial response of human aorta

layers with the roman numerals labeling the samples tested. Note

the variations in the response across samples

Figure 1.1: Continued.
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In summary, when the data shows large variations, point estimates for model

parameters represent only an averaged response and are not sufficient to capture the

variations. We propose that the model parameters need to encode the spread that is

observed in the data in addition to capturing the correlation between the measured

variables. To this end, we propose the idea of probability distributions for model

parameters in order to incorporate the uncertainty in the data.

1.2 Advantages and consequences of using a probabilistic approach

A probabilistic approach to characterizing the system allows us to specify the

probability that a parameter takes a particular value within a broad domain. In

other words, the primary focus in the probabilistic approach to characterizing data

is to answer the following question : “What is the probability distribution of the

parameters of a model, conditioned on the observations (data)?”. In this process, we

circumvent issues of uniqueness, since the inverse problem reduces to a probability

assignment over the parameter space. The probability that the parameter takes a

particular value asserts the state of knowledge about the parameter, and thus pro-

vides an idea of the uncertainty in the value of the parameters. This approach is

different in perspective from conventional methods of parameter estimation in that it

does not seek to obtain a single set of parameter values that fit the data the “best”,

but rather characterize the parameter space as a probability distribution which is

dependent on the quality (i.e. noise) or quantity of the data points. The proba-

bilistic approach to identifying and representing model parameters is not limited to

incorporating uncertainty in the data but also represents the uncertainty in models.

The uncertainty arising from the lack of complete knowledge about the system and

hence leading to an inaccurate representation of the system is known as epistemic

uncertainty [20]. This uncertainty may be due to certain simplifying assumptions
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on the system, or lack of accurate information on experiments or inability to obtain

such information (e.g. in vivo material response for biological material needs to be

modeled, but experiments can only be conducted on dead tissue). By representing

model parameters of such models as probability distribution, the inability to match

the data perfectly (due to this epistemic uncertainty) is also incorporated. A rele-

vant discussion involving models, their complexity and the relation to the quality of

available data is presented in section 1.3.

When the response of the system is represented through a physics based model,

and probability distributions for parameters of the model represent the spread in

the observations, the question to answer now becomes : “How likely is it that newly

obtained data is different from the data used to calibrate the model?”. Such questions

are of primary importance in diagnostics, for example,

• Detect nature of an inhomogeneity : Based on observations of the system and

physically motivated models of the system, is it possible to identify the nature

of inhomogeneity?

The presence of aneurysms [21, 22] in arteries is known to change the stiffness of

the arteries and detecting them is a vital step in medical diagnostics. Detecting

variations in tissue stiffness is also the central focus of imaging techniques such

as elastography, particularly used for liver screening [23, 24] and breast cancer

screening [25, 26].

• Detect if the material property of a biological material has changed over time:

Using the newly obtained data, with the model and corresponding parameter

probability distributions, can we detect if there is a change in material property

over time?

For example, atherosclerotic plaques are formed due to depositions of fatty
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materials over time and the changes in arterial stiffness measured through

pulse wave speed or ultrasonic measurements provide an estimate of damage

in the tissue [27, 28].

Primary motivation for addressing this issue arises out of the unreliability on

criteria for diagnostics, especially in the case of biomaterials. For example, exist-

ing maximum diameter criterion for prevention of rupture of an abdominal aortic

aneurysm is unreliable, primarily due to the large variations observed in measured

data [29]. Since the correlation between mechanical properties and diagnostics has

been well studied in biomaterials [23, 25, 27, 30, 31], the diagnosis may be performed

using material properties (such as stiffness) instead of using the measurements di-

rectly.

1.3 Complexity of models vs. quality of data – A qualitative overview

In the previous section, we presented the case for a probabilistic approach in the

presence of uncertainty in data and models. In this section, we present a qualitative

overview of when and why the probabilistic approach should be used. Figure 1.2 is

a graphical representation of this overview.

Regions I through IV represent broadly the combinations of “complexity” in mod-

els vs. “quality” of data1. By complexity we mean the sophistication of explanation

of reality. In other words, a more complex model, is able to explain the response of

the system to a larger extent and under more conditions than a less complex model.

The quality of the data is associated with the uniformity in experimental protocols,

consistency across specimens and repeatability in obtaining data.

Based on the above classification, models which are sufficiently complex and

have access to high quality of data are able to present accurate “predictions” of the

1It should be noted that the words complexity and quality here are used in an informal sense
and no quantitative measure is attributed
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Figure 1.2: A qualitative representation of how the approach presented in this work
is placed in relation to the existing approaches in representing data using models.

system’s behavior. For such systems the least squares is the favored parameter esti-

mation approach. Metallic materials and manufactured materials have been studied

extensively and we can say with certainty that these systems are well characterized

and predictions using models are accurate. An evidence to this fact is the estab-

lishment of multiple standardized protocols (such as ASTM standards) which enable

obtaining material properties (i.e. model parameters) directly from the data.

On the other hand, region IV represents theories and statistical models associated

with data obtained by social scientists, for example, where access to data is readily

available, whereas the epistemic uncertainty is very high due to a lack of clear un-

derstanding of the underlying correlations. In such cases, only the data is used to

develop statistical correlation models. With the correlation models thus developed,

9



“interpolations” may be made as to the probability of outcomes. For example, fore-

casting the results of an election involve a large amount of polling data combined

with historical correlation models to obtain the probability of victory for a candidate

[32, 33]

When the ability of collect data is limited, theories to explain reality supersede

observations. Such theories lead to “speculations” (region II), which may be con-

firmed or rejected when the required data is available. Examples of speculative

theories can be seen in particle physics and celestial physics where theories built on

string theory and relativity generate “speculations”, which are yet to be tested.

The region marked “forecasting” denotes the approach followed for financial and

weather forecasts. Typically, the data (historical and current) is available, but devel-

oping models for such complex phenomenon is still a major challenge. The models

used are thus simple and establish weak correlations, allowing the data to guide the

“forecasts” which are presented as a series of possible outcomes rather than an ac-

curate ‘prediction’ [34, 35, 36]. A relevant discussion on the different usages of the

terms prediction and forecasting in the literature is presented in appendix B.

Given the above classification2, a probabilistic approach of the type presented

in this dissertation aims to focus on the area where models for the systems under

consideration exist, but are not completely developed and the data that is obtained

is not of very high quality, but does contain significant information. In this case, our

approach suggests that both uncertainty in data and models need to be accounted

for, and probability distributions for model parameters is one way to achieve

this goal.

2Region III of figure 1.2 is not of scientific interest since neither data nor a physical understanding
of such systems exist.
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1.4 Bayesian inference

Probabilistic inference on parameters (i.e. parameter estimation) using data is

typically performed in two different ways : the frequentist approach, and the Bayesian

approach [18, 37]. The frequentist approach defines probability of an event as fre-

quency of its occurrence in a large number of trials, whereas, Bayesian probability is

a measure of state of knowledge or “belief”. The frequentist approach to inference is

primarily through hypothesis testing [38], where two competing hypothesis are tested

against the data, to infer which hypothesis is more likely to explain the observations.

Note that, while performing such tests, the hypotheses are only tested against the

data, and that no prior available information is considered. Moreover, in hypothesis

testing, the data is not used to update any existing belief on either hypothesis, but

only to accept or reject it. Bayesian inference [39], on the other hand allows us to

incorporate any prior available information, as well as use data to update the beliefs

on the hypotheses. Given the fact that all models are themselves a priori beliefs

about correlation in the variables of interest, it is natural to use Bayesian inference

to update our state of knowledge of the parameters.

Bayesian inference is a method of statistical inference that uses the Bayes rule to

compute the probability of a hypothesis in the presence of evidence. In other words,

if E is the evidence, H is the hypothesis then

P (H | E) = P (E | H)P (H)

P (E)
. (1.1)

If we are comparing experimental measurements to update a hypothesis about a

model, then if z is a list of measurements (evidence), and y the corresponding list of

model predictions (model is the hypothesis on the response of the system) and y is a

function of the parameters θ the model, the Bayes rule for obtaining the probability
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distribution on the parameters (for a given model, the hypothesis is on the values of

the parameters) can be written as,

P (θ | z) = P (z | θ)P (θ)
P (z)

(1.2)

=
P (z | y(θ))P (y(θ))

P (z)
(1.3)

since the model predictions y are a function of the parameters θ. In the above equa-

tion, P (z | θ) is called the likelihood factor, P (θ), is called the prior probability and

the denominator P (z) is called the evidence. This approach allows one to incorpo-

rate prejudices and prior information into the inference procedure, while at the same

time use the data to update these prior beliefs.

1.4.1 Features of the Bayesian inference procedure

There are several features of the Bayesian inference that are particularly useful for

solving a probabilistic system characterization problem. Firstly, the prior probability

distribution on the model parameters θ, encodes any prior knowledge that may be

available on the model parameter values as a probability distribution. This prior

information may range from a support constraint on the parameter space, to knowing

the average values of the parameters for a set of specimens. It is important to note

that if the prior probability assigns zero probability to a region of the probability

space, the posterior probability will assign zero probability to this region irrespective

of the information contained in data.

The likelihood factor (P (z | θ)) is a measure of influence that the data has on the

model. A high likelihood factor for a particular choice of model parameters θ0 implies

that the model is significantly influenced by the data at this particular value of the

12



model parameters. Furthermore, the likelihood also allows us to enforce precision on

the model parameters, i.e. a high precision requirement implies a correspondingly

high belief in the quality of data, and hence the tolerance in the values that the

model parameters can take is decreased. If the data requires such high tolerance,

then the posterior probability distribution of the model parameters will reflect this

through a decreased variance.

Having computed the posterior probability distribution, we have a comprehensive

representation of the uncertainty in the data and the model. Several avenues of

further analysis may be pursued with the posterior distribution. If the posterior

distributions need to be directly compared, a “distance” measure between probability

distributions such as the K-L divergence (Kullback-Leibler) [40] may be used. If the

hypothesis on the model parameters is stated as a probability, i.e. “What is the

probability that θ ∈ Θ?”, where Θ is a subset of the parameter space, then such

a probability may be directly computed from the posterior probability distribution.

Alternatively, such a hypothesis may be posed as a classification problem (i.e. class

C1 is defined as θ ∈ Θ and class C2 is the complement of this set), then a consistent

use of Bayesian inference to compute the probability P (C1 | θ) may also be computed.

1.5 Probabilistic approaches for parameter estimation in mechanics – a brief

survey

Recent work indicates an increased interest in applying probabilistic parameter

estimation techniques to problems in mechanics. Mehrez et al. [41, 42] use a polyno-

mial chaos (PC) expansion to represent the probability distribution for the spatial

variation of elastic modulus along the length of a composite beam. The authors

assume a random field over the modulus and use a Bayesian inference technique

to obtain point estimates (maximum a posteriori) estimates for the coefficients of
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the polynomial chaos expansion. The probability distribution thus obtained for the

elastic modulus is used to compute maximum a posteriori (MAP) estimates. These

estimates are used in the PC expansion again to validate the results across different

sets of calibration and validation datasets. A similar estimation problem has also

been solved by Zhang et al. [43] for linear models applied to using a combination of

the PC expansion and Bayesian inference.

The works of Beck, Katafygiotis and co. [44, 45, 46] deal with probabilistic system

identification approaches for dynamical systems. The authors apply probabilistic

inference to identify the stiffnesses for multiple degree of freedom systems. The

estimates obtained are typically MAP estimates, and are used towards structural

health monitoring and reliability [47] applications. Another recent work (2013) in

health monitoring and damage detection using elastic waves, by Yan, [48], explores

the possibility of using sensors to measure the excitation at points on an elastic

plate and use the measurements to obtain probability distributions on the damage

location.

A very recent work by Crews and Smith [49] employs the Bayesian inference

approach for estimating heat transfer parameters of a shape memory alloy bending

actuator. The aim of the work is to obtain parameters towards use in design of

robust controllers. The data used is the measurement of bending angle of SMA

beam actuator on applying a voltage. The authors use the mechanical and the SMA

model parameters from an earlier work [50], and for the heat transfer parameters,

use Bayesian inference to present probability distribution. Since the approach is

directed towards design of controllers, the mean value and 95% confidence intervals

are presented.

In the field of geology and geomechanics, Cividini et al. [51] present a Bayesian

inference approach to estimate the size, location and the elastic moduli governing
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the geometry of an inclusion in a rock. The experimental data are given by the

displacements and certain known loads. The authors use a linear elastic model to

represent the system and apply the data in conjunction with a priori assumptions on

the parameters to a Bayesian framework. The a prior information in this problem is

the knowledge of mean values and variances of the parameters, and a normal distri-

bution is thus assumed for these parameters. Using a Gaussian likelihood function

therefore results in a Gaussian distribution for the posteriors as well. The results are

then reported as the MAP estimates and their variances.

The above examples give a brief overview of probabilistic approaches used in the

mechanics literature. It can be seen that probabilistic approaches are used mainly

to obtain point estimates, as mean of the resultant distribution [49] or as maxi-

mum a posteriori estimates [41, 42, 47]. This is clearly due to the motivation of

the estimation procedure, which is typically tailored towards use in design, system

identification or health monitoring. Moreover, the uncertainty observed in the data

in each of the listed works, considers uncertainty due to measurement errors only. As

mentioned earlier, such an assumption is sufficient for engineered systems, but given

the variations and spread in the data from biological materials (see figure 1.1), the

probability distributions for model parameters need to incorporate the information in

spread. With this spread information incorporated in the probability distribution, it

is not appropriate to obtain point estimates, such as maximum a posterior estimates.

Furthermore, a common feature across papers in the mechanics literature that use

probabilistic approach is their application to linear models. While the probabilistic

approaches are the same for nonlinear models, the interpretation of the distribution

of parameters of nonlinear models is not the same. For example, choosing maximum

a posterior estimates (i.e. choosing the maximum of the posterior distribution) ig-

nores the presence of other modes in the probability distribution. Therefore, in this
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dissertation we present techniques to use the probability distributions for the model

parameters in their entirety instead of using only a point estimate.

1.6 Objective and scope

In this dissertation, we will focus our attention on a Bayesian inference approach

to compute probability distributions for model parameters for nonlinear mechanical

response from data that show large variations. The key difference in the perspective

presented in the Bayesian approach is that we do not assume that the model parame-

ters are distributed according to a particular family of distributions. This perspective

leads to probability distributions that do not assume any specific features of a par-

ticular family (for example, models on correlation). Moreover, due to this freedom,

the priors need not be chosen in any particular compliance with the likelihood fac-

tor, as is typically done with the use of conjugate priors [52]. On the other hand,

this does include the possibility that the parameter probability distributions do not

have analytically tractable forms, but this is handled by using numerical sampling

techniques. The main algorithm used in this work for this purpose is an example of

the Markov-Chain Monte-Carlo [53] techniques known as the Metropolis–Hastings

algorithm [54, 55].

