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ABSTRACT 

 

In (two-party) privacy-preserving-based applications, two users use encrypted 

inputs to compute a function without giving out plaintext of their input values. Privacy-

preserving computing algorithms have to utilize a large amount of computing resources 

to handle the encryption-decryption operations. In this dissertation, we study optimal 

utilization of computing resources on the graphic processor unit (GPU) architecture for 

privacy-preserving protocols based on secure function evaluation (SFE) and the Elliptic 

Curve Cryptographic (ECC) and related algorithms. A number of privacy-preserving 

protocols are implemented, including private set intersection (PSI), secret handshaking 

(SH), secure Edit distance (ED) and Smith-Waterman (SW) problems. PSI is chosen to 

represent ECC point multiplication related computations, SH for bilinear pairing, and the 

last two for SFE-based dynamic programming (DP) problems. They represent different 

types of computations, so that in-depth understanding of the benefits and limitations of 

the GPU architecture for privacy preserving protocols is gained. 

For SFE-based ED and SW problems, a wavefront parallel computing model on 

the CPU-GPU architecture under the semi-honest security model is proposed. Low level 

parallelization techniques for GPU-based gate (de-)garbler, synchronized parallel 

memory access, pipelining, and general GPU resource mapping policies are developed.  

This dissertation shows that the GPU architecture can be fully utilized to speed up SFE-

based ED and SW algorithms, which are constructed with billions of garbled gates, on a 
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contemporary GPU card GTX-680, with very little waste of processing cycles or 

memory space.   

For PSI and SH protocols and underlying ECC algorithms, the analysis in this 

research shows that the conventional Montgomery-based number system is more 

friendly to the GPU architecture than the Residue Number System (RNS) is. Analysis on 

experiment results further shows that the lazy reduction in higher extension fields can 

have performance benefits only when the GPU architecture has enough fast memory. 

The resulting Elliptic curve Arithmetic GPU Library (EAGL) can run 3350.9 R-ate 

(bilinear) pairing/sec, and 47000 point multiplication/sec at the 128-bit security level, on 

one GTX-680 card. The primary performance bottleneck is found to be lacking of 

advanced memory management functions in the contemporary GPU architecture for 

bilinear pairing operations. Substantial performance gain can be expected when the on-

chip memory size and/or more advanced memory prefetching mechanisms are supported 

in future generations of GPUs. 
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CHAPTER I  

INTRODUCTION 

 

In their seminal work [96] published in 1982, Yao et al. formulated the 

Billionaire problem, in which two principals want to compare their wealth without 

giving each other their actual amounts, and proposed a very general way to do so, called 

Secure Function Evaluation (SFE). In SFE, the two principals, who are commonly called 

the generator and the evaluator, use encrypted inputs to jointly compute an arbitrary 

function on two interconnected computers. The final computing result is revealed to one 

or both principal(s), but plain-text of the inputs are unrevealed to each other. A rich body 

of literature has been developed from the original Billionaire problem to the field of 

privacy-preserving computing. Major privacy-preserving protocols include, but are not 

limited to SFE, Private Set Intersection (PSI) [45][26][31][53][55] where two principals 

jointly compute the common element(s) for their two input sets without giving out to 

each other the plain-text of all distinct elements, Secret handshake (SH) [26][50] where 

two principals mutually authenticate each other based on privacy-preserving equality 

checking of a one-time registered group secret [26], Private Information Retrieval (PIR) 

[20] where the index of a database query is unrevealed to the owner of the database in a 

query transaction, and Homomorphic encryption (HE) [33] where two principals use 

encrypted inputs to jointly compute an arithmetic function. 

Some examples of privacy-preserving applications aim to answer questions, such 

as “which input is bigger: (    
   )”, “Edit distance of two strings: ED(s1, s2)”, 
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“intersection of two sets of strings: COMMON(S1, S2)”, etc. While most applications can 

be implemented by SFE, non-SFE based solutions have also been developed. For 

example, several studies [26][31][53][55] implemented PSI based on Elliptic Curve 

Cryptography (ECC) [56], although PSI could also be formulated as an SFE function  

COMMON(S1, S2) [45]. Another important example of non-SFE based privacy-

preserving protocols is SH, ECC [26][50], RSA [84] or Diffie-Hellman (DH) [25] crypto 

systems can be used to implement SH. 

In this dissertation, we focus on the design and the performance evaluation of 

SFE and ECC-based PSI and SH on an integrated CPU-GPU system architecture. For 

SFE, the main performance challenge is to run a vast number (billions or more) of 

garbled gates [96], which are composed of oblivious-transfer (OT) [82] and block-

cipher operations (for example, SHA [73] and AES [74]), with few waste of 

computational strength provided by the CPU-GPU system architecture. The main 

performance challenges for ECC to achieve the highest throughput on GPU include (1) 

the low level data access model for arithmetic operands, (2) matching of the number 

system with respect to architecture, (3) the parallel computing model for arithmetic 

operations, and (4) the efficiency of arithmetic optimization techniques. Overall, for 

optimal performance outcomes, the system needs to have tight synchronization of 

processing steps, memory accesses, and GPU-CPU memory swapping, so that idle 

cycles and swapping overheads are minimized, while the degree of parallelism is 

maximized. For ECC, the four factors are closely related to each other. As such, our 

design process is coupled with a system performance characteristics process, so that 
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lessons learnt from the study can help identify system bottlenecks for future 

improvement of architectures and algorithms.  

1.1 Summary of Research Tasks 

An overview of the overall design space explored in this dissertation is illustrated 

in Figure 1.1, in which green blocks represent major technical elements of our work. To 

investigate SFE related design problems on the CPU-GPU architecture, we adopt the 

specification languages SHDL (Secure Hardware Description Language) proposed in 

Fairplay [65] to describe the SFE functions studied in this dissertation. For the study 

cases, we select privacy-preserving computation of the dynamic programming (DP) for 

Edit Distance (ED) and Smith-Waterman (SW) [5]. ED (SW) has been used for privacy-

preserving assessment of dissimilarity (similarity) of two genomic sequences [52]. By 

using SHDL, the SFE-based ED problem and the SFE-based SW problem are 

represented by two networks of interconnected garbled (Boolean) gates, respectively. In 

this dissertation, these two problems are solved based on a divide-and-conquer strategy 

to partition the interconnected garbled gates, and encryption/decryption operations are 

executed on the GPU in batches. The resulting parallel code follows a wavefront 

computing pattern, which needs highly synchronized memory accesses. Parallelization 

of the two studied cases represent much higher challenges than parallelization of SFE-

based AES [43], Hamming distance [43][52], RSA [30], or Dot product [46], whose 

intermediate results are immediately re-used and then discarded. According to [52], the 

memory requirement for the SFE-based ED (SW) problem can be tens of Giga Bytes 
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when the input length of the ED (SW) problem exceeds 10
3
 (10

2
). As such, to study 

spatial efficient memory management mechanisms for SFE and the associated low-cost 

synchronization strategies for reading and writing intermediate results on the CPU-GPU 

architecture, we set 5000×5000 as the problem size of the ED problem, and 60×60 as the 

problem size of the SW problem. 

In terms of the security model for SFE, we adopt the semi-honest security model 

[44][52], where principals follow the SFE protocol but may infer the input data from 

cipher-text of intermediate results produced during protocol steps. Following [52], we 

adopt the ultra-short security level proposed in TASTY [40], which is equivalent to the 

80-bit security level. 
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Figure 1.1 The Design Space of SFE, PSI and SH Implementations. 
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For our study of ECC-based PSI and SH, ECC point multiplication [56] is chosen 

for PSI, and bilinear pairing [87] in ECC for SH, because the vast majority of privacy-

preserving protocols is based on ECC. A Barreto-Naehrig (BN) curve [10] is chosen for 

both PSI and SH as the underlying elliptic curve due to its computational efficiency [32]. 

BN-curve-based R-ate pairing [60] is adopted as the bilinear pairing algorithm due to its 

less (or similar) computational complexity than other variants [34][42][66]([99]) of 

bilinear pairing on BN curves. To achieve the 128-bit security level, -(2
62

+2
55

+1) is used 

as the construction parameter of the BN curve, and the twelfth extension field [87] as the 

highest extension field [10]. 

In the CPU-GPU system architecture, the GPU works as a co-processor for the 

CPU to perform designated computations. For SFE and ECC-based PSI and SH, 

computing tasks designated to run on the GPU need to be optimized with respect to the 

single instruction multi-thread (SIMT) architecture and the memory hierarchy of GPU, 

as well as the CPU-GPU control mechanisms, for best performance. These cross-layer 

resource management issues are highlighted at right side of Figure 1.1.  

The major research tasks in this dissertation are listed below, and a graphic 

illustration of these tasks is given in Figure 1.2. Research tasks for SFE and ECC-related 

PSI and SH follow different paths to reflect their very different computing structures. 

SFE Related Research Tasks  

- (R1.1) Investigation of the partition policies for a network with billions of 

garbled gates, and the associated GPU-based resource mapping policies in 
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order to maximize the system throughput; the pipelining mechanism of the 

encryption/decryption operations is also studied; 

- (R1.2) Investigation of memory management mechanisms on CPU and GPU, 

and associated synchronization strategies for storing and re-using 

inputs/outputs of encryption/decryption operations, and intermediate de-

garbled results on GPU. 
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ECC Related Research Tasks 

- (R2.1) Studying and implementing PSI and SH protocols in a case study [77] 

to understand the usage of parallelized point multiplication and bilinear 

pairing in real-world privacy-preserving applications; 

-  (R2.2) Exploring an efficient parallel computing model of low-level 

arithmetic operations on GPU, including the evaluation of number systems 

and data storage formats; 

- (R2.3) Evaluating the suitability of optimization techniques for point 

multiplication and bilinear on the contemporary GPU architecture; 

- (R2.4) Identifying major performance bottlenecks for computing point 

multiplication and bilinear pairing on the contemporary GPU architecture; 

-  (R2.5) Developing a GPU-based library for point multiplication and bilinear 

pairing, which can fit future GPU architecture without major code changes; 

Some critical conclusions derived from this research are highlighted below. For 

SFE, the results of research tasks (R1.1) and (R1.2) show that the GK104 Kepler chip 

(marketed by NVIDIA in 2012) can be fully utilized to speed up the SFE-based ED 

algorithm and the SFE-based SW algorithm, with very little waste of processing cycles 

or memory space. For ECC, low level resource management techniques are designed and 

tested to eliminate major resource wastes. It is discovered in (R2.2) that, the 

conventional Montgomery number system [68] is more GPU-friendly than the Residue 

Number System (RNS) based number system [2] on the GK104 chip. Through (R2.3), it 

is found that the acceleration effect of the lazy reduction [3] technique has the best 
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performance when it is applied to the quadratic extension field on the GK104 chip. It is 

found through (R2.4) that, since a large number of data swapping between fast on-chip 

cache and slow off-chip device memory are triggered by the complex computations steps 

of bilinear pairing, the primary performance bottleneck for bilinear pairing on the 

GK104 chip is lack of advanced device memory management functions. However, the 

GK104 chip is quite effective for speed up of point multiplication and arithmetic in the 

quadratic extension field. Last, but not least, is that through (R2.5), a library, called 

Elliptic curve Arithmetic GPU Library (EAGL), is produced to empower future 

generation of research in this area.  

The rest of the dissertation is organized as follows. In Chapter 2, we provide an 

overview of SFE protocol, point multiplication and bilinear pairing algorithms, and 

modern GPU architecture. Chapter 3 summarizes previous studies. Chapter 4 presents 

the parallel computing model for the ED problem and the SW problem, respectively. In 

Chapter 5, we first study the usage of point multiplication and bilinear pairing in PSI and 

SH protocols. Then, we discuss the parallel computing model for point multiplication 

and bilinear pairing. We conclude with some final marks in Chapter 6. 
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CHAPTER II  

BACKGROUND KNOWLEDGE 

 

In this chapter, we first present the background knowledge of SFE, PSI and SH, 

and then the ECC algorithms used to construct ECC-based PSI and SH protocols. In the 

end, the contemporary GPU architecture, the Kepler GPU, is introduced. 

2.1 Secure Function Evaluation 

The Secure Function Evaluation (SFE) proposed to use the term garbled circuits 

(GC) to implement privacy-preserving applications, such as secret auctions [17][72], 

biometric or genomic computation [43][44][52], facial recognition [28][40][76][85] and 

encryption [40][43][58]. In SFE, the garbled circuits (GC), and its the fundamental build 

block garbled gates, and the roles of the two principals (the generator and the evaluator) 

are defined as follows:  

An n-bit-in, 1-bit-out garbled gate G implements an n variable “secure” (or, 

“privacy-preserving”) Boolean function. Same as a regular gate, a garbled gate has a 

truth table specified based on the Boolean function. Each input or output bit for both 

types of gates can be represented as a “wire”, but in a garbled gate each wire is 

associated with a pair of random integers, called a pair of wire labels, rather than a 

single 1-bit value 0/1 as in a regular gate. 

Taking the 2-bit input, 1-bit output garbled gate, denoted by c=G(a,b), as an 

example, its wire labels are denoted by {ka
0
,ka

1
},{kb

0
,kb

1
}, {kc

0
,kc

1
}, where each entry, 
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say ka
0

, is a unique random number assigned to the value 0 at the “a” input of c=G(a,b). 

In the secure computing process of G, the value of its 1-bit input “wire” a (b) is provided 

by the generator (the evaluator), and the generator and the evaluator jointly compute the 

wire labels of c. 

To compute c=G(a,b) jointly, a should receive the generator’s 1-bit value x, and 

b the evaluator’s 1-bit value y. Here x and y can be either 0 or 1, and we denoted y’ as 

the negation of y. The generator first generates {ka
0
,ka

1
},{kb

0
,kb

1
}, {kc

0
,kc

1
} for possible 

values {0, 1} of wires a, b, and c. The encrypted wire labels for the evaluator’s inputs, 

{kb
y
, kb

y’
}, are transferred from the generator to the evaluator via Oblivious Transfer 

(OT) [82]. In the end of OT, the evaluator only knows kb
y 
and the generator only knows 

that one of {kb
y
, kb

y’
} has been chosen by the evaluator. The generator also sends the 

wire label ka
x
 to the evaluator. 

If a garbled gate G(a,b) accepts one direct 1-bit input from the evaluator, one OT 

transaction is needed in SFE. Therefore, computing a single SFE instance may need 

multiple OT transactions. Based on a random oracle model proposed in [48], a virtually 

unlimited number of OT computations can be encoded into 80 1-out-of-2 OT 

transactions, where 80 is a security parameter. Huang et al. [43] reported that such 80 1-

out-of-2 OT transactions can be computed in 0.6s. Therefore, the primary computing 

bottleneck is caused by the block-cipher operations for the vast number of garbled gates, 

not by the OT. As such, the discussion of OT is not included in this dissertation. 

The computing logic of c=G(a,b) is a four-entry truth table T{T00, T01, T10, T11}, 

where each entry, say T00, is a value 0/1 and is mapped the output wire label kc
0
 / kc

1
. 
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The garbled truth table is a random permutation of the four cipher-texts: 

{Eka
0
(Ekb

0
(kc

T00
)), Eka

0
(Ekb

1
(kc

T01
)), Eka

1
(Ekb

0
(kc

T10
)), Eka

1
(Ekb

1
(kc

T11
))}, here E denotes 

the encryptor (also known as garbler), and the encryption/decryption operation is also 

known as garbling/de-garbling. In the end, with ka
x
 and kb

y
, the evaluator learns the wire 

label kc
Txy

 that represents the real value of G given inputs a=x and b=y, while it does not 

know x.  

program And { // SFDL

        const N=2;

        type Len = Int<N>;

        type AliceInput = Len;

        type BobInput = Len;

        type AliceOutput = Len;

        type Input = struct {AliceInput alice,  BobInput bob};

        type Output = struct {AliceOutput alice};

        function Output output(Input input) {

           output.alice = (input.bob & input.alice);

        }

}

SHDL (compiled from SFDL): 

0 input         //output$input.bob$0

1 input         //output$input.bob$1

2 input         //output$input.alice$0

3 input         //output$input.alice$1

4 output gate arity 2 table [ 0 0 0 1 ] inputs [ 2 0 ] //

output$output.alice$0

5 output gate arity 2 table [ 0 0 0 1 ] inputs [ 3 1 ] //

output$output.alice$1

 

Figure 2.1 An Example of SFDL and SHDL 

In Fairplay [65], a GC and the ownership of its I/O data can be specified in the 

Secure Function Description Language (SFDL) and the Secure Hardware Description 

Language (SHDL). A simple example of SFDL and SHDL is illustrated in Figure 2.1, 

which describes the logic “(a AND b)”, where a and b are 2-bit inputs belonging to the 

generator (Alice) and the evaluator (Bob), respectively. Gate 4 and gate 5 in the SHDL 

code are examples of G; and “[0 0 0 1]” in the description of Gate 4 is an instance of 

truth table T{T00, T01, T10, T11}. The “output” descriptors in the front of Gate 4 and Gate 

5 specify that the output wires of these two gates are the output of this GC. Computing 
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(a AND b) is equivalent to separately computing Gate 4 and Gate 5 and exporting their 

de-garbled results as the de-garbled results of this GC. 

