

GPU-BASED PARALLEL COMPUTING MODELS AND IMPLEMENTATIONS

FOR TWO-PARTY PRIVACY-PRESERVING PROTOCOLS

A Dissertation

by

SHI PU

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jyh-Charn Liu

Committee Members, Riccardo Bettati

 Guofei Gu

 Peng Li

Head of Department, Nancy Amato

December 2013

Major Subject: Computer Science

Copyright 2013 Shi Pu

ii

ABSTRACT

In (two-party) privacy-preserving-based applications, two users use encrypted

inputs to compute a function without giving out plaintext of their input values. Privacy-

preserving computing algorithms have to utilize a large amount of computing resources

to handle the encryption-decryption operations. In this dissertation, we study optimal

utilization of computing resources on the graphic processor unit (GPU) architecture for

privacy-preserving protocols based on secure function evaluation (SFE) and the Elliptic

Curve Cryptographic (ECC) and related algorithms. A number of privacy-preserving

protocols are implemented, including private set intersection (PSI), secret handshaking

(SH), secure Edit distance (ED) and Smith-Waterman (SW) problems. PSI is chosen to

represent ECC point multiplication related computations, SH for bilinear pairing, and the

last two for SFE-based dynamic programming (DP) problems. They represent different

types of computations, so that in-depth understanding of the benefits and limitations of

the GPU architecture for privacy preserving protocols is gained.

For SFE-based ED and SW problems, a wavefront parallel computing model on

the CPU-GPU architecture under the semi-honest security model is proposed. Low level

parallelization techniques for GPU-based gate (de-)garbler, synchronized parallel

memory access, pipelining, and general GPU resource mapping policies are developed.

This dissertation shows that the GPU architecture can be fully utilized to speed up SFE-

based ED and SW algorithms, which are constructed with billions of garbled gates, on a

iii

contemporary GPU card GTX-680, with very little waste of processing cycles or

memory space.

For PSI and SH protocols and underlying ECC algorithms, the analysis in this

research shows that the conventional Montgomery-based number system is more

friendly to the GPU architecture than the Residue Number System (RNS) is. Analysis on

experiment results further shows that the lazy reduction in higher extension fields can

have performance benefits only when the GPU architecture has enough fast memory.

The resulting Elliptic curve Arithmetic GPU Library (EAGL) can run 3350.9 R-ate

(bilinear) pairing/sec, and 47000 point multiplication/sec at the 128-bit security level, on

one GTX-680 card. The primary performance bottleneck is found to be lacking of

advanced memory management functions in the contemporary GPU architecture for

bilinear pairing operations. Substantial performance gain can be expected when the on-

chip memory size and/or more advanced memory prefetching mechanisms are supported

in future generations of GPUs.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. Jyh-charn Liu, for his

supervision and support in last five years. I joined the group in 2008 and worked in

several aspects before Dr. Liu suggested me to work on the research area related to

parallelization model design for cryptographic primitives. This area is an interesting

subject to study and full of theoretical and practical challenge, but it fits my professional

strength in mathematics and architecture so I enjoy the research a lot. As such, I

appreciate him for his advice, suggestion, and generous supports.

I would like to thank my committee members, Dr. Bettati, Dr. Gu, and Dr. Li for

suggestions and help on research and comments and feedback on dissertation. I also

would like to thank Dr. Papanikolas in the Mathematic department of TAMU for his

lecturing on the correctness of the conventional Montgomery number system.

I want to thank Pu Duan, who was a senior student in our group and an expert in

Elliptic Curve Cryptography. Pu has given me lots of help after I started my research

subject in this area. He is very nice and patient with all my questions.

I want to thank every member in the group who also helped a lot and I could not

finish this work without their help.

Finally, I would like to thank my mother and father for their consistent support

and encouragement.

v

NOMENCLATURE

ECC Elliptic Curve Cryptography

PSI Private Set Intersection

SH Secret Handshake

CUDA Compute Unified Device Architecture

DP Dynamic Programming

SFE Secure Function Evaluation

PIR Private Information Retrieval

DH Diffie-Hellman

ED Edit-Distance

SW Smith-Waterman

GC Garbled Circuit

ML Mill’s Loop

FE Final Exponentiation

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES ... x

CHAPTER I INTRODUCTION ... 1

1.1 Summary of Research Tasks .. 3

CHAPTER II BACKGROUND KNOWLEDGE ... 9

2.1 Secure Function Evaluation ... 9

2.2 Private Set Intersection and Secret Handshake .. 12
2.3 Elliptic Curve Cryptographic Algorithms .. 13
2.4 Modern GPU Architecture ... 16

CHAPTER III RELATED WORK ... 19

3.1 Secure Function Evaluation ... 19

3.2 Point Multiplication and Bilinear Pairing .. 21

CHAPTER IV LARGE SCALE PRIVACY-PRESERVING ED/SW PROBLEMS

ON GPU ... 24

4.1 GC-level: GPU-based Gate (De-) Garbler ... 27

4.2 DP-level: Computing SFE-based Edit-Distance .. 31
4.2.1 GPU Mapping Policies ... 34
4.2.2 Memory Management and Pipelined Scheduling .. 38
4.2.3 Experiment Result and Analysis .. 43

4.3 DP-level: Computing SFE-based Smith-Waterman ... 45

4.3.1 GPU Mapping Policies ... 49
4.3.2 Pipelined Scheduling .. 51

vii

4.3.3 Experiment Results and Analysis ... 53
4.4 Summary .. 54

CHAPTER V PARALLEL ECC ALGORITHMS ON GPU .. 57

5.1 Computation Requirements in PSI and SH .. 58

5.2 Computing Model of Multi-precision Arithmetic .. 63
5.3 Sliding Window–based Point Multiplication ... 75
5.4 Optimization of Arithmetic in Extension Fields .. 81
5.5 Experiment Results of Point Multiplication ... 87
5.6 Experiment Results of Bilinear Pairing .. 90

5.7 Analysis of System Bottleneck .. 93

CHAPTER VI CONCLUSION AND FUTURE WORK ... 98

REFERENCES ... 102

viii

LIST OF FIGURES

FIGURE Page

1.1 The Design Space of SFE, PSI and SH Implementations 4

1.2 Research Overview .. 6

2.1 An Example of SFDL and SHDL .. 11

2.2 (a) Point Addition, (b) Point Doubling on E(Fq) ... 14

2.3 Miller’s Algorithm for R-ate Pairing ... 15

4.1 Parallel Computing Models for the (a) ED, (b) SW problems ………………….. 25

4.2 Optimization on Shared Memory Access .. 28

4.3 The SFE Building Block (a GC-slot at DP[i][j]) for ED 31

4.4 The Generator's Resource Mapping Policy: CSMP ... 34

4.5 The Evaluator's GPU Resource Mapping Policy: slice-by-slice 37

4.6 The Pipelined Garbling & De-garbling Process (ED) ... 41

4.7 The Revised Smith-Waterman Algorithm ... 46

4.8 The SFE Building Block (a GC-slot at DP[i][j]) for SW 47

4.9 The Generator's CSMP (SW) for (a) Line 7 and (b) Lines 8-11 in Figure 4.7 ….. 49

4.10 The Evaluator’s slice-by-slice Mapping Policy (SW) for (a) Line 7 and (b)

Lines 8-11 in Figure 4.7 ... 50

4.11 The Pipelined Garbling & De-garbling Process (SW) .. 52

5.1 The Secret Handshake between Alice and the RRS .. 59

5.2 The Private Sect Intersection between Alice and the RRS 61

5.3 Collision-free Memory Access of a 256-bit Variable (CI-2thread). 67

5.4 Parallel Multi-precision Multiplication T = a × b .. 69

5.5 Profiling Result of Bank Conflict for T = a×b (CI-2thread) 71

ix

5.6 Implementation of Reduction(T) .. 72

5.7 GPU-based Point Multiplication (the Same P among Instances) 78

5.8 Online Generation of Pre-calculated Table (Different Points among Instances) .. 79

5.9 Shared/Global Memory (s/g mem) Size of Memory Usage per CI of in EAGL’s

Point Multiplication and Bilinear Pairing .. 95

x

LIST OF TABLES

TABLE Page

4.1 Maximum Possible Values of Inputs and Intermediate Results in DP[i][j] 33

4.2 Pipeline Execution Time Break Down (ED) ... 42

4.3 Major Memory Utilization on the Generator Side (ED) .. 44

5.1 Execution Time of INT32 and SPF arithmetic on GTX-680 63

5.2 Performance of 11938mul + 8321reduct in Various Thread Counts per Instance. 73

5.3 Performance of 1000 Modular Multiplication in Fq
4
 ... 82

5.4 Throughput Fluctuation as Shared Memory Usage per CI Changes 87

5.5 Comparison of Throughputs of Point Multiplication among GPU

Implementations ... 88

5.6 CPU vs. GPU-based Point Multiplication Implementations 89

5.7 Comparison of Execution Time Among GPU Implementations 91

5.8 Comparison of Throughput, EAGL vs. CPU-based Solutions 92

1

CHAPTER I

INTRODUCTION

In their seminal work [96] published in 1982, Yao et al. formulated the

Billionaire problem, in which two principals want to compare their wealth without

giving each other their actual amounts, and proposed a very general way to do so, called