We will demonstrate the probabilistic approach with the example of two problems:

the first one lays out the approach towards characterizing material properties with

the example of artery data and a continuum mechanics model for the behavior of

the artery and the second problem presents an example in structural mechanics of

identifying an inhomogeneity in a cantilever beam. The following briefly outlines the

problem statements for the two problems.

Probabilistic characterization and classification of sheep aorta inflation data

This problem is posed as the characterization of sheep aorta from inflation data.
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In order to demonstrate and maintain focus on the inference approach, three

simple hyperelastic models are used to model the inflation of the artery. The

probability distributions for the parameters of each of these models is computed

using the Metropolis–Hastings algorithm. Only a portion of the experimental

data is used in computing the probability distribution. The remainder is used

as “new” data and the problem of classifying the new data into predefined

classes is shown, as an application of the posterior probability distribution.

Inhomogeneity detection in a cantilever beam

We consider the problem of detecting an inhomogeneity in a cantilever beam

modeled as a nonlinear elastica using measurements of deflections along the

beam. The measurements used are synthetically generated. This allows us

to analyze the presented approach in the context of near-perfect models. The

probability distribution is computed using Bayesian inference on the stiffnesses

of the material of the beam and the material of the inhomogeneity. The prob-

ability distributions are computed under different assumptions on the noise in

observations. Prior information on the stiffnesses is encoded using the Maxi-

mum Entropy principle. An application of the posterior distribution to assign

probabilities to hypotheses is also presented in this work.

1.7 Structure of the dissertation

The structure of the dissertation is as follows:

1. Section 1 presents a introduction to the probabilistic approach applied to pa-

rameter estimation in mechanics models in the context of data that shows large

variations. A detailed motivation for this approach is presented in comparison

to the popular least squares approach to parameter identification. This section

also lays down the particular scope of this approach and the current work.
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2. In section 2, sheep aorta inflation data from experiments recently conducted

[1] is used in conjunction with hyperelastic models. The use of the Bayesian

inference approach to this problem and an application to a probabilistic classi-

fication problem are presented. The problem of classifying newly obtained data

into predefined classes is directly related to medical diagnosis and the results

are presented in this context.

3. In section 3, the problem of identifying an inhomogeneity in a cantilever beam

is presented. The cantilever is modeled as a nonlinear elastica with an inclusion

of a different stiffness and the data (deflection measurement) is synthetically

generated. The use of maximum entropy principle to obtain a prior probability

distribution is also demonstrated in this work. Posterior probability distribu-

tion of the stiffnesses (beam and inclusion) is used to find the probability of

hypothesis as an application towards diagnostics.

4. We close in section 4, with observations on the advantages of the various aspects

of this work and a discussion of future research directions.
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2. PROBABILITY DISTRIBUTION OF MODEL PARAMETERS FOR

ARTERY DATA – A COMPARATIVE STUDY OF THREE DIFFERENT

MODELS

2.1 Introduction

In this section, we present the model-based Bayesian inference approach to char-

acterizing and predicting the behavior of arteries. We will use data from experiments

on inflation of arteries to compute the probability distribution on model parameters.

Thus the uncertainty associated with the data as well as model is captured not

through just a mean least squares estimate and its variance, but a probability dis-

tribution of the model parameters. This approach thus also circumvents issues of

non-uniqueness in least squares estimates (see [56] for a discussion on non-uniqueness

in least squares estimates for hyperelastic models). Moreover this approach paves

the way for further analysis, particularly for classification towards diagnosis. For ex-

ample, a measure such as the Kullback-Leibler divergence [40] may be used to obtain

a measure of the difference between two probability distribution. In this section, we

demonstrate the use of Bayes rule with the probability distribution of the model pa-

rameters to compute class membership probabilities i.e., the probability that a set of

observations belong to a particular class. Another use towards diagnostics using the

model parameter probability distributions is towards detecting inhomogeneities in

diseased arteries (e.g. atherosclerotic arteries). A simplified version of this problem

is presented in section 3 of this dissertation.

2.2 Experimental data

The experiments used for demonstrating the approach presented in this work

were recently conducted [1] at Texas A&M University. Three inflation experiments
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were performed on 5 samples of sheep aorta at the axial stretch corresponding to in

vivo axial stretch. The data was reported as applied pressure (in mmHg) vs. volume

(in mL). This data was reduced to pressure vs. internal radius (in mm). The data,

in the reduced form is shown in figure 2.1.
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Figure 2.1: Inflation experimental data from 5 samples of sheep aorta – Pressure vs.
Internal radius [1]. Note that in addition to a significant variance in the reported
measurements of different experiments for a given sample, there is also a variance in
the behavior across samples.

2.3 Model for artery inflation

For the purposes of this work the artery is modeled as a thick-walled tube made

of a homogeneous, incompressible, isotropic and hyperelastic material. This choice

is motivated by the fact that the exact geometry of the arteries that were tested
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is not reported, and furthermore the data is presented as (section 2.2) the applied

pressure vs. internal volume (and reduced to pressure vs. internal radius). The

model that we develop is motivated towards obtaining the model predictions of the

applied pressure pmod(θ, ri) as a function of the internal radius ri and the model

parameters θ of the strain energy chosen. The problem statement for the inflation

problem and the solution technique used for the solving this problem are explained

below.

2.3.1 Problem statement

Consider a thick walled cylinder B that occupies the reference configuration

kr(B). Let X ∈ kr(B) denote the position vector of a typical particle in the body.

At time t, the body occupies a configuration kt(B) such that position of the same

particle is now x. The motion of the body can be described using the function χkr

x = χkr(X, t) (2.1)

The deformation gradient F is given by

F =
∂χkr

∂X
, (2.2)

and the right Cauchy-Green stretch tensor is

C = FTF (2.3)

As mentioned earlier body B is assumed to be a thick walled tube,

Ω0 = {(R,Θ, Z} | A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L}. (2.4)
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Consider the inflation of this annular region under an applied pressure on the

surface R = A. The solution to the following semi-inverse problem is sought:

r = f(R) (2.5a)

θ = Θ (2.5b)

z = λzZ (2.5c)

where it is assumed that the current radius of the cylinder is independent of θ

and z, since the data is reduced from pressure vs. volume assuming it is a uniform

cylinder and that the inflation is independent of θ and z.

2.3.2 Constitutive relation

As mentioned earlier,the data is presented as pressure vs. internal radius. There-

fore, we desire a similar form for the constitutive relation. We will use the principle

of minimum potential energy to arrive at such a relation.

The deformation gradient in cylindrical coordinates is given by,

F =



dr
dR

1
R

dr
dΘ

dr
dZ

r dθ
dR

r
R

dθ
dΘ

r dθ
dZ

dz
dR

1
R

dz
dΘ

dz
dZ


(2.6)

and therefore, for the deformation given in equation (2.5),
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F =


df(R)
dR

0 0

0 f(R)
R

0

0 0 λz

 (2.7)

Since the cylinder is assumed to be incompressible,

detF = 1 (2.8)

λz ×
f(R)

R
× df(R)

dR
= 1 (2.9)

The above differential equation gives,

f(R) =

√
R2 + 2cλz

λz
, (2.10)

The function f(R) contains one constant of integration, c. Traditionally this

constant is evaluated by using information from the geometry in reference and current

configurations (e.g. R = A, λz = 1, r = a, ⇒ c = a2−A2

2
). Following this, one

would solve the equilibrium equations to obtain the pressure – radius relations. We

will depart from this approach, and retain this constant of integration c. We will

instead use the principle of minimum potential energy and obtain the pressure vs.

c relation. Such a relation, combined with equation (2.10) leads to a constitutive

relation between the applied pressure p and the internal radius ri (i.e. f(A) ).

Remark. Note that c is a constant only for a particular deformation. In other words,

if the applied boundary conditions are changed, then the corresponding value of c

will also change.

The principal stretches for this deformation 2.5 are given by
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λ1 =
df(R)

dR
=

R

λz

√
2c+ R2

λz

(2.11a)

λ2 =
f(R)

R
=

√
2c+ R2

λz

R
(2.11b)

λ3 = λz (2.11c)

and the invariants IC, IIC, IIIC of the right Cauchy-Green stretch tensor are given

as

IC = λ21 + λ22 + λ23 = λ2z +
R2

λz (R2 + 2cλz)
+
R2 + 2cλz
R2λz

(2.12a)

IIC = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1 =

1

λ2z
+

R2λz
R2 + 2cλz

+
λz (R

2 + 2cλz)

R2
(2.12b)

IIIC = λ21λ
2
2λ

2
3 = 1 (2.12c)

The principle of minimum potential energy states that admissible deformations

are those that render the potential energy functional to be a minimum.

For the problem under consideration, the potential energy ψ is,

ψ =

∫
Ω0

W dV − p∆V (2.13)

where W is the strain energy , P is the pressure applied to the surface R = A of

the cylinder and ∆V is the change in volume enclosed by this surface.

Rewriting equation (2.13),
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ψ =

L∫
0

2π∫
0

B∫
A

W R dR dΘdZ − p× π(f(A)2 − A2)L . (2.14)

Since the strain energy is typically a function of either the invariants of C, (W =

Ŵ (IC, IIC, IIIC)), or the principal stretches (W = W̃ (λ1, λ2, λ3)), and from equations

(2.11) and (2.12) it can be see that the invariants and stretches are independent of

Θ and Z, the integrand is a function of R and c only. Therefore the equation (2.14)

simplifies as

ψ =

L∫
0

2π∫
0

B∫
A

W R dR dΘdZ − p× π(
A2 + 2cλz

λz
− A2)L

= 2πL

B∫
A

W R dR− p× π(
A2(1− λz) + 2cλz

λz
)L

Given that the experiments were all conducted at a constant axial stretch (λz =

1), the only variable in the above equation is c. Therefore, since the minimum of the

potential energy is attained when the gradient is zero, i.e.,

dψ

dc
= 0 ⇒ 2πL

B∫
A

dW

dc
R dR− 2pπL = 0

p =

B∫
A

dW

dc
R dR (2.15)

Equation (2.15) is the constitutive equation that relates the pressure p to the

constant of integration c . The relation between the pressure and the (current)

internal radius is sought since the data is also in this format. Since the relation

between c and the internal radius can be easily obtained from equation (2.10), the
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constitutive relation can be rewritten when required.

The specific form of equation (2.15) depends on the choice of the strain energy

function. In the following section, three different strain energies will be used to

get the corresponding constitutive equations. These are the power-law neo-Hookean

model, a Criscione-type model and the Ogden model.

2.3.3 Forms of constitutive relations for specific strain energies

For each of the models presented, the form of equation (2.15) is presented below.

To compute the pressure p, we will use the internal radius to obtain the value of c,

from (2.10) (with λz = 1),

c =
r2i − A2

2
(2.16)

and the for each value of c thus computed, we can compute the pressure from

each of the models.

2.3.3.1 Power-law neo-Hookean model

The strain energy density for the incompressible power-law neo-Hookean model

(from [57] with b = 1 ) is given by

W =
µ

2

{[
1 +

1

n
(IC − 3)

]n
− 1

}
, (2.17)

where µ > 0 is the shear modulus and n is a positive number. Note that when n = 1,

the strain energy reduces to that of neo-Hookean model. The constitutive relation

from equation (2.15) for this strain energy is

p =

B∫
A

4µcn (c+R2)
(
1 + 4c2

2cnR2+nR4

)n
(2c+R2) (4c2 + nR2 (2c+R2))

R dR (2.18)
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The model parameters for this strain energy are µ and n.

2.3.3.2 Ogden model

The strain energy density for the incompressible Ogden model is chosen as

W =
2µ

α2

(
λα1 + λα2 + λα3 +

1

λα1
+

1

λα2
+

1

λα3
− 6

)
(2.19)

where µ and α are material constants. The constitutive relation using this strain

energy is ,

p =

B∫
A

−

(
2µ
[(

R√
2c+R2

)α
−
(√

2c+R2

R

)α]
(2c+R2)α

−
2µ

[(√
2c+R2

R

)−α

−
(

R√
2c+R2

)−α
]

(2c+R2)α

)
R dR (2.20)

2.3.3.3 Criscione-type model with logarithmic strain attributes

The strain energy W (γ1, γ2, γ3, γ4, γ5, γ6) is a function of the 6 strain attributes

suggested by Criscione [58] and ,

γ1 = log J γ2 = (3/2) log λ3 γ3 = 2 log λ2 + log λ3

γ4 = φRZ γ5 = φΘZ γ4 = φΘR

where, J = det F , and φRZ , φΘZ , φΘR are the shear strains in the planes denoted

by the corresponding subscripts.

For the problem at hand, γ3 is the only nonzero attribute and so, the chosen form
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of W is

W (γ1, γ2, γ3, γ4, γ5, γ6) = Ŵ (γ3) = a cosh(bγ3) (2.21)

The pressure, from (2.15) is therefore,

p =

B∫
A

2ab sinh
[
2b log

[√
2c+R2

R

]]
2c+R2

R dR (2.22)

The model parameters in this model are a and b.

With the pressure p expressed as a function of the model parameters, the conven-

tional approach to ‘fit’ the model to data would be to solve a non-linear least squares

problem. We will depart from this approach and seek probability distribution for

the reasons explained in section (2.1).

2.4 Probabilistic framework – Bayesian inference

Bayesian inference is the method of using the Bayes’ rule to update the state

of information using observations. The state of information before the observations

were made is known as the prior and the updated state of information is known as

the posterior. The following notation is used in the remainder of the section: let pexp

be the vector of measured pressure values corresponding to the vector of internal

radius values ri. Let pmod(θ) be the vector of model predictions corresponding to

ri as a function of the model parameters θ. We are interested in computing the

probability distribution P (θ | pexp), i.e. the probability distribution on the model

parameters θ given the data pexp.