2.2 Private Set Intersection and Secret Handshake 

Private Set Intersection (PSI) and Secret Handshake (SH) are two widely used 

privacy-preserving computing protocols, where PSI is used by two principals to compare 

the common element(s) in their two input sets without giving out the plain-text of all 

distinct elements to each other, and SH is used by two principals to mutually 

authenticate each other based on a one-time registered group secret. In an ECC-based 

implementation of PSI, point multiplication operations are executed O(k) times per PSI 

instance, where a malicious adversary has 1/k possibility to guess the correct result using 

a brute force method. Besides ECC and SFE, PSI can also be implemented based 

oblivious pseudo-random function evaluation [39][51]. 

SH was first proposed in Balfanz et al. [9]. In SH, if the two principals know a 

common group secret, their SH session will succeed and they know they are in the same 

group. Otherwise, the group secret of each principal is unrevealed to the other. The two 

critical properties of SH are un-linkable and re-usable. “Un-linkable” indicates that 

when one player A gives two (different) copies of his encrypted group secret to two 

other players B and C in two separated authentication sessions, B and C do not know 

they are authenticating with the same person A when they compare the encrypted data 

received from A. “Re-usable” means A can re-use its group secret in multiple SH 

sessions. Ateniese et al. [6] and Jarecki et al. [50] implemented un-linkable SH schemes 
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with re-usable group secrets involving a third-party CA. Duan et al. [26] proposed a 

bilinear-pairing-based SH that satisfied both un-linkable and re-usable properties without 

using CA. In their protocol, to complete a single SH instance, each principal needs to run 

one bilinear pairing operation. 

2.3 Elliptic Curve Cryptographic Algorithms 

Elliptic Curve Cryptography (ECC) was proposed by Koblitz et al. [56] and 

Miller et al. [67]. They independently suggested the use of elliptic curve groups in 

public key cryptography. Comparing with RSA [84] or Diffie-Hellman (DH) [25] of the 

same secure strength, ECC needs a much shorter key size. For example, 256-bit key size 

in ECC has the same secure strength as 3072-bit key size in RSA [38] (equivalent to 

128-bit AES secure strength). 

Let K be a finite field and E(K) an additive group of points on an elliptic curve E 

over K, E(K) is defined as the set of points (x, y),  x, y  K, a point (x, y) satisfies the 

Weierstrass equation: 

y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6 (2-1) 

where a1, a2, a3, a4, a6  K. E(K) also includes an extra point O, called point at infinity. 

The number of points on E(K) is called the order of E(K) and is denoted by #E. In this 

dissertation, q is chosen as a large prime number, K = Fq is a finite prime field, and the 

Weierstrass equation (2-1) is selected as: 

y
2
 = x

3
 + ax + b , where a, b  Fq (2-2) 
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Point Multiplication is the multiplication between a multi-precision integer k and 

a point P on E(Fq), in a format of [k] P. The result of [k] P is also on E(Fq). Computing 

[k] P is an accumulation process of point addition of k number of point P. Let P(x1, y1), 

Q(x2, y2) be two points on E(Fq), the point addition R’(x3, y3) = P(x1, y1) + Q(x2, y2) is 

computed as follows: 

x3 = 2
 – x1 – x2, y3 =  (x1 – x3) – y1   (2-3) 

 = (y2 – y1)/(x2 – x1) if P  Q, OR  = 3(x1
2
 + a)/2y1 if P = Q  (2-4) 

P

Q

R

R’ = P+Q

x

y

curve E

P

R

R’ = [2]P

x

y

curve E

 

    Figure 2.2 (a) Point Addition,     (b) Point Doubling on E(Fq) 

The effect of (2-3) and (2-4) in the affine co-ordinate system is illustrated in     

Figure 2.2: the straight line joining P and Q intersects E(Fq) at another point R, the point 

R’ = P+Q is obtained by negating the y-axis co-ordinate of R. A special case of point 

addition R’ = P + P occurs when P = Q, which is also illustrated in (2-4) and     Figure 

2.2. When P = Q , by taking the tangent to E(Fq) at P, there is one tangent line that must 

intersect E(Fq) at a point R, then the point R’ = P + P = [2] P is obtained by negating 

the y-axis co-ordinate. A point subtraction R’ = P – Q is equivalent to a point addition 
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after negating subtrahend Q’s Y-coordinate y2, and the point subtraction has the 

property: P = (P+Q) – Q. 

The basic bilinear pairing algorithm e(P, Q) is a bilinear mapping: G1 × G2 → 

GT, where G1=G2=GT=E(Fq
k
), k is an integer and Fq

k
 an extension field of Fq. Its bilinear 

property, which is represented as e([a]P, [b]Q) = e(P,Q)
ab

 = e([a]P, Q)
b
 = e(P, [b]Q)

a
, 

where a and b  Fq, is usually used to construct privacy-preserving protocols. One of the 

most popular ordinary [32] curve families used to implement bilinear pairing is the BN 

curve family, which has the form of y
2
 = x

3
 + b defined over Fq. Given the construction 

parameter u, a BN curve is constructed as follows: the trace of Frobenius over Fq is t(u)= 

6u
2
+1, the modulus q(u) = 36u

4
+36u

3
+24u

2
+6u+1, the order n(u) = 

36u
4
+36u

3
+18u

2
+6u+1. When u reaches 64-bit and the embedding degree k=12, the 

security strength of the bilinear pairing computation is equivalent to 128-bit AES [10]. 

Input: P in E(Fq)[r], Q in E(Fq
k)[r] ∩ Ker(πq-[q]),

 and a=6u+2=∑i=0ai2i, a has L effective bits

Output: Ra(Q, P)

1:  T←Q, f←1;

2:  for i = L-2 to 0, step is 1, do:

3: T←2T;

4: f←f2 ∙ lT,T(P)

5: if ai==1:

6:     T←T+Q;

7:     f←f ∙ lT,Q(P)

8: end if

9:  end for

10: return f← (f ∙ (f ∙ laQ,Q(P))q  ∙ lπ(aQ+Q),aQ(P))(q^k-1)/r

 

            Figure 2.3 Miller's Algorithm for R-ate Pairing 
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The implementation of bilinear pairing is called Miller’s algorithm [87]. It has 

several optimized variants, based on different families of elliptic curves. The variant 

adopted in this dissertation is R-ate pairing. Miller’s algorithm for R-ate pairing is 

displayed in Figure 2.3. In Figure 2.3, Fq is a finite field with modulus q, k the 

embedding degree, E/K an elliptic curve E over a field K, E[r] the group of all r-torsion 

points of E, and E(K)[r] the K-rational group of r-torsion points of E over field K. Let πq 

be the q-power Frobenius endomorphism on E(Fq), G1 = E(Fq)[r], G2 = 

E(Fq)[r]∩Ker(πq-[q]), t the trace of πq, PG1 and QG2, the function of R-ate pairing 

[60] over BN curves [10] is Ra(Q, P) = (f ∙ (f ∙ laQ,Q(P))
q
 ∙ lπ(aQ+Q),aQ(P))

(q^k-1)/r
, where a = 

6u+2, u is the BN curve construction parameter, f = fa,Q(P) the rational function and lA,B 

the line function [87] through point A and B. The algorithm is commonly divided into 

two major steps: lines 2-9, called Miller Loop (ML), and line 10, known as Final 

Exponential (FE). In FE, The exponentiation by (q
k
-1)/r promises a unique result. 

2.4 Modern GPU Architecture 

The experimental devices used in our work are based on the Compute Unified 

Device Architecture (CUDA) [36]. GTX-680 is a GK104 generation device [30][36], 

which contains 8 streaming multiprocessors (SMX). Each SMX can concurrently run 

multiple GPU threads. These threads are grouped into 32 parallel threads, called warps. 

Each SMX has 192 CUDA cores along with 32 load/store units, which allow for a total 

32 threads per clock to be processed. However, for better utilization of the pipeline, it 

usually simultaneously runs multiple warps of threads in one SMX. Warps of threads 
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assigned to the same SMX and dispatched to run at the same time are called a block of 

GPU threads. Each SMX also contains four warp schedulers with eight dispatch units 

that process 64 concurrent threads (2 warps) to the cores. For the fast data storage, each 

SMX has 64K 32-bit registers and 64KB on-chip shared memory/L1 cache. The shared 

memory resides on 32 64-bit banks. The on-chip fast shared memory is usually used as 

cache or shared variables among threads in the same block. Two SMXs share one global 

memory controller, and each memory controller ties with a 128KB L2 cache. In total, 

there are four memory controllers and 512 KB L2 cache. Via these memory controllers, 

SMXs could access the 2GB slow global memory. The global memory clock is 

1502MHz, and the global memory bandwidth is 256-bit.  

A program on GPU is called a kernel function. Its input setup, parallelism 

configuration, launching and output read-back are controlled by a host thread on CPU. 

Once a kernel function is launched, its host thread could release the CPU time-slice and 

be waken until the kernel function completes. At runtime, following the Single 

Instruction Multi Threads (SIMT) architecture, each GPU thread runs one instance of the 

kernel function. The degree of parallelism is determined by (1) the register usage per 

thread, (2) the shared memory usage per thread. To fully utilize the computational 

strength of the Kepler GPU, the degree of parallelism needs to be raised as much as 

possible to cover the memory accessing latency and other overheads in the pipeline of 

CUDA cores. Any shared memory access bank conflicts, code path divergence and 

explicit synchronization command will stall the concurrent execution of a warp and thus 

should be avoided. Succinctly put, key design objectives include maximizing the degree 
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of parallelism, minimizing buffer usage, four-cycle-cost synchronization across threads 

in the same block, branch divergence, and shared memory bank conflicts. 
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CHAPTER III  

RELATED WORK 

 

In this chapter, we first discuss previous work on optimization techniques for 

SFE, point multiplication and bilinear pairing. Then, we report existing CPU-based 

benchmarks of the SFE-based ED problem and the SFE-based SW problem, and CPU-

based or GPU-based benchmarks of point multiplication, and bilinear pairing. 

3.1 Secure Function Evaluation 

Besides the Fairplay [65] introduced in the previous chapter, TASTY [40] was 

another work that studied the composibility of privacy-preserving applications. TASTY 

provided a programming language to construct privacy-preserving applications via SFE-

based GCs and HE-based arithmetic functions. To optimize the computation of SFE, 

several techniques had been proposed: free-XOR [57] which replaced block-cipher 

operations by XOR operations for the XOR gate, “permute-and-encrypt” [65] which 

reduced the de-garbling process of a garbled gate to one block-cipher operation, the m-

to-n garbled lookup table and the compact-circuit design [43] which reduced the number 

of garbled gates for a number of SFE-based problems, and the garbled-row-reduction 

(GRR) [79] which reduced 25% space of the garbled result for each gate. 

Jha et al. [52] proposed three protocols for the SFE-based ED problem and the 

SFE-based SW problem. Their protocol-3 solved a 200×200, 8-bit alphabet ED (60×60 

SW) problem in 658 (1000) seconds. Later, by using all the optimization techniques 
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mentioned in the previous paragraph, Huang et al. [43] computed a 2000×10000 8-bit 

alphabet SFE-based ED problem in 223 minutes, and a 60×60 SFE-based SW problem 

in 415 seconds, both on two computes with Intel Duo E8400 3GHz CPUs. For CPU-

based benchmarks of SFE-based problem in the malicious model, we refer readers to 

[46][58]. 

Frederiksen et al. [30] parallelized the OT transactions and multiple instances of 

one garbled circuit on GPU, in the malicious security model. But our work was different 

from theirs. Their privacy-preserving applications were limited to one GC, which was 

insufficient to describe the SFE-based ED problem or the SFE-based SW problem. Their 

parallelization strategy is launching thousands of independent GPU threads while each 

GPU thread runs an independent SFE instance. Comparing with their work, our work 

focuses on parallelization of a large scale SFE instance on GPU. And our parallelization 

strategy partitions independent blocks of GCs of the single SFE instance and run these 

independent blocks simultaneously. Due to the difference on parallelization strategies, 

our implementation requires more complicated synchronization mechanisms that theirs. 

CUDASW++ [62] was one of the most famous open source projects that ran the plain-

text SW problem on GPU. In CUDASW++, the storage of DNA query scores was re-

organized to minimize overheads for memory access. Because real values of scores are 

replaced by paired wire labels in SFE, we do not follow their storage scheme. Instead, 

we develop our collision-free storage model for wire labels and eliminate the memory 

interface competition. And to minimize memory heap operations, we develop a static 

memory management scheme to maintain wire labels and intermediate results of the 
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garbling/de-garbling process. A slice-by-slice GPU resource mapping policy was 

proposed in CUDASW++. As we observe that the privacy-preserving requirement of 

SFE introduces new inter-dependency for computation steps on the generator side, we 

develop a new GPU resource mapping policy for the generator. And for the 

computations on the evaluator side, since the privacy-preserving requirement of SFE 

only complicates the computation steps, we develop a more fine-grained GPU resource 

mapping policy than that in CUDASW++. 

3.2 Point Multiplication and Bilinear Pairing 

Elliptic curves over finite fields can be divided into two types: the supersingular 

(SS) curves, and the ordinary (non-supersingular) curves. Let the trace of E/Fq be t = 

q+1-#E(Fq). If the greatest common divisor of t and q equals 1, then E is ordinary, 

otherwise E is SS. For their simplicity and ease of modular multiplication, SS curves 

have been proposed to construct pairing-based cryptographic protocols. But SS curves 

have limitation on the potential values of the embedding degree k, and it requires to use 

curves of characteristic 3 when its embedding degree k = 6 [1][24]. As proved in [54], 

implementing characteristic 3-based arithmetic operations on GPU brings either more 

space cost, or more complicated logic and thus harder for parallelization. Therefore, we 

prefer to use ordinary curves and compute the pairing algorithm under characteristic 2. 

One ordinary curve can be claimed as a pairing-friendly curve when two 

conditions are satisfied: a prime r ≥    dividing #E(Fq), and k with respect to r is less 

than log2(r) / 8 [32]. One of the most popular pairing-friendly ordinary curve families is 
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the Barreto-Naehrig (BN) [10] curves, in which the curve parameters are represented by 

polynomials of the construction parameter u. Recently, Pereira et al. [78] proposed an 

implementation-friendly subclass of BN curves that brought better computational 

efficiency. 

A major approach to accelerate Miller’s algorithm is by reducing the length of 

Miller Loop. Barreto et al. [11] extended the Duursma-Lee method [27] to supersingular 

abelian varieties using the ηT pairing. The Ate pairing on hyper-elliptic curves [34], the 

twisted Ate pairing [42][66] and its variation Ate pairing [99] on ordinary curve reduced 

the loop length to log2(|t − 1|) / 8, where t was the trace. An optimal Ate pairing [94] 

was able to attain the iterations of Miller Loop to its lower bound. The R-ate pairing [60] 

obtained even shorter loop length than [34] on certain pairing-friendly elliptic curves. 

Other efforts [4][16][86][87][88] worked on arithmetic optimization, such as 

denominator elimination, final exponentiation simplification, and faster variants of 

Miller’s algorithm under the Jacobian [16] or the Edwards co-ordinate [13], efficient 

formulas for various curves with twists of degree 2,3,4 or 6 [23]. 

Antão et al. [2], Bernstein et al. [12] and Szerwinski et al. [93] pioneered the 

implementation of point multiplication on CUDA. Szerwinski et al. [93] straight forward 

ported multi-precision arithmetic on GPU. Bernstein et al. [12] represented a 224-bit 

multi-precision operand into 24 32-bit float point numbers and achieved 5895 point 

multiplication per second on one GTX-285 GPU. Antão et al. [2] implemented point 

multiplication under Residue Number System (RNS) and achieved 9827 point 

multiplication per second on one GTX-295 at the 112-bit security level. However, Antão 



 

23 

 

et al. [2] did not have a comparison of computational complexity between conventional 

Montgomery and RNS-based Montgomery number system on GPU, and directly adopted 

RNS-based Montgomery number system. Longa et al. [63] and MIRACL [69] reported 

two of the best CPU-based benchmarks of point multiplication. The former was on a 

standard elliptic curve and the latter on a twisted curve over Fq
2
 [63]. MIRACL [69] 

could run 14509 point multiplication per second on 3.0GHz AMD Ph. II X4 CPU at the 

112-bit security level, and Longa et al. [63] 22472 point multiplication per second on 

2.6GHz AMD Opteron at the 128-bit security level. Another recent work [19] also 

adopted RNS-based Montgomery as the number system to implement bilinear pairing on 

FGPA. 

Two recent studies worked on GPU-based bilinear pairing solutions: Zhang et al. 

[98] implemented Tate pairing over a base field with a composite order, and Katoh et al. 

[54] ηT pairing in characteristic 3. Both papers serially implemented the reduction 

function [68] due to its difficulty for parallelization. As we will discuss later, a parallel 

version and a serial version of the reduction function are developed in our work, and we 

compare their performance to evaluate which solution is more efficient on the 

contemporary GPU architecture. Moreover, both papers ignored the parallelization of the 

final exponentiation (FE) step, which was almost as the same cost as Miller Loop (ML) 

(check Table 2 in [14] for the computing cost comparison between ML and FE). We aim 

to support parallelized ML, FE. Additionally, we also aim to support exponentiation over 

Fq
12

 for privacy-preserving protocols that may further run exponential steps on the result 

of bilinear pairing. 
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CHAPTER IV  

LARGE SCALE PRIVACY-PRESERVING ED/SW PROBLEMS ON GPU 

 

In this chapter, we present the parallel computing model to compute the large-

scale privacy-preserving Edit-Distance and Smith-Waterman problems on the 

contemporary GPU architecture, with state-of-the-art optimization techniques such as 

free-XOR [57], oblivious transfer extension [48], permute-and-encrypt [65], efficient 

lookup-table design and compact circuits [44]. We will first discuss the inter-

dependency among computation steps of the SFE-based Edit-Distance (ED) problem 

and the SFE-based Smith-Waterman (SW) problems, on both the generator and the 

evaluator sides. Then, we present the low-level GPU gate garbler/de-garbler. Next, we 

discuss details of the pipelined computation steps for the SFE-based ED problem and the 

SFE-based SW problem, respectively. In the end, to verify the efficiency of the system 

proposed in this dissertation, we evaluate the execution result of a 5000×5000 8-bit 

character SFE-based ED instance and a 60×60 SFE-based SW instance. 