Secure Function Evaluation (SFE). In SFE, the two principals, who are commonly called

the generator and the evaluator, use encrypted inputs to jointly compute an arbitrary

function on two interconnected computers. The final computing result is revealed to one

or both principal(s), but plain-text of the inputs are unrevealed to each other. A rich body

of literature has been developed from the original Billionaire problem to the field of

privacy-preserving computing. Major privacy-preserving protocols include, but are not

limited to SFE, Private Set Intersection (PSI) [45][26][31][53][55] where two principals

jointly compute the common element(s) for their two input sets without giving out to

each other the plain-text of all distinct elements, Secret handshake (SH) [26][50] where

two principals mutually authenticate each other based on privacy-preserving equality

checking of a one-time registered group secret [26], Private Information Retrieval (PIR)

[20] where the index of a database query is unrevealed to the owner of the database in a

query transaction, and Homomorphic encryption (HE) [33] where two principals use

encrypted inputs to jointly compute an arithmetic function.

Some examples of privacy-preserving applications aim to answer questions, such

as “which input is bigger: (
)”, “Edit distance of two strings: ED(s1, s2)”,

2

“intersection of two sets of strings: COMMON(S1, S2)”, etc. While most applications can

be implemented by SFE, non-SFE based solutions have also been developed. For

example, several studies [26][31][53][55] implemented PSI based on Elliptic Curve

Cryptography (ECC) [56], although PSI could also be formulated as an SFE function

COMMON(S1, S2) [45]. Another important example of non-SFE based privacy-

preserving protocols is SH, ECC [26][50], RSA [84] or Diffie-Hellman (DH) [25] crypto

systems can be used to implement SH.

In this dissertation, we focus on the design and the performance evaluation of

SFE and ECC-based PSI and SH on an integrated CPU-GPU system architecture. For

SFE, the main performance challenge is to run a vast number (billions or more) of

garbled gates [96], which are composed of oblivious-transfer (OT) [82] and block-

cipher operations (for example, SHA [73] and AES [74]), with few waste of

computational strength provided by the CPU-GPU system architecture. The main

performance challenges for ECC to achieve the highest throughput on GPU include (1)

the low level data access model for arithmetic operands, (2) matching of the number

system with respect to architecture, (3) the parallel computing model for arithmetic

operations, and (4) the efficiency of arithmetic optimization techniques. Overall, for

optimal performance outcomes, the system needs to have tight synchronization of

processing steps, memory accesses, and GPU-CPU memory swapping, so that idle

cycles and swapping overheads are minimized, while the degree of parallelism is

maximized. For ECC, the four factors are closely related to each other. As such, our

design process is coupled with a system performance characteristics process, so that

3

lessons learnt from the study can help identify system bottlenecks for future

improvement of architectures and algorithms.

1.1 Summary of Research Tasks

An overview of the overall design space explored in this dissertation is illustrated

in Figure 1.1, in which green blocks represent major technical elements of our work. To

investigate SFE related design problems on the CPU-GPU architecture, we adopt the

specification languages SHDL (Secure Hardware Description Language) proposed in

Fairplay [65] to describe the SFE functions studied in this dissertation. For the study

cases, we select privacy-preserving computation of the dynamic programming (DP) for

Edit Distance (ED) and Smith-Waterman (SW) [5]. ED (SW) has been used for privacy-

preserving assessment of dissimilarity (similarity) of two genomic sequences [52]. By

using SHDL, the SFE-based ED problem and the SFE-based SW problem are

represented by two networks of interconnected garbled (Boolean) gates, respectively. In

this dissertation, these two problems are solved based on a divide-and-conquer strategy

to partition the interconnected garbled gates, and encryption/decryption operations are

executed on the GPU in batches. The resulting parallel code follows a wavefront

computing pattern, which needs highly synchronized memory accesses. Parallelization

of the two studied cases represent much higher challenges than parallelization of SFE-

based AES [43], Hamming distance [43][52], RSA [30], or Dot product [46], whose

intermediate results are immediately re-used and then discarded. According to [52], the

memory requirement for the SFE-based ED (SW) problem can be tens of Giga Bytes

4

when the input length of the ED (SW) problem exceeds 10
3
 (10

2
). As such, to study

spatial efficient memory management mechanisms for SFE and the associated low-cost

synchronization strategies for reading and writing intermediate results on the CPU-GPU

architecture, we set 5000×5000 as the problem size of the ED problem, and 60×60 as the

problem size of the SW problem.

In terms of the security model for SFE, we adopt the semi-honest security model

[44][52], where principals follow the SFE protocol but may infer the input data from

cipher-text of intermediate results produced during protocol steps. Following [52], we

adopt the ultra-short security level proposed in TASTY [40], which is equivalent to the

80-bit security level.

PSI

Privacy-preserving computing protocols

 SHDL

Protocol Level
SFE SH ...

Crypto

Algorithm Level
SHA, AES Bilinear Pairing

Point

Multiplication

Problem Definition

Language (general

purpose)

Arithmetic Level bit manipulation multi-precision integer arithmetic

State-of-the-art

solutions

MIRACL (ECC open source lib), C/

assembly implementations on CPU

Java-based SFE

framework

CUDA implementation

on GPU

SHDL engine

Platform Level CPU CPU GPU PS3, FPGA, mobile ...

ECC

algorithms

GPU

re
s
o

u
rc

e
 m

a
p

p
in

g
 p

o
lic

ie
s
 fo

r c
o

m
p

u
tin

g

s
tru

c
tu

re
s

legend studied in this dissertation

Figure 1.1 The Design Space of SFE, PSI and SH Implementations.

5

For our study of ECC-based PSI and SH, ECC point multiplication [56] is chosen

for PSI, and bilinear pairing [87] in ECC for SH, because the vast majority of privacy-

preserving protocols is based on ECC. A Barreto-Naehrig (BN) curve [10] is chosen for

both PSI and SH as the underlying elliptic curve due to its computational efficiency [32].

BN-curve-based R-ate pairing [60] is adopted as the bilinear pairing algorithm due to its

less (or similar) computational complexity than other variants [34][42][66]([99]) of

bilinear pairing on BN curves. To achieve the 128-bit security level, -(2
62

+2
55

+1) is used

as the construction parameter of the BN curve, and the twelfth extension field [87] as the

highest extension field [10].

In the CPU-GPU system architecture, the GPU works as a co-processor for the

CPU to perform designated computations. For SFE and ECC-based PSI and SH,

computing tasks designated to run on the GPU need to be optimized with respect to the

single instruction multi-thread (SIMT) architecture and the memory hierarchy of GPU,

as well as the CPU-GPU control mechanisms, for best performance. These cross-layer

resource management issues are highlighted at right side of Figure 1.1.

The major research tasks in this dissertation are listed below, and a graphic

illustration of these tasks is given in Figure 1.2. Research tasks for SFE and ECC-related

PSI and SH follow different paths to reflect their very different computing structures.

SFE Related Research Tasks

- (R1.1) Investigation of the partition policies for a network with billions of

garbled gates, and the associated GPU-based resource mapping policies in

6

order to maximize the system throughput; the pipelining mechanism of the

encryption/decryption operations is also studied;

- (R1.2) Investigation of memory management mechanisms on CPU and GPU,

and associated synchronization strategies for storing and re-using

inputs/outputs of encryption/decryption operations, and intermediate de-

garbled results on GPU.