2.4.1 Probability distribution of model parameters

As mentioned in the previous section, the classification problem requires the

computation of the probability distribution of the model parameters for each of the
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classes. As mentioned in section 2.2 the data is reported as pressure, pexp vs internal

radius ri. The probability distribution of the parameters θ , given the observations

pexp is computed using Bayes’ rule:

P (θ | pexp) =
P (pexp | θ)P (θ)

P (pexp)
(2.23)

Let the model predictions be pmod(θ), where θ is the vector of parameters. Since

the model predictions is a function of the parameter vector θ, equation (2.23) is

rewritten as,

P (θ | pexp) =
P (pexp | pmod(θ))P (θ)

P (pexp)

where

P (pexp | pmod(θ)) =
1

Z
exp

(
− (pmod(θ)− pexp)

2

σ2

− β

σ2

[
dpmod(θ)

dr
− pexp(i+ 1)− pexp(i− 1)

r(i+ 1)− r(i− 1)

]2)
(2.24)

where Z is the appropriate normalizing factor. The exact value of this normalizing

factor is not explicitly computed since the algorithms used in this work use only the

ratio of likelihoods. The probability in equation (2.24) is from the assumption on

the form of the likelihood function in equation (2.28).

The prior probability distribution for the parameters P (θ) may be chosen ac-

cording to any available prior information on the value of the parameters. If there

is no distinguishing prior information, then a non-informative prior may be chosen

so as to not bias the inference process. For the work presented in this section, a
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non-informative prior is assumed.

2.4.2 Likelihood function and its interpretation

In equation (2.23), P (pexp | θ) is called the likelihood function. An alternate

interpretation of the inference presented can be motivated through the variational

free energy formulation. The variational free energy is central to the set of techniques

known as the variational Bayesian inference. We will show here how the variational

free energy formulation is related to the Bayesian inference [59].

Let z be the data and y(θ) be the model predictions dependent on the parameters

θ. Let P (θ) be the prior probability distribution on the model parameters and the

P (z | θ) be the likelihood function (which is related to the the model y(θ)). The

variational Bayesian problem is stated as the following optimization problem,

max
Q(θ)

EQ(θ) [logP (z | θ)]−DKL (Q(θ)∥P (θ)) (2.25a)

such that

∫
Q(θ)dθ = 1 (2.25b)

In words, the above maximization problem seeks that probability distribution

Q(θ) that simultaneously maximizes the likelihood while ensuring that the “distance”

between the prior distribution and Q(θ) is minimum.

Rewriting equation (2.25),

max
Q(θ)

EQ(θ) [logP (z | θ)]−DKL (Q(θ)∥P (θ))− λ

(∫
Q(θ)dθ − 1

)
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max
Q(θ)

I[Q(θ)] :=
∫
Q(θ) logP (z | θ) dθ

−
∫
Q(θ) log

Q(θ)

P (θ)
dθ − λ

(∫
Q(θ) dθ − 1

)
(2.26)

The problem can be solved by setting the variation of the objective with respect

to Q(θ) to zero. This procedure leads to the corresponding Euler-Lagrange equation,

dI
dQ(θ)

= 0

logP (z | θ)− logQ(θ)− 1 + logP (θ)− λ = 0

log (P (z | θ)P (θ)) = log(eλ+1Q(θ))

Q(θ) ∝ P (z | θ)P (θ) (2.27)

where, eλ+1 is the normalizing factor for the probability distribution Q(θ). Equa-

tion (2.27) is essentially the statement of the Bayes theorem sans the normalization.

This implies that the variational problem equation (2.25) is equivalent to computing

the posterior distribution. Indeed, the variational Bayesian methods use this varia-

tional free energy to compute approximate posterior distributions, especially in the

case of analytically intractable integrals [59].

As mentioned earlier, the posterior arises as the distribution that is a balance of

maximizing the average log-likelihood function and minimizing the KL divergence

between the prior and this distribution. In other words, since the likelihood function

relates the data to the model and the prior distribution encodes prior beliefs/infor-

mation, the variational problem seeks to find a balance between how much the data

influences our updated belief (i.e. posterior distribution) while also accounting for

any pre-existing belief. This interpretation of influence for the likelihood function
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allows for choices of the likelihood function to be motivated on a physics basis, rather

than a the absolute error between the model predictions and the data. In particu-

lar, for the problem at hand, for the pressure vs. internal radius data, two kinds of

“distances” will be used to define the log likelihood function.

Let pmod(θ) be the model prediction for parameter vector θ, then the absolute er-

ror between the data and the model is given be pmod(θ)−pexp. The error between the

tangent stiffnesses in the model and the data is given by dpmod(θ)
dr

− pexp(i+1)−pexp(i−1)

r(i+1)−r(i−1)

where pexp(i) refers to the ith data point. The likelihood function proposed is given

as

L(θ;pexp) = exp

(
−(pmod(θ)− pexp)

2

σ2

− β

σ2

(
dpmod(θ)

dr
− pexp(i+ 1)− pexp(i− 1)

r(i+ 1)− r(i− 1)

)2
)
, (2.28)

where 1
σ2 is the precision associated with the errors and β is the factor the controls

the precision of the error in slope relative to the absolute error. The precision is

inversely related to the tolerance in difference between model and data, i.e. lower

tolerance for errors ⇒ higher precision.

This likelihood measure includes the slope error in addition to absolute error,since

the slope of the pressure - radius plot is directly related to the tangential stiffness of

the artery. Clinically, the tangential stiffness of the artery is inferred from the pulse

wave velocity. The pulse wave velocity is defined as the speed of a pulse in an arterial

segment, and is thus directly related to the stiffness of the artery. It is known that

this arterial stiffness is pressure-dependent [60, 61] i.e. the arterial stiffness is the

local tangential stiffness. Therefore the slope is a quantity of interest, and errors in
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slope will be penalized in addition to the errors in the values of the pressure.

2.4.3 Posterior distributions – Markov chain Monte Carlo sampling

The denominator of equation (2.23) is known as the probability of the evidence,

and is given by

P (pexp) =

∫
θ∈Θ

P (pexp | θ)P (θ) dθ (2.29)

Since this integral is typically very hard to compute, we will use a Monte Carlo

algorithm to solve the inference problem, without having to explicitly compute the

above integral. The algorithm used is known as the Metropolis–Hastings algorithm

[53, 54, 55]which is used to compute the posterior distribution P (θ | pexp).

2.5 Results

The probability distribution of the model parameters are presented for a subset

of the data that is shown in figure 2.1. This choice is in order to demonstrate an

application of the probability distributions to a classification problem. Towards this,

the samples are grouped into two classes - samples 1,2 and 3 into class C1 and

samples 4 and 5 into class C2. For each of the classes, the data pexp is chosen as

two of the three experiments per sample. Therefore, for class C1, pexp is the set

of six experiments (shown in figure 2.2 (a)) and for class C2, pexp is the set of four

experiments (shown in figure 2.2(b)). The probability distribution for the parameters

for the two classes corresponding to each of the strain energy functions from section

(2.3.3) are shown in figure 2.3.

A cursory inspection of the probability distributions show that the regions of

the parameter space with high probability are not the same for the two classes.

Qualitatively, this observation shows that the two classes that we considered are
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‘different’. Indeed, a quantitative measure of this difference, as mentioned earlier,

could be obtained by computing a distance such as the K-L divergence, between the

probability distributions.

Another noteworthy feature in the model parameter probability distributions in

figure 2.3 is that, for the Ogden model and the Criscione-type model, the probability

distributions are bimodal. For the Ogden model, this is due to the fact that in

equation 2.19, the strain energy is symmetric with respect to the sign of the exponent

parameter α. It can be seen that this symmetry is reflected in the two modes in each

of the contour plots in figure 2.3 (c) and (d). Similarly, for the Criscione-type model,

the modes are due to the hyperbolic cosine function in the strain energy, since cosh

is an even function. This is reflected in the symmetry in parameter b in figure 2.3

(e) and (f).
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Figure 2.2: The experimental data shown as (a) class C1 and class (b) class C2.
These two datasets are used to compute the probability distributions shown in figure
2.3.
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(c) Samples 1,2,3 – Ogden strain energy
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(d) Samples 4,5 – Ogden strain energy

Figure 2.3: The probability distributions of the model parameters of the three strain
energies using two out of three experiments for each class (see section 2.5) as data
for each are shown.
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(b) Samples 4,5 – Criscione-type strain energy

Figure 2.3: Continued

2.6 Using model parameter distributions for classification

An interesting application of the probability distributions for the model parame-

ters is for classification problems. The techniques used for classification are typically

of two types: deterministic or probabilistic. Deterministic algorithms describe hard

boundaries between groups of observations, thus dividing the entire set of observa-

tions into clearly structured groups. Examples of such techniques are hypothesis

testing, k -means clustering and computing separating hyperplanes using support

vector machines. On the other hand, probabilistic algorithms relax such hard bound-

aries and instead assign the probability that a particular observation belonging to a

certain class. Probabilistic techniques thus utilize a “fuzzy” classification approach.

Examples of probabilistic algorithms for classification include logistic regression [62]

and neural networks [63]. Probabilistic classification allows for naturally incorpo-

rating any uncertainty thus allowing for making decision only if sufficiently confi-
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dent. This feature is especially critical in medical applications and thus probabilistic

techniques have been the favored approach for applications in medical diagnosis

[64, 65, 66, 67, 68].

The Bayesian framework naturally allows for assigning probabilities to each of

the classes considered using the probability distributions computed earlier. Classi-

fying the data not used as part of pexp into classes C1 and C2 (see figure 2.2) is

demonstrated as an example of the approach.

2.6.1 Class membership probabilities

Let classes C1, . . . , Cn be classes into which a newly obtained data set pnew is to be

classified. The classes Ci are each associated with a probability distribution for the

model parameter θ, P (θ | Ci). The probability distributions P (θ | Ci) are obtained

through a Bayesian inference procedure on the training data pexp (see section 2.4.1).

For the classification problem, given a newly obtained data set pnew, the proba-

bility that it belongs to a class Ci, P (Ci | pnew) can be computed using the Bayes’

rule as,

P (Ci | pnew) =
P (pnew | Ci)P (Ci)

P (pnew)
(2.30)

In equation 2.30, the probability on the left hand side P (Ci | pnew) is the posterior

probability, P (pnew | Ci) is called the likelihood function and P (Ci) is the prior

probability.

The likelihood, P (pnew | i) is also known as the marginal likelihood due to the

marginalization of P (pnew | i,θ) over the parameter space Θ (i.e.)
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P (pnew | Ci) =

∫
Θ

P (pnew|θ, Ci)P (θ | Ci) dθ

where, P (pnew|θ, Ci) is the likelihood associated with observing the data pnew

given that the model parameters are θ (see section 2.4.2 for details) and P (θ | Ci)

is the probability distribution on the parameter θ associated with the class Ci.

Equation 2.30 now becomes,

P (Ci | pnew) =

∫
Θ
P (pnew|θ, Ci)P (θ | Ci) dθ P (Ci)

P (pnew)
(2.31)

The results in figure 2.5 show the results of this classification applied to the data

set shown in figure 2.4. The bar plot for each color represents the probabilities

P (C1 | pnew) and P (C2 | pnew), and each color represents the data set that is used

as pnew from 2.4.
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Figure 2.4: The data, pnew, used for classification (see section 2.6.1). Each of the
classes C1 and C2 experiments plotted here are assigned a probability (see figure 2.5).
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(c) Criscione-type model

Figure 2.5: The class probabilities for the data set pnew and classified between class
C1 (class of samples 1,2,3) and C2(class of samples 4,5). The row headings indicate
the source of the data pnew, although this information is not used in the classification
procedure (section 2.6.1). Each of the figures correspond to the choice of model
(strain energy functions) used in computing the marginal likelihood.
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3. INHOMOGENEITY DETECTION IN CANTILEVER BEAMS

3.1 Introduction

In section 2, we presented a Bayesian approach to obtaining model parameter

probability distributions as a means to characterize the material properties from

arterial data. We showed that the probability distributions thus obtained may be

used towards diagnostics and an example classifying (e.g. “healthy” vs. “diseased”)

newly obtained data was discussed in section 2.6.

On the other hand, if we are interested in performing diagnostics to identify dis-

eased regions of a tissue sample, this may be addressed as an inhomogeneity detection

problem. The presence of lower stiffness regions (in the case of aneurysms [21]) or

higher stiffer regions (in the case of atherosclerotic plaques [27]) in arteries is well

studied and thus serves as a motivation to perform such diagnostics. Since section 2

presents a probabilistic method to characterize the constitutive model’s parameters

from the data, characterizing the inhomogeneity can be performed using the model

parameter probability distributions for different classes (e.g. healthy and diseased

tissues). In this section, we show that this inhomogeneity detection problem can be

solved as a parameter identification problem, by considering the model parameters

for each of the regions as parameters of a structural mechanics problem. In other

words, the two “stiffnesses” of the healthy and diseased regions need to be identi-

fied to detect the presence of inhomogeneities. We use the same approach presented

in section 2 to solve this parameter identification problem. Since we do not have

data from atherosclerotic arteries, we will present a simple non-trivial example to

illustrate the approach.

We choose as an example, the large deformation bending of a cantilever beam

41



modeled as an elastica (see section 3.2) with an inclusion at a particular location to

demonstrate the Bayesian inference approach introduced in section 1. The parame-

ters in this problem are the bending stiffnesses of the inclusion and the material in

the rest of the beam. In the approach presented here, we do not solve the inverse

problem to obtain these parameters, but instead compute the likelihood of differ-

ent values of parameters to explain the data. As in section 2, we will use Bayesian

inference to obtain the joint probability distribution of these parameters.

This cantilever beam example is a simple, non-trivial example of parameter esti-

mation for a nonlinear problem. Since the boundary value problem for the cantilever

beam is straightforward to solve, it allows us to focus on the parameter identifi-

cation approach rather than the solution of the nonlinear problem. Moreover, the

approach presented here is modular in nature (i.e. independent of the solution of

the nonlinear problem) and could be adapted for a variety of problems (provided a

means can be found for solving the nonlinear boundary value problem efficiently),

especially for materials which show nonlinear behavior and where the detection of

such inhomogeneities are critical to characterizing the system.

3.2 Problem statement

Consider a cantilever beam AB fixed at end A and free at B, with an end load

Fy at B. The beam is assumed to be an inextensible elastica made of two different

materials, with bending stiffness k1 and k2. The beam is made of three sections, AC

and DB with stiffness k1 and CD with stiffness k2.
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Figure 3.1: Cantilever beam AB considered for problem presented in section 3.2.
Notice that the inhomogeneity in the beam is represented as a region of length a
with stiffness k2 at a distance l from A, while the remaining sections of the beam
have a stiffness k1. The dotted line represents the deformed shape, showing the
arc-length coordinate s and Y-displacements y(s).