Recalling the garbling/de-garbling process of a garble gate c=G(a,b) introduced 

in the subchapter 2.1, the generator generates wire labels {ka
0
, ka

1
}, {kb

0
, kb

1
}, {kc

0
, kc

1
} 

for a, b, and c, runs four block-cipher operations as the garbling process of G, sends the 

digests of block-cipher operations to the evaluator, and then the evaluator runs the same 

number of block-cipher operations as the de-garbling process of G to decrypt a wire 

label of c. In this process, it is the evaluator who really computes the result of gate G. 

Supposing another gate e=G’=(c,d) exists and it re-uses G’s output c, for the generator, it 
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can simultaneously garbling G and G’ if it has generated all wire labels {ka
0
, ka

1
}, {kb

0
, 

kb
1
}, {kc

0
, kc

1
}, {kd

0
, kd

1
} and {ke

0
, ke

1
}. However, for the evaluator, it needs the de-

garbling result of G to de-garbling G’, and thus de-garbling G’ must follow the de-

garbling process of G. 
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Figure 4.1 Parallel Computing Models for the (a) ED, (b) SW problems 

Before we discuss inter-dependency of the SFE-based ED problem and the SFE-

based SW problem on the generator side and the evaluator side, we first present our 

divide-and-conquer design strategy for the parallel computing model. Our design 

strategy has two levels: the GC level at the bottom, and the DP level on the top. At the 

GC level, the vast number of gates are concurrently garbled on the generator side, or de-

garbled on the evaluator side. At this level, we focus on maximizing the degree of 

parallelism for the garbling/de-garbling process with minimum idle cycles on the GPU. 

Satisfying the ultra-short security level [40] is also considered at this level. At the DP 

level, we focus on fully utilizing the degree of parallelism provided by the GC level, 

while the inter-dependency described in the previous paragraph is satisfied.  
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To understand the inter-dependency of the SFE-based ED problem and the SFE-

based SW problem, we first analyze the inter-dependency in their plain-text counter 

parts. As we will show later, computing one entry of the DP matrix in the plain-text ED 

(SW) problem is dependent to the results of three neighbor entries on its top, left and 

top-left (the neighbor entries on the same column and the same row, and the neighbor 

entry on its top-left). The inter-dependency in the plain-text ED and SW problem are 

illustrated in Figure 4.1, respectively. Parallelization of the ED problem and the SW 

problem fits the “wavefront” pattern [62], which is proposed for tree computation where 

child nodes depend to their parents. The term wavefront describes the edge separating 

the executed nodes from nodes waiting for execution in the next round. In Figure 4.1, the 

N×N DP matrix is processed into 2N-1 slices, W= {S1, S2, …, S2N-1} and a slice Si is a 

diagonal from the top right to the bottom left. And for entries of the DP matrix, called 

slots, they are independent to each other if they are on the same slice. When applying the 

wavefront pattern to the SFE-based ED and SW problems, we treat entries of the DP 

matrix, called GC-slots, as the atomic module at the DP level. Then, for the evaluator, 

GC-slots are independent when they are on the same slice. The degree of parallelism 

equals to the length of a slice, which increases from S1, S2 until SN, and then decreases 

from SN to S2N-1. For de-garbling GC-slots on Si, the pre-requisite is the de-garbled 

outputs on slices Si-2 and Si-1. And hence, the de-garbling process can only de-garble one 

slice at a time, which means Si is mapped to GPU units after Si-1 is completed. 

However, for the generator, according to our discussion in the previous two 

paragraphs, if wire labels of all GC-slots’ outputs have been generated, multiple slices 
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can be garbled simultaneously. As such, garbling the N×N matrix is transformed to a    

1-D vector which is mapped to GPU units. Later in this chapter, observations in this 

subchapter are implemented as cross-slice mapping policies (CSMP) for the generator 

and slice-by-slice policies for the evaluator. In the rest of this chapter, we first present 

the GPU-based gate garbler, which is the implementation at the GC-level. Then we 

discuss the DP-level implementation for the ED problem and the SW problem, 

respectively.  

4.1 GC-level: GPU-based Gate (De-) Garbler 

Recalling the garbling/de-garbling process of a gate, an arbitrary truth table entry 

Txy of a gate G is garbled as Encx,y (kc
z
) = H(ka

x
||kb

y
) XOR kc

z
, where H is the encryption 

function, ka
x
, kb

y
 and kc

z
 are wire labels, “||” is concatenation. Following Huang et al. 

[43], 80-bit wire label is adopted to meet the ultra-short security proposed in TASTY 

[40]. Choices of H are SHA-1 [43], SHA-256 [37], AES-256 supported by the AES-NI 

instruction set of Intel CPUs [58], or other cryptographic hash functions. In this work, 

we chose SHA-256 as H due to its similar cost of SHA-1 [22][80], and better secure 

strength than SHA-1. AES-256 is excluded because it is 3 times slower than SHA-1 on 

GPU [49]. As a result, Encx,y (kc
z
) is in the format of SHA-256(ka

x
 || kb

y
 || i) XOR kc

z
, 

where i is a 32-bit unique gate index in a garbled circuit, where (ka
x
 || kb

y
 || i) is a 192-bit 

block, and the output of Encx,y (kc
z
) a 256-bit digest. Similarly, the de-garbling function 

Dec(Encx,y (kc
z
)) is SHA-256(ka

e
 || kb

e
 || i) XOR Encx,y (kc

z
), where ka

e
, kb

e
 are wire labels 

obtained from OT or a de-garbling process for a predecessor gate. 
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Figure 4.2 Optimization on Shared Memory Access 

The SHA-256 code base used in this research is PolarSSL [81]. When porting the 

code base to GPU, following adjustments are made: our initial analysis shows that one 

round of SHA-256 can be further divided into four steps, and each of which produces 16 

(32-bit) words W[0~15] based on the elements in W computed in the current and 

previous steps. Furthermore, in the end of each step, W[0~15] are used to update the 

eight 32-bit digest (cipher text). In the original code base, the four steps are computed 

together and thus it needs a four times larger variable W’[0~63]. We clearly partition the 

four steps and keep re-using W[0~15] in each step. As a result, the share memory usage 

per SHA256 instance is dropped to ¼ of the original version. 
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Overall, a total of 40 (32-bit) words of space are needed for each round. That is, 

when each thread runs an independent instance of SHA-256, 16 (32-bit) registers store 

W[0~15] in the current step, 8 (32-bit) registers store the digest, and one block of 16×32-

bit shared memory is assigned to each thread to store W[0~15] produced in the past step, 

the storage format of such a shared memory block per thread is illustrated in Figure 4.2 

(b). Here, each block (uint32 W[0~15]) resides on eight shared memory bank. 

It is noted that a strip of chaff spacer is inserted in the final version of memory 

access model. Figure 4.2 (a) illustrates the memory access pattern if the W[0~15] is 

placed into the shared memory without any optimization. In Figure 4.2 (a), it is found 

that, as all 32 threads in the same warp reads their own W with an identical offset, thread 

{i, i+4, i+8, i+12, i+16, i+20, i+24, i+28}(i=0,1,2,3) are trying to access different tiers (a 

low level GPU architecture) of the same memory bank simultaneously. When such a 

situation happens, GPU threads in a same warp will be stalled. This case is known as 

bank conflict. If W is placed in the share memory following the policy in Figure 4.2 (a), 

the actual degree of parallelism drops to 1/8 of the configuration. To eliminate the often 

hidden shared memory access conflicts, a strip of 64-bit chaff spacers is filled, one in the 

front of every four
th

-thread’s W[0~15]. This way, parallel memory accesses {Ai, Ai+4, 

Ai+8,…Ai+28} issued by threads i, i+4, i+8, …i+28 (i=0,1,2, 3) to read W[0~15] of the 

same offset in its own W array will access distinct memory banks with no conflict. 

Figure 4.2 (b) displays an example of offset j=0, and {A0, A4, A8… A28} read W[0]. 

To reduce the unnecessary off-chip memory access for reading the 192-bit input 

block and writing the 256-bit digest, the coalesce memory access scheme [36] is applied 
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as a minor optimization. Accessing off-chip memory usually brings a 1:100 performance 

degradation than on-chip memory. The bandwidth of the off-chip memory interface is 

256-bit in the Kepler GPU architecture. Taking the input block as an example, the 192-

bit input blocks from four threads, denoted as four uint32[6], are interleaved in the 

global memory space and occupies 3×256-bit. As such, as the four threads visit an 

arbitrary uint32[i] of their own 192-bit blocks with the same i, it costs only one global 

memory read. Although applying the coalesce memory access scheme needs extra 

computation cost for the storage format converting on the CPU side, our initial 

experiment results show that this scheme can bring 5% throughput enhancement for the 

gate garbler.  

Overall, each SHA-256 gate garbler thread uses 57 registers, where GK104 

allows up to 63 registers per thread. Global memory access only occurs when the gate 

garbler reads wire labels or writes the digest. Each SMX has 20 warps of GPU threads, 

and the degree of parallelism is 5120=8 SMX × 640 threads. Each SMX has 64KB on-

chip memory, partitioned as 48 KB shared memory plus 16 KB L1 cache. 41.25KB of 

the 48KB of shared memory is utilized to save W. Any attempt to assign more complete 

warps of thread will make the total shared memory size exceed the shared memory size 

boundary of GK104, it can be concluded that the gate garbler has fully utilized the 

shared memory resource.  

As a result, the latency of computing 10000 times SHA-256 on 5120 threads is 

304ms, here each SHA-256 instance reads in a block of 192 bits as the input. The 

throughput is 30.27Gbps. This performance result has included the GPU-CPU data 
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exchange time, and it is comparable to the result of SHA1 on GTX-580 [49]. As 

reference, Intel reported that their SHA256 could obtain 11.5 cycles/byte on a single 

core of Intel i7 2600 in 2012 [37], equivalent to 2.47Gbps. Next, we present our DP-

level design for the SFE-based Edit-Distance and Smith-Waterman problems. 

4.2 DP-level: Computing SFE-based Edit-Distance 

To design the parallel computing model at the DP level, the first task is analyzing 

the computation logic of the ED problem. The plain-text version ED problem can be 

described as follows: 
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Figure 4.3 The SFE Building Block (a GC-slot at DP[i][j]) for ED 

1. The two input strings A[N] and B[N] are from the generator and the evaluator 

respectively;  
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2. Solving the ED problem is essentially computing an (N+1)×(N+1) DP matrix 

from top-left to right-bottom. And each slot DP[i][j] (i,j [0,N]) is computed 

as: 

DP[i][0] = i, DP[0][j] = j, or 

if i,j [1,N], DP[i][j] = (Y > X) ? (X+1) : (Y+t) 

where t = (A[i] ≠ B[j]), X=min(DP[i-1][j] , DP[i][j-1]), and Y=DP[i-1][j-1] 

[43].  

When using the SHDL to describe the SFE-based ED problem, “DP[i][j] = (Y > 

X) ? (X+1) : (Y+t)” can be summarized as a combination of one “equal(A[i], B[j])” GC, 

two “min(x,y)” GCs, and one “add(x,1)” GC. Such a combination is illustrated in Figure 

4.3. In Figure 4.3, the GC-slot represents the privacy-preserving computing logic for 

computing the entry DP[i][j], which is composed of two Min_of_2 circuits (Min_of_2 

and Min_of_2_mux), one Char_EQ circuit (compute t), and one Add_One circuit. 

[43] had already presented the optimal structure of one GC-slot, that is, GC-slots 

do not have a unified structure, instead, the complexity of a CG-slot is closely dependent 

to the actual bit-widths of inputs. However, some details for inter-connecting GCs within 

one GC-slot are not clear presented in their work. For example, two inputs of one 

Min_of_2 GC are forced to have equal bit-width to ease the difficulty of GC design, but 

the Min_of_2 GC’s inputs DP[i-1][j] and DP[i][j-1] may have different bit-width at 

certain slot{i, j}. In [43][44], alignment of widths of inputs for one GC was ignored.  

We give the bit-width alignment scheme based on two 1-bit extension wires (see 

Figure 4.3) for {DP[i-1][j], DP[i][j-1]}, and {X, Y} here. Knowing that the maximum 
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value of an arbitrary GC-slot DP[i][j] is max(i, j), the maximum possible values of 

inputs and intermediate results in a GC slot are listed in Table 4.1. This table is helpful 

to identify when the bit-width alignment scheme is necessary for the input wires of 

circuit Min_of_2 and circuit Min_of_2_mux. 

Table 4.1 Maximum Possible Values of Inputs and Intermediate Results in DP[i][j] 

 DP[i][j-1] 

(width = m3) 

DP[i-1][j] 

(width = m2) 

X (width = m4) Y (width = m1) 

i < j max(i,j-1) = j-1 max(i-1,j) = j min(i-1,j) = j-1 max(i-1,j-1) = j-1 

i == j max(i,j-1) = i max(i-1,j) = j min(i,j) = i max(i-1,j-1) = i-1 

i > j max(i,j-1) = i max(i-1,j) = i-1 min(i,i-1) = i-1 max(i-1,j-1) = i-1 

The first two columns of Table 4.1, representing DP[i-1][j] and DP[i][j-1], are 

values of inputs of one Min_of_2 circuit. The difference of input value m3=m2 – 1(m2=m3 

– 1) is true when i<j (i>j). As such, the extension wire is activated for DP[i][j-1] (DP[i-

1][j]) when i<j (i>j), and j (i) equals power of 2. Similarly, the 3
rd

 and 4
th

 columns, 

representing X and Y, are values of inputs of the other Min_of_2 circuit which has one 

additional 1-bit “less or greater” signal output. The difference of input value m1= m4 – 1 

is true when i==j. As such, the extension wire is activated for Y when i==j, and i is 

power of 2. 
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4.2.1 GPU Mapping Policies 

Next, we present how thousands of GC-slots of the SFE-based ED problem are 

parallel computed on the Kepler GPU architecture. Recalling the key observation 

presented at the beginning of this chapter, for the generator, garbling a GC-slot on a slice 

Si only needs to re-use wire labels associated output wires of GC-slots on predecessor 

slices Si-2 and Si-1; And for the evaluator, de-garbling a GC-slot on a slice Si needs to re-

use decrypted results of GC-slots on predecessor slices Si-2 and Si-1. Due to the difference 

of inter-dependency of computation steps for the two principals, their GPU mapping 

policies are designed separately. 

On the generator side, the cross slice mapping policy (CSMP) is adopted as 

follows: the CSMP partitions the DP matrix into multiple tasks, each of which aims to 

fill up 5120 GPU gate garbler threads to maximize the speedup factor. In one task, each 

GC-slot is assigned to one GPU thread. Before the current task starts, all paired wire 

labels for GC-slots in this task are prepared. The CSMP for the first task is illustrated in 

Figure 4.4.  

0 1 2 3 4 ... 101 ...

1

2

3

...

i 0 1

0

1

2

3

...
...

...

2 3 4 ... 101

j
DP 

matrix

GPU gate 

garbler 

threads

thread 

0

thread 

1
….

thread 

5119

DP[1][1] ...DP[1][2] DP[2][1] DP[1][3]

 

slice 1 slice 2 slice 3 … …  101Task[0]:

  

... ...

 

Figure 4.4 The Generator's Resource Mapping Policy: CSMP 
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Figure 4.4 shows that the first task task[0] contains 5120 GC-slots, which is from 

slice 1, 2, 3, … up to a fraction of slice 101. As such, task[0] has fully loaded the GPU 

gate garbler. Furthermore, to facilitate the synchronization between the two principals, 

the direction of counting the 5120 GC-slots is slice-by-slice, not from top-left to bottom-

right. When GPU runs the 5120 GC slots in lock-step, each GPU thread garbles its 

corresponding GC-slot gate by gate for the entire GC-slot. In other words, the inter-

dependency within one GC-slot is easily satisfied because the logic of each GC-slot is 

serially garbled by one GPU thread.  

The challenge of CSMP is the management of wire labels. To support large 

problem sizes, generating wire labels for all GC-slots in the DP matrix at the beginning 

is inacceptable. Instead, it is preferred to generate wire labels at the beginning of each 

task. However, for certain wire labels, such a preference is impractical. For example, 

wire labels that represent output wires of GC-slots may be used in two consecutive tasks, 

and thus the successor task does not need to re-generate these wire labels. Another 

example is the wire labels that map to the input string A[N] and B[N], which are used by 

all tasks. As a result, it is necessary to differentiate types of wire labels according to their 

life-time. 