SFE

generator evaluator

DP

problem

DP

problem

network

bit manipulation

PSI

peer 1 peer 2PSI

Enc/

Modify/

Dec

network

PSI

Enc/

Modify/

Dec

multi-precision integer computing

SH

server client

mutual

authen

network

mutual

authen

Protocol

level

fine-grained GPU

resource mapping

policies

CPU/GPU memory

management

pipelining (inside

each principal)

collision-free memory

access model

number systems

evaluation SIMT-friendly

Parallel computing model

SHA256

CPU-based

offline circuit

parsertool

chain

GPU-based

SHDL

execution

engine

offline GC-slot

logic parser

Crypto algorithm level

point

multiplication
bilinear pairing

Arithmetic level

GPU-based

 Evaluation of CPU-based

optimization techs

Memory Usage

Optimization

bottleneck

analysis

legends research topics in this dissertation

pipelining (between

two principals)

R1.2

R1.1 R2.2

R2.3

R2.4

Elliptic curve Arithmetic GPU-based Library (EAGL)R2.5

 pre-calculated table

generation for point

multiplication

R2.1

- Figure 1.2 Research Overview

7

ECC Related Research Tasks

- (R2.1) Studying and implementing PSI and SH protocols in a case study [77]

to understand the usage of parallelized point multiplication and bilinear

pairing in real-world privacy-preserving applications;

- (R2.2) Exploring an efficient parallel computing model of low-level

arithmetic operations on GPU, including the evaluation of number systems

and data storage formats;

- (R2.3) Evaluating the suitability of optimization techniques for point

multiplication and bilinear on the contemporary GPU architecture;

- (R2.4) Identifying major performance bottlenecks for computing point

multiplication and bilinear pairing on the contemporary GPU architecture;

- (R2.5) Developing a GPU-based library for point multiplication and bilinear

pairing, which can fit future GPU architecture without major code changes;

Some critical conclusions derived from this research are highlighted below. For

SFE, the results of research tasks (R1.1) and (R1.2) show that the GK104 Kepler chip

(marketed by NVIDIA in 2012) can be fully utilized to speed up the SFE-based ED

algorithm and the SFE-based SW algorithm, with very little waste of processing cycles

or memory space. For ECC, low level resource management techniques are designed and

tested to eliminate major resource wastes. It is discovered in (R2.2) that, the

conventional Montgomery number system [68] is more GPU-friendly than the Residue

Number System (RNS) based number system [2] on the GK104 chip. Through (R2.3), it

is found that the acceleration effect of the lazy reduction [3] technique has the best

8

performance when it is applied to the quadratic extension field on the GK104 chip. It is

found through (R2.4) that, since a large number of data swapping between fast on-chip

cache and slow off-chip device memory are triggered by the complex computations steps

of bilinear pairing, the primary performance bottleneck for bilinear pairing on the

GK104 chip is lack of advanced device memory management functions. However, the

GK104 chip is quite effective for speed up of point multiplication and arithmetic in the

quadratic extension field. Last, but not least, is that through (R2.5), a library, called

Elliptic curve Arithmetic GPU Library (EAGL), is produced to empower future

generation of research in this area.

The rest of the dissertation is organized as follows. In Chapter 2, we provide an

overview of SFE protocol, point multiplication and bilinear pairing algorithms, and

modern GPU architecture. Chapter 3 summarizes previous studies. Chapter 4 presents

the parallel computing model for the ED problem and the SW problem, respectively. In

Chapter 5, we first study the usage of point multiplication and bilinear pairing in PSI and

SH protocols. Then, we discuss the parallel computing model for point multiplication

and bilinear pairing. We conclude with some final marks in Chapter 6.

9

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we first present the background knowledge of SFE, PSI and SH,

and then the ECC algorithms used to construct ECC-based PSI and SH protocols. In the

end, the contemporary GPU architecture, the Kepler GPU, is introduced.

2.1 Secure Function Evaluation

The Secure Function Evaluation (SFE) proposed to use the term garbled circuits

(GC) to implement privacy-preserving applications, such as secret auctions [17][72],

biometric or genomic computation [43][44][52], facial recognition [28][40][76][85] and

encryption [40][43][58]. In SFE, the garbled circuits (GC), and its the fundamental build

block garbled gates, and the roles of the two principals (the generator and the evaluator)

are defined as follows:

An n-bit-in, 1-bit-out garbled gate G implements an n variable “secure” (or,

“privacy-preserving”) Boolean function. Same as a regular gate, a garbled gate has a

truth table specified based on the Boolean function. Each input or output bit for both

types of gates can be represented as a “wire”, but in a garbled gate each wire is

associated with a pair of random integers, called a pair of wire labels, rather than a

single 1-bit value 0/1 as in a regular gate.

Taking the 2-bit input, 1-bit output garbled gate, denoted by c=G(a,b), as an

example, its wire labels are denoted by {ka
0
,ka

1
},{kb

0
,kb

1
}, {kc

0
,kc

1
}, where each entry,

10

say ka
0

, is a unique random number assigned to the value 0 at the “a” input of c=G(a,b).

In the secure computing process of G, the value of its 1-bit input “wire” a (b) is provided

by the generator (the evaluator), and the generator and the evaluator jointly compute the

wire labels of c.

To compute c=G(a,b) jointly, a should receive the generator’s 1-bit value x, and

b the evaluator’s 1-bit value y. Here x and y can be either 0 or 1, and we denoted y’ as

the negation of y. The generator first generates {ka
0
,ka

1
},{kb

0
,kb

1
}, {kc

0
,kc

1
} for possible

values {0, 1} of wires a, b, and c. The encrypted wire labels for the evaluator’s inputs,

{kb
y
, kb

y’
}, are transferred from the generator to the evaluator via Oblivious Transfer

(OT) [82]. In the end of OT, the evaluator only knows kb
y
and the generator only knows

that one of {kb
y
, kb

y’
} has been chosen by the evaluator. The generator also sends the

wire label ka
x
 to the evaluator.

If a garbled gate G(a,b) accepts one direct 1-bit input from the evaluator, one OT

transaction is needed in SFE. Therefore, computing a single SFE instance may need

multiple OT transactions. Based on a random oracle model proposed in [48], a virtually

unlimited number of OT computations can be encoded into 80 1-out-of-2 OT

transactions, where 80 is a security parameter. Huang et al. [43] reported that such 80 1-

out-of-2 OT transactions can be computed in 0.6s. Therefore, the primary computing

bottleneck is caused by the block-cipher operations for the vast number of garbled gates,

not by the OT. As such, the discussion of OT is not included in this dissertation.

The computing logic of c=G(a,b) is a four-entry truth table T{T00, T01, T10, T11},

where each entry, say T00, is a value 0/1 and is mapped the output wire label kc
0
 / kc

1
.

11

The garbled truth table is a random permutation of the four cipher-texts:

{Eka
0
(Ekb

0
(kc

T00
)), Eka

0
(Ekb

1
(kc

T01
)), Eka

1
(Ekb

0
(kc

T10
)), Eka

1
(Ekb

1
(kc

T11
))}, here E denotes

the encryptor (also known as garbler), and the encryption/decryption operation is also

known as garbling/de-garbling. In the end, with ka
x
 and kb

y
, the evaluator learns the wire

label kc
Txy

 that represents the real value of G given inputs a=x and b=y, while it does not

know x.

program And { // SFDL

 const N=2;

 type Len = Int<N>;

 type AliceInput = Len;

 type BobInput = Len;

 type AliceOutput = Len;

 type Input = struct {AliceInput alice, BobInput bob};

 type Output = struct {AliceOutput alice};

 function Output output(Input input) {

 output.alice = (input.bob & input.alice);

 }

}

SHDL (compiled from SFDL):

0 input //output$input.bob$0

1 input //output$input.bob$1

2 input //output$input.alice$0

3 input //output$input.alice$1

4 output gate arity 2 table [0 0 0 1] inputs [2 0] //

output$output.alice$0

5 output gate arity 2 table [0 0 0 1] inputs [3 1] //

output$output.alice$1

Figure 2.1 An Example of SFDL and SHDL

In Fairplay [65], a GC and the ownership of its I/O data can be specified in the

Secure Function Description Language (SFDL) and the Secure Hardware Description

Language (SHDL). A simple example of SFDL and SHDL is illustrated in Figure 2.1,

which describes the logic “(a AND b)”, where a and b are 2-bit inputs belonging to the

generator (Alice) and the evaluator (Bob), respectively. Gate 4 and gate 5 in the SHDL

code are examples of G; and “[0 0 0 1]” in the description of Gate 4 is an instance of

truth table T{T00, T01, T10, T11}. The “output” descriptors in the front of Gate 4 and Gate

5 specify that the output wires of these two gates are the output of this GC. Computing

12

(a AND b) is equivalent to separately computing Gate 4 and Gate 5 and exporting their

de-garbled results as the de-garbled results of this GC.