The beam deforms to the curve AB′ under the action of the end load. Let s be

the arc length coordinate, y(s) be the Y-coordinate of a point on the curve AB′ and

φ(s) be the angle made by the tangent to the current shape of the curve as shown in

figure 3.1. If the stiffnesses k1, k2 are known, the shape y(s) is computed by solving

the following differential equation:

d

ds

(
k(s)dφ

ds

)
+ Fy cosφ = 0; (3.1a)

φ(0) = 0, φ′(L) = 0 (3.1b)

where k(s) =

 k1 if 0 < s < l and l + a < s < L,

k2 if l ≤ s ≤ l + a.
(3.1c)

and
dy

ds
= sinφ (3.1d)

For the inference approach presented in this section, this differential equation
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needs to be solved in order to compute the likelihood value, as detailed in section

3.3.

Let us assume that ỹi, are the measured Y-deflections of the beam at uniformly

distributed finite number of points si, i = 1, . . . , n, along the length of the beam. Let

the actual Y-deflections at these points, y(si) be represented by yi.

The following assumption regarding ỹi and yi is made:

• The discrepancy between measurements, ỹi, and the computed deflections, yi, is

attributed to a measurement error εi. We assume that the error εi are random

variables that are independent and identically distributed according to a normal

distribution1 , i.e.

ỹi = yi + εi

εi ∼ N (0, σ2)

In order to now find the stiffnesses, we will treat k1, k2 as random variables, K1, K2

and compute the probability distribution of these random variables, given that the

measurements ỹi were observed (i.e.) PK1,K2(k1, k2 | ỹ).

Notice that this task is significantly different from querying those values of k1, k2,

that best “fit” the data. The best fit parameters are those that are obtained by

typically solving the following minimization problem,

(k̂1, k̂2) = arg min
k1,k2

∥ỹ − y(k1, k2)∥ (3.2)

1Since the sources of error are assumed to be external factors such as measuring instruments,
independent of the beam itself, such an assumption is justified by the central limit theorem. More-
over, if the sources of error can be quantified more accurately, the probability distribution could be
chosen accordingly without any change in the approach.
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where the vectors ỹ and y(k1, k2) are the measured Y-displacements and Y-displacements

obtained from the solution of equation (3.1). Such a technique (or a variant thereof)

is common in parameter estimation problems. When the model, y(k1, k2) is nonlin-

ear, the minimization problem (3.2) is not guaranteed to have unique minimum, and

the estimates thus obtained (as local minima) have issues of robustness.

Figure 3.2: Comparison of shapes of two beams : a stiff beam with a compliant
inclusion, and a compliant beam with stiff inclusion. Note that the beams show very
similar deflections for widely different values of the parameters. The synthetic data
was generated with (k1, k2) = (1.4, 1.8).

Consider, for example, the computed deflections of the beam for two significantly

different sets of stiffnesses (k1, k2) as shown in figure 3.2. Without any prior knowl-

edge, both the stiffnesses seem a likely match to the data (which was generated with

(k1, k2) = (1.4, 1.8)). This likelihood is the measure represented by the probability

distribution. It is to be noted that such information is impossible to obtain from a
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simple curve fit, and hence large errors may be committed in the process of finding

single “best fit” parameters for such problems.

In adopting a probabilistic approach, we circumvent such issues of uniqueness

by assigning a probability to values of the parameters. The reformulation of the

inverse problem as a probabilistic Bayesian inference problem, and the details of the

algorithm used to numerically compute this probability distribution is given in the

following section.

3.3 Inference problem

The goal of the inference problem is to obtain the probability distribution of the

parameters given the observations, i. e. PK1,K2(k1, k2 | ỹ), which gives the probability

that random variables K1, K2 take the values k1, k2 given the observations ỹ. In this

section, we will state this inference problem in a Bayesian inference framework as

well as explain the Metropolis–Hastings algorithm.

3.3.1 Bayesian inference

Bayesian inference is a method of statistical inference that uses the Bayes rule

to compute the probability of a hypothesis in the presence of evidence. For the

cantilever problem, the Bayes rule can be written as

P (k1, k2 | ỹ) =
P (ỹ | k1, k2)P (k1, k2)∫

k1,k2

P (ỹ | k1, k2)P (k1, k2)
(3.3)

The left hand side of eqn. (3.3) is the probability distribution that we seek and

is known as the posterior distribution. The denominator on the right hand side is a

normalizing constant and is independent of the parameters K1, K2. The numerator

on the right hand side is the product of the likelihood function, P (ỹ | K1, K2) and the

prior distribution P (K1, K2). The likelihood function is the probability of obtaining
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the observations ỹ, for a given set of values of k1, k2. We know from equation (3.1)

that given a set of values k1, k2, we can obtain the shape of the beam y(s). Therefore,

the likelihood function is the probability of observing the observations ỹ given that

the actual shape is y(s). In other words, since the measurements were made at

points s1, . . . , sn along the beam, the likelihood function is P (ỹ | y) = P (ỹ1, . . . , ỹn |

y1, . . . , yn).

Since we have assumed that any difference between the observations and the

model is only due to an additive noise, the likelihood function is thus directly related

to the errors in measurement, εi, mentioned in the assumptions under section 3.2.

Indeed,

P (ỹ | y) =
∏
i

P (ỹi | yi) =
∏
i

P (εi) (3.4)

where, P (εi) =
1√
2πσ

exp

(
−(ỹi − yi)

2

σ2

)
. (3.5)

The solution of the boundary value problem (3.1), is required to compute yi,

which in turn is used to compute P (εi) and hence the likelihood, P (ỹ | y).

3.3.2 Prior probabilities and the maximum entropy principle

In equation (3.3) P (k1, k2) is the prior probability density function and this is

the probability that encodes our beliefs about the values of the parameters as a

distribution, before the experiment was conducted. For example, if we choose to

incorporate no prior information or very minimal information such as the fact that

the two stiffnesses are in a certain domain, we would choose the prior probability

density to be a uniform distribution in this domain. On the other hand, if there is

some prior information that is not just the domain of the parameters, but indeed that
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which relates the parameters, it is advantageous to incorporate it into our inference

process.

In order to emphasize the role of prior information and their significance, we

reproduce an illustrative example from L. J. Savage (from one of his communications

to Jerome Cornfield, a biostatistician) [69, 70]:

... Imagine the following three experiments: 1. Fisher’s lady has

correctly dealt with ten pairs of cups of tea. 2. The professor of 18th

century musicology at the University of Vienna has correctly decided for

each of 10 pairs of pages of music which was written by Mozart and

which by Hayden. 3. A drunk in a parlor car has succeeded 10 times in

correctly calling a coin secretly tossed by you. These three experiments

all have the same mathematical structure and the same high significance

level. Can there, however, be any question that your reaction to them

is justifiably different? My own would be: 1. I am still skeptical of the

lady’s claim, but her success in her experiment has definitely opened my

mind. 2. I would originally have expected the musicologist to make this

discrimination; I would even expect some success in making it myself; he,

an expert in the matter, felt sure that he could make it. His success in 10

correct trials confirms my original judgment and leaves no practical doubt

that he would be correct in substantially more than half of future trials,

though I would not be surprised if he made occasional errors. 3. My

original belief in clairvoyance was academic, if not utterly nonexistent.

I do not even believe that the trial was conducted in such a way that

trickery is a plausible hypothesis, and feel sure that the drunk simply

had an unusual run of luck.2 ...
2This paragraph has been reproduced from [70] section 2.4
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In summary, it is evident from Savage’s explanation, that any prior belief affects the

inference made from the observations, and it would be a more accurate inference

problem to incorporate such prior beliefs.

In cases where the prior information about the parameters can be expressed in

the form of a distribution, such as, ‘k1, k2 are each distributed according to an ex-

ponential distribution’, then one could obtain closed-form solutions for the posterior

distribution. In typical engineering scenarios, information such as the expected val-

ues of the parameters or their variances is more common. Jaynes [71, 72, 73] laid

out a systematic way of incorporating such information into the Bayesian inference

process through the Maximum Entropy principle.

The details of computing a probability distribution through the maximum entropy

principle (i.e. the MaxEnt distribution) are given in appendix A.

For the cantilever problem at hand, we will compare two prior probability distri-

butions:

1. The prior distribution is a uniform distribution over a domain Ωk, (i.e)

P (k1, k2) =


c, k1, k2 ∈ Ωk

0 otherwise

(3.6)

where c is a constant, such that

∫∫
Ωk

P (k1, k2) dk1dk2 = 1,

2. The prior probability is a MaxEnt distribution, where we assume that the

expected value and variance of k1 is known, but no prior information on k2

is available. This assumption essentially means that we are trying to identify
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the stiffness of an inclusion of unknown material, in a beam of a some known

material. In this case, k1 and k2 are independent and the MaxEnt distribution

is only on k1 since we assume k2 has a uniform distribution. We further assume

that both k1 and k2 lie in an interval [0, k̂] . Therefore,

P (k1, k2) = P (k1)P (k2)

where,

P (k1) = argmax
P (k1)

∫
H(k1) dk1 (3.7)

subject to

k̂∫
0

k1 P (k1) dk1 = E[K1] = ⟨k1⟩, (3.8)

k̂∫
0

k21 P (k1) dk1 − ⟨k1⟩2 = Var[K1] (3.9)

and

k̂∫
0

P (k1) dk1 = 1

and,

P (k2) =


1

k̂
0 ≤ k2 ≤ k̂

0 otherwise

(3.10)

3.3.3 Markov chain Monte Carlo method – Metropolis–Hastings sampling

We now know the prior probability distribution and the likelihood function, but

the computation of the integral in the denominator of (3.3), is computationally ex-

pensive and analytically intractable. To circumvent this we will use the Metropolis–
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Hastings algorithm to efficiently sample the parameter space and build a population

from the posterior distribution.

Rewriting (3.3), the posterior distribution P (k1, k2 | ỹ) is

P (k1, k2 | ỹ) =
P (ỹ | y(k1, k2))P (k1, k2)∫

k1,k2

P (ỹ | y(k1, k2))P (k1, k2)
, (3.11)

where the prior probability distribution is P (k1, k2) and the likelihood term

P (ỹ | y(k1, k2)) is computed by first solving the differential equation (3.1) and then

using this in equation (3.5). We will use a numerical sampling method known as

Metropolis–Hastings sampling [54] to populate a sample such that it has the distri-

bution P (k1, k2 | ỹ). This method is a very well-established technique and popularly

used in applications of Bayesian inference.

Metropolis–Hastings method belongs to a larger class of methods known as Markov

Chain Monte Carlo methods, which construct samples by constructing a Markov

Chain whose stationary distribution is the target distribution that is sought. The

criterion to accept a ‘candidate’ θcand = [k1, k2]cand, given that the previous sample

(i.e. ith sample) is θi = [k1, k2]i, is defined as,

α(θi | θcand) = min

(
1,
P (θ = θcand | ỹ)q(θi | θcand)
P (θ = θi | ỹ)q(θcand | θi)

)
(3.12)

Notice that this iterative sampling requires evaluating the value of the target

distribution. Using Bayes rule from equation (3.3), we can rewrite the acceptance

criterion as,
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α(θi | θcand) = min

(
1,
P (ỹ | θ = θcand)P (θ = θcand)q(θi | θcand)
P (ỹ | θ = θi)P (θ = θi)q(θcand | θi)

)
(3.13)

where q(θcand | θi), known as the proposal distribution, is the probability of

choosing θcand as the candidate sample when the current iterate is θi. Notice now that

the integral in the denominator of the Bayes rule does not feature in this acceptance

criterion. This avoids expensive computations and is thus an efficient way to build

the posterior probability distribution.

It is common to choose the proposal distribution to be symmetric [74], i.e. q(θi |

θcand) = q(θcand | θi). The acceptance criterion now reduces to

α(θi | θcand) = min

(
1,
P (ỹ | θ = θcand)P (θ = θcand)

P (ỹ | θ = θi)P (θ = θi)

)
(3.14)

Note here that for every candidate, the boundary value problem in equation (3.1)

needs to be solved to compute the likelihood value, P (ỹ | θ = θcand). The pseudo-

code for this sampling technique is shown as Algorithm 1

The samples thus obtained are used to construct histograms and using these

histograms as empirical probability distributions, we can compute the expectations

or the probabilities associated with hypotheses for diagnostics. The following sec-

tions detail the particular aspects of the simulations performed to demonstrate the

inference technique hitherto presented.

3.4 Results and discussion

As detailed in section 3.2, the cantilever is assumed to be a nonlinear elastica

and the boundary value problem in equation 3.1 is solved by a numerical shooting

method to obtain the deflections of the beam. This problem is chosen as an illustra-
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Algorithm 1 Metropolis–Hastings algorithm

1: Initialize θ0 = 1; set i = 0
2: while i < MaxIter do
3: Sample a point θcand according to q(· | θi)
4: Solve boundary value problem (3.1) with θcand as the stiffnesses and compute

yi
5: Compute likelihood values P (ỹ | θ = θcand) , P (ỹ | θ = θi) (eqns. (3.4),(3.5))
6: Compute priors P (θ = θcand) , P (θ = θi) (eqns (3.6) or (3.8),(3.10))
7: Compute value of acceptance criterion α(θi | θcand) (eqn (3.14))
8: Sample a uniform random variable u ∼ U(0, 1)
9: if u ≤ α(θi | θcand) then
10: θi+1 = θcand
11: else
12: θi+1 = θi
13: set i = i+ 1

tive example to show the use of Bayesian inference in order to build a probabilistic

representation of the stiffnesses for data and also address absolute criteria for diag-

nostics of the type detailed in section 3.1. The data for this problem is synthetically

generated by adding Gaussian noise to the solution of the differential equation for a

particular value of stiffnesses. This synthetic data is used in the Bayesian inference

procedure to obtain a joint probability distribution for the stiffnesses as explained in

section 3.3.

3.4.1 Simulation details

The inference procedure was carried out for a cantilever beam of length 1 unit

with an inhomogeneity of width 0.2 unit between 0.5 and 0.7 units. Two sets of

observations where the tip load on the beam is F ∗
y = 1 (non-dimensional, F ∗

y = FyL2

k
)

and F ∗
y = 2 are used for the inference process. The beam is discretized into 20

grid points and the “noisy” data ỹi was synthetically generated by adding a noise

εi ∼ N (0, σ2), to the solution of the differential equation with the stiffnesses set to
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k1 = 2.5 and k2 = 1. The inference procedure was carried out for two values of

the noise variance σ2 = 10−2 and σ2 = 10−4. Two sets of data points were used

to perform the inference procedure : (1) the measurements of Y-deflections along

the entire beam and (2) the measurements only at the free end of the beam. In the

computation of the prior probability distribution, the stiffnesses are assumed to be

within a square region Ωk = [0, k̂]× [0, k̂] where k̂ = 5.