Wire labels are classified into three major types LO, LI, and LG. Referring to Figure 

4.3, LO represents the set of paired labels for wires of a GC-slot’s outputs. LI represents 

the set of paired labels for wires internal to a GC-slot and not connected to other GC-

slots. LG represents miscellaneous types of paired labels, and they are treated as a 

“global” set to simplify memory management. Classification of these three groups of 
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wire labels is not only important to efficiently use of the GPU memory space, but also 

critical to synchronous accesses of wire labels by parallel GPU threads. LO and LI are pre-

assigned at initialization of a new task, but LG at initialization of the whole SFE system. 

LO and LI are overwritten if they are associated with an XOR gate’s output [57] by a 

calculation result based on the XOR gate’s inputs’ wire labels. Even though some LO and 

LI need to be overwritten during execution, they are still pre-assigned to simplify the wire 

label generation function at negligible costs.  

Overwriting of labels in LO has to occur before garbling of a task. In most cases, 

wire labels in LI are overwritten during garbling because no other GC-slots depend to 

them. However, if a wire label in LO is dependent to some LI, these wire labels in LI need 

to be overwritten before overwriting of LO. For instance, the output of an XOR gate G1 is 

the input of another XOR gate G2, and the output of G2 is also the GC-slot’s output. Here, 

wire labels associated with G1’s (G2’s) output are in LI(LO). Both overwriting of labels for 

G1 and overwriting of labels for G2 should be done before garbling of a task, 

furthermore, the former overwriting needs to be done before the latter overwriting.  

Next, miscellaneous cases related to LG are listed: (1) the first case is the GC-slots 

on the edge of the DP-matrix (excluding the edge DP[i][0] and DP[0][j] since they are 

constant values). The two edges can be represented as DP[1][j], or DP[i][1], i.e., the 

second row and second column of the DP matrix. In these GC-slots, the Min_of_2_mux 

circuit’s input DP[i-1][j-1] is a real value rather than wire labels from other GC-slots 

because i or j=1. Furthermore, some gates in these Min_of_2_mux circuits are only 
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dependent to inputs wires of DP[i-1][j-1]. Garbling of these gates can be skipped, and 

these gates could be treated as the generator’s inputs. As such, we directly assign paired 

wire labels to the outputs of these garbled gates. (2) the second case of LG is in the 

Add_one circuit. As listed in Table 4.1, the maximum possible value of the input of the 

Add_one circuit equals j-1 (i-1) if i < j (i > j), and the maximum possible value of its 

output is j (i). When j (i) is power of 2, the bit-width of the output is 1-bit greater than 

that of the input. For this case, an overflow bit is needed for correctly representing the 

output value. (3) the third case is the extension wires aforementioned. (4) in the end, the 

forth case is wire labels mapped to the generator’s input A[N] and the evaluator’s input 

B[N]. They are global because they need to be used by multiple GC-slots, and they are 

generated in the system initialization phase. 
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Figure 4.5 The Evaluator's GPU Resource Mapping Policy: slice-by-slice 
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On the evaluator side, a GC-slot DP[i][j] can only be de-garbled after the 

evaluator receives de-garbled results of slots DP[i-1][j], DP[i][j-1] and DP[i-1][j-1], 

which have been de-garbled in the previous two slices. As such, a slice-by-slice GPU 

resource mapping policy is proposed for the de-garbling process on the evaluator side. 

Figure 4.5 illustrates a snapshot of the de-garbling process of slice 101. In this figure, 

GC-slots in slice 101 are mapped to GPU de-garbler threads. This mapping happens 

after the generator side completes its tasks 0 and 1 since the generator’s task 0 does not 

contain all GC-slots of slice 101. Same as the garbling process, each GPU thread de-

garbles its corresponding GC-slot gate by gate, until all gates in its GC-slot is de-

garbled. If a slice contains more than 5120 GC-slots, the mapping and de-garbling 

process is repeated until all GC-slots in the slice are de-garbled. 

4.2.2 Memory Management and Pipelined Scheduling 

While the GPU is garbling/de-garbling GC-slots, CPU is not idle. Instead, CPU 

are utilized to scheduling the execution of next task (slice) on the generator (evaluator) 

side, and maintaining memory chunks associated with next task (slice). To support the 

large-scale SFE-based ED problem and SW problem on commodity computers and 

GPUs, setting a moderate memory boundary (around 4GB on CPU, and 2GB on GPU) 

for our parallel computing model is necessary. To meet such a memory boundary, the 

static memory management policy is proposed as follows: 

On the generator side, we observe that repetitive allocation and release of GPU 

memory for the LI type wire labels are unnecessary because the host control thread can 
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re-use one device memory chunk in multiple kernel functions. In other words, if the 

maximum device memory usage per task has been correctly estimated, then all tasks 

could repetitively utilize this memory block since they serially dispatched to the GPU 

device. The same memory management policy can be applied to the host memory, which 

only stores the encryption results of block-cipher operations as intermediate results for 

the generator. The memory allocation only happens in the system initialization phase, 

and the memory release operation only occurs in the system de-construction phase. As a 

result, the numbers of allocation and release operations in the host and GPU memory 

spaces are minimized. 

Due to the slice-by-slice policy for de-garbling GC-slots on the evaluator side, 

the de-garbling result per slice does not need to be maintained in the GPU memory space 

until the whole execution ends. Instead, only de-garbling results of the latest three slices 

are kept in a separate memory chunk for the next slice. On the generator side, to simplify 

the synchronization between computation and network transferring, all computation 

results are copied to a separate memory block for network transferring. And then the 

memory space for storing computation results of the current task is ready for being re-

used by the next task. 

A scheduling step is a process on the CPU that sets up start-offsets of wire labels 

of LI, LO and LG, and start-offsets of output results for each GC of each GC-slot in the 

current task (slice) on the generator (evaluator) side. To locate these start-offsets, it is 

necessary to collect information of GCs from their SHDL code. The objective of this 

parser is two-fold. First, it collects GC information, such as the number of LI, LO and LG, 
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the number of output entries and the dependency among gates within one GC. Second, by 

using collected information, it assesses the maximum memory usage of a task (slice) in 

the whole SFE-based protocol. Such a parsing process happens in the system 

initialization phase. And right now, this parsing process is hard coded in our system.  

After this parsing process, there is another necessary preparation step in the 

initialization phase. This preparation step needs to generate static structural information 

for each GC-slot. It records which version of the compacted GCs is used in each GC-slot, 

how many wire labels of LI, LO and LG are consumed in each GC-slot, and how many 

output entries will be generated by the block-cipher operations for each GC-slot. It also 

marks several flags for the utilization of wire labels LG, for example, the overflow flag for 

the Add_one GC. With the structural information of GCs and GC-slots, computing the 

start-offset of wire labels of LI, LO, LG, or entries of output results for each GC is simply 

accumulating offsets of that of the specific GC-slots, and the relative start-offsets of GC 

in the GC-slot.  

These extension and overflow flags are critical to maintain the correctness of the 

logic, however, a general solution that uses conditional statement to check these flags for 

each GC and each gate during garbling/de-garbling may bring a large number of branch 

divergences on GPU. As such, this is a trade-off between the generality and performance 

of the system. Because this work focuses on the ED problem and the SW problem, our 

code is highly associated with the structure of GC-slots for the SFE-based ED problem 

and the SFE-based SW problem, so that a “if-else” statement for checking extension or 

overflow flags are triggered only when it is necessary. 
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Figure 4.6 The Pipelined Garbling & De-garbling Process (ED) 

Figure 4.6 illustrates the pipelined processing flows between the garbling and de-

garbling processes for the ED problem. On the generator side, the three CPU threads are 

a scheduler, a GPU controller and a communicator. The generator’s step 1 (the 

evaluator’s step 3), named as “scheduling” are the scheduling step presented in last 

several paragraphs. When the scheduling work for the current task is completed, the 

scheduler pushes the current task to a queue shared with the GPU controller. Then the 

GPU controller revises slots’ output wire label pairs for XOR gates as the step 3 (of the 

generator), and runs gate garbling on GPU. Meanwhile, the scheduler starts the 

scheduling step for the next task. Once the garbling process completes, the 
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communicator transfers encrypted truth tables, encrypted permute-and-encrypt bits [65], 

and wire labels for extension wires (only one of a pair that associates with value 0) used 

in the current task, to the evaluator. 

On the evaluator side, the two CPU threads are a communicator and a 

scheduler+GPU controller. Its scheduler+GPU controller first determines how many 

slices are ready for de-garbling after receiving the encryption data of the latest task. 

Figure 4.6 illustrates an example that the most recent received task, task 0, contains 

multiple slices. As such, the scheduling step and the GPU-based de-garbling step are 

invoked multiple times, each time for one slice in the task 0. 

Table 4.2 Pipeline Execution Time Break Down (ED) 

Exec Time Generator Evaluator 

1. SFE System initialization 6.92s 2.94s 

2. Scheduling 6.06s 23.04s 

3. GPU garbling/de-garbling (without 

GPU-CPU data copy) 

1062.95s (0.218 

s/task) 

136.55s 

(0.014s /slice) 

4. CPU-GPU data copy, resource mgmt 99.13s 50.21s 

5. Total computing latency 1520s 345.3s 
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4.2.3 Experiment Result and Analysis 

Following the previous study [43], we select the test case 5000×5000 8-bit 

alphabet ED problem, which is composed of 1.88 billion non-free gates, as the test case 

to evaluate the performance of our parallel computing model on a CPU-GPU system. 

The generator runs 4883 tasks on a Xeon E5504 CPU at 2.00GHz with 16GB memory 

plus a GTX 680, and the evaluator runs 9999 slices on an Intel i7-3770K CPU at 3.5GHz 

with 8GB memory plus a GTX680 GPU. 

Table 4.2 lists the break down of execution times for major pipeline steps of the 

test case. Row (2) matches the generator’s step 1 (in Figure 4.6), and the evaluator’s step 

2+3. Row (3) matches the generator’s step 2+3+4, and the evaluator’s step 4. Row (5) 

lists the total computing latencies (1520s, 345.3s), which does not include networking 

transmission latencies, nor the system initialization time. There is a difference between 

the total computing latencies (row 5), and the sum of rows 2, 3, and 4. Such a difference 

is mainly spent in a compaction process of the garbling outputs. In this compaction 

process, encrypted truth table entries are compressed to eliminate bubbles caused by our 

static memory management policy. This step is necessary to reduce network transferring 

cost. And on the evaluator side, the time difference is spent in a reverse process of the 

generator’s compaction process, which normalizes lengths of the garbling outputs. 

In Table 4.2, it is also shown that the time spent in garbling is much longer than 

that for de-garbling. It fits the expectation since the cost of de-garbling a gate is reduced 

to 12.5% (for a 3-bit in 1-bit out gate) or 25% (for a 2-bit in 1-bit out gate) of garbling a 

gate when the permute-and-encrypt technique [65] is applied. Another reason would be 
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that, in most cases, the computing logic of slots in one task is much more diverse (uses 

more different versions of the Min_of_2, Min_of_2_mux or Add_One circuits) than that 

in one slice. Such diversity results in greater synchronization cost under the SIMT 

architecture. 

The computation between the two principals is also pipelined. In this test case, 

the generator usually completes its total computing tasks when the evaluator completes 

93% of de-garbling slices. The overall running time, excluding networking delays, to 

compute the 5000×5000 test case is 1555 seconds, which translates to a throughput of 

1.209×10
6
 gates per second. Compared with the computing speed of 96000 gates per 

second [43], the acceleration rate is 12.5 folds. 

Table 4.3 Major Memory Utilization on the Generator Side (ED) 

 Generator side memory usage 

LG for DP[1][j] and DP[i][1] 1.1MB (host & GPU) 

LG for overflow 0.3MB (host & GPU) 

circuits structural info of DP[i][j] 286MB (host) 

relative start addresses of LO, LI, or LG 

for each GC-slot in one task 

0.3MB (host & GPU) 

LI for each GC-slot in one task 12.5 MB (GPU) 

garbling output of one task 80MB (host & GPU) 

LO of GC-slots in latest three slices in 

the previous task 

3.8MB(GPU) 

network transferring queue 3.2GB (host) 
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Table 4.3 illustrates the major host & GPU memory consumption on the 

generator side. As shown in Table 4.3, the major memory utilization is storing circuit 

structural information for the 5000×5000 GC-slots. Comparing with that, the 

computation-related memory utilization for one task is negligible. In sum, the overall 

memory utilization excluding network transferring-related part is around 400MB. Due to 

the bursty of garbling outputs pushing into the network transferring queue as we 

observed, an empirical memory upper bound 3.2GB is set for the network transferring 

queue to prevent memory exhaustion. After counting in the network transferring 

memory cost, the total memory usage is around 3.6GB, which is acceptable for personal 

computers or small servers. 

4.3 DP-level: Computing SFE-based Smith-Waterman 

In this subchapter, we present the DP-level design for the SFE-based Smith-

Waterman (SW) problem, especially the part different from that for the SFE-based ED 

problem. At the beginning of this subchapter, we present the structure of a GC-slot in the 

DP matrix of the SW problem. Our revised SW algorithm is displayed as Figure 4.7. The 

algorithm inputs are two genome sequences α and β from the generator and the evaluator 

respectively, a function gap(x) = a + b x (where a and b are public co-efficients) and a 2-

dimensional score matrix. Our selection of gap(x) and score matrix follows [65], that is, 

gap(x) = -12-7x and the score matrix BLOSUM62 [41]. There are 20 types of genome 

enumerated in BLOSUM62, and thus the bit-width of each symbol in α and β is 5. 
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Smith-Waterman(α, β, gap, score):

1: for i from 0 to α.length:

2:     DP[i][0] = 0;

3: for j from 0 to β.length:

4:    DP[0][j] = 0; (j=[0, β.length])

5: for i from 1 to α.length:

6:     for j from 1 to β.length:

7:         signed tmp = DP[i-1][j-1] + score[α[i]][β[j]];

8:         m = 0;

9:         for o from 1 to i, and then 1 to j:

10:             m = max(m, signed (DP[x][y]-|gap(o)|) ),

                here {x,y}={i-o,j}or{i,j-o}, DP[x][y] >= |gap(o)|

11:       DP[i][j] = max(m, signed tmp); 
 

             Figure 4.7 The Revised Smith-Waterman Algorithm 

For convenience of parallelization, we make several small revisions to further 

partition the SW algorithm into steps (lines 7 and 11) of O(N
2
) time complexity and 

steps (lines 8-10) of O(N
3
) time complexity. Line 7 includes a lookup function that 

generates a score from the score matrix, and an addition function that sums results of 

DP[i-1][j-1] and the newly generated score. It is noticeable that the score would be a 

negative value, and thus the sum may also be negative. Therefore, the addition function 

needs to export a 1-bit sign flag as part of its output. For lines 8-10, the original version 

of SW algorithm differentiates the dependency among GC-slots in the same column and 

the same row, and separates the logic into two for loops (one for column, the other for 

row). Here, we consider them as the homogeneous inter-dependency with different 

sources of wire labels. This loop can be further translated as a sequence of 

{signed_Subtraction, Max} circuits. And such a sequence in an arbitrary GC-slot is 

denoted as SEQ. Line 11 only includes one Max circuit which compares the result of 
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SEQ and that of line 7. Noting that the value of an arbitrary DP[i][j] should always 

greater or equal to 0, this final Max circuit does need to export a sign flag. 

At runtime, there is one opportunity for further optimization. Line 9 in Figure 4.7 

indicates that the original length of SEQ is i+j. However, one node (DP[x][y] – gap(o)) 

in the SEQ can be skipped if it is negative for sure. Checking whether (DP[x][y] – 

gap(o)) of SEQ is negative does not break the privacy. According to the computation 

nature of the plain-text version of SW, the maximum possible value of DP[x][y] is 

min(x,y) × SMAX, where SMAX is the maximum positive value in BLOSUM62. The 

other operand of the subtraction, gap(x) = -12-7x, is also public. As such, if the 

maximum possible value of DP[x][y] ≤ gap(o), a node (DP[x][y] – gap(o)) is skipped. 
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Figure 4.8 The SFE Building Block (a GC-slot at DP[i][j]) for SW 
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The structure of a GC-slot DP[i][j] is shown in Figure 4.8. It includes a 

scoreLookup circuit, a signed_Addition circuit, a sequence of unsigned_Max(m, 

signed_Subtraction(DP[x][y], |gap(o)|)) circuits, and an unsigned_Max(m, tmp) circuit. 

The gap(o) is treated as the generator’s input wires since it is independent with the 

evaluator.  

In Figure 4.8, colors for of LI, LO and LG follow the color usage in last subchapter, 

but LO is further divided to two different types of wire labels, denoted by LSO and LCO: LSO 

represents the set of paired labels for wires of GC-slots’ outputs, LCO the set of paired 

labels for wires of circuits’ outputs within GC-slots. Separating LCO and LSO is necessary 

to construct a more fine-grained parallel computing model for SW. LI represents the set 

of paired labels for wires within circuits. Furthermore, LI also include labels for 

extension wires for Max in SEQ, since the number of these wires for all GC-slots in the 

entire DP matrix is too large to be kept as global wire labels. Based on the same reason, 

if a garbled gate in signed_Subtraction does not accept any input from the evaluator, it 

are treated as a wire in LI. LG includes sets of wires labels for the overflow bits of the 

signed_Addition circuit of all GC-slots in the DP matrix, and the evaluator’s input β[N]. 