2.2 Private Set Intersection and Secret Handshake

Private Set Intersection (PSI) and Secret Handshake (SH) are two widely used

privacy-preserving computing protocols, where PSI is used by two principals to compare

the common element(s) in their two input sets without giving out the plain-text of all

distinct elements to each other, and SH is used by two principals to mutually

authenticate each other based on a one-time registered group secret. In an ECC-based

implementation of PSI, point multiplication operations are executed O(k) times per PSI

instance, where a malicious adversary has 1/k possibility to guess the correct result using

a brute force method. Besides ECC and SFE, PSI can also be implemented based

oblivious pseudo-random function evaluation [39][51].

SH was first proposed in Balfanz et al. [9]. In SH, if the two principals know a

common group secret, their SH session will succeed and they know they are in the same

group. Otherwise, the group secret of each principal is unrevealed to the other. The two

critical properties of SH are un-linkable and re-usable. “Un-linkable” indicates that

when one player A gives two (different) copies of his encrypted group secret to two

other players B and C in two separated authentication sessions, B and C do not know

they are authenticating with the same person A when they compare the encrypted data

received from A. “Re-usable” means A can re-use its group secret in multiple SH

sessions. Ateniese et al. [6] and Jarecki et al. [50] implemented un-linkable SH schemes

13

with re-usable group secrets involving a third-party CA. Duan et al. [26] proposed a

bilinear-pairing-based SH that satisfied both un-linkable and re-usable properties without

using CA. In their protocol, to complete a single SH instance, each principal needs to run

one bilinear pairing operation.

2.3 Elliptic Curve Cryptographic Algorithms

Elliptic Curve Cryptography (ECC) was proposed by Koblitz et al. [56] and

Miller et al. [67]. They independently suggested the use of elliptic curve groups in

public key cryptography. Comparing with RSA [84] or Diffie-Hellman (DH) [25] of the

same secure strength, ECC needs a much shorter key size. For example, 256-bit key size

in ECC has the same secure strength as 3072-bit key size in RSA [38] (equivalent to

128-bit AES secure strength).

Let K be a finite field and E(K) an additive group of points on an elliptic curve E

over K, E(K) is defined as the set of points (x, y), x, y K, a point (x, y) satisfies the

Weierstrass equation:

y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6 (2-1)

where a1, a2, a3, a4, a6 K. E(K) also includes an extra point O, called point at infinity.

The number of points on E(K) is called the order of E(K) and is denoted by #E. In this

dissertation, q is chosen as a large prime number, K = Fq is a finite prime field, and the

Weierstrass equation (2-1) is selected as:

y
2
 = x

3
 + ax + b , where a, b Fq (2-2)

14

Point Multiplication is the multiplication between a multi-precision integer k and

a point P on E(Fq), in a format of [k] P. The result of [k] P is also on E(Fq). Computing

[k] P is an accumulation process of point addition of k number of point P. Let P(x1, y1),

Q(x2, y2) be two points on E(Fq), the point addition R’(x3, y3) = P(x1, y1) + Q(x2, y2) is

computed as follows:

x3 = 2
 – x1 – x2, y3 = (x1 – x3) – y1 (2-3)

 = (y2 – y1)/(x2 – x1) if P Q, OR = 3(x1
2
 + a)/2y1 if P = Q (2-4)

P

Q

R

R’ = P+Q

x

y

curve E

P

R

R’ = [2]P

x

y

curve E

 Figure 2.2 (a) Point Addition, (b) Point Doubling on E(Fq)

The effect of (2-3) and (2-4) in the affine co-ordinate system is illustrated in

Figure 2.2: the straight line joining P and Q intersects E(Fq) at another point R, the point

R’ = P+Q is obtained by negating the y-axis co-ordinate of R. A special case of point

addition R’ = P + P occurs when P = Q, which is also illustrated in (2-4) and Figure

2.2. When P = Q , by taking the tangent to E(Fq) at P, there is one tangent line that must

intersect E(Fq) at a point R, then the point R’ = P + P = [2] P is obtained by negating

the y-axis co-ordinate. A point subtraction R’ = P – Q is equivalent to a point addition

15

after negating subtrahend Q’s Y-coordinate y2, and the point subtraction has the

property: P = (P+Q) – Q.

The basic bilinear pairing algorithm e(P, Q) is a bilinear mapping: G1 × G2 →

GT, where G1=G2=GT=E(Fq
k
), k is an integer and Fq

k
 an extension field of Fq. Its bilinear

property, which is represented as e([a]P, [b]Q) = e(P,Q)
ab

 = e([a]P, Q)
b
 = e(P, [b]Q)

a
,

where a and b Fq, is usually used to construct privacy-preserving protocols. One of the

most popular ordinary [32] curve families used to implement bilinear pairing is the BN

curve family, which has the form of y
2
 = x

3
 + b defined over Fq. Given the construction

parameter u, a BN curve is constructed as follows: the trace of Frobenius over Fq is t(u)=

6u
2
+1, the modulus q(u) = 36u

4
+36u

3
+24u

2
+6u+1, the order n(u) =

36u
4
+36u

3
+18u

2
+6u+1. When u reaches 64-bit and the embedding degree k=12, the

security strength of the bilinear pairing computation is equivalent to 128-bit AES [10].

Input: P in E(Fq)[r], Q in E(Fq
k)[r] ∩ Ker(πq-[q]),

 and a=6u+2=∑i=0ai2i, a has L effective bits

Output: Ra(Q, P)

1: T←Q, f←1;

2: for i = L-2 to 0, step is 1, do:

3: T←2T;

4: f←f2 ∙ lT,T(P)

5: if ai==1:

6: T←T+Q;

7: f←f ∙ lT,Q(P)

8: end if

9: end for

10: return f← (f ∙ (f ∙ laQ,Q(P))q ∙ lπ(aQ+Q),aQ(P))(q^k-1)/r

 Figure 2.3 Miller's Algorithm for R-ate Pairing

16

The implementation of bilinear pairing is called Miller’s algorithm [87]. It has

several optimized variants, based on different families of elliptic curves. The variant

adopted in this dissertation is R-ate pairing. Miller’s algorithm for R-ate pairing is

displayed in Figure 2.3. In Figure 2.3, Fq is a finite field with modulus q, k the

embedding degree, E/K an elliptic curve E over a field K, E[r] the group of all r-torsion

points of E, and E(K)[r] the K-rational group of r-torsion points of E over field K. Let πq

be the q-power Frobenius endomorphism on E(Fq), G1 = E(Fq)[r], G2 =

E(Fq)[r]∩Ker(πq-[q]), t the trace of πq, PG1 and QG2, the function of R-ate pairing

[60] over BN curves [10] is Ra(Q, P) = (f ∙ (f ∙ laQ,Q(P))
q
 ∙ lπ(aQ+Q),aQ(P))

(q^k-1)/r
, where a =

6u+2, u is the BN curve construction parameter, f = fa,Q(P) the rational function and lA,B

the line function [87] through point A and B. The algorithm is commonly divided into

two major steps: lines 2-9, called Miller Loop (ML), and line 10, known as Final

Exponential (FE). In FE, The exponentiation by (q
k
-1)/r promises a unique result.

2.4 Modern GPU Architecture

The experimental devices used in our work are based on the Compute Unified

Device Architecture (CUDA) [36]. GTX-680 is a GK104 generation device [30][36],

which contains 8 streaming multiprocessors (SMX). Each SMX can concurrently run

multiple GPU threads. These threads are grouped into 32 parallel threads, called warps.