The joint probability distribution of k1, k2 is compiled using the samples generated

through the Metropolis–Hastings algorithm. As an example of diagnostics, we will

use this joint probability density function to compute the probability P (k1
k2

> α|ỹi).

The criterion k1
k2

> α could be thought of as a diagnostics criterion for rejection/ac-

ceptance.
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Figure 3.3: The figure shows the the set of observations at a finite number of points
along the beam (in red circles) for different values of the error variance, σ2 and for
two experiments, one with applied tip load F ∗

y = 1 and the other with F ∗
y = 2 .
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Figure 3.3 shows the measurements from two sets of experiments for each error

variance value. The probability distributions that we will compute will use data

from either only one experiment, or both experiments, to observe the influence of

the number of experiments on the inference process. Further, we will assume two

cases, one where the dataset is the list of all deflections, and the other, with only the

tip deflections.

For each of the cases chosen, the uniform prior and the MaxEnt prior distributions

(with the constraints on k1 imposed as E[K1] = 2.5 and Var[K1] = 0.5) are used

to compute the posterior distribution. The empirical probability mass distributions

(histograms) are shown as contour maps below.

Figures 3.4 and 3.5 show the posterior distributions when only one of the two

datasets (the one corresponding to F ∗
y = 1) is used as the data for the inference

procedure. Figure 3.6 and 3.7 show the posterior distributions when both datasets

(F ∗
y = 1 and F ∗

y = 2) are used.

The key point to note is that the distributions shown in figures 3.4, 3.5, 3.6

and 3.7, do not have any similarity in features to a normal distribution or any

other conventional heavy-tailed distributions. This suggests that assumptions on the

distribution of the stiffnesses (normal distributions, for example) are not appropriate,

and thus inference using such assumptions will lead to incorrect results.

As we mentioned earlier, the posterior distributions obtained through the pro-

posed approach, allow us to circumvent any issues of uniqueness in parameter values

and rather assigns probabilities to the parameter values indicating relative likeli-

hood of explaining the data. As opposed to best-fit parameter estimates which do

not encode this information, a probability distribution assigns higher probabilities

to the stiffness values which show better fit to the data. For example, figure 3.8

shows the comparison of two samples, both chosen from a high probability region,
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Figure 3.8: Comparison of shapes with parameters having similar posterior proba-
bility values. The figure on the left shows a choice of two samples from the higher
probability region and one sample from the lower probability region, and the fig-
ure on the right shows the comparison of the deformed shapes of the corresponding
beams : pink and blue shapes are for the two samples from the higher probability
region and the black shape corresponds to the sample from the lower probability
region.

with a sample chosen from a low probability region. The deformed shapes for these

samples were computed using equation (3.1). Comparing the shapes with the data,

it can be seen that the match between the samples which have higher probabilities

assigned is much better than the low probability sample. More importantly, by as-

signing probabilities that correspond to the match with the data, we have obtained

a “full-field” solution over the parameter space as opposed to picking a single best

fit set of parameters.

Furthermore, even if a weak prior information is available on one of the materials

on the beam, it can be seen that the posterior distributions are centered around a

smaller region in the parameter space. This reiterates the point made by L. J. Savage

about prior information, and directly applies to such Bayesian inference problems.
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It is clear that the role of the prior knowledge is to assign higher probability in favor

of known information and cut out those portions of the posterior distribution (i.e.

the one obtained using a uniform prior), that do not support the prior knowledge.

In terms of the number of data points used, it can be seen that accurate measure-

ments of just the tip deflections from two experiments is comparable to having the

full field displacements from one experiment. This can be explained by the fact that

in general, tip deflects more than the root of the beam, and hence the measurements

closer to the root are not as critical as those near the tip.

Remark. At this point we would like to make a remark about the use of the Metropolis–

Hastings algorithm to sample the posterior as opposed to numerically evaluating the

value of the posterior (i.e. the numerator on the right hand side of equation (3.11))

and subsequently normalizing it. Such an approach is possible, if the regions of non-

zero probabilities are significantly large in the domain of interest. When the regions

are small (as for example, in figure 3.6 (b)) this approach fails even when the number

of grid points are comparable to the number of samples with the MH algorithm. As

an illustration of this issue, the posterior distributions (unnormalized) are shown in

figure 3.9. The corresponding distributions from using the sampling technique are

figures 3.6 (a) and (b).

In addition to making such inferences, the probability distributions obtained using

Bayesian inference could be used to test against diagnostic criteria, as discussed

earlier, such as k1
k2

> α. Such diagnostic criteria are commonplace in medicine,

for example, to diagnose the health of blood vessels. In particular, aneurysms and

atherosclerotic arteries are known to have a significantly different stiffness from that

of healthy arteries [21, 22, 27, 28]. We illustrate such a procedure using a diagnostic

criterion k1
k2

> α for α = 2, i.e. we seek to compute the probability that the inclusion
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(a) σ2 = 10−2 (b) σ2 = 10−4

Figure 3.9: The figure shows the unnormalized posterior distributions computed
numerically (i.e. without sampling). Compare (a) and (b) with figures 3.6(a) and
3.6(b). Notice that the region of non-zero probability is much smaller in figure
3.6(b) than figure 3.6(a), and while the sampling method samples this region, simple
numerical evaluation of the posterior on a grid is not able to represent this, as seen
in (b).

is half as stiff as the rest of the beam. The results are tabulated in table 3.1.

These results reiterate the observations made earlier, such as the benefit of using an

appropriate prior distribution (marked by the increased probability for the criterion)

and the fact that good quality (i.e. noise-free) tip deflection data contains as much

information as all the deflections combined.

The use of such a criterion, especially in the presence of good prior knowledge,

allows us to eliminate false positives, as can be seen from the tabulated results. It

is also important to note that while there are other methods to obtain probability

distributions for parameters such as the polynomial chaos expansion (PCE) [75], it

is possible only to obtain the mean and variance of the random variables involved.

The use of a probability distribution to compute the probability and test it against

this criterion is only a sample of the use of such distributions. We believe that this

perspective allows one to quantify uncertainty in a systematic way. As discussed

62



P
ri
or

σ
2

P
( k

1

k
2
>

2
|ỹ
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earlier the probability distribution of parameters paves for a new approach to diag-

nostics and allows one to incorporate not just the “best” fit values of parameters for

comparison but also the inherent uncertainty, be it through measurement errors or

otherwise, into the diagnostics process.
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4. SUMMARY

This dissertation presents an alternate approach to identifying model parameters

for data that shows large variations in response. It can be seen (figures 1.1 and 2.1)

that such variations are not only due to measurement errors but such variability

might well be a feature of the response. Given the uncertainty in the data and the

induced uncertainty in developing models, we proposed a probabilistic approach in

this work. We represent model parameters as probability distributions instead of

point estimates. We use a Bayesian inference procedure to obtain these probability

distributions

In this dissertation, we apply this approach to two example problems : detecting

the an inhomogeneity in a nonlinear cantilever beam and characterizing sheep aorta

using inflation data.

• The inhomogeneity detection problem is presented mainly as a simple non-

trivial example to demonstrate the core philosophy of this work. The proba-

bility distribution of the stiffnesses in the cantilever beam serves as more than

just a characterization of the system, providing insight into the effect of noise,

amount of data and the use of any available prior information. We use Jaynes’

[73] principle of maximum entropy to encode the prior information as a prior

probability distribution.It is important to note that incorporating such prior

information as constraints into the least squares problem is non-trivial.

• To characterize the inflation data from sheep aorta we use the Bayesian in-

ference approach to obtain the model parameter probability distributions for

a choice of three constitutive models. In the Bayesian inference procedure we

modify the likelihood factor by introducing a distance measure to compare the
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slope of data and model predictions in addition to the absolute error. For

nonlinear models, such a measure penalizes severe departure in slope, and fur-

thermore in the context of biological materials, this penalty has a physical

meaning since the slope of the force–displacement response is directly related

to the wave speed in the material. The probability distribution on the model

parameters are subsequently used to classify “new” data into predefined classes.

This procedure is also performed using Bayesian inference, thus evolving into

a consistent Bayesian approach to characterize and classify experimental data.

4.1 Directions for future research

The following research topics are possible directions to continue the work pre-

sented in this dissertation:

1. The literature lists several hyperelastic models developed for biological materi-

als, with particular reference to the anisotropy in observed response [19, 76, 77].

Moreover the modeling of biomaterials using finite element method is also pre-

sented in the literature [78, 79, 80]. Such models can be used in conjunction

with the approach presented, although an efficient implementation of complex

models (due to either FE or several model parameters) is required for use

within the proposed framework. Variational methods for solving the boundary

value problem such as the one presented in chapter 2, may reduce computa-

tional complexity significantly. In particular, if relevant geometry information

is available, semi-inverse solution techniques may be an approach that may be

used in conjunction with these models.

2. Variational methods may also be used in tandem with FE solutions. For ex-

ample, a general solution may be obtained as a weighted linear interpolation of

FE solutions computed for a sample of material properties. The weights of the
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interpolation may then be obtained as the solution of a variational problem.

For example, if the solutions of FE model for k sets of model parameters θi

are yi then the variational problem may be posed as the minimization of the

potential energy ψ(
∑

i βiyi). To interpolate between the FE solutions for a

particular set of model parameters θ̃, one may compute the minimum over the

space of βi to find the solution β̃iyi. Such an approach may combine the advan-

tages of obtaining complete descriptions using FE methods, while still using a

variational method over a significantly lower dimensional space to perform fast

computations.

3. Metropolis–Hastings algorithm is one of several algorithms in the class Markov

Chain Monte Carlo algorithms to sample the posterior distribution. Novel

techniques such as approximate variational Bayes [59], delayed rejection adap-

tive Metropolis [81] may allow for computing posterior distributions of a larger

number of model parameters.
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[23] N. Ganne-Carrié, M. Ziol, V. de Ledinghen, C. Douvin, P. Marcellin, L. Castera,

D. Dhumeaux, J.-C. Trinchet, and M. Beaugrand, “Accuracy of liver stiffness

70



measurement for the diagnosis of cirrhosis in patients with chronic liver dis-

eases,” Hepatology, vol. 44, no. 6, pp. 1511–1517, 2006.

[24] M. Charbit, E. Angelini, and S. Audiere, “Maximum likelihood estimation of

youngs modulus in transient elastography with unknown line-of-sight orien-

tation,” in 2012 9th IEEE International Symposium on Biomedical Imaging

(ISBI), pp. 1108–1111, May 2012.

[25] P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in

compression is correlated to histological diagnosis,” Technical Report, Harvard

Biorobotics Laboratory, 1999.

[26] D. O. Cosgrove, W. A. Berg, C. J. Dor, D. M. Skyba, J.-P. Henry, J. Gay,

C. Cohen-Bacrie, and B. S. Group, “Shear wave elastography for breast masses

is highly reproducible,” European Radiology, vol. 22, no. 5, pp. 1023–1032, 2012.

[27] N. M. v. Popele, D. E. Grobbee, M. L. Bots, R. Asmar, J. Topouchian, R. S.

Reneman, A. P. G. Hoeks, D. A. M. v. d. Kuip, A. Hofman, and J. C. M. Witte-

man, “Association between arterial stiffness and atherosclerosis the rotterdam

study,” Stroke, vol. 32, no. 2, pp. 454–460, 2001.

[28] T. Hirai, S. Sasayama, T. Kawasaki, and S. Yagi, “Stiffness of systemic arteries

in patients with myocardial infarction. a noninvasive method to predict severity

of coronary atherosclerosis,” Circulation, vol. 80, no. 1, pp. 78–86, 1989.

[29] D. A. Vorp, “Biomechanics of abdominal aortic aneurysm,” Journal of Biome-

chanics, vol. 40, no. 9, pp. 1887–1902, 2007.

[30] T. Weber, J. Auer, M. F. O’Rourke, E. Kvas, E. Lassnig, R. Berent, and B. Eber,

“Arterial stiffness, wave reflections, and the risk of coronary artery disease,”

Circulation, vol. 109, no. 2, pp. 184–189, 2004.

71



[31] G. Y. Lee and C. T. Lim, “Biomechanics approaches to studying human dis-

eases,” Trends in Biotechnology, vol. 25, no. 3, pp. 111–118, 2007.

[32] D. Rothschild, “Forecasting elections comparing prediction markets, polls, and

their biases,” Public Opinion Quarterly, vol. 73, no. 5, p. 895916, 2009.

[33] A. Gelman, N. Silver, and A. Edlin, “What is the probability your vote will

make a difference?,” Economic Inquiry, vol. 50, no. 2, pp. 321–326, 2012.

[34] T. Bollerslev, R. Y. Chou, and K. F. Kroner, “Arch modeling in finance: A

review of the theory and empirical evidence,” Journal of Econometrics, vol. 52,

no. 1–2, pp. 5–59, 1992.

[35] T. N. Krishnamurti, C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang,

C. E. Williford, S. Gadgil, and S. Surendran, “Improved weather and seasonal

climate forecasts from multimodel superensemble,” Science, vol. 285, no. 5433,

pp. 1548–1550, 1999.

[36] A. C. Lorenc, “Analysis methods for numerical weather prediction,” Quarterly

Journal of the Royal Meteorological Society, vol. 112, no. 474, pp. 1177–1194,

1986.

[37] Y. Bard, Nonlinear Parameter Estimation. New York: Academic Press, June

1973.

[38] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. New York:

Springer, third ed., Apr. 2005.

[39] P. Congdon, Bayesian Statistical Modelling. West Sussex: John Wiley & Sons,

Inc., 2 ed., Jan. 2007.

[40] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

72



[41] L. Mehrez, D. Moens, and D. Vandepitte, “Stochastic identification of compos-

ite material properties from limited experimental databases, Part I: Experimen-

tal database construction,” Mechanical Systems and Signal Processing, vol. 27,

pp. 471–483, Feb. 2012.

[42] L. Mehrez, A. Doostan, D. Moens, and D. Vandepitte, “Stochastic identifica-

tion of composite material properties from limited experimental databases, Part

II: Uncertainty modelling,” Mechanical Systems and Signal Processing, vol. 27,

pp. 484–498, Feb. 2012.

[43] E. Zhang, P. Feissel, and J. Antoni, “A comprehensive Bayesian approach for

model updating and quantification of modeling errors,” Probabilistic Engineer-

ing Mechanics, vol. 26, no. 4, pp. 550–560, 2011.