Special cases are GC-slots DP[1][j] and DP[i][1]. Their GC-slot structure can be 

simplified as one scoreLookup circuit because DP[i-1][j-1]=0, and the outputs of Max 

circuits are always 0. 
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4.3.1 GPU Mapping Policies 

The GPU resource mapping policies for the SFE-based SW problem is similar to 

that for the SFE-based ED problem. That is, the task partition of the cross-slice-mapping 

(CSMP) policy for the generator, and the partition of slice-by-slice policy for the 

evaluator are the same as that for the ED problem. For example, the task[0] on the 

generator side also contains 5120 GC-slots. And on the evaluator side, GC-slots are de-

garbled slice by slice. However, the policies for the SFE-based SW problem are more 

fined-grained than that for the SFE-based ED problem because the former problem has 

much more complicated computation structures of its GC-slots. 
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Figure 4.9 The Generator's CSMP (SW) for (a) Line 7 and (b) Lines 8-11 in Figure 4.7 
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Figure 4.9 (a) illustrates a snapshot of task[0]. It is clear that only {scoreLookup, 

signed_Addition} circuits for each GC-slot in task[0] are contained in Figure 4.9 (a). 

This part has O(N
2
) time complexity, and therefore, each GC-slot has only one pair of 

{scoreLookup, signed_Addition} circuits. Next step is garbling the the O(N
3
) time 

complexity part, in a manner of slice-by-slice and within the scope of one task. Taking 

the task[0] as an example, for each slice in current task, we calculate the number of 

paired {signed_Subtraction, Max} circuits of all GC-slots per slice. Then, each pair of 

{signed_Subtraction, Max} circuits of the current slice is mapped to one GPU gate 

garbler thread. Figure 4.9 (b) uses the 100
th

 slice in task[0] as an example and illustrates 

the mapping policy for the O(N
3
) time complexity part (lines 8-10) and line 11. 
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Figure 4.10 The Evaluator’s slice-by-slice Mapping Policy (SW) for (a) Line 7 and (b)  

Lines 8-11 in Figure 4.7 
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The evaluator also has a fine-grained slice-by-slice resource mapping policy, 

which does not only separate the de-garbling processes of the O(N
2
) time complexity 

part and the O(N
3
) time complexity part, but also separates the de-garbling processes of 

signed_Subtraction circuits and Max circuits in all GC-slots of a slice. Figure 4.10 (a) 

illustrates the slice-by-slice mapping policy of 100 {scoreLookup, signed_Addition (if 

applicable)} circuits in the 100
th

 slice to 100 GPU threads. Then, as shown in Figure 

4.10 (b), for all signed_Subtraction circuits of all GC-slots in the 100
th

 slice, each circuit 

is mapped to one GPU thread because they are independent of each other. Later, in the 

same slice, all Max circuits of one GC-slot are mapped to one GPU thread to enforce 

serial de-garbling of Max circuits.  

4.3.2 Pipelined Scheduling 

The assignment of wire labels for the SFE-based SW problem is also slightly 

different from that for the SFE-based ED problem. LCO and LI are pre-assigned at 

initialization of a new task, but LSO and LG at initialization of the SFE system. LSO is 

treated as global variables during the entire privacy-preserving computing because their 

dependency crosses the DP matrix. The static memory allocation for LSO, LCO, LG and LI is 

similar to its counterpart in the ED problem. The only difference is the assessment of the 

maximum memory usage for saving LCO and LI for line 7 (in Figure 4.7) is per task, and 

LCO and LI for line 7-11 (in Figure 4.7) per slice. 

Comparing with the SFE-based ED problem, the structure of GC-slots for the 

SFE-based SW problem contains richer flags: first, because all unsigned_Max circuits 
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within one GC slot need to have the same I/O bit width, extension-wire flag is necessary 

for each circuit in the sequence of {unsigned_Max} circuits. Second, it saves start-

offsets of LCO associated with unsigned_Max, signed_Subtraction and signed_Addition 

circuits’ output wires are contained. Third, each unsigned_Max circuit saves two offsets, 

one points to its predecessor unsigned_Max circuit in the SEQ, the other points to the 

signed_Subtraction circuit that passes its output to the unsigned_Max circuit. 
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Figure 4.11 The Pipelined Garbling & De-garbling Process (SW) 

Figure 4.11 illustrates the runtime pipeline of the garbling and de-garbling 

process for the SW problem. On the generator side, the step 3 overwrites paired wire 

label that map to outputs of signed_Addition circuits. Then the step 4 garbles 

scoreLookup plus signed_Addition circuits in the task[0]. Meanwhile, the step 6 
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schedules the garbling of the {signed_Subtraction, unsigned_Max} circuit sequence 

SEQ for all slices in the task[0]. Then, step 7 garbles the SEQ slice-by-slice. 

On the other hand, the evaluator’s step 2 schedules the de-garbling process for 

{scoreLookup, signed_Addition} slice by slice, and step 4 for the {unsigned_Max, 

signed_Subtraction} sequence. Step 3, 5, 6 de-garble {scoreLookup plus 

signed_Addition}, the signed_Subtraction circuits sequence, and the unsigned_Max 

circuits sequences respectively. In Figure 4.11, the benefit of pipelined computing line 7 

and line 8-11 (in Figure 4.7) can be easily high-lighted. That is, part of the latency for 

transferring garbled result of SEQ of all GC-slots in one task is covered by the slice-by-

slice de-garbling {scoreLookup, signed_Addition}. 

4.3.3 Experiment Results and Analysis 

Follow previous studies [43][52], we select the 60×60 SW problem as the test 

case to verify the efficiency of our system. Table 4.4 lists the break down of execution 

time on the generator and the evaluator side. In Table 4.4, it shows that a very large 

proportion of execution time is spent in the garbling (de-garbling) process of Max 

circuits on the generator (evaluator) side. It meets the expectation because the amount of 

Max circuits is huge, and all Max circuits within one GC-slot have to be de-garbled 

sequentially. Garbling and de-garbling process of signed_Subtract circuits takes much 

less execution time due to the independency of signed_Subtract within one GC-slot. In 

this test case, the execution times of garbling and de-garbling the time complexity O(N
2
) 

part are trivial.  
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Table 4.4 Execution Time Break Down (SW) 

Exec Time Generator Evaluator 

SFE system initialization 2.6s 4.51s 

Scheduling 0.0176 0.014s 

garbling & de-garbling(scoreLookup) 0.02s 0.0018s 

garbling & de-garbling(signed_Addition) 0.044s 0.037s 

garbling & de-garbling(signed_Subtract) 0.45s 0.091s 

garbling & de-garbling(Max) 2.7s 8.5s 

Total computing latency 5.6s 8.64s 

The time latency from the generator’s task 0 to the evaluator’s de-garbling of 

slice 119 is 9.69 seconds, and the total computing latency (two initialization phases + 

9.69, excluding networking cost) is 16.79 seconds. This result represents a 24.7x 

acceleration factor over the computing time (415 seconds) for the same 60×60 SW 

problem reported in Huang et al. [43]. In terms of the memory usage, for the studied 

case, it took about 40MB to store encrypted truth table entries and permute-and-encrypt 

bits. The statically allocated memory for saving all paired wire labels of GC-slots’ and 

circuits’ outputs is less than 4MB. 

4.4 Summary 

According to the experimental result reported in subchapter 4.2 and 4.3, it can be 

concluded that the GPU-based parallel computing model proposed in this dissertation 

can effectively accelerate the SFE-based ED and the SFE-based SW problems. 

Comparing with the CPU-based SHA-256 version reported on Intel i7 CPU [37], our 
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GPU-based SHA-256 version in this work has roughly 3 folds throughput enhancement. 

Comparing with the CPU-version benchmark reported in [43], which parallel computed 

the SFE-based ED and SW problems on two computes with Intel Duo E8400 3GHz 

CPUs, our 10+ folds speed up rates can be due to reasons as follows: first, when 

mapping the computing structure of the SFE-based ED problem and SFE-based SW 

problem to the GPU-based gate garbler, the degree of parallelism provided by the gate 

garbler is fully utilized by the generator, and is maximally utilized by the evaluator while 

it needs to satisfy the inter-dependency among slices. Second, the pipeline mechanism 

causes few idle cycles on the CPU-GPU architecture. Third, the static memory 

management policy eliminates unnecessary memory allocation and release in both host 

and GPU memory spaces. 

The CSMP and slice-by-slice GPU resource mapping policies are general 

policies for an arbitrary problem size N of SFE-based DP problems which satisfy the 

wavefront parallel patterns. Our experiment results further show that, if the time 

complexity reaches O(N
3
), fine-grained mapping policies that partition time complexity 

O(N
3
) part and O(N

2
) part of a DP instance have better chance than coarse-grained 

counterparts to fully utilize the degree of parallelism provided by the GPU-based gate-

garbler. Knowing the “general purpose” computing nature of the SFE protocol, our 

design experiences is also helpful for system design of other SFE-based problems. 

A tool chain for an automatic execution process of SFE-based DP problems on 

GPU is the future purpose. Currently, the runtime execution part is automatic, but the 

offline part is still manual. To support an automatic offline process, a new language is 
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needed to define the inter-dependency among GCs within one GC-slot of the DP matrix, 

and a new parser is needed to convert both SHDL-based GC files and the inter-

dependency among GC-slots to structural information in memory. 
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CHAPTER V  

PARALLEL ECC ALGORITHMS ON GPU 

 

In this chapter, we present the parallel computing models of two ECC 

algorithms, point multiplication and bilinear pairing, on the contemporary GPU 

architecture. To study the computing requirement of point multiplication and bilinear 

pairing, we first study how to utilize ECC-based PSI and SH in the health-care cloud 

service SAPPHIRE [77] to protect the health records of patients (privacy information) 

from the cloud service provider. 

Four roles of SAPPHIRE are formally defined as follows: the patient(s) Bob, the 

clinic(s) Alice, the cloud service provider (CSP), and the request routing server (RRS). 

An instance of the SH protocol is called when Bob authenticates a request from Alice, or 

the RRS authenticates a request from Bob or Alice. As a 1-to-N server setting, the RRS 

may need to authenticate a large number of clients (Alice or Bob) in a short time 

interval. A PSI instance is called when Alice queries Bob’s health record from the CSP. 

When such a query occurs, the CSP first sends the RRS a large number of encrypted 

health records, in which only one of the records is Bob’s. And then Alice runs a PSI 

instance with the RRS to receive Bob’s health record without telling the RRS which 

record it is interested in. In one PSI instance, each encrypted health records on the RRS 

side triggers a number of point multiplication on both the RRS side and the Alice side. 

Therefore, when the RRS meets bursts of urgent PSI or SH transactions in an emergency 
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response situation, it requires a solution that is capable to handle a large volume of PSI 

and SH transactions timely. 

For security considerations, it is assumed that the server can be compromised, 

and it is unclear that GPU forbids other host processes to read the GPU memory. 

Therefore, when designing utilization scenario for GPU-based point multiplication and 

bilinear pairing, only the public computation are considered. On the RRS, the two inputs 

of bilinear pairing are the CSP/customer/clinic's public key and a group secret (a large 

integer) encrypted via ECC point multiplication. Both inputs are public data and 

therefore they can be safely computed on a server without privacy concern.  

In the rest of this chapter, we first analyze the PSI and SH protocols used in 

SAPPHIRE. Next, we present the parallel computing model of multi-precision 

arithmetic operations, which are fundamental functions for both ECC algorithms. Then, 

we discuss optimization techniques applied for high-level arithmetic operations in both 

ECC algorithms. And then, the experimental results are presented. In the end, the major 

bottlenecks of parallelized ECC algorithms on contemporary GPU architecture are 

analyzed. 

5.1 Computation Requirements in PSI and SH 

Figure 5.1 illustrates the authentication process between the RRS and Alice. For 

simplicity, Figure 5.1 only illustrates part of the authentication process which involves 

bilinear pairing: 
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As a prior process occurred before launching an SH session between Alice and 

the RRS, Alice had negotiated a group secret ssa with the RRS when it was registered in 

this cloud service, and the RRS returned sR = [ssa] PR to Alice as the registration result. 

In this prior process, the RRS did not directly return ssa to prevent Alice from guessing 

how a group secret is generated. 

Request

Routing 

Server 

(RRS)

Clinic Alice

personal ID: “Alice-RRS-Session”, maps to 

an elliptic curve point PA (PA is public)

resA =  e(sR, PA) =  e([ssa] PR,  PA)

an elliptic point sR = [ssa] PR

Authenticated Clinics 

...

...

Alice ssa

...

...

PA

...

...

Secret HandShaking

resRRS =  e(PA, [ssa] PR)

personal ID: “RRS-Alice-Session”, 

maps to an elliptic curve point PR (PR 

is public)

Alice knows sR in the prior process

 

Figure 5.1 The Secret Handshake between Alice and the RRS 

Then, as shown in Figure 5.1, an SH session starts between Alice and the RRS. 

In Figure 5.1, PR is an elliptic curve point mapped from the RRS’s personal ID. 

Similarly, Alice also has a point PA associated with its ID. These personal ID can be 
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arbitrary strings, and hence do not necessarily associate with their identities such as the 

full name, the driver license No., or the MAC address. In an SH session, Alice computes 

a pairing function e(sR, PA) = e([ssa] PR, PA); on the other hand, the RRS computes 

another pairing function e(PA, [ssa] PR). According to the bilinear property e([a] P, Q) = 

e(P, [a] Q), if and only if the two principals share a common group secret ssa, results of 

the two pairing functions can be the same. 

For the case that the RRS authenticates different clinics in a short time interval, 

several observations are drawn as follows. First, these authentication requests are 

independent to each other. Second, on the RRS side, the code path of the pairing 

function is determined by the order of the select elliptic curve, not the inputs PA and [ssa] 

PR. And hence, when all players in the system use the same elliptic curve for SH, 

different bilinear pairing instances on the RRS have the same code path, and hence fit 

the restriction of “single instruction” in the SIMT architecture. 

Next, we present the utilization of PSI in SAPPHAIRE. A PSI session is called 

when the RRS returns the patient Bob’s health record to the clinic Alice. The purpose of 

using PSI is protecting Bob’s health record from a carious RRS who may assess Bob’s 

health status based on clinics’ requests, or an unauthorized Alice who wants to guess the 

storage structure of health records on the CSP. In order to protect the privacy of Bob, the 

CSP will return k health records to the RRS, and then Alice runs a PSI session with the 

RRS to select one health record. No matter the result of the PSI session, Alice does not 

know any information of other health records, and the RRS does not know which record 

is matched by the Alice. If Alice is authorized to access Bob’s record, then the PSI 
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session will return it Bob’s record, and both Alice and the RRS know a unique match 

occurs; otherwise, the PSI session indicates that nothing is matched and the RRS rejects 

Alice’s query.  

encrypted health-record of BobEnc(j)
...

Enc(k)

......
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    check [ kDB * rA2* rB1 * H2(Enc(j))] P
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Figure 5.2 Private Set Intersection between Alice and the RRS 
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Figure 5.2 illustrates such a PSI session between Alice and the RRS. Before the 

PSI session launches, the CSP sends the RRS k encrypted health records associated with 

the cipher-text of their storage indices in the CSP. The encrypted storage indices are 

denoted by Enc(k), and that associates with Bob’s health record is denoted by Enc(j), 

which is generated by the CSP when Bob’s health record is submitted. If Alice is 

authorized by Bob to access its health record, Alice has received Enc(j) from Bob. 

In one PSI session, the RRS holds k encrypted health records, but only one of 

them belongs to Bob, which is Alice’s query target. If Alice has been authorized by Bob, 

the RRS can find a match in the end of the PSI process. Due to the randomly disordering 

step of Alice, RRS does not know which entry in the original set is matched. As such, 

the RRS cannot assess Bob’s health status according to the medical specialty of Alice. If 

no match had found by the RRS, the RRS rejects to send any health records to Alice. 

In one PSI session, the possibility of the RRS to correctly guess out which entry 

Alice is looking for is 1/k. Larger k means better protection for Bob’s health status, and 

therefore larger k is preferred. To complete one PSI session, Figure 5.2 shows that there 

are 2×k point multiplications on each side. On the RRS side, the point multiplication 

computations are in the format of [Ik] P, where the point P is the same in the k instances. 

However, on Alice side, the format is [I] Pk, where points Pk are different and the scalar I 

is the same in the k instances. As we will present in subchapter 5.3, comparing with than 

[Ik] P, [I] Pk requires much more computation cost for generating the pre-calculated 

tables for Pk during the computing process of point multiplication. 
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5.2 Computing Model of Multi-precision Arithmetic 

The fundamental arithmetic functions of point multiplication and bilinear pairing 

are multi-precision arithmetic such as add/sub/mul/div/exp, whose operands have n×32 

bit length and n ≥ 2. Our first task for exploring the design and the performance 

evaluation of point multiplication and bilinear pairing on the contemporary GPU 

architecture is designing the low level parallel computing model for the multi-precision 

arithmetic and the storage format of arithmetic operands, and selecting a suitable number 

system for GPU. 

Before presenting the formal design of the parallel computing model of ECC 

algorithms, we first evaluate the throughput of INT32/SPF instructions on GTX-680. 

The initial result is in Table 5.1, which shows that single addition and multiplication in 

SPF is roughly 3-folds faster than its INT version. 