Each SMX has 192 CUDA cores along with 32 load/store units, which allow for a total

32 threads per clock to be processed. However, for better utilization of the pipeline, it

usually simultaneously runs multiple warps of threads in one SMX. Warps of threads

17

assigned to the same SMX and dispatched to run at the same time are called a block of

GPU threads. Each SMX also contains four warp schedulers with eight dispatch units

that process 64 concurrent threads (2 warps) to the cores. For the fast data storage, each

SMX has 64K 32-bit registers and 64KB on-chip shared memory/L1 cache. The shared

memory resides on 32 64-bit banks. The on-chip fast shared memory is usually used as

cache or shared variables among threads in the same block. Two SMXs share one global

memory controller, and each memory controller ties with a 128KB L2 cache. In total,

there are four memory controllers and 512 KB L2 cache. Via these memory controllers,

SMXs could access the 2GB slow global memory. The global memory clock is

1502MHz, and the global memory bandwidth is 256-bit.

A program on GPU is called a kernel function. Its input setup, parallelism

configuration, launching and output read-back are controlled by a host thread on CPU.

Once a kernel function is launched, its host thread could release the CPU time-slice and

be waken until the kernel function completes. At runtime, following the Single

Instruction Multi Threads (SIMT) architecture, each GPU thread runs one instance of the

kernel function. The degree of parallelism is determined by (1) the register usage per

thread, (2) the shared memory usage per thread. To fully utilize the computational

strength of the Kepler GPU, the degree of parallelism needs to be raised as much as

possible to cover the memory accessing latency and other overheads in the pipeline of

CUDA cores. Any shared memory access bank conflicts, code path divergence and

explicit synchronization command will stall the concurrent execution of a warp and thus

should be avoided. Succinctly put, key design objectives include maximizing the degree

18

of parallelism, minimizing buffer usage, four-cycle-cost synchronization across threads

in the same block, branch divergence, and shared memory bank conflicts.

19

CHAPTER III

RELATED WORK

In this chapter, we first discuss previous work on optimization techniques for

SFE, point multiplication and bilinear pairing. Then, we report existing CPU-based

benchmarks of the SFE-based ED problem and the SFE-based SW problem, and CPU-

based or GPU-based benchmarks of point multiplication, and bilinear pairing.

3.1 Secure Function Evaluation

Besides the Fairplay [65] introduced in the previous chapter, TASTY [40] was

another work that studied the composibility of privacy-preserving applications. TASTY

provided a programming language to construct privacy-preserving applications via SFE-

based GCs and HE-based arithmetic functions. To optimize the computation of SFE,

several techniques had been proposed: free-XOR [57] which replaced block-cipher

operations by XOR operations for the XOR gate, “permute-and-encrypt” [65] which

reduced the de-garbling process of a garbled gate to one block-cipher operation, the m-

to-n garbled lookup table and the compact-circuit design [43] which reduced the number

of garbled gates for a number of SFE-based problems, and the garbled-row-reduction

(GRR) [79] which reduced 25% space of the garbled result for each gate.

Jha et al. [52] proposed three protocols for the SFE-based ED problem and the

SFE-based SW problem. Their protocol-3 solved a 200×200, 8-bit alphabet ED (60×60

SW) problem in 658 (1000) seconds. Later, by using all the optimization techniques

20

mentioned in the previous paragraph, Huang et al. [43] computed a 2000×10000 8-bit

alphabet SFE-based ED problem in 223 minutes, and a 60×60 SFE-based SW problem

in 415 seconds, both on two computes with Intel Duo E8400 3GHz CPUs. For CPU-

based benchmarks of SFE-based problem in the malicious model, we refer readers to

[46][58].

Frederiksen et al. [30] parallelized the OT transactions and multiple instances of

one garbled circuit on GPU, in the malicious security model. But our work was different

from theirs. Their privacy-preserving applications were limited to one GC, which was

insufficient to describe the SFE-based ED problem or the SFE-based SW problem. Their

parallelization strategy is launching thousands of independent GPU threads while each

GPU thread runs an independent SFE instance. Comparing with their work, our work

focuses on parallelization of a large scale SFE instance on GPU. And our parallelization

strategy partitions independent blocks of GCs of the single SFE instance and run these

independent blocks simultaneously. Due to the difference on parallelization strategies,

our implementation requires more complicated synchronization mechanisms that theirs.

CUDASW++ [62] was one of the most famous open source projects that ran the plain-

text SW problem on GPU. In CUDASW++, the storage of DNA query scores was re-

organized to minimize overheads for memory access. Because real values of scores are

replaced by paired wire labels in SFE, we do not follow their storage scheme. Instead,

we develop our collision-free storage model for wire labels and eliminate the memory

interface competition. And to minimize memory heap operations, we develop a static

memory management scheme to maintain wire labels and intermediate results of the

21

garbling/de-garbling process. A slice-by-slice GPU resource mapping policy was

proposed in CUDASW++. As we observe that the privacy-preserving requirement of

SFE introduces new inter-dependency for computation steps on the generator side, we

develop a new GPU resource mapping policy for the generator. And for the

computations on the evaluator side, since the privacy-preserving requirement of SFE

only complicates the computation steps, we develop a more fine-grained GPU resource

mapping policy than that in CUDASW++.

3.2 Point Multiplication and Bilinear Pairing

Elliptic curves over finite fields can be divided into two types: the supersingular

(SS) curves, and the ordinary (non-supersingular) curves. Let the trace of E/Fq be t =

q+1-#E(Fq). If the greatest common divisor of t and q equals 1, then E is ordinary,

otherwise E is SS. For their simplicity and ease of modular multiplication, SS curves

have been proposed to construct pairing-based cryptographic protocols. But SS curves

have limitation on the potential values of the embedding degree k, and it requires to use

curves of characteristic 3 when its embedding degree k = 6 [1][24]. As proved in [54],

implementing characteristic 3-based arithmetic operations on GPU brings either more

space cost, or more complicated logic and thus harder for parallelization. Therefore, we

prefer to use ordinary curves and compute the pairing algorithm under characteristic 2.

One ordinary curve can be claimed as a pairing-friendly curve when two

conditions are satisfied: a prime r ≥ dividing #E(Fq), and k with respect to r is less

than log2(r) / 8 [32]. One of the most popular pairing-friendly ordinary curve families is

22

the Barreto-Naehrig (BN) [10] curves, in which the curve parameters are represented by

polynomials of the construction parameter u. Recently, Pereira et al. [78] proposed an

implementation-friendly subclass of BN curves that brought better computational

efficiency.

A major approach to accelerate Miller’s algorithm is by reducing the length of

Miller Loop. Barreto et al. [11] extended the Duursma-Lee method [27] to supersingular

abelian varieties using the ηT pairing. The Ate pairing on hyper-elliptic curves [34], the

twisted Ate pairing [42][66] and its variation Ate pairing [99] on ordinary curve reduced

the loop length to log2(|t − 1|) / 8, where t was the trace. An optimal Ate pairing [94]

was able to attain the iterations of Miller Loop to its lower bound. The R-ate pairing [60]

obtained even shorter loop length than [34] on certain pairing-friendly elliptic curves.

Other efforts [4][16][86][87][88] worked on arithmetic optimization, such as

denominator elimination, final exponentiation simplification, and faster variants of

Miller’s algorithm under the Jacobian [16] or the Edwards co-ordinate [13], efficient

formulas for various curves with twists of degree 2,3,4 or 6 [23].

Antão et al. [2], Bernstein et al. [12] and Szerwinski et al. [93] pioneered the

implementation of point multiplication on CUDA. Szerwinski et al. [93] straight forward

ported multi-precision arithmetic on GPU. Bernstein et al. [12] represented a 224-bit

multi-precision operand into 24 32-bit float point numbers and achieved 5895 point

multiplication per second on one GTX-285 GPU. Antão et al. [2] implemented point

multiplication under Residue Number System (RNS) and achieved 9827 point

multiplication per second on one GTX-295 at the 112-bit security level. However, Antão

23

et al. [2] did not have a comparison of computational complexity between conventional

Montgomery and RNS-based Montgomery number system on GPU, and directly adopted

RNS-based Montgomery number system. Longa et al. [63] and MIRACL [69] reported

two of the best CPU-based benchmarks of point multiplication. The former was on a

standard elliptic curve and the latter on a twisted curve over Fq
2
 [63]. MIRACL [69]

could run 14509 point multiplication per second on 3.0GHz AMD Ph. II X4 CPU at the

112-bit security level, and Longa et al. [63] 22472 point multiplication per second on

2.6GHz AMD Opteron at the 128-bit security level. Another recent work [19] also

adopted RNS-based Montgomery as the number system to implement bilinear pairing on

FGPA.