[44] J. Beck and L. Katafygiotis, “Updating models and their uncertainties. I:

Bayesian statistical framework,” Journal of Engineering Mechanics, vol. 124,

no. 4, pp. 455–461, 1998.

[45] L. Katafygiotis and J. Beck, “Updating models and their uncertainties. II: model

identifiability,” Journal of Engineering Mechanics, vol. 124, no. 4, pp. 463–467,

1998.

[46] C. Papadimitriou, L. Katafygiotis, and J. Beck, “Approximate analysis of re-

sponse variability of uncertain linear systems,” Probabilistic Engineering Me-

chanics, vol. 10, no. 4, pp. 251–264, 1995.

[47] C. Papadimitriou, J. Beck, and L. Katafygiotis, “Updating robust reliability

using structural test data,” Probabilistic Engineering Mechanics, vol. 16, no. 2,

pp. 103–113, 2001.

73



[48] G. Yan, “A Bayesian approach for damage localization in plate-like structures

using lamb waves,” Smart Materials and Structures, vol. 22, no. 3, p. 035012,

2013.

[49] J. H. Crews and R. C. Smith, “Quantification of parameter and model uncer-

tainty for shape memory alloy bending actuators,” Journal of Intelligent Mate-

rial Systems and Structures, p. 1045389X13490842, July 2013.

[50] J. H. Crews, R. C. Smith, K. M. Pender, J. C. Hannen, and G. D. Buck-

ner, “Data-driven techniques to estimate parameters in the homogenized energy

model for shape memory alloys,” Journal of Intelligent Material Systems and

Structures, vol. 23, no. 17, pp. 1897–1920, 2012.

[51] A. Cividini, G. Maier, and A. Nappi, “Parameter estimation of a static geotech-

nical model using a Bayes’ approach,” International Journal of Rock Mechanics

and Mining Sciences & Geomechanics Abstracts, vol. 20, no. 5, pp. 215–226,

1983.

[52] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis.

Chapman & Hall/CRC Texts in Statistical Science, Boca Raton: Chapman and

Hall/CRC, second ed., July 2003.

[53] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo

in Practice. Chapman & Hall/CRC Interdisciplinary Statistics, Boca Raton:

Chapman and Hall/CRC, first ed., Dec. 1995.

[54] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” Journal of Chem-

ical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

74



[55] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their

applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[56] R. W. Ogden, G. Saccomandi, and I. Sgura, “Fitting hyperelastic models to

experimental data,” Computational Mechanics, vol. 34, no. 6, pp. 484–502, 2004.

[57] K. R. Rajagopal and L. Tao, “On an inhomogeneous deformation of a generalized

neo-hookean material,” Journal of Elasticity, vol. 28, no. 2, pp. 165–184, 1992.

[58] J. C. Criscione, “A constitutive framework for tubular structures that enables a

semi-inverse solution to extension and inflation,” Journal of Elasticity, vol. 77,

no. 1, pp. 57–81, 2004.

[59] M. J. Beal, Variational Algorithms for Approximate Bayesian Inference. PhD

thesis, University College London, 2003.

[60] M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante,

“Clinical applications of arterial stiffness; definitions and reference values,”

American Journal of Hypertension, vol. 15, no. 5, pp. 426–444, 2002.

[61] R. G. Gosling and M. M. Budge, “Terminology for describing the elastic behavior

of arteries,” Hypertension, vol. 41, no. 6, pp. 1180–1182, 2003.

[62] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression.

Wiley Series in Probability and Statistics, Hoboken: John Wiley & Sons, Inc.,

third ed., Apr. 2013.

[63] G. Zhang, “Neural networks for classification: a survey,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 30,

no. 4, pp. 451–462, 2000.

[64] D. J. Croft and R. E. Machol, “Mathematical methods in medical diagnosis,”

Annals of Biomedical Engineering, vol. 2, no. 1, pp. 69–89, 1974.

75



[65] I. Kononenko, “Machine learning for medical diagnosis: history, state of the art

and perspective,” Artificial Intelligence in Medicine, vol. 23, no. 1, pp. 89–109,

2001.

[66] R. S. Ledley and L. B. Lusted, “Reasoning foundations of medical diagnosis sym-

bolic logic, probability, and value theory aid our understanding of how physicians

reason,” Science, vol. 130, no. 3366, pp. 9–21, 1959.

[67] P. Szolovits and S. G. Pauker, “Categorical and probabilistic reasoning in med-

ical diagnosis,” Artificial Intelligence, vol. 11, no. 1-2, pp. 115–144, 1978.

[68] Warner HR, Toronto AF, Veasey L, and Stephenson R, “A mathematical ap-

proach to medical diagnosis: Application to congenital heart disease,” Journal

of Americal Medical Association, vol. 177, no. 3, pp. 177–183, 1961.

[69] J. O. Berger, Statistical Decision Theory and Bayesian Analysis. New York:

Springer-Verlag, second ed., Aug. 1985.

[70] J. B. Greenhouse, “On becoming a Bayesian: Early correspondences between J.

Cornfield and L. J. Savage,” Statistics in Medicine, vol. 31, no. 24, pp. 2782–

2790, 2012.

[71] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review,

vol. 106, no. 4, pp. 620–630, 1957.

[72] E. T. Jaynes, “Information theory and statistical mechanics. II,” Physical Re-

view, vol. 108, no. 2, pp. 171–190, 1957.

[73] E. Jaynes, “Prior probabilities,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 3, pp. 227 –241, 1968.

[74] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,”

The American Statistician, vol. 49, no. 4, pp. 327–335, 1995.

76



[75] F. Perrin, B. Sudret, G. Blatman, and M. Pendola, “Use of polynomial chaos

expansions and maximum likelihood estimation for probabilistic inverse prob-
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APPENDIX A

MAXIMUM ENTROPY DISTRIBUTION

The idea of entropy in the sense of information theory is due to Claude Shannon[82],

introduced as a measure to quantify uncertainty or “choice in selecting an outcome”

in a set of events. Entropy H(X) of a random variable X is defined as

H(X) =−
∫
P (x) log p(x) dx (A.1)

The principle of maximum entropy was first proposed by Jaynes. In his first paper

[71] on maximum entropy principle, he proposed that the probability distribution

that is “maximally noncommittal” to the unavailable information can be obtained

by maximizing the entropy.

Jaynes used this to obtain prior probability distributions for Bayesian inference

[73]. The entropy maximization problem, for a random variable when the expectation

of the set of functions fi(x), is known to be ⟨fi(x)⟩, is stated as follows:

maximize
P (x)

H(X) =

∫
P (x) logP (x) dx (A.2)

subject to

∫
P (x)fi(x) dx = E[fi(x)] = ⟨fi(x)⟩ (A.3)∫
P (x) dx = 1 (A.4)
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For the above maximization problem, the solution is given as

P (x) =
1

Z(λ1, . . . , λn)
exp [λ1f1(x) + . . .+ λnfn(x)] (A.5)

Z(λ1, . . . , λn) =

∫
exp [λ1f1(x) + . . .+ λnfn(x)] dx (A.6)

∂

∂λi
logZ(λ1, . . . , λn) = ⟨fi(x)⟩ (A.7)

The function Z(λ1, . . . , λn) is known as the partition function. The distribution

thus obtained is known as the MaxEnt distribution and is a probability distribution

which incorporates the information in equation (A.3). This distribution can now be

used as a prior probability distribution for the Bayesian inference process.
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APPENDIX B

A NOTE ON PREDICTION AND FORECAST

This appendix explains the difference in usage of the terms “prediction” and

“forecast” in this dissertation (particularly in section 1. The dictionary definitions

[83, 84] of these words are

Prediction (noun)

1. a statement about what will happen or might happen in the

future,

2. the act of saying what will happen in the future : the act of

predicting something,

Forecasting 1. a statement about what you think is going to happen

in the future.

Given that the definitions are quite close to each other, it is not surprising that

the scientific community has used these words interchangeably. Indeed, a review

paper on forecasts in international relations by Freeman and Job [85] observes the

difference in the usage of the terms prediction and forecasts (see [85, pp. 114–117]).

The authors lay down that at least three different usages exist in the literature, viz.

(1) either they are used interchangeably, or (2) it is forecast if it is a probabilistic

statement and prediction if the statement is about a single outcome, without any

mention of probabilities or (3) prediction is a concrete statement which is logically

equivalent to explanation whereas a forecast is a combination of several predictions

and is hence a “weaker” statement on the outcomes (see [85] and the references

thereof for a detailed discussion). Based on these observations, the authors define
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that “... a forecast is a statement about unknown phenomena based upon known

or accepted generalizations and uncertain conditions ...” and “prediction involves

the linkage of known or accepted generalizations with certain conditions (knowns)

to yield a statement about unknown phenomena.”

Simon [86] differentiates the terms by saying that prediction is a statement about

the future with certainty and does not involve probabilities and forecasts are collec-

tions of statements and that they are issued with a probability range. This definition

falls in the category (2) of Freeman and Job [85].

On the other hand, Lewis-Beck [87] defines forecasts as a statement about the

future, whereas prediction is purely a reconstruction of a past outcome. A similar

definition given by Todini et. al. [88] from the weather forecast literature is that

predictions make statements about time t based on information up until time t

whereas forecasts allow one to estimate events at t+∆t based on information until

time t.

In his article “Six Rules for Effective Forecasting”, Paul Saffo [89], declares that

“Prediction is concerned with future certainty; forecasting looks at how

hidden currents in the present signal possible changes in direction for

companies, societies, or the world at large.”

He also states that predictions deal with “preordained events” and hence current

events cannot influence future events and even associates it with the world of “myth

and superstition”. Such a definition does not even admit the usage of the term

prediction in a scientific context.

As a further illustration of the variety in usage, a paper on earthquake forecast-

ing by F. F. Evison [90] explicitly states that prediction and forecast will not be

differentiated and that they will be used interchangeably throughout.
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Given this contrasting definitions used in the literature, we would like to state

that, in this dissertation (particularly in section 1.3 and figure 1.2), the terms pre-

diction and forecast are used in the sense of category (2) of Freeman and Job [85],

in that prediction is a statement made with certainty about an outcome of a sys-

tem, whereas forecast is a collective statement about possible outcomes, assigning

probabilities to each of them.
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APPENDIX C

SOFTWARE CODE

Fortran code to samples stiffness space using Metropolis – Hastings algorithm

✞
1 program main

use dispmodule
implicit none
character(len =20) :: tempstr
real ,dimension (:),allocatable :: likelihood_cand ,

likelihood_cur ,alpha
real :: datavari ,assumedvari
integer :: Nlinks ,NumSamp ,Numforce
real ,dimension (:,:),allocatable :: obs ,theta ,y,mean_k ,

std_k ,k
real :: kact (2)
real ,dimension (20) :: inputdata

11 real ,allocatable :: u(:)
real :: T_y(3)
integer :: i,j
real :: k_cand (2)
real :: sig
real :: timestart ,timefinish
real ,allocatable :: randomnumbervec (:)
real :: priorprob (2)
integer :: k1num ,k2num
real ,allocatable ::k1vec (:),k2vec (:),priorprobfromfile

(:),ppm(:,:),ppderi (:,:),temprand (:)
21 integer :: outputdetail ,numlines ,ios

integer :: maxlines =6400
character(len=1)::junk
call cpu_time(timestart)
open(unit =100, file='inputdata.data')
do i=1,11
read (100 ,*)
read (100 ,*) inputdata(i)
enddo
close (100)

31 Nlinks = inputdata (1)
T_y (1) = inputdata (2)
T_y (2) = inputdata (3)
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T_y (3) = inputdata (4)
datavari = inputdata (5)
assumedvari=inputdata (6)
NumSamp = inputdata (7)
kact (1)=inputdata (8)
kact (2)=inputdata (9)
sig=inputdata (10)

41 outputdetail=inputdata (11)

Numforce =2 ! Edit this to change number of experiments
used

allocate(obs(Nlinks+1,Numforce),y(Nlinks+1,Numforce),
theta(Nlinks ,Numforce),randomnumbervec (2* NumSamp),u(
NumSamp),temprand(Numforce*Nlinks+Numforce))

allocate(mean_k(NumSamp ,2),std_k(NumSamp ,2),k(NumSamp
,2),alpha(NumSamp),likelihood_cand(NumSamp),
likelihood_cur(NumSamp))

do i=1,Numforce
call FiniteDifference(theta(:,i),Nlinks ,T_y(i),kact)

51 enddo

do j=1,Numforce
write(tempstr ,*) j
open(unit =200, file='theta_ '//trim(adjustl(

tempstr))//'.dat')
do i=1,Nlinks

write (200 ,*) theta(i,j)
enddo
close (200)

61

y(1,j)=0.0
do i=1,Nlinks

y(i+1,j)=y(i,j)+(1./ real(Nlinks))*sin(
theta(i,j))

enddo

enddo

call grand(temprand ,Numforce*Nlinks+Numforce ,0.0, sqrt(
datavari) ,1)

do j=1,Numforce
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71 obs(:,j) = y(:,j)+temprand ((j-1)*( Nlinks +1)+1:j*( Nlinks
+1))

obs(1,j)=y(1,j)
obs(2,j)=y(2,j)
write(tempstr ,*) j
open(unit =222, file='obs_'//trim(adjustl(tempstr))//'.

dat')
do i=1,Nlinks +1

write (222 ,*) obs(i,j)
enddo
close (222)
enddo

81

k(1,1) = 1.0
k(1,2) =1.0
mean_k (1,1) = k(1,1)
mean_k (1,2) = k(1,2)
std_k (1,1) = 0.0
std_k (1,2) = 0.0

call grand(randomnumbervec ,2* NumSamp ,0.0 ,1.0 ,1)
91 call grand(u,NumSamp ,0.0 ,1.0 ,2)

do i=2,NumSamp
if (ceiling(real(i)/5e4).eq.real(i)/5e4) then

write (*,*) i
endif

k_cand (1) = sig*randomnumbervec (2*i-1)+k(i-1,1)
k_cand (2) = sig*randomnumbervec (2*i)+k(i-1,2)
call LikelihoodFunction(likelihood_cur(i),obs ,k(i-1,1),

k(i-1,2),Nlinks ,T_y ,assumedvari ,Numforce)
call LikelihoodFunction(likelihood_cand(i),obs ,k_cand

(1),k_cand (2),Nlinks ,T_y ,assumedvari ,Numforce)
101

!!!!!!!!!!!!!! Uniform Prior !!!!!!!!!!!!!!!!!!!!!
if (k_cand (1) >5.or.k_cand (2) >5.or.k_cand (1) <0.0.or.

k_cand (2) <0.0) then
alpha(i)=0.0

else
alpha(i) = min(1.0, likelihood_cand(i)/

likelihood_cur(i))
endif
!!!!!!!!!!!!!! Uniform Prior !!!!!!!!!!!!!!!!!!!!!
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111 !!!!!!!!!!!!!!!! MaxEntPrior !!!!!!!!!!!!!!!!!!!!!!!!!
!call PriorProbDist(priorprob (1),k_cand (1),k_cand (2))
!call PriorProbDist(priorprob (2),k(i-1,1),k(i-1,2))

!alpha(i) = min(1.0,( likelihood_cand(i)*priorprob (1))/(
priorprob (2)*likelihood_cur(i)))

!!!!!!!!!!!!!!!! MaxEntPrior !!!!!!!!!!!!!!!!!!!!!!!!!
if (alpha(i).gt.u(i)) then

k(i,1)=k_cand (1)
k(i,2)=k_cand (2)

121 else
k(i,1) = k(i-1,1)
k(i,2) = k(i-1,2)

endif

mean_k(i,1) = (1./i)*((i-1)*mean_k(i-1,1)+k(i,1))
mean_k(i,2) = (1./i)*((i-1)*mean_k(i-1,2)+k(i,2))
!