Table 5.1 Execution Time of INT32 and SPF arithmetic on GTX-680 

Instruction INT32 

A+B 

SPF A+B INT32 

A×B 

SPF A×B INT32 

A×B+C 

SPF 

A×B+C 

Exec 

times (ms) 

0.0308 0.012 0.0326 0.011 0.0114 0.0117 

As we know, earlier generation GPUs have only implemented fused 

multiplication plus addition (FMA) as one instruction for SPF. However, Table 5.1 

indicates that such a FMA for INT32, or a similar mechanism, has been supported by 

GK104 architecture. This may be the reason why SPF and INT32 have similar 
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throughputs of MUL+ADD. As such, using SPF may be a good choice, and using INT32 

is also acceptable. Eventually, INT32 is adopted because of the reasons as follows. 

Given the parameters of elliptic curve and security strength select in this 

dissertation, each operand of the low-level multi-precision arithmetic is an 8×32 bit = 

256 bit integer (n = 8). Two previous studies [12][70] used SPF/DPF to represent the 

integer operands of low-level multi-precision arithmetic. In [12], the bit length of their 

operands is 224-bit, and they saved one 224-bit integer into an array of 24 floating 

points, each floating point saved 10 bits of the original integer. Such a representation 

triples (and more) the memory consumption, which is one of the reasons result in a 

relative small degree of parallelism of their computing model. Instead, we adopted the 

SPF type but represented a 256-bit integer by a float32[8] array. And then the round up 

problem is met during iteratively MUL+ADD of floating point values. Converting 

intermediate floating point results to integer after several MUL+ADD might avoid 

rounding up effect, but there is no good way to ensure an optimal insertion method. [70] 

represented a 256-bit integer as in the polynomial format with 12 double-precision 

floating point coefficients. Knowing that the throughput of Double-Precision-Floating 

(DPF) is 1/24 of that of SPF on GTX-680, such a DPF-based data representing is not 

advisable on Kepler Architecture. 

The next problem is selecting a suitable number system for GPU. Previous 

studies on parallelization of ECC algorithms were mainly based on either conventional 

Montgomery [68] or Residue Number System (RNS) Montgomery system. In the 

conventional Montgomery system, the modular multiplication c = a × b mod q is 
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implemented by one multiplication step T = a × b following by one reduction step 

reduct(T). The reduct(T) avoids to call the expensive division operation. On the other 

hand, based on the Chinese Reminder Theorem (CRT), RNS decomposes a modulus M 

to n co-prime integers m1, m2, …, mn, then an arbitrary integer X < M can be uniquely 

represented as xi = X mod mi, 1 < i < n, M =    
 
   . Computation in mod mi is 

independent with each other, so that RNS is well suited for the SIMT architecture. 

However, the RNS system cannot be directly used in a prime field since the modulus M 

is not a prime, unless two extra Base Extension (BE) steps [8] are inserted in the 

reduction step. As such, a multi-precision modular multiplication a[n] × b[n] mod q in 

RNS needs 2n
2
+5n 32-bit MUL by using four threads, while 2n

2
+n MUL in the 

conventional Montgomery by using one thread. The other two extra costs are from the 

synchronization for the complicated comparison under RNS in each reduction and 

modular subtraction, and the potential branch divergence in each modular subtraction. 

Such synchronization cost grows as more threads are set to compute one instance.  

Although the computing cost of one modular multiplication in the parallelized 

RNS is greater than that in the (serial) conventional Montgomery, as concluded in [19], 

the parallelized RNS is more efficient when it is applied to a long addition sequence of 

modular multiplication (a × b+ c × d+ e × f +…) mod q. Such sequences frequently 

appear in the bilinear pairing algorithm, and lengths of such sequences are closely 

dependent to which extension fields the lazy reduction technique [3] is applied to. 

Therefore, comparison of RNS and conventional Montgomery will be discussed together 

with the evaluation of general lazy reduction in subchapter 5.4. In this subchapter, we 
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quantitatively evaluate the performance of multi-precision arithmetic in the conventional 

Montgomery system. 

In terms of the suitability of parallelizing multi-precision arithmetic in the 

conventional Montgomery system, we note that the multi-precision multiplication T=a×b 

is consisted of multiple independent sequences of MUL+ADD operations, mapping them 

to multiple threads is similar to mapping computing of multiple sub-residues in RNS to 

multiple threads. Second, the reduction step reduct(T) includes two multiplications and 

one addition, most of which can be easily parallelized. 

In this research, because a × b mod q in the base field Fq is not only the most 

expensive operation in Fq, but also the most frequently invoked low-level arithmetic 

operation in point multiplication and bilinear pairing, it is selected as the representative 

code segment to evaluate several parallel computing model options. As aforementioned, 

in the conventional Montgomery system, c = a × b mod q is composed of (1) T = a × b 

and (2) c = reduction(T). In both point multiplication and bilinear pairing algorithms, the 

modulus q, elements a, b, c needs one uint32[8] array, and the intermediate result T one 

uint32[16] array. Four parallel computing models are worth evaluating, they can be 

formally named as CI-1/2/4/8thread models, where each computing instance (CI) is 

performed by 1/2/4/8 co-operative thread(s). Another common computing model, known 

as the bit-slice model proposed in [54], is ignored in our work because the reduction in 

this model shows highly sequential nature. 

In the computation of (1) T = a × b and (2) c = reduction(T), the access pattern of 

a and b in the shared memory space can affect the access speed and thus affect the 
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overall performance. In the shared memory, operands a and b are defined as 

“__shared__ uint32[8× BLK_CI_SIZE]”, where BLK_CI_SIZE is the number of 

CIs per block. Taking the CI-2thread model as an example, each two threads access the 

same uint32[8i+0,8i+7], 0 < i < BLK_CI_SIZE. As such, threads {0,16}, {2,18}, ..., 

{12,28}, {14,30} will concurrently read the eight uint32[0], which is a typical access 

pattern in the multiplication addition/subtraction/multiplication. However, knowing that 

GK-104 has 32 64-bit shared memory banks, the real concurrency of such an access 

pattern is only 1/2 of the expectation because threads 0 and 16 are access different ties (a 

low-level GPU memory architecture) of bank 0 and thus they compete the memory 

interface. Because each SMX in GK-104 has 32 LD/ST units, analyzing this type of 

bank conflict is limited within a warp of threads. 
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Figure 5.3 Collision-free Memory Access of a 256-bit Variable (CI-2thread) 
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Taking the CI-2thread model as an example, to remove such bank conflicts, a 

strip of 64-bit chaff spacer in the front of every eighth-uint32[8]. Figure 5.3 illustrates 

such an insertion scheme for saving a[8×BLK_CI_SIZE] in the shared memory. 

Furthermore, the insertion of the chaff spacer in the 3
rd

 row of Figure 5.3 is not 

necessary, but it is placed there to simplify locating the start addresses of each a. After 

applying this insertion scheme, threads 0 and 16 read bank 0 and 1 respectively when 

they are reading the first element of uint32[8] associated with their CIs. As such, this 

type of bank conflict is removed. We further insert spacer to ensure the address of each 

variable in the shared memory always starts from bank 0. 

Next, the workload balance of T = a × b is analyzed. The workload of T[16]=a[8] 

× b[8] can be considered as eight sequences of T[x]=a[i] × b[j=0~7], 0≤i≤7, and x=i + j 

respectively. Considering the overflow effect of a[i] × b[j], each sequence would rather 

be T[x] += (low 32-bit) a[i] × b[j=0,1,...,7], and T[x+1] = (high 32-bit) a[i] × 

b[j=0,1,...,7]. Therefore, the inter-dependency among sequences are the R/W order of 

T[x] and T[x+1]. If each T[0-15] vector in the shared memory is partitioned into multiple 

segments with a constant size, each segment is mapped to one thread, and R/W address 

of each thread has a constant offset which is large enough, our observation is that there 

would be no race condition on R/W T[x] and T[x+1]. Considering the bank width on 

GK104 is 64-bit, meaning T[x] and T[x+1] are in the same bank (if x is even), the size of 

the segment should be at least one bank width. It also implies the infeasibility of the CI-

8thread model where two neighboring threads in one CI would simultaneously read and 

write the same bank respectively and thus causes the inter-CI bank conflict. This 
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observation indicates that the multi-precision multiplication T[2n]=a[n] × b[n] under the 

conventional Montgomery system shows a similar parallel workload balance result to 

that under RNS. As a result, the parallelized T[16]=a[8] × b[8] in the CI-2/4thread 

models are designed as shown in Figure 5.4. 
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Figure 5.4 Parallel Multi-precision Multiplication T = a×b  

We prove that there is no bank conflict within each CI and across multiple CIs as 

follows. For the CI-2thread model, Taking the first CI thread {0,1} as an example, as 

shown in Figure 5.4.a, thread 0 computes ai ×{b0, b1, b2, b3}, and thread 1 computes ai 

×{b4, b5, b6, b7}. Here, operands bj read by thread 0 are on bank 0 or 1, and that read by 

thread 1 are on bank 1 or 2. When thread 0 updates {Tx, Tx+1}, thread 1 is updating {Tx+4, 
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Tx+5}, which are two banks away from {Tx, Tx+1}. For the CI-4thread model, as shown in 

Figure 5.4.b, thread 0 computes ai × {b0, b1}, thread 1 ai × {b2, b3}, thread 2 ai × {b4, 

b5}, and thread 3 ai × {b6, b7}. Here, operands bj read by thread 0/1/2/3 are on bank 

0/1/2/3 respectively. When thread 0 updates {Tx, Tx+1}, thread 1/2/3 is updating {Tx+2/ x+4/ 

x+6, Tx+3/ x+5/ x+7} respectively. The writing address of each thread is one bank away from 

each other. It is evident that threads in the same CI, or across different CIs do not meet 

any bank conflict during computing a[i] × b[j=0~7] in current execution order. 

However, a new type of bank conflict across-CIs on GK104 is clearly shown in 

Figure 5.4. Such bank conflicts occur when threads sum the multiplication results and 

write back to T. Comparing with earlier GPU architectures, the bank width of GK104 

grows from 32-bit to 64-bit, that is, T[0-15] in one tier are stored denser than in earlier 

GPUs. As such, two segments of T with different start offsets and associated with 

different CIs may be placed on the same bank. One example is shown in Figure 5.4, in 

the CI-2thread model, threads {0,1}, {8,9}, {16,17}, {24,25} for four CIs are writing 

result T0 = a0 × b0 and T4 = a0 × b4 back to shared memory, the banks of T0 and T4 for the 

four CIs are {0,2}, {1,3}, {2,4} and {3,5}. Noting that these eight threads are in the 

same warp, and thread 1 and thread 16 are competing for bank 2. To eliminate this type 

of bank conflict, 12 registers are used to temporarily save the multiplication results of 

T0-T11 or T4-T15 for each thread, and then a serial step accumulates results of two threads. 

In the end, the NVIDIA profiling tool nvprof is utilized to validate the bank conflict 

elimination schemes discussed in this subchapter, and the profiling result of the number 

of bank conflict of T=a×b in the CI-2thread model is shown in Figure 5.5. 
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Figure 5.5 Profiling Result of Bank Conflict for T = a×b (CI-2thread) 

Theoretically, a[n] × b[n] (n=8) in the CI-2thread model cost n
2
/2 MUL, which 

is the same as computing it in RNS when using 2 threads per instance. Taking into count 

of the synchronization overhead for bank conflict elimination, the actual cost of a[n] × 

b[n] is slightly above n
2
/2 MUL. On the other hand, elimination of the type of bank 

conflict presented in the previous paragraph is also necessary under RNS if T[2n] is 

consecutively placed in shared memory, and thus switching to RNS would not bring 

obvious extra gain for multi-precision multiplication. (An alternative, which saves T[2n] 

as n separate variables in shared memory, would avoid this bank conflict. But this option 

will grossly complicate the code structure of low level multi-precision arithmetic 

functions, especially the division function). 

According to [68], the multi-precision version of (2) c = reduction(T=a×b) is 

serially optimized as an iterative loop, where the dependency across iterations impedes 

the parallelization [54][98]. For parallelization, the CI-2thread model and the CI-4thread 

model adopt the single-precision version of reduction, which includes two parallelized 

multiplication (1) m = (T mod R) q' mod R, and (2) m × q, and one parallel addition 

T+mq, where R × R
-1

 – q × q' = 1 and R = 2
256

. Since (1) m = (T mod R) q' mod R 

computes the low-256 bit half of T, this step costs only 56% of MUL+ADD of a full 

multi-precision multiplication. The parallelization solution for this step is similar to that 
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for a full multi-precision multiplication, which is shown in Figure 5.6. It is shown that 

the workload can be equally balanced in the CI-2thread model, but in the CI-4thread 

model, explicit synchronization is necessary since the workloads per thread are different. 
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Figure 5.6 Implementation of Reduction(T) 

To evaluate which computing model option results in the optimal throughput, we 

compare the combination of serial/parallel multiplication (1) T = a × b plus (2) serial or 

parallel version of reduction(T) (S-/P-reduct) in the CI-1/2/4thread model on GTX-680. 

The degree of parallelism of GPU in the CI-1/2/4thread models are 160/352/738 GPU 

threads per block, equivalent to 160/176/184 CIs per block. Furthermore, when 

computing T + m × q, the parallel version of reduction(T) (denoted by P-reduct) reads T 

from global memory. These configuration parameters are optimized settings, borrowed 

from the shared memory usage analysis of bilinear pairing, as will be discussed later. 
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11938 times of multi-precision multiplication and 8312 times of reduction are repeated, 

which are an estimation of these two functions in one complete R-ate pairing. Here, the 

number of multi-precision multiplication and reduction is not 1:1 matched because the 

lazy reduction scheme has been applied. 

Table 5.2 Performance of 11938 mul + 8321 reduct in Various Models 

models T=a×b S-reduct P-reduct best 

mul+reduct 

thread 

per SMX 

throughput 

(/sec) 

CI-1thread 57.87ms 39.95ms N/A 97.82ms 160 13085.3 

CI-2thread 39.40ms 36.71ms 48.73ms 76.11ms 352 18499.5 

CI-4thread 28.58ms 51.64ms 83.59ms 80.22ms 738 18349.5 

The execution time of multiplication and reduction(T) in the CI-1/2/4thread 

models are listed in Table 5.2. The last column of Table 5.2 presents the throughput (per 

second). According to Table 5.2, several important conclusions can be drawn:  

(1) The parallelization of multi-precision multiplication T = a × b works. 

However, the gain from parallelization shrinks as the thread count per CI 

increases. A possible reason of this shrinking effect is, as the thread count per CI 

grows, more synchronization is needed for summing T[i] in registers; 

(2) If the shared memory usage per CI is bisected into two threads, the increase 

of thread number per SMX is usually greater than doubling. Due to the limit of 

placing complete warps into SMX, a large shared memory usage per THREAD 

usually results in an insufficient shared memory utilization rate. As each thread 

consumes less shared memory resource, it is possible to put more complete warps 
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into SMX to approach the shared memory limit. As a result, we observe a 

maximum degree of parallelism per SMX in the CI-4thread model in Table 5.2. 

The positive effect of greater thread count per instance on the shared memory 

utilization rate is one of the reasons that result in a higher throughput in the CI-

2thread model than in the CI-1thread model;  

(3) The serial version of reduction (S-reduct) in the CI-2thread model is slightly 

faster than that in the CI-1thread model, possibly due to an outlier of the micro-

architecture; 

(4) In the CI-2thread model, the parallel version of reduction is much slower 

than its serial counterpart. The breakdown of execution time shows that 

computing m = (T mod R) q' mod R and m × q took 43% execution time of 

reduction, the rest time is spent in the addition T + m q because the T in this 

addition is a copy in the global memory. Because performing the addition 

instructions in a multi-precision addition is very cheap, 48.73ms × 43% = 21ms 

would be the true execution time of 8312 parallel reduction if all variables are in 

shared memory. Furthermore, a quantitative understanding of cost to run multi-

precision addition with one of its operands in the global memory is obtained: its 

overhead is close to 0.76 serial version of reduction in the CI-2thread model 

(calculated from (48.73ms × 0.57) / 36.71ms); most of it contributed by the 

global memory access. Such a quantitative understanding will be critical for us to 

design the general lazy reduction scheme on GPU. In brief, it can be concluded 



 

75 

 

that one multi-precision ADD/SUB operation in the global memory space is 

roughly costs 76% execution time of one reduction in the shared memory. 

(5) Overall, Table 5.2 shows that the CI-2thread model with a serial version of 

reduction illustrates the best performance among three options. And the CI-

2thread model is used as the low-level parallel computing model in both point 

multiplication and bilinear pairing implementations. 

5.3 Sliding Window–based Point Multiplication 

The sliding window-based algorithms [56] are the most widely used 

implementation methods for point multiplication. Among these sliding window-based 

algorithms, the algorithm with dynamic window sizes and both positive and negative 

window values is commonly recognized as the most efficient serial implementation [56], 

because it needs a minimum number of point addition for one point multiplication. This 

implementation can be described as follows: The scalar k in a point multiplication 

instance [k] P is viewed as a stream of binary bits, given a point table which includes 

pre-calculated [-L] P, [-L+2] P, …, [L-2] P, [L] P (here L is a positive odd integer), a 

window slides k from its most significant bit (MSB) to its least significant bit (LSB), 

then a formula (2
α
 + a) × 2

β
 = λ is calculated, where λ = the binary value of the segment 

of k in the current window, a is a value satisfy -L ≤ a ≤ L, if a ≠ 0, one point 

addition/subtraction is triggered if a > 0 / a < 0, and α and β are the numbers of point 

doubling before and after this point addition. Such a window sliding process continues 

until the window goes through all bits of k. The arithmetic operations used in this 
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algorithm include elliptic curve point addition, point subtraction and point doubling 

operations, which rely on arithmetic operations in the base field Fq. 