Two recent studies worked on GPU-based bilinear pairing solutions: Zhang et al.

[98] implemented Tate pairing over a base field with a composite order, and Katoh et al.

[54] ηT pairing in characteristic 3. Both papers serially implemented the reduction

function [68] due to its difficulty for parallelization. As we will discuss later, a parallel

version and a serial version of the reduction function are developed in our work, and we

compare their performance to evaluate which solution is more efficient on the

contemporary GPU architecture. Moreover, both papers ignored the parallelization of the

final exponentiation (FE) step, which was almost as the same cost as Miller Loop (ML)

(check Table 2 in [14] for the computing cost comparison between ML and FE). We aim

to support parallelized ML, FE. Additionally, we also aim to support exponentiation over

Fq
12

 for privacy-preserving protocols that may further run exponential steps on the result

of bilinear pairing.

24

CHAPTER IV

LARGE SCALE PRIVACY-PRESERVING ED/SW PROBLEMS ON GPU

In this chapter, we present the parallel computing model to compute the large-

scale privacy-preserving Edit-Distance and Smith-Waterman problems on the

contemporary GPU architecture, with state-of-the-art optimization techniques such as

free-XOR [57], oblivious transfer extension [48], permute-and-encrypt [65], efficient

lookup-table design and compact circuits [44]. We will first discuss the inter-

dependency among computation steps of the SFE-based Edit-Distance (ED) problem

and the SFE-based Smith-Waterman (SW) problems, on both the generator and the

evaluator sides. Then, we present the low-level GPU gate garbler/de-garbler. Next, we

discuss details of the pipelined computation steps for the SFE-based ED problem and the

SFE-based SW problem, respectively. In the end, to verify the efficiency of the system

proposed in this dissertation, we evaluate the execution result of a 5000×5000 8-bit

character SFE-based ED instance and a 60×60 SFE-based SW instance.

Recalling the garbling/de-garbling process of a garble gate c=G(a,b) introduced

in the subchapter 2.1, the generator generates wire labels {ka
0
, ka

1
}, {kb

0
, kb

1
}, {kc

0
, kc

1
}

for a, b, and c, runs four block-cipher operations as the garbling process of G, sends the

digests of block-cipher operations to the evaluator, and then the evaluator runs the same

number of block-cipher operations as the de-garbling process of G to decrypt a wire

label of c. In this process, it is the evaluator who really computes the result of gate G.

Supposing another gate e=G’=(c,d) exists and it re-uses G’s output c, for the generator, it

25

can simultaneously garbling G and G’ if it has generated all wire labels {ka
0
, ka

1
}, {kb

0
,

kb
1
}, {kc

0
, kc

1
}, {kd

0
, kd

1
} and {ke

0
, ke

1
}. However, for the evaluator, it needs the de-

garbling result of G to de-garbling G’, and thus de-garbling G’ must follow the de-

garbling process of G.

... ...

...
..
.

..
.

..
.

...

...

..
...
.

..
.

..
.

..
.

S i-1 S i+
1 S i+

1
S i

S i-1

S i

GC slots

DP matrix

(a) (b)

dependency

Figure 4.1 Parallel Computing Models for the (a) ED, (b) SW problems

Before we discuss inter-dependency of the SFE-based ED problem and the SFE-

based SW problem on the generator side and the evaluator side, we first present our

divide-and-conquer design strategy for the parallel computing model. Our design

strategy has two levels: the GC level at the bottom, and the DP level on the top. At the

GC level, the vast number of gates are concurrently garbled on the generator side, or de-

garbled on the evaluator side. At this level, we focus on maximizing the degree of

parallelism for the garbling/de-garbling process with minimum idle cycles on the GPU.

Satisfying the ultra-short security level [40] is also considered at this level. At the DP

level, we focus on fully utilizing the degree of parallelism provided by the GC level,

while the inter-dependency described in the previous paragraph is satisfied.

26

To understand the inter-dependency of the SFE-based ED problem and the SFE-

based SW problem, we first analyze the inter-dependency in their plain-text counter

parts. As we will show later, computing one entry of the DP matrix in the plain-text ED

(SW) problem is dependent to the results of three neighbor entries on its top, left and

top-left (the neighbor entries on the same column and the same row, and the neighbor

entry on its top-left). The inter-dependency in the plain-text ED and SW problem are

illustrated in Figure 4.1, respectively. Parallelization of the ED problem and the SW

problem fits the “wavefront” pattern [62], which is proposed for tree computation where

child nodes depend to their parents. The term wavefront describes the edge separating

the executed nodes from nodes waiting for execution in the next round. In Figure 4.1, the

N×N DP matrix is processed into 2N-1 slices, W= {S1, S2, …, S2N-1} and a slice Si is a

diagonal from the top right to the bottom left. And for entries of the DP matrix, called

slots, they are independent to each other if they are on the same slice. When applying the

wavefront pattern to the SFE-based ED and SW problems, we treat entries of the DP

matrix, called GC-slots, as the atomic module at the DP level. Then, for the evaluator,

GC-slots are independent when they are on the same slice. The degree of parallelism

equals to the length of a slice, which increases from S1, S2 until SN, and then decreases

from SN to S2N-1. For de-garbling GC-slots on Si, the pre-requisite is the de-garbled

outputs on slices Si-2 and Si-1. And hence, the de-garbling process can only de-garble one

slice at a time, which means Si is mapped to GPU units after Si-1 is completed.

However, for the generator, according to our discussion in the previous two

paragraphs, if wire labels of all GC-slots’ outputs have been generated, multiple slices

27

can be garbled simultaneously. As such, garbling the N×N matrix is transformed to a

1-D vector which is mapped to GPU units. Later in this chapter, observations in this

subchapter are implemented as cross-slice mapping policies (CSMP) for the generator

and slice-by-slice policies for the evaluator. In the rest of this chapter, we first present

the GPU-based gate garbler, which is the implementation at the GC-level. Then we

discuss the DP-level implementation for the ED problem and the SW problem,

respectively.

4.1 GC-level: GPU-based Gate (De-) Garbler

Recalling the garbling/de-garbling process of a gate, an arbitrary truth table entry

Txy of a gate G is garbled as Encx,y (kc
z
) = H(ka

x
||kb

y
) XOR kc

z
, where H is the encryption

function, ka
x
, kb

y
 and kc

z
 are wire labels, “||” is concatenation. Following Huang et al.

[43], 80-bit wire label is adopted to meet the ultra-short security proposed in TASTY

[40]. Choices of H are SHA-1 [43], SHA-256 [37], AES-256 supported by the AES-NI

instruction set of Intel CPUs [58], or other cryptographic hash functions. In this work,

we chose SHA-256 as H due to its similar cost of SHA-1 [22][80], and better secure

strength than SHA-1. AES-256 is excluded because it is 3 times slower than SHA-1 on

GPU [49]. As a result, Encx,y (kc
z
) is in the format of SHA-256(ka

x
 || kb

y
 || i) XOR kc

z
,

where i is a 32-bit unique gate index in a garbled circuit, where (ka
x
 || kb

y
 || i) is a 192-bit

block, and the output of Encx,y (kc
z
) a 256-bit digest. Similarly, the de-garbling function

Dec(Encx,y (kc
z
)) is SHA-256(ka

e
 || kb

e
 || i) XOR Encx,y (kc

z
), where ka

e
, kb

e
 are wire labels

obtained from OT or a de-garbling process for a predecessor gate.

28

chaff

thread access Ai

banks 0 1 7 8 31

w[0~1] w[2~3] ...

memory tiers

in each bank
GPU threads in a warp (32 threads)

......
A0 A1 A2

A0

A4

A8

A1

24

A3

w[0~1] w[0~1]

w[0~1] ... w[0~1]

w[14~15] chaff w[0~1]

A5

...

...

...

... w[0~1]

A9 A11

A7

... ...

A2

...