131 std_k(i,1) = (1./(i-1))*((i-2)*std_k(i-1,1)+(k(i,1)-
mean_k(i,1))**2)

std_k(i,2) = (1./(i-1))*((i-2)*std_k(i-1,2)+(k(i,2)-
mean_k(i,2))**2)

enddo

open(unit =300, file='output.dat')

do i=1,NumSamp
write (300,'(D,1X,D,1X,D,1X,D)') k(i,1),k(i,2),

likelihood_cur(i),likelihood_cand(i) !mean_k(i,1),
mean_k(i,2)

141 enddo

close (300)
call cpu_time(timefinish)
write(*,"(A,F10.3,1X,A)"), "Elapsed time is",

timefinish - timestart , "seconds"

deallocate(likelihood_cand ,likelihood_cur ,obs ,theta ,
alpha ,y,mean_k ,std_k ,k,u,randomnumbervec)

end program
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151 subroutine linspace(vecout ,start ,endpt ,numpoint)
implicit none
real :: start , endpt
integer :: numpoint , i
real :: d
real :: vecout(numpoint)
d = (endpt -start)/(real(numpoint -1))
do i = 1,numpoint
vecout(i) = start +real(i-1)*d
enddo

161 end subroutine linspace

!============================ Finite Difference
solution =======================

subroutine FiniteDifference(theta ,Nlinks ,Fy,k)
implicit none
real :: root ,x0,x1 ,func ,Fy ,delh
integer :: Nlinks ,i
real :: theta(Nlinks),k(2),kvec(Nlinks)
x0=5.0

171 x1=3.0
do i=1,Nlinks
kvec(i)=-(k(2) *(0.5. lt.real(i)/Nlinks.and .0.7.gt.real(i

)/Nlinks)+k(1) *(0.5. ge.real(i)/Nlinks.or .0.7.le.real
(i)/Nlinks))

enddo
call SecantMethod(root ,x0,x1,Nlinks ,Fy,kvec)
forall (i=1: Nlinks) theta(i)=0.0
delh =1.0/( Nlinks -1)
theta (2)=delh*root+theta (1)
do i=2,Nlinks -1

theta(i+1) = -(delh **2/ kvec(i))*Fy*cos(theta(i)
)-(theta(i-1) -2*theta(i))

181 enddo
end subroutine

subroutine SecantMethod(root ,x0 ,x1,Nlinks ,Fy,k)
implicit none
real :: root ,x0,x1 ,func ,Fy ,k(Nlinks)
integer :: i,Nlinks
real ,dimension (1000) :: x
forall (i=1:1000) x(i)=0.0
x(1)=x0

191 x(2)=x1
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i=3
do while (abs(x(i-2)-x(i-1)) >1e-4. and.i <1000)

x(i) = x(i-1) -func(x(i-1),Nlinks ,Fy,k)*(x(i-1)
-x(i-2))/(func(x(i-1),Nlinks ,Fy,k)-func(x(i
-2),Nlinks ,Fy,k))

i=i+1
enddo
root = x(i-1)
end subroutine

real function func(x,Nlinks ,Fy,k)
201 implicit none

real ::x,Fy ,delh
integer :: Nlinks ,i
real ,dimension(Nlinks) :: theta ,k
forall (i=1: Nlinks) theta(i)=0.0
delh =1.0/( Nlinks -1)
theta (2)=delh*x
!write (*,*) x, Nlinks , Fy, k
do i=2,Nlinks -1

theta(i+1) = -(delh **2/k(i))*Fy*cos(theta(i))-(
theta(i-1) -2*theta(i))

211 enddo
func=theta(Nlinks)-theta(Nlinks -1)
return
end function
!============================ Finite Difference

solution =======================
subroutine GProb(probability ,y,s,var)
implicit none
real:: probability
real::y,s,var
real :: pi=atan (1.0) *4.0

221 probability = (1/ sqrt (2*pi*var))*exp((-(y-s)**2) /(2* var
))

end subroutine

subroutine LikelihoodFunction(likelihood ,obs ,k1,k2 ,
Nlinks ,T_y ,vari ,Numforce)

implicit none
integer :: i,j,Nlinks ,Numforce
real ,dimension(Nlinks ,Numforce) :: theta
real :: likelihood ,k1,k2,T_y(Numforce),vari
real :: pi=atan (1.0) *4.0
real :: prob

231 real :: y(Nlinks+1,Numforce),obs(Nlinks+1,Numforce)
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do j=1,Numforce
call FiniteDifference(theta(:,j),Nlinks ,T_y(j) ,(/k1,k2

/))
enddo
do j=1,Numforce
y(1,j)=0.0
do i=1,Nlinks
y(i+1,j)=y(i,1) +(1./ real(Nlinks))*sin(theta(i,j))
enddo
enddo

241 likelihood =1.0
do i=Nlinks ,Nlinks +1 ! Use if only tip deflections are

required
!do i=1,Nlinks +1 ! Use if all deflections are used
do j=1,Numforce
call GProb(prob ,obs(i,j),y(i,j),vari)
likelihood=prob*likelihood
enddo
enddo
end subroutine

251

include 'mkl_vsl.fi'
subroutine grand(r,numrand ,mu ,sigma ,typ)
use MKL_VSL_TYPE
USE MKL_VSL
implicit none
integer :: method ,numrand ,seed ,brng
real :: mu,sigma
real :: r(numrand)
integer :: stat ,typ

261

type(VSL_STREAM_STATE) :: stream
brng=VSL_BRNG_MT19937
if(typ.eq.1) then

method=VSL_RNG_METHOD_GAUSSIAN_ICDF
else

method =VSL_RNG_METHOD_UNIFORM_STD
endif
seed=secnds (0.0)
open (112, file='seed.data')

271 read (112 ,*) seed
close (112)
stat =vslnewstream(stream ,brng ,seed)
if(typ.eq.1) then
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stat=vsrnggaussian(method ,stream ,numrand ,r,mu ,
sigma)

else
stat=vsrnguniform(method ,stream ,numrand ,r,mu,

sigma)
endif

281 stat=vsldeletestream(stream)
end subroutine

!!!!!!!!!!!!!!!!!!!!!!!!!! MAXENT DENSITY
!!!!!!!!!!!!!!!!!!!!!!!!

subroutine PriorProbDist(pprob ,k1,k2)
implicit none
real :: k1,k2,pprob
!~~ 2.5 ,0.2
if (k1.le.5.and.k1.ge.0.and.k2.le.5. and.k2.ge.0) then
pprob =exp ( -15.7392+12.5*k1 -2.5*k1**2) *0.2

291 else
pprob=0

endif
!~~ 2.5 ,0.2

end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!! MAXENT DENSITY

!!!!!!!!!!!!!!!!!!!!!!!!✡✝ ✆
Matlab Code to compute MaxEnt Prior Probability Distribution

✞
x=linspace (0,5,50);

2 xvar =0.2;
xmean =2.5;
linit=-ones (1,3);
xlim =[0 ,5];
options=optimset('MaxFunEvals ' ,10000,'Display ','Iter');
lambda_opt=fsolve(@(lambda) ToSolve(lambda ,xmean ,xvar ,

xlim),linit ,options)
ppd=PriorProbabilityDistribution(x,lambda_opt);
plot(x,ppd)

F(1) = trapz(x,ppd);
12 F(2) = trapz(x,x.*ppd);
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F(3)=trapz(x,(x-xmean).^2.* ppd);

integral(@(x) -PriorProbabilityDistribution(x,
lambda_opt).*log(PriorProbabilityDistribution(x,
lambda_opt)) ,0,5)

y=x;
[xx ,yy]= meshgrid(x,y);

ppd=PriorProbabilityDistribution(xx,lambda_opt)*0.2;

22

function F = ToSolve(lambda ,xmean ,xvar ,xlim)
F(1) = integral(@(x) PriorProbabilityDistribution(x,

lambda),xlim (1),xlim (2)) -1;
F(2) = integral(@(x) x.* PriorProbabilityDistribution(x,

lambda),xlim (1),xlim (2))-xmean;
F(3) = integral(@(x) ((x-xmean).^2).*

PriorProbabilityDistribution(x,lambda),xlim (1),xlim
(2))-xvar;

function ppd=PriorProbabilityDistribution(x,lambda)

ppd=exp(-lambda (1)-lambda (2).*x-lambda (3).*x.^2);✡✝ ✆
Fortran Code to sample parameter space for different hyperelastic models using data

from sheep aorta

✞
program main
use dispmodule
implicit none

real*8 :: mu,alpha
integer ,parameter :: NumProp =2
integer :: propiter
real*8 :: temp_l

9 real*8 :: data11(n11data ,2),data12(n12data ,2),data13(
n13data ,2),data21(n21data ,2),data22(n22data ,2),
data23(n23data ,2),data31(n31data ,2),data32(n32data
,2),data33(n33data ,2)

real*8 :: data41(n41data ,2),data42(n42data ,2),data43(
n43data ,2),data51(n51data ,2),data52(n52data ,2),
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data53(n53data ,2)
real*8 :: sig_MCMC ,assumedvari ,slopefactor ,

likelihood_cand ,likelihood_cur
integer :: i,NumSamp
real*8, allocatable :: propvec (:,:),randomnumbervec (:),u

(:)
real*8 :: propcand(NumProp),inputdata (7),inipropvec(

NumProp)
real*8 :: Cylinder1Geometry (2), Cylinder2Geometry (2),

Cylinder3Geometry (2),Cylinder4Geometry (2),
Cylinder5Geometry (2)

integer ::j
call timestamp ()
Cylinder1Geometry =(/Cyl1i ,Cyl1o/)

19 Cylinder2Geometry =(/Cyl2i ,Cyl2o/)
Cylinder3Geometry =(/Cyl3i ,Cyl3o/)
Cylinder4Geometry =(/Cyl4i ,Cyl4o/)
Cylinder5Geometry =(/Cyl5i ,Cyl5o/)

open(file='Aorta1_1.dat',unit =11)
open(file='Aorta1_2.dat',unit =12)
open(file='Aorta1_3.dat',unit =13)
do i=1,n11data
read (11,*) data11(i,:)

29 enddo
close (11)
do i=1,n12data
read (12,*) data12(i,:)
enddo
close (12)
do i=1,n13data
read (13,*) data13(i,:)
enddo
close (13)

39

open(file='Aorta2_1.dat',unit =21)
open(file='Aorta2_2.dat',unit =22)
open(file='Aorta2_3.dat',unit =23)
do i=1,n21data
read (21,*) data21(i,:)
enddo
close (21)
do i=1,n22data
read (22,*) data22(i,:)

49 enddo
close (22)
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do i=1,n23data
read (23,*) data23(i,:)
enddo
close (23)

open(file='Aorta3_1.dat',unit =31)
open(file='Aorta3_2.dat',unit =32)
open(file='Aorta3_3.dat',unit =33)

59 do i=1,n31data
read (31,*) data31(i,:)
enddo
close (31)
do i=1,n32data
read (32,*) data32(i,:)
enddo
close (32)
do i=1,n33data
read (33,*) data33(i,:)

69 enddo
close (33)
open(file='Aorta4_1.dat',unit =41)
open(file='Aorta4_2.dat',unit =42)
open(file='Aorta4_3.dat',unit =43)
do i=1,n41data
read (41,*) data41(i,:)
enddo
close (41)
do i=1,n42data

79 read (42,*) data42(i,:)
enddo
close (42)
do i=1,n43data
read (43,*) data43(i,:)
enddo
close (43)
open(file='Aorta5_1.dat',unit =51)
open(file='Aorta5_2.dat',unit =52)
open(file='Aorta5_3.dat',unit =53)

89 do i=1,n51data
read (51,*) data51(i,:)
enddo
close (51)
do i=1,n52data
read (52,*) data52(i,:)
enddo
close (52)
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do i=1,n53data
read (53,*) data53(i,:)

99 enddo
close (53)

!!!!!!!!!!!!! INPUT DATA !!!!!!!!
open(unit =200, file='inputdata.dat')
do i=1,7
read (200 ,*)
read (200 ,*) inputdata(i)
enddo

109 close (200)
NumSamp = inputdata (1)
sig_MCMC = inputdata (2)
assumedvari = inputdata (3)
slopefactor=inputdata (4)

do i=1,NumProp
inipropvec(i)=inputdata(i+4)
end do

119 !!!!!!!!!!!!! INPUT DATA !!!!!!!!
allocate(propvec(NumSamp ,NumProp),randomnumbervec(

NumProp *(NumSamp -1)),u(NumSamp))
call grand(randomnumbervec ,NumProp*NumSamp ,0.0D0 ,1.0D0