Although the sliding window-based algorithm with dynamic window sizes is 

efficient on CPU, it is not GPU-friendly algorithm. For example, assuming k1 and k2 are 

two scalars in two parallel point multiplication instances, and k2 has a higher hamming 

weight than k1. When these two point multiplication instances simultaneously execute in 

the SIMT architecture, a possible snapshot could be: for the instance that runs [k1] P, it is 

executing α times of point doubling, at the same time, for the other instance that runs [k2] 

P, a much higher hamming weight of scalar indicates more frequent invocation of the 

point addition, and therefore this instance may have done the point doubling part and 

want to run a point addition operation. In SIMT, the latter instance has to wait for the 

former. 

Comparing with sliding window-based algorithms with dynamic window sizes, 

the variant with a fixed window size is a more SIMT-friendly option for point 

multiplication. In this variant of point multiplication, no matter the values of k1 and k2, 

the instances using k1 and k2 will computes the same number of point doubling followed 

by a point addition/subtraction. Knowing that the bit length of scalars is selected as 256-

bit to achieve the 128-bit security level, if the window size equals N, then the number of 

point addition is 256/N (or 256/N + 1 if 256 cannot be divided by N). When adopting the 

variant with a fixed window size, a larger size of the window is preferred since it results 

in fewer point addition operations.  
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Assuming that the window size is set as N, the pre-calculated table for point P 

has 2
N
-2 entries {[2] P, …, [2

N
-1] P}, and its memory size is (2

N
-2) × 64Bytes. Because 

the pre-calculated table is read only during the point multiplication, it is preferred to 

utilize the 48KB (per SMX) read-only data cache provided by GK104 GPUs to store it. 

However, when N becomes too large, the pre-calculated table cannot be fully stored in 

the read-only data cache, some of its entries need to be stored in the global memory 

space. 

To utilize a large N with few access of global memory, we adopt a large N and 

store the most frequently visited entries of the pre-calculated table in the read-only data 

cache, and store the rest entries in the global memory. N = 9, 10, 11 are evaluated in this 

work. In these three cases, the sizes of pre-calculated table will be slightly greater than 

48KB (the size of data cache). When N = 9 / 10 / 11, storing the whole table needs 32 / 

64 / 128 KB, and 29 / 26 / 24 point addition is needed to run one point multiplication 

operation. N = 9 is not a good choice since the data cache is not fully utilized. When N = 

11, the size of table becomes too large, so that the majority of the pre-calculated table 

needs to be stored in the global memory space. Furthermore, comparing with the case 

N=10, using N=11 can only reduce two 2 point addition operations. As such, N=10 is 

adopted, and nearly 75% entries of the table is saved in the read-only data cache, which 

have almost fully occupied the 48KB read-only data cache. 
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Figure 5.7 GPU-based Point Multiplication (the Same P among Instances) 

Figure 5.7 illustrates the execution effect of sliding window-based point 

multiplication on GPU. Because all instances use the same public point P, the generation 

of table {[2] P, [3] P, … [2
N
-1] P} can be constructed before the point multiplication 

starts. 26 windows slide are needed to go through the 256-bit scalars. In each window 

(except the last window), 10 point doubling operations are invoked, followed by a point 

addition if the value in the current window interval of the scalar ki’s bit sequence is non-

zero. In sum, the overall cost for online computation part of point multiplication can be 

predicted. That is, 256 point doubling operations, 26 point addition operations, 26 data 

cache / global memory read of elliptic curve points, 26 synchronization instructions. 
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Pre-calculate [2] P, [4] P, [8] P,..., [512] P and [3] P, mark them as calculated

For each entry i marked in V, i = 1022, 1021,...5:

    recursive_func(i);

recursive_func(int i):

    find the largest calculated j in C, that j < i and  compute x = i – j ;

    if (x is not mark as calculated yet)

    {

        recursive_func(x):

        mark x as calculated

    }

    [i] P = [j] P + [x] P;

    mark i as calculated
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Figure 5.8 Online Generation of Pre-calculated Table (Various Points among Instances) 

Next, we discuss another utilization case of the parallelized point multiplication 

(shown in Figure 5.2), which sets the same scalar and different points as the input for 

each instance. Its (on-line) sliding-window algorithm is skipped since it is similar to the 

case with different scalars and the same point, which have been presented in last 

paragraph. For this utilization case, the generation of pre-calculated table is more 

complicated since each point multiplication instance needs to run a pre-calculated table 

generation process for its point Pi. Because at most 26 of 1022 entries of the pre-

calculated table will be visited by the sliding window algorithm, constructing a complete 

pre-calculated table {[2] Pi, [3] Pi, … [2
N
-1] Pi} for point Pi is over complicated. An 
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more efficient way is only calculating entries that will be visited by the sliding window 

algorithm. Based on this observation, a pre-calculated table generation algorithm for 

point Pi is proposed and displayed in Figure 5.8. The vector V flags all entries visited by 

the sliding window algorithm, and the vector C flags all entries need to be calculated to 

calculate V. By default, it is assumed as all [2
n
] Pi need to be calculated in C. Then, as 

shown in Figure 5.8, a recursive process is invoked to calculate V. 

At the first glance, the recursive processes of generating the pre-calculated table 

for different points Pi are not suitable for GPU architecture due to their extensive branch 

divergences. However, the code path of these recursive processes are determined by the 

scalar of the point multiplication. Because all point multiplication instances are using the 

same scalar, their recursive processes of generating the pre-calculated tables for Pi have 

the same code path, and thus fit the SIMT architecture. As such, we implement the GPU-

based parallel pre-calculated table generation process for Pi. We will present the 

experiment result of this part in the sub-chapter 5.5. 
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5.4 Optimization of Arithmetic in Extension Fields 

Comparing with point multiplication, which only needs arithmetic operation in 

the base field Fq, bilinear pairing needs arithmetic operations in higher extension fields 

such as Fq
2
, Fq

4
, Fq

6
, Fq

12
. An arithmetic operation in higher extension fields can be 

represented as a tower of arithmetic in lower extension fields [87]. Taking the field Fq
2
 

as an example, an element in Fq
2
 can be represented as a polynomial a+bx, where a and b 

are elements in Fq, and x is the root of the irreducible polynomial x
2
 + β. That is, x

2
 can 

be replaced by –β. By doing so, the arithmetic in Fq
2
 becomes the analogy with 

arithmetic of complex numbers, with imaginary square root of –β. For example, the 

multiplication in Fq
2
 is in the format as: (a + xb) (c + xd) = (ac - bd) + x (bc + ad). In this 

computation, 4 modular multiplications in Fq are called.  

The lazy reduction scheme can be applied to the multiplication in Fq
2
. First, the 

computation process of (a + xb) (c + xd) can be optimized as (ac - bd) + x [(a+b)(c+d) – 

ac -bd], which reduces the number of modular multiplication in Fq to three. Second, 

instead of invoking modular multiplication for ac, bd, and (a+b)(c+d), multiplication is 

invoked. The reduction step is moved after the accumulation of (ac - bd), and 

[(a+b)(c+d) – ac -bd], so that only two reduction is necessary, one for (ac - bd), the 

other for the result of [(a+b)(c+d) – ac -bd]. Furthermore, a general lazy reduction 

scheme was first proposed in [3], which can be applied to Fq
2
 or higher extension fields 

such as Fq
6
 and Fq

12
. When the general lazy reduction scheme is applied in Fq

12
, it can 

reduce the number of reduction in a modular multiplication in Fq
12

 to 12. The experiment 

result in [3] showed that the general lazy reduction scheme could significantly reduce the 
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computational complexity of modular multiplication and squaring in Fq
12

, and thus 

greatly increase the throughput of bilinear pairing on CPU. 

On the other hand, the lazy reduction scheme has a side effect. That is, delaying 

reduction operations to higher extension fields means that each variable in lower 

extension fields has to occupy the doubled memory space before the reduction occurs. 

To apply the lazy reduction scheme on GPU, the increase of memory space usually 

means a vast of number of temporary variables need to be stored in the global memory. 

One design option to reduce the global memory visit is assigning more shared memory 

to each CI. However, such a design option also decreases the degree of parallelism. An 

alternative option is keeping the shared memory usage per CI while using more global 

memory for each CI. With this design option, the degree of parallelism is kept, but more 

global memory access will occur. 

Table 5.3 Performance of 1000 Modular Multiplication in Fq
4
 

Optimization 

choices 

Execution 

time 

Threads per 

SMX 

Shared mem 

per CI 

Throughput 

(/sec) 

lazy reduct in Fq
2
 265.4ms 352 256 bytes 5313×10

3
 

lazy reduct in Fq
4
 301.8ms 352 256 bytes 4662×10

3
 

prefetch + lazy 

reduct in Fq
4
 

304.7ms 352 256 bytes 4617×10
3
 

lazy reduct in Fq
4
 233.7ms 224 320 bytes 3829×10

3
 

lazy reduct in Fq
4
 225.2ms 224 384 bytes 3982×10

3
 

We first examine the throughput of the modular multiplication in Fq
4
 with the 

general lazy reduction scheme applied in Fq
2
 and Fq

4
. Table 5.3 lists the performances of 
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1000 modular multiplication with several different design options. The difference 

between row 1 and 2 of Table 5.3 is where the lazy reduction is applied. It is found that 

the latter case returns a worse performance outcome, even though it calls fewer 

reductions. It shows that the increase of slow global memory access has dominated the 

benefit of fewer reduction operations. Such a result is opposite to the observations of 

applying lazy reduction on CPUs. We further investigated the software-based pre-

fetching scheme [59]. In this scheme, before reading a variable of the current warp from 

the global memory, variable that will be read by threads in the next warp is pre-fetched 

to L2 cache. Row 3 illustrates the performance of applying the pre-fetching scheme with 

the lazy reduction to Fq
4
, it shows that no noticeable performance gain was obtained by 

pre-fetching. Such a result is not surprising since it is commonly known that pre-fetching 

may not always accelerate the computing process, and sometimes pre-fetching can even 

trigger some hurtful memory accesses. In this experiment, because the runtime 

scheduling of warps on SMX is transparent to programmer, the pre-fetching for next 

warp policy without hardware support cannot guarantee to make a positive hit at run 

time. 

Rows 2, 4, and 5 in Table 5.3 illustrate some marginal improvement of execution 

time when more shared memory is allocated to each CI. The execution gain is only 

marginal because the memory usage of EAGL is spatially and timely optimized. And 

therefore, less benefit can be further gained as more shared memory is assigned to each 

CI. On the other hand, assigned more shared memory for each CI led to significant drop 

of throughput due to the reduced degree of parallelism. 
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Based on the results of applying lazy reduction in Fq
2
 and Fq

4
, it is the time to 

answer whether it is suitable to apply lazy reduction to field Fq
12 

on GPU. A quick 

analysis of computational complexity for applying the lazy reduction to Fq
12

 suggested a 

sharp increase of the global memory access than that in the case of applying the lazy 

reduction in Fq
4
: when applying the lazy reduction to Fq

12
, the memory size of all 

temporary variables in a modular multiplication in Fq
12 

doubles, and most computation 

steps have to either fully reside in the global memory, or frequently invokes data 

swapping between shared memory and global memory. As a result, on the contemporary 

GPU architecture, when applying the lazy reduction to Fq
12

, its overhead of global 

memory access was deemed to be too high to make this technique useful. In summary, 

despite applying lazy reduction in higher extension fields Fq
4
 or Fq

12
 has further reduced 

the computational complexities, applying lazy reduction in extension fields Fq
2
, which 

triggers much fewer global memory accesses, is best suited for contemporary GPU 

architecture. 

As discussed in subchapter 5.2, although the RNS and conventional Montgomery 

system only determine the implementation of low-level multi-precision multiplication 

and reduction, the efficiency of these number system is closely related to which 

extension field the lazy reduction policy is used. Assuming that the same lazy reduction 

policy applied, it is concluded that our conventional Montgomery-based CI-2thread 

model needs slightly less computational complexity to run a modular multiplication in 

Fq
12 

than the RNS-based computing models in [2][19]. We assert this conclusion as 

follows. First, when comparing the multi-precision multiplication under RNS with 2 



 

85 

 

threads and that in our CI-2thread model, as aforementioned, they have similar 

computational complexity – n
2
/2 MUL plus some synchronization cost. Second, in terms 

of the computational complexity of the reduction function, [19] showed that a serial 

reduction function in RNS costs 2n
2
+3n MUL, where 2n

2
 was spent in two matrix 

operations in the Base Extension (BE). It is known that the workload of a matrix 

operation can be equally balanced to two threads, and thus the cost of a reduction in their 

RNS-based model would be n
2
+3n MUL when two threads are used. On the other hand, 

the reduction in the CI-2thread model costs n
2
+n MUL. Therefore, the computational 

complexity of one reduction function in the RNS-based model is slightly higher than that 

in the CI-2thread model. The last factor is the computational complexity reduction by 

applying the lazy reduction technique. A modular multiplication in Fq
12 

can be 

considered as multiple addition sequences of modular multiplication, each sequence is in 

a format as (a × b+ c × d+ e × f +…) mod q. When the lazy reduction is applied to higher 

extension field, the average length of these sequences becomes larger, and the number of 

reduction becomes less. In other words, the lazy reduction technique determines the 

numbers of multi-precision multiplication and reduction operations, and the selection of 

a number system determines the computational cost of the multi-precision multiplication 

(a × b, c × d, or e × f) and the reduction (implied in “mod q”). As such, the RNS-based 

computing model and our CI-2thread model get the same decrease of computational cost 

from the lazy reduction technique. 

Other state-of-the-art optimization techniques for arithmetic in extension fields 

Fq
2
, Fq

4
, Fq

12
 applied in our work include: (1) type D sextic twist [89] of the Barreto-
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Naehrig (BN) curve [10] over Fq
2
 for input points; (2) a low hamming weight BN curve 

[24]; (3) denominator elimination and lazy reduction in [87] and final exponentiation 

optimization for BN curves in [24] and [88]; (4) Karatsuba multiplication for 

multiplication in Fq
12

, Chung-Hasan SQR3 [21] for squaring in Fq
12

; (5) for unitary 

elements of Fq
12

 generated during the final exponentiation, fast squaring of elements in 

Fq
4
 [92] and Granger-Scott fast squaring [35] in Fq

12
. We acknowledge that the new 

implementation-friendly curve family [78] (a subclass of BN curve) for the optimal Ate 

pairing [94] is also important, but it is not considered in this work because of the 

extensive additional efforts to rewrite its lazy reduction-related parts for the cross 

verification of EAGL. 

Next, we analyze the trade-off between the pipelining effect on GPU and the 

overhead for memory access by adjusting the shared memory (smem) usage per CI. Less 

shared memory per CI means more threads per block and thus better pipeline utilization, 

while it also means more slow memory visits. Without a clear guidance for an optimal 

configuration rule, we gradually tune the shared memory usage per CI in an ascend order 

to find the peak point for the throughput of bilinear pairing. By summarizing the 

memory usage of point and field arithmetic functions in the bilinear pairing, it is found 

that the most frequently accessed cache could be reduced up to four elements in Fq
2
 per 

CI, quantitatively 256 bytes, while the overhead for chaff spacers and shared memory 

bank alignment is negligible. Therefore, we select the 256-byte as the pivot point, tune 

the shared memory (smem) usage per CI from 192-byte to 384-byte, stepped by one 

element in Fq
2
 (64 bytes), and observe the fluctuation of throughput.  
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Table 5.4 Throughput Fluctuation as Shared Memory Usage per CI Changes 

smem usage per CI (bytes) 192 256 320 320 (P-reduct) 384 

gpu thread per block 480 352 224 224 224 

smem utilization rate 93.6% 91.7% 79.1% 79.1% 87.5% 

throughput (pairing/sec) 2926 3350.9 2077 2564.6 2861 

Throughputs of bilinear pairing with different configuration parameters are listed 

in columns 2-6 of Table 5.4. It is noticeable that when the smem usage per CI equals 

320-byte, the parallel version of reduction (P-reduct) can move the T in the of T+mq step 

from the global memory space (in Table 5.2) from the shared memory space. The result 

of this version is shown in the 5
th

 column of Table 5.4. It is found that the peak 

throughput occurs when each CI caches four elements of field Fq
2
 in the shared memory 

space (the 3
rd

 column of Table 5.4). According to Table 5.4, when the shared memory 

usage per CI equals 320-byte, the shared memory usage utilization rate is fairly poor due 

to the limitation of assigning complete warps of threads to the SMXs. When this 

parameter grows to 384-byte, the negative effect of worse pipeline utilization begins to 

negate the benefits of more fast memory hits. In sum, the lazy reduction in Fq
2
 is 

adopted, and 256-byte as the shared memory (smem) usage per CI in EAGL. 

5.5 Experiment Results of Point Multiplication 

In this sub-chapter, we first report the experiment result of our GPU-based point 

multiplication with the same point P and different scalars in each instance. The GPU 

platform is a GTX-680 card. Parameters of the degree of parallelism are 8 SMX × 384 
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threads, equivalent to 8×192=1536 concurrent instances. 1536 256-bit random generated 

scalars are inputs of this experiment. As a result, the execution time, including pre-

processing of scalars on CPU and point multiplication on GPU, is 32.68ms, equivalent to 

47000 point multiplication per second, where the CPU-based pre-processing process for 

analyzing the visit frequency of entries of the pre-calculated table takes less than 1ms. 