... w[0~1]... ...

... w[0~1]... ...

A6

A10

chaff

(b). Collision avoidance shared memory access model

(a) shared memory bank conflict in the naïve placement of W[0~15]

thread access Ai

banks 0 1 7 8 31

w[0~1] w[2~3] ...

memory tiers

in each bank

GPU threads in a warp (32 threads)

......
A0 A1 A2

A0

A4

A1

24

A3

w[0~1] w[0~1]

w[0~1] ... w[0~1]

A5

...

...

...

A7

... ...

A2

...

... w[0~1]... ...

A6

bank conflicts

Figure 4.2 Optimization on Shared Memory Access

The SHA-256 code base used in this research is PolarSSL [81]. When porting the

code base to GPU, following adjustments are made: our initial analysis shows that one

round of SHA-256 can be further divided into four steps, and each of which produces 16

(32-bit) words W[0~15] based on the elements in W computed in the current and

previous steps. Furthermore, in the end of each step, W[0~15] are used to update the

eight 32-bit digest (cipher text). In the original code base, the four steps are computed

together and thus it needs a four times larger variable W’[0~63]. We clearly partition the

four steps and keep re-using W[0~15] in each step. As a result, the share memory usage

per SHA256 instance is dropped to ¼ of the original version.

29

Overall, a total of 40 (32-bit) words of space are needed for each round. That is,

when each thread runs an independent instance of SHA-256, 16 (32-bit) registers store

W[0~15] in the current step, 8 (32-bit) registers store the digest, and one block of 16×32-

bit shared memory is assigned to each thread to store W[0~15] produced in the past step,

the storage format of such a shared memory block per thread is illustrated in Figure 4.2

(b). Here, each block (uint32 W[0~15]) resides on eight shared memory bank.

It is noted that a strip of chaff spacer is inserted in the final version of memory

access model. Figure 4.2 (a) illustrates the memory access pattern if the W[0~15] is

placed into the shared memory without any optimization. In Figure 4.2 (a), it is found

that, as all 32 threads in the same warp reads their own W with an identical offset, thread

{i, i+4, i+8, i+12, i+16, i+20, i+24, i+28}(i=0,1,2,3) are trying to access different tiers (a

low level GPU architecture) of the same memory bank simultaneously. When such a

situation happens, GPU threads in a same warp will be stalled. This case is known as

bank conflict. If W is placed in the share memory following the policy in Figure 4.2 (a),

the actual degree of parallelism drops to 1/8 of the configuration. To eliminate the often

hidden shared memory access conflicts, a strip of 64-bit chaff spacers is filled, one in the

front of every four
th

-thread’s W[0~15]. This way, parallel memory accesses {Ai, Ai+4,

Ai+8,…Ai+28} issued by threads i, i+4, i+8, …i+28 (i=0,1,2, 3) to read W[0~15] of the

same offset in its own W array will access distinct memory banks with no conflict.

Figure 4.2 (b) displays an example of offset j=0, and {A0, A4, A8… A28} read W[0].

To reduce the unnecessary off-chip memory access for reading the 192-bit input

block and writing the 256-bit digest, the coalesce memory access scheme [36] is applied

30

as a minor optimization. Accessing off-chip memory usually brings a 1:100 performance

degradation than on-chip memory. The bandwidth of the off-chip memory interface is

256-bit in the Kepler GPU architecture. Taking the input block as an example, the 192-

bit input blocks from four threads, denoted as four uint32[6], are interleaved in the

global memory space and occupies 3×256-bit. As such, as the four threads visit an

arbitrary uint32[i] of their own 192-bit blocks with the same i, it costs only one global

memory read. Although applying the coalesce memory access scheme needs extra

computation cost for the storage format converting on the CPU side, our initial

experiment results show that this scheme can bring 5% throughput enhancement for the

gate garbler.

Overall, each SHA-256 gate garbler thread uses 57 registers, where GK104

allows up to 63 registers per thread. Global memory access only occurs when the gate

garbler reads wire labels or writes the digest. Each SMX has 20 warps of GPU threads,

and the degree of parallelism is 5120=8 SMX × 640 threads. Each SMX has 64KB on-

chip memory, partitioned as 48 KB shared memory plus 16 KB L1 cache. 41.25KB of

the 48KB of shared memory is utilized to save W. Any attempt to assign more complete

warps of thread will make the total shared memory size exceed the shared memory size

boundary of GK104, it can be concluded that the gate garbler has fully utilized the

shared memory resource.

As a result, the latency of computing 10000 times SHA-256 on 5120 threads is

304ms, here each SHA-256 instance reads in a block of 192 bits as the input. The

throughput is 30.27Gbps. This performance result has included the GPU-CPU data

31

exchange time, and it is comparable to the result of SHA1 on GTX-580 [49]. As

reference, Intel reported that their SHA256 could obtain 11.5 cycles/byte on a single

core of Intel i7 2600 in 2012 [37], equivalent to 2.47Gbps. Next, we present our DP-

level design for the SFE-based Edit-Distance and Smith-Waterman problems.

4.2 DP-level: Computing SFE-based Edit-Distance

To design the parallel computing model at the DP level, the first task is analyzing

the computation logic of the ED problem. The plain-text version ED problem can be

described as follows:

Min_of_2

Min_of_

2_mux

Char_EQ

Add_One

DP[i-1][j] DP[i][j-1]

width-alignment

extension

wire A[i] B[j]

8 bits

X

t

DP[i-1][j-1]

1-bit

MUX

extension

wire

Y 8 bits

1 bit

1 bit

1 bit

m1 bits

m2 m3

m4

m4
m4

DP[i][j]

m4

(i==1 or

j==1)

Legend

LO LG LI

m4

=0
=0

void

m1 = m4-1

m1 = m4

width-

alignment

overflow 1 bit circuit

LO or LO+LG

Figure 4.3 The SFE Building Block (a GC-slot at DP[i][j]) for ED

1. The two input strings A[N] and B[N] are from the generator and the evaluator

respectively;

32

2. Solving the ED problem is essentially computing an (N+1)×(N+1) DP matrix

from top-left to right-bottom. And each slot DP[i][j] (i,j [0,N]) is computed

as:

DP[i][0] = i, DP[0][j] = j, or

if i,j [1,N], DP[i][j] = (Y > X) ? (X+1) : (Y+t)

where t = (A[i] ≠ B[j]), X=min(DP[i-1][j] , DP[i][j-1]), and Y=DP[i-1][j-1]

[43].

When using the SHDL to describe the SFE-based ED problem, “DP[i][j] = (Y >

X) ? (X+1) : (Y+t)” can be summarized as a combination of one “equal(A[i], B[j])” GC,

two “min(x,y)” GCs, and one “add(x,1)” GC. Such a combination is illustrated in Figure

4.3. In Figure 4.3, the GC-slot represents the privacy-preserving computing logic for

computing the entry DP[i][j], which is composed of two Min_of_2 circuits (Min_of_2

and Min_of_2_mux), one Char_EQ circuit (compute t), and one Add_One circuit.

[43] had already presented the optimal structure of one GC-slot, that is, GC-slots

do not have a unified structure, instead, the complexity of a CG-slot is closely dependent

to the actual bit-widths of inputs. However, some details for inter-connecting GCs within

one GC-slot are not clear presented in their work. For example, two inputs of one

Min_of_2 GC are forced to have equal bit-width to ease the difficulty of GC design, but

the Min_of_2 GC’s inputs DP[i-1][j] and DP[i][j-1] may have different bit-width at

certain slot{i, j}. In [43][44], alignment of widths of inputs for one GC was ignored.

We give the bit-width alignment scheme based on two 1-bit extension wires (see

Figure 4.3) for {DP[i-1][j], DP[i][j-1]}, and {X, Y} here. Knowing that the maximum

33

value of an arbitrary GC-slot DP[i][j] is max(i, j), the maximum possible values of

inputs and intermediate results in a GC slot are listed in Table 4.1. This table is helpful

to identify when the bit-width alignment scheme is necessary for the input wires of

circuit Min_of_2 and circuit Min_of_2_mux.

Table 4.1 Maximum Possible Values of Inputs and Intermediate Results in DP[i][j]

 DP[i][j-1]

(width = m3)

DP[i-1][j]

(width = m2)

X (width = m4) Y (width = m1)

i < j max(i,j-1) = j-1 max(i-1,j) = j min(i-1,j) = j-1 max(i-1,j-1) = j-1

i == j max(i,j-1) = i max(i-1,j) = j min(i,j) = i max(i-1,j-1) = i-1

i > j max(i,j-1) = i max(i-1,j) = i-1 min(i,i-1) = i-1 max(i-1,j-1) = i-1

The first two columns of Table 4.1, representing DP[i-1][j] and DP[i][j-1], are

values of inputs of one Min_of_2 circuit. The difference of input value m3=m2 – 1(m2=m3

– 1) is true when i<j (i>j). As such, the extension wire is activated for DP[i][j-1] (DP[i-

1][j]) when i<j (i>j), and j (i) equals power of 2. Similarly, the 3
rd

 and 4
th

 columns,

representing X and Y, are values of inputs of the other Min_of_2 circuit which has one

additional 1-bit “less or greater” signal output. The difference of input value m1= m4 – 1

is true when i==j. As such, the extension wire is activated for Y when i==j, and i is

power of 2.

34

4.2.1 GPU Mapping Policies

Next, we present how thousands of GC-slots of the SFE-based ED problem are

parallel computed on the Kepler GPU architecture. Recalling the key observation

presented at the beginning of this chapter, for the generator, garbling a GC-slot on a slice

Si only needs to re-use wire labels associated output wires of GC-slots on predecessor

slices Si-2 and Si-1; And for the evaluator, de-garbling a GC-slot on a slice Si needs to re-

use decrypted results of GC-slots on predecessor slices Si-2 and Si-1. Due to the difference

of inter-dependency of computation steps for the two principals, their GPU mapping

policies are designed separately.

On the generator side, the cross slice mapping policy (CSMP) is adopted as

follows: the CSMP partitions the DP matrix into multiple tasks, each of which aims to

fill up 5120 GPU gate garbler threads to maximize the speedup factor. In one task, each

GC-slot is assigned to one GPU thread. Before the current task starts, all paired wire

labels for GC-slots in this task are prepared. The CSMP for the first task is illustrated in

Figure 4.4.

0 1 2 3 4 ... 101 ...

1

2

3

...

i 0 1

0

1

2

3

...
...

...

2 3 4 ... 101

j
DP

matrix

GPU gate

garbler

threads

thread

0

thread

1
….

thread

5119

DP[1][1] ...DP[1][2] DP[2][1] DP[1][3]

slice 1 slice 2 slice 3 … … 101Task[0]:

... ...

Figure 4.4 The Generator's Resource Mapping Policy: CSMP

35

Figure 4.4 shows that the first task task[0] contains 5120 GC-slots, which is from

slice 1, 2, 3, … up to a fraction of slice 101. As such, task[0] has fully loaded the GPU

gate garbler. Furthermore, to facilitate the synchronization between the two principals,

the direction of counting the 5120 GC-slots is slice-by-slice, not from top-left to bottom-

right. When GPU runs the 5120 GC slots in lock-step, each GPU thread garbles its

corresponding GC-slot gate by gate for the entire GC-slot. In other words, the inter-

dependency within one GC-slot is easily satisfied because the logic of each GC-slot is

serially garbled by one GPU thread.

The challenge of CSMP is the management of wire labels. To support large

problem sizes, generating wire labels for all GC-slots in the DP matrix at the beginning

is inacceptable. Instead, it is preferred to generate wire labels at the beginning of each

task. However, for certain wire labels, such a preference is impractical. For example,

wire labels that represent output wires of GC-slots may be used in two consecutive tasks,

and thus the successor task does not need to re-generate these wire labels. Another

example is the wire labels that map to the input string A[N] and B[N], which are used by

all tasks. As a result, it is necessary to differentiate types of wire labels according to their

life-time.

Wire labels are classified into three major types LO, LI, and LG. Referring to Figure

4.3, LO represents the set of paired labels for wires of a GC-slot’s outputs. LI represents

the set of paired labels for wires internal to a GC-slot and not connected to other GC-

slots. LG represents miscellaneous types of paired labels, and they are treated as a

“global” set to simplify memory management. Classification of these three groups of

36

wire labels is not only important to efficiently use of the GPU memory space, but also

critical to synchronous accesses of wire labels by parallel GPU threads. LO and LI are pre-

assigned at initialization of a new task, but LG at initialization of the whole SFE system.

LO and LI are overwritten if they are associated with an XOR gate’s output [57] by a

calculation result based on the XOR gate’s inputs’ wire labels. Even though some LO and

LI need to be overwritten during execution, they are still pre-assigned to simplify the wire

label generation function at negligible costs.

Overwriting of labels in LO has to occur before garbling of a task. In most cases,

wire labels in LI are overwritten during garbling because no other GC-slots depend to

them. However, if a wire label in LO is dependent to some LI, these wire labels in LI need

to be overwritten before overwriting of LO. For instance, the output of an XOR gate G1 is

the input of another XOR gate G2, and the output of G2 is also the GC-slot’s output. Here,

wire labels associated with G1’s (G2’s) output are in LI(LO). Both overwriting of labels for

G1 and overwriting of labels for G2 should be done before garbling of a task,

furthermore, the former overwriting needs to be done before the latter overwriting.

Next, miscellaneous cases related to LG are listed: (1) the first case is the GC-slots

on the edge of the DP-matrix (excluding the edge DP[i][0] and DP[0][j] since they are

constant values). The two edges can be represented as DP[1][j], or DP[i][1], i.e., the

second row and second column of the DP matrix. In these GC-slots, the Min_of_2_mux

circuit’s input DP[i-1][j-1] is a real value rather than wire labels from other GC-slots

because i or j=1. Furthermore, some gates in these Min_of_2_mux circuits are only

37

dependent to inputs wires of DP[i-1][j-1]. Garbling of these gates can be skipped, and

these gates could be treated as the generator’s inputs. As such, we directly assign paired

wire labels to the outputs of these garbled gates. (2) the second case of LG is in the

Add_one circuit. As listed in Table 4.1, the maximum possible value of the input of the

Add_one circuit equals j-1 (i-1) if i < j (i > j), and the maximum possible value of its

output is j (i). When j (i) is power of 2, the bit-width of the output is 1-bit greater than

that of the input. For this case, an overflow bit is needed for correctly representing the

output value. (3) the third case is the extension wires aforementioned. (4) in the end, the

forth case is wire labels mapped to the generator’s input A[N] and the evaluator’s input

B[N]. They are global because they need to be used by multiple GC-slots, and they are

generated in the system initialization phase.

0 1 2 3 ... 101 ...

1

2

3

...

i 0 1

0

1

2

3

101
101

...

2 3 ... 101

j

DP

matrix

slice 101

GC slots in

slice 101

GPU gate

de-garbler

threads

thread

0

thread

1
….

thread

5119

de-garbling

Figure 4.5 The Evaluator's GPU Resource Mapping Policy: slice-by-slice

38

On the evaluator side, a GC-slot DP[i][j] can only be de-garbled after the

evaluator receives de-garbled results of slots DP[i-1][j], DP[i][j-1] and DP[i-1][j-1],

which have been de-garbled in the previous two slices. As such, a slice-by-slice GPU

resource mapping policy is proposed for the de-garbling process on the evaluator side.

Figure 4.5 illustrates a snapshot of the de-garbling process of slice 101. In this figure,

GC-slots in slice 101 are mapped to GPU de-garbler threads. This mapping happens

after the generator side completes its tasks 0 and 1 since the generator’s task 0 does not

contain all GC-slots of slice 101. Same as the garbling process, each GPU thread de-

garbles its corresponding GC-slot gate by gate, until all gates in its GC-slot is de-

garbled. If a slice contains more than 5120 GC-slots, the mapping and de-garbling

process is repeated until all GC-slots in the slice are de-garbled.

4.2.2 Memory Management and Pipelined Scheduling

While the GPU is garbling/de-garbling GC-slots, CPU is not idle. Instead, CPU

are utilized to scheduling the execution of next task (slice) on the generator (evaluator)

side, and maintaining memory chunks associated with next task (slice). To support the

large-scale SFE-based ED problem and SW problem on commodity computers and

GPUs, setting a moderate memory boundary (around 4GB on CPU, and 2GB on GPU