,1)
call grand(u,NumSamp ,0.0D0 ,1.0d0 ,2)

do i=1,NumProp
propvec(1,i)=inipropvec(i)
enddo

!!! START MCMC !!!!
129 do i=2,NumSamp

if (ceiling(real(i)/1d6)==real(i)/1d6) then
call disp(i)

endif
do propiter=1,NumProp
propcand(propiter)=sig_MCMC*randomnumbervec ((i-2)*

NumProp+propiter)+propvec(i-1,propiter)
enddo

if (i>2.and.all(propvec(i-1,:)== propvec(i-2,:))) then
call LikelihoodFunction(temp_l ,propcand ,NumProp ,data11 ,

data12 ,data13 ,n11data ,n12data ,n13data ,assumedvari ,
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slopefactor ,Cylinder1Geometry)
139 likelihood_cand=temp_l

call LikelihoodFunction(temp_l ,propcand ,NumProp ,data21 ,
data22 ,data23 ,n21data ,n22data ,n23data ,assumedvari ,
slopefactor ,Cylinder2Geometry)

likelihood_cand=temp_l*likelihood_cand
call LikelihoodFunction(temp_l ,propcand ,NumProp ,data31 ,

data32 ,data33 ,n31data ,n32data ,n33data ,assumedvari ,
slopefactor ,Cylinder3Geometry)

likelihood_cand=temp_l*likelihood_cand
!call LikelihoodFunction(temp_l ,propcand ,NumProp ,data41

,data42 ,data43 ,n41data ,n42data ,n43data ,assumedvari ,
slopefactor ,Cylinder4Geometry)

!likelihood_cand=temp_l*likelihood_cand
!call LikelihoodFunction(temp_l ,propcand ,NumProp ,data51

,data52 ,data53 ,n51data ,n52data ,n53data ,assumedvari ,
slopefactor ,Cylinder5Geometry)

!likelihood_cand=temp_l*likelihood_cand
else

149 call LikelihoodFunction(temp_l ,propcand ,NumProp ,data11 ,
data12 ,data13 ,n11data ,n12data ,n13data ,assumedvari ,
slopefactor ,Cylinder1Geometry)

likelihood_cand=temp_l
call LikelihoodFunction(temp_l ,propcand ,NumProp ,data21 ,

data22 ,data23 ,n21data ,n22data ,n23data ,assumedvari ,
slopefactor ,Cylinder2Geometry)

likelihood_cand=temp_l*likelihood_cand
call LikelihoodFunction(temp_l ,propcand ,NumProp ,data31 ,

data32 ,data33 ,n31data ,n32data ,n33data ,assumedvari ,
slopefactor ,Cylinder3Geometry)

likelihood_cand=temp_l*likelihood_cand
!call LikelihoodFunction(temp_l ,propcand ,NumProp ,data41

,data42 ,data43 ,n41data ,n42data ,n43data ,assumedvari ,
slopefactor ,Cylinder4Geometry)

!likelihood_cand=temp_l*likelihood_cand
!call LikelihoodFunction(temp_l ,propcand ,NumProp ,data51

,data52 ,data53 ,n51data ,n52data ,n53data ,assumedvari ,
slopefactor ,Cylinder5Geometry)

!likelihood_cand=temp_l*likelihood_cand
159

call LikelihoodFunction(temp_l ,propvec(i-1,:),NumProp ,
data11 ,data12 ,data13 ,n11data ,n12data ,n13data ,
assumedvari ,slopefactor ,Cylinder1Geometry)

likelihood_cur=temp_l
call LikelihoodFunction(temp_l ,propvec(i-1,:),NumProp ,

data21 ,data22 ,data23 ,n21data ,n22data ,n23data ,
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assumedvari ,slopefactor ,Cylinder2Geometry)
likelihood_cur=temp_l*likelihood_cur
call LikelihoodFunction(temp_l ,propvec(i-1,:),NumProp ,

data31 ,data32 ,data33 ,n31data ,n32data ,n33data ,
assumedvari ,slopefactor ,Cylinder3Geometry)

likelihood_cur=temp_l*likelihood_cur
!call LikelihoodFunction(temp_l ,propvec(i-1,:),NumProp ,

data41 ,data42 ,data43 ,n41data ,n42data ,n43data ,
assumedvari ,slopefactor ,Cylinder4Geometry)

!likelihood_cur=temp_l*likelihood_cur
!call LikelihoodFunction(temp_l ,propvec(i-1,:),NumProp ,

data51 ,data52 ,data53 ,n51data ,n52data ,n53data ,
assumedvari ,slopefactor ,Cylinder5Geometry)

169 !likelihood_cur=temp_l*likelihood_cur
endif

alpha = min(1.0, likelihood_cand/likelihood_cur)

if (alpha.gt.u(i)) then
do propiter=1,NumProp
propvec(i,propiter)=propcand(propiter)
enddo

179 else
do propiter=1,NumProp
propvec(i,propiter)=propvec(i-1,propiter)
enddo

endif

enddo

open (500, file='MCMCSamples.dat')
do i =1,NumSamp

189 write (500,'(D12.5,X,D12 .5)') propvec(i,:)
enddo
close (500)
call timestamp ()
end program

subroutine LikelihoodFunction(likelihood ,propvector ,
numprop ,data1 ,data2 ,data3 ,n1data ,n2data ,n3data ,
assumedvari ,beta ,CylinderGeometry)

use dispmodule
implicit none
integer :: i,j,numprop

199 integer :: n1data ,n2data ,n3data
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real*8 :: likelihood ,propvector(numprop),data1(n1data
,2),data2(n2data ,2),data3(n3data ,2),assumedvari ,beta
,pi=datan (1.0d0)*4d0

real*8 :: grad_data1(n1data),grad_mod1(n1data)
real*8 :: grad_data2(n2data),grad_mod2(n2data)
real*8 :: grad_data3(n3data),grad_mod3(n3data)
real*8 :: CylinderGeometry (2),gprob
real*8 :: pressure1(n1data),pressure2(n2data),pressure3

(n3data)

likelihood =1d0

209 !CylinderGeometry =(/Cyl1 ,Cyl2/)

!~ call PressureFromRadiusOgden(pressure ,
CylinderGeometry ,lambda ,mu,alpha ,data_r ,len_p)

call PressureFromRadiusOgden(pressure1 ,CylinderGeometry
,propvector ,numprop ,data1 (:,1),n1data)

call PressureFromRadiusOgden(pressure2 ,CylinderGeometry
,propvector ,numprop ,data2 (:,1),n2data)

call PressureFromRadiusOgden(pressure3 ,CylinderGeometry
,propvector ,numprop ,data3 (:,1),n3data)

call gradient(grad_data1 ,data1 (:,2),data1 (:,1),n1data)
call gradient(grad_data2 ,data2 (:,2),data2 (:,1),n2data)
call gradient(grad_data3 ,data3 (:,2),data3 (:,1),n3data)

219

call gradient(grad_mod1 ,pressure1 ,data1 (:,1),n1data)
call gradient(grad_mod2 ,pressure2 ,data2 (:,1),n2data)
call gradient(grad_mod3 ,pressure3 ,data3 (:,1),n3data)

!!! Experiment 1
do i=1,n1data

229 gprob = exp(-( pressure1(i)-data1(i,2))**2/(2 d0*
assumedvari **2)-beta*( grad_mod1(i)-grad_data1(i))
**2/(2 d0*assumedvari **2))

likelihood=likelihood*gprob;
end do

!!! Experiment 2
do i=1,n2data
gprob = exp(-( pressure2(i)-data2(i,2))**2/(2 d0*

assumedvari **2)-beta*( grad_mod2(i)-grad_data2(i))
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**2/(2 d0*assumedvari **2))
likelihood=likelihood*gprob;
end do

239 !!! Experiment 3
!do i=1,n3data
!gprob = exp(-(pressure3(i)-data3(i,2))**2/(2 d0*

assumedvari **2))-beta*( grad_mod3(i)-grad_data3(i))
**2/(2 d0*assumedvari **2))

!likelihood=likelihood*gprob;
!end do

end subroutine

subroutine gradient(grad ,y,x,len_x)
implicit none

249 integer :: len_x ,i
real*8 :: y(len_x),x(len_x),grad(len_x)
grad (1) = (y(2)-y(1))/(x(2)-x(1))
grad(len_x) = (y(len_x)-y(len_x -1))/(x(len_x)-x(len_x

-1))

do i=2,len_x -1
grad(i) = (y(i+1)-y(i-1))/(x(i+1)-x(i-1))
enddo
endsubroutine

259 subroutine linspace(vecout ,start ,endpt ,numpoint)
implicit none
real*8 :: start , endpt
integer :: numpoint , i
real*8 :: d
real*8 :: vecout(numpoint)
d = (endpt -start)/(real(numpoint -1))
do i = 1,numpoint
vecout(i) = start +real(i-1)*d
enddo

269 end subroutine linspace

include 'mkl_vsl.fi'
subroutine grand(r,numrand ,mu ,sigma ,typ)
use MKL_VSL_TYPE
USE MKL_VSL
implicit none
integer :: method ,numrand ,seed ,brng
real*8 :: mu,sigma
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real*8 :: r(numrand)
279 integer :: stat ,typ

type(VSL_STREAM_STATE) :: stream
brng=VSL_BRNG_MT19937
if(typ.eq.1) then

method=VSL_RNG_METHOD_GAUSSIAN_ICDF
else

method =VSL_RNG_METHOD_UNIFORM_STD
endif
open (112, file='seed.dat')

289 read (112 ,*) seed
close (112)
stat =vslnewstream(stream ,brng ,seed)
if(typ.eq.1) then

stat=vdrnggaussian(method ,stream ,numrand ,r,mu ,
sigma)

else
stat=vdrnguniform(method ,stream ,numrand ,r,mu,

sigma)
endif

299 stat=vsldeletestream(stream)
end subroutine

subroutine PressureFromRadiusOgden(pressure ,
CylinderGeometry ,PropVector ,NumProp ,DataRadius ,
DataLength)

use dispmodule
implicit none
integer :: DataLength ,i,NumProp
real*8 :: CylinderGeometry (2),PropVector(NumProp),

DataRadius(DataLength),Ro ,Ri,pressure(DataLength),ci
real*8 :: f0,f1,f2 ,f3,f4,outval

309 Ri=CylinderGeometry (1)
Ro=CylinderGeometry (2)

do i=1, DataLength
ci = (DataRadius(i)**2-Ri**2) /(2D0)
call IntegrandStrainEnergy(f0,ci ,PropVector ,NumProp ,Ri)
call IntegrandStrainEnergy(f1,ci ,PropVector ,NumProp ,Ri

+(Ro-Ri)/4d0)
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call IntegrandStrainEnergy(f2,ci ,PropVector ,NumProp ,Ri
+2d0*(Ro-Ri)/4d0)

call IntegrandStrainEnergy(f3,ci ,PropVector ,NumProp ,Ri
+3d0*(Ro-Ri)/4d0)

319 call IntegrandStrainEnergy(f4,ci ,PropVector ,NumProp ,Ro)
call NewtonCoates(outval ,f0,f1,f2 ,f3,f4,Ri ,Ro)
pressure(i) = outval
enddo

endsubroutine

subroutine NewtonCoates(outval ,f0,f1,f2 ,f3 ,f4,a,b)
implicit none
real*8 ::f0 ,f1,f2,f3 ,f4 ,a,b,outval

329 outval =(1.d0/90.d0)* (b-a)*(7.d0*f0+32.d0*f1+12.d0*f2
+32.d0*f3+7.d0*f4)

end subroutine

subroutine SimpsonInt(outval ,f0 ,f1,f2,f3 ,a,b)
implicit none
real*8 ::f0 ,f1,f2,f3 ,a,b,outval
outval =(1.d0/8.d0)* (b-a)*(f0+3.d0*f1+3.d0*f2+f3)
end subroutine

subroutine IntegrandStrainEnergy(integrandvalue ,c,
propvector ,numprop ,R)

339 use dispmodule
implicit none
integer :: numprop
real*8 :: term1 ,term2
real*8 :: integrandvalue ,propvector(numprop),c,R

term1=R/sqrt (2*c+R**2)
term2 =1/ term1

349

select case (model)

case (1)

integrandvalue =2* propvector (1)*propvector (2)*sinh (2*
propvector (2)*log(term2))/(2*c+R**2) !! Criscione
type a cosh(b\gamma_ {3})
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case (2)

359 integrandvalue =-2*( (propvector (1)*(term1** propvector
(2)-term2 ** propvector (2)))+( propvector (1)*(term2 **(-
propvector (2))-term1**(- propvector (2)))) )/((2*c+R
**2)*propvector (2)) !!! Ogden W= 2*mu/a**2 (li^a-3)
+2*mu/b**2*(li**-b-3)

case (3)

integrandvalue =(4*c*propvector (1)*propvector (2)*(R**2+c
)*(1+(4*c**2) /(2*c*propvector (2)*R**2+ propvector (2)*
R**4))** propvector (2))/( (2*c+R**2) *(4*1*c**2+
propvector (2)*R**2*(2*c+R**2)) ) !!! Generalized Neo
Hookean with b=1

end select
369

integrandvalue=R*integrandvalue
end subroutine✡✝ ✆

Matlab Code to compute the class membership probabilities

✞
sigma =10;

prior =0.5* ones (1,2);

load MCMC_CrisData_Two
model =1;
NumChoices =100;

8 NumChoices = ceil ((5e6 -2e6)/NumChoices);
A1_A2_A3_samp =A1_A2_A3 (2e6:NumChoices:end ,:);
A4_A5_samp = A4_A5 (2e6:NumChoices:end ,:);

for aortanum =1:5
switch aortanum

case 1
CylGeom =[5.2234 ,6.4154]; % Aorta1
AD=load('../../ FourAortaMCMC/WAorta1/

Aorta1_3.dat');
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case 2
CylGeom =[5.0010 ,6.3110]; % Aorta2
AD=load('../../ FourAortaMCMC/WAorta1/

Aorta2_3.dat');

case 3
CylGeom =[5.0911 ,6.3211];% Aorta3
AD=load('../../ FourAortaMCMC/WAorta1/

Aorta3_3.dat');

case 4
28 CylGeom =[5.1356 ,6.3106];% Aorta4

AD=load('../../ FourAortaMCMC/WAorta1/
Aorta4_3.dat');

case 5
CylGeom =[5.2234 ,6.5434];% Aorta5
AD=load('../../ FourAortaMCMC/WAorta1/

Aorta5_3.dat');

end

AortaData=AD;
38

NumSamples=length(A1_A2_A3_samp);
likelihood=zeros (1,2);
for i=1: NumSamples

if (i/500 == ceil(i/500))
disp(i)

end
likelihood (1) = likelihood (1)+ComputeLikelihood

(AortaData ,CylGeom ,A1_A2_A3_samp(i,:),model ,
sigma);

likelihood (2) = likelihood (2)+ComputeLikelihood
(AortaData ,CylGeom ,A4_A5_samp(i,:),model ,
sigma);

end
48 likelihood=likelihood/NumSamples;

posterior = likelihood .*prior;
posterior=posterior ./sum(posterior);
postmat(aortanum ,:) = posterior

end✡✝ ✆
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