Table 5.5 Comparison of Throughputs of Point Multiplication among GPU 

Implementations 

Implementations Key size Throughput (/sec) Device Device peak 

GFLOPS 

[12] 224 bit 5895 GTX 285 1062 

[2] 224 bit 9827 GTX 295 1788 

EAGL 256 bit 47000 GTX 680 3090 

Table 5.5 compares the throughputs of point multiplication between our work 

and two recent GPU-based implementations. Before comparing the throughput 

enhancement of EAGL with existing benchmarks which obtained on earlier generations 

of GPUs, throughputs are normalize by the difference of peak device GFLOPS. 

Although the difference on peak GFLOPS can roughly reflect the difference of their 

processing strength, we understand that it is not a perfect method to measure the 

processing strength since the architectural changes across generations of GPU are 

usually coupled with different memory bandwidth and frequency, and new features to 

facilitate off-chip or on-chip memory access. After normalizing the throughputs by the 

difference of peak device GFLOPS, it is shown that EAGL has roughly 2.76 times 
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higher throughput than that in [2]. Noting that the peak GFLOPS scale up between GTX-

680 and GTX-295 is 1.72 folds, which is smaller than the throughput grows between 

EAGL and [2], it indicates that the CI-2thread model in EAGL efficiently utilize the on-

chip resources of GK-104 architecture. 

Next, EAGL is compared with several recent CPU-based point multiplication 

implementations in Table 5.6. For more benchmarks of point multiplication on CPU or 

other platforms such as FPGA, PS3, we refer readers to [2]. It is found that EAGL can 

provide 2.1 times higher throughput than that in [63]. Furthermore, it is noticeable that 

EAGL and [69] have similar code paths; and EAGL and [63] are based on different 

types of elliptic curves, where EAGL is based on a standardized elliptic curve, and [63] a 

twisted curve over Fq
2
. 

Table 5.6 CPU vs. GPU-based Point Multiplication Implementations 

Implementations Key size Elliptic curve Throughput (/sec) Device 

Optimized GLS 

method [63] 

256 bit twisted Edward 

curves 

22472 2.6GHz AMD 

Opteron 

MIRACL [69] 224 bit standardized 14509 3.0GHz AMD 

Phenom II 

EAGL 256 bit standardized 47000 GTX 680 

In the end, we present the experiment result of point multiplication with different 

points and the same scalar. Because this research is the first work to discuss this type of 

parallel point multiplication, no existing experiment result are found for comparison. In 

this experiment, 1000 random generated scalars are tested, and the average number of 

point addition/doubling to generate the pre-calculated table is 39.5, much less than 1022 
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point addition/doubling needed by the MIRACL’s pre-calculated table generation 

method. On GTX-680, the execution time of the pre-calculated table generation (in 

Figure 5.8) is 8.52ms. The rest part of point multiplication with different points and the 

same scalar has a similar computational cost to point multiplication with different scalars 

and the same point. As a result, the point multiplication with different points and the 

same scalar needs roughly 25% execution time than the point multiplication with the 

same point and different scalars. 

5.6 Experiment Results of Bilinear Pairing 

In this subchapter, we present the experiment result of bilinear pairing and some 

further analysis based on the result. First, EAGL is compared with GPU-based 

implementations in the literature [54][98]. As illustrated in Table 5.7. The configuration 

parameter of the degree of parallelism is 8 SMX × 352 threads (8×176=1408 instances). 

On a GTX-680, the execution time is 420.19ms for 1408 instances, equivalent to 3350.9 

pairings/sec. In comparison, the throughput of ηT pairing under 128-bit AES security 

strength is 254 pairings/sec on one Tesla C2050 card [54]. The peak GFLOPS of GTX-

680 is roughly three times larger than M2050/C2050, after taking into account the 

difference of computational strength, the throughput of EAGL is roughly 4.4 times 

greater than that in [54]. Furthermore, this performance comparison does not even count 

in the factor that as the FE step in [54] was not parallelized. According to such a 

comparison, it could be concluded that following the traditional parallel computing 

mapping policy, the CI-2thread computing model fits the SIMT architecture better than 
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the bit-slice model, which greatly complicates the variable manipulation in multi-

precision integer arithmetic operations under SIMT architecture. 

In the end of Table 5.7, we also include the results of [98] which achieved 

23.8ms/pairing for the composite-order pairing as a reference. However, making 

quantified comparison between EAGL and that in [98] is difficult because of the 

significant difference on computational complexity between the prime-order and 

composite-order pairing. 

Table 5.7 Comparison of Execution Time Among GPU Implementations 

Implementations Algorithm Curve 

Type 

Security Exec time 

(ms) 

Device 

EAGL R-ate, prime 

order 

ordinary 128-bit 

AES 

0.298 GTX-680 

[54] ηT, prime order ordinary 128-bit 

AES 

3.94 C2050 

[98] Tate, composite 

order 

super-

singular 

80-bit AES 23.8 M2050 

Next, EAGL is compared with existing CPU-based pairing solutions [3][14][70], 

where all the performance results were based on a single CPU core by their authors. Our 

objective is two-fold: First, we would like to evaluate the performance of EAGL by 

comparing with the benchmarks on contemporary commodity CPUs. Furthermore, our 

purpose is obtaining some in-depth understanding on the bottlenecks of different system 

architectures. Lack of actual experimental results, a perfect acceleration model is 

adopted for CPU cases where the speed up is proportional to the number of available 
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processor cores. The performance figures of studied cases are summarized in Table 5.8. 

One can see that EAGL on one GTX-680 board has about half of the throughput that 

could be achieved in [3] based on the perfect acceleration model for multi-core CPUs. 

Comparing with the acceleration rate of EAGL on point multiplication, we found a much 

worse acceleration rate on bilinear pairing on the contemporary GPU architecture. 

Table 5.8 Comparison of Throughput, EAGL vs. CPU-based Solutions 

Implementations Algorithm Device Core clock Throughput 

EAGL R-ate pairing GTX-680 1006MHz 3350.9 

[70] Ate pairing Intel Q6600 2.4GHz 4×669 (est.) 

[14] Ate pairing Intel i7 860 2.8GHz 4×1202 (est.) 

[3] Ate pairing Intel i5 760 2.8GHz 4×1661 (est.) 

However, GPU-based bilinear pairing solution supported by EAGL is not 

meaningless. It is noted that the CPU host thread that runs on CPU has negligible 

performance cost. As such, the CPU host processor(s) can utilize GPU as a pairing co-

processor, while the host processor(s) can run other business logic such as database 

management, high-throughput networking or file I/O. For an application requiring small 

to moderate throughput of bilinear pairing, EAGL can be a supplement for CPU-based 

solutions. Furthermore, EAGL is a scalable solution to provide excessive throughput of 

bilinear pairing. 
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5.7 Analysis of System Bottleneck 

Computing performance is affected by computational complexity of the 

algorithm, programming techniques, and the underlying architectures. All three factors 

need to be seamlessly integrated to achieve top performance. When the acceleration rates 

of EAGL on point multiplication and bilinear pairing are cross compared, it is found that 

EAGL shows different performance relationships when it compares with CPU-based 

implementations. When comparing the best CPU-based benchmarks reported in [63] (for 

point multiplication) and [3] (for bilinear pairing), EAGL’s throughput enhancement rate 

is around 2.1 folds for point multiplication, but roughly 50% for bilinear pairing. It is 

interesting to investigate reasons of such a phenomenon. 

The first question is whether the CI-2thread computing model, which is based on 

the conventional Montgomery number system, fits contemporary GPU architecture. The 

compilation result of CUDA compiler shows that almost all shared memory are occupied 

under current parallelism configuration, and the register count per thread reaches 63, 

which is the upper-bound on GK104 GPUs. As such, the CI-2thread model has fully 

utilized the on-chip resources of GTX-680.  

Then, the next question is whether the CI-2thread model is better than the RNS-

based parallel computing model. Because no previous studies implemented RNS-based 

bilinear pairing on GPU platforms, to evaluate whether the CI-2thread model is better 

than the RNS-based parallel computing model, the comparison target has to switched to 

point multiplication since both algorithms share the same low-level computing model. It 

is reported in [2] that 9827 224-bit point multiplication/sec can be achieved on a GTX-
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295 (1788 peak GLOPS). On the other hand, EAGL on a GTX-680 offers 47000 256-bit 

point multiplication/sec on a GTX-680 (3090 peak GLOPS). EAGL’s performance on 

point multiplication is 2.76 times higher than [2] after normalizing the difference of peak 

GFLOPS, even at higher security strength. Moreover, the RNS-based computing model 

needs extra memory space to save the matrixes in the BE step in the reduction function. 

Although it is very hard to compare the computational strength utilization rate across 

different generations of GPUs, a higher growth of throughput (2.76) than that of 

GFLOPS (1.72) at least proves that the CI-2thread model is not worse than RNS on 

contemporary GPUs. 

A comparison of sizes of memory usage per CI between point multiplication and 

bilinear pairing gives us some clues on why EAGL obtains different performance 

acceleration effect on point multiplication and bilinear pairing, vs. state-of-the-art CPU-

based solutions. The change of memory usage sizes is illustrated in Figure 5.9. It is 

shown that, in both point multiplication and bilinear pairing, the sizes of fast cache (in 

the shared memory space) are stable. However, in bilinear pairing, the size of slow cache 

(in the global memory space) fluctuates, and only in the line function calculation step, its 

size of slow cache drops under that in point multiplication. Figure 5.9 clearly suggests 

that one bilinear pairing instance needs much more global memory resources than one 

point multiplication instance. 
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Figure 5.9 Shared/Global Memory (s/g mem) Size of Memory Usage per CI in EAGL’s  

Point Multiplication of and Bilinear Pairing 

To gain some in-depth understanding about the bottleneck, the computation steps 

of bilinear pairing are broken down. One pairing computation consists of 11938 multi-

precision multiplication, 8312 reduction, plus over 20k inexpensive multi-precision 

addition/subtraction operations. Although EAGL supposes most low-level multi-

precision arithmetic operations occurs only in the shared memory and registers, 

computations in higher extension fields have to swap variables between available shared 

memory and global memory. As such, some variable swapping occurs as prior steps or 

post steps for multi-precision arithmetic operations. If assuming data swapping between 
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shared memory and global memory has negligible cost, then the computation cost of a 

bilinear pairing operation is equivalent to the sum of computing 11938 multi-precision 

multiplication, 8312 reduction, plus 20k multi-precision addition/subtraction operations. 

In those arithmetic operations, the multi-precision addition/subtraction operations take 

less than less than 15ms if all operations occur in the shared memory space. According 

to the result shown in Table 5.2, running 11938 multiplication plus 8312 reduction 

operations in the shared memory space and registers takes 76ms. The overall estimated 

execution time is close to 91ms, which is much less than the actual execution time 

(420ms). 

Even though the hardware level profiling tools is not available for precise 

measurement, it is asserted that a large proportion of execution time (420ms) is spent in 

variables swapping between shared memory and global memory spaces as follows: 

further breakdown of execution time shows that each powering of arbitrary x in Fq
12

 in 

the Final Exponential (FE) step takes 47ms. On the other hand, NVIDIA’s profiling tool 

nvprof shows that one concurrent global memory copy of elements in Fq
12

 takes 35μs. 

Because a global memory access usually takes hundreds of cycles, and GTX-680 has 

1006MHz processor unit, such an execution time for one concurrent global memory 

copy of elements in Fq
12

 is reasonable. Furthermore, nvprof shows that one powering of 

x in Fq
12

 triggers nearly 500 times more global memory hits than a copy in Fq
12

. Such a 

ratio indicates that global memory hits in one powering of arbitrary x in Fq
12

 takes almost 

17ms, equivalent to 35% of the execution time. And this estimated percentage has not 

counted in extra synchronization and branch divergent cost associated with global 
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memory hits, which occurs if one global memory hit is embedded by an if-else statement. 

One example is the borrow bit calculation in the multi-precision subtraction operation. In 

sum, it can be concluded that a major proportion of execution time is spent in swapping 

variable between the shared memory space and the global memory space. 
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CHAPTER VI  

CONCLUSION AND FUTURE WORK 

 

This dissertation explores design issues for parallelization of SFE-based secure 

Edit distance (ED) and Smith-Waterman (SW) algorithms and the ECC-based Private 

Set Intersection (PSI) and Secret Handshake (SH) protocols on the Kepler GPU 

architecture.  

A parallel computing model for SFE-based ED and SW algorithms are proposed. 

It includes a high-throughput GPU-based gate (de-)garbler, a static memory 

management strategy, pipelined design, and general GPU resource mapping policies for 

DP problems which is parallelized based on the wavefront parallel computing pattern. 

This dissertation shows that, with very little waste of processing cycles or memory 

space, the Kepler GPU architecture can be fully utilized to run billions of garbled gates 

to implement SFE-based ED and SW algorithms. 

Second, this dissertation shows that the conventional Montgomery-based number 

system is friendlier to the Kepler GPU architecture than the RNS–based Montgomery 

number system is, based on the comparison of throughputs in this work vs. those 

reported in [2]. Furthermore, on Kepler GPU architecture, the lazy reduction in the 

quadratic extension field obtains better throughput results than that in the quad or the 

twelfth extension field, which is contrary to the results reported on CPU architectures 

[3]. The Elliptic curve Arithmetic GPU Library (EAGL) is implemented, which can run 

3350.9 R-ate (bilinear) pairing/sec, or 47000 point multiplication/sec at the 128-bit 
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security level. Although this dissertation does not study other bilinear-pairing-based 

secure protocols such as key agreement [29][97], identity-based encryption [18][95], 

identity-based signatures [71][90], short signature schemes [15][47][64], EAGL can be 

applied in the construction of these protocols in a straight-forward fashion. 

Third, this dissertation illustrates that simple ECC-based computations, such as 

point multiplication or field arithmetic in the quadratic extension field can be effectively 

supported by the Kepler GPU architecture. It is identified that lacking of advanced 

memory management functions in the contemporary GPU architecture impose some 

limitations on bilinear pairing operations. Substantial performance gain can be expected 

when the on-chip memory size and/or more advanced memory prefetching mechanisms 

are supported in future generations of GPUs.  

With respect to the modular structure and the tool chain for automation of SFE-

based computing problems, three new challenges shall be solved for the future 

generation of the GPU-based parallel computing model. Firstly, unlike [65] [40] and 

[43], where wire label are generated when a gate is garbled, the computing model 

proposed in this dissertation pre-assigned wire labels before a task is dispatched to GPU 

for garbling. As a result, the parallel computing model proposed in this dissertation 

needs a fine-grained categorization of wire labels (Lo, LG and Li), while [65] [40] and [43] 

do not. A new description language needs to be invented, so that the tool chain can 

extract wire label categorization information for the SHDL execution engine. Second, 

because the parallel computing model proposed in this dissertation needs to utilize the 

maximum usage for each type of wire label, an offline parser needs to be invented to 
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assess maximum usage of wire labels, encrypted results for each GC-slot of the SFE-

based DP matrix. The offline parser should accept arbitrary sizes of the DP matrix. Third, 

Because SHDL cannot cover the inter-dependency specification among garbled circuit, 

and among GC-slots, a new specification language needs to be design as a supplement of 

SHDL. This new description language should not only be able to describe inter-

connections among GCs, but also describe wire label types of these inter-connections to 

facilitate the pre-assigning at runtime. Then, implementing a comprehensive tool chain 

becomes practical. 

With GPU being a major branch of parallel architectures to support massively 

fine-grained parallelism, how to match computing needs of privacy-preserving protocols 

with the GPU architecture is an open research challenge for now, and the future. To 

understand what revisions are needed for EAGL when expanding it to future generation 

GPUs, the specification changes between Fermi (an elder generation of Kepler) and 

Kepler are studied, and three major library factors are empirically identified as follows: 

The first factor is revising the insertion offset of the chaff spacer in the collision-

free shared memory access model for arithmetic in the base field. Due to the change of 

bank width (from 32-bit to 64-bit as Fermi evolves to Kepler), one 256-bit operand is 

placed in 4 consecutive banks, instead of 8. A chaffer with the same width of the bank 

width needs to be inserted before the first complete operand in a tier. When expanding 

EAGL to next generation GPUs, revising the insertion offset is necessary when the 

width or the number of banks is changed. The second factor is the degree of parallelism 

for a peak benchmark, especially in the implementation of bilinear pairing. Because 
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EAGL relies on a heuristic, which gradually increases the size of fast memory per 

instance, to find out the peak performance in the trade-off between memory access speed 

and the degree of parallelism, expanding to next generation GPUs needs to repeat such a 

heuristic to determine the new peak performance and associated fast memory usage per 

instance. Since EAGL is locality aware for storage of temporary variables in low level 

arithmetic functions, only the top level function which specifies fast memory usage per 

instance needs to be modified. The last most important factor is the efficiency of lazy 

reduction may change due to the new global memory accessing speed on next generation 

GPUs. It is possible that lazy reduction in Fq
4
 or Fq

12
 will be more effective. EAGL has 

implemented lazy reduction in Fq
4
 and thus only lazy reduction in Fq

12
 needs to be done 

if lazy reduction in Fq
4
 shows positive acceleration effect. 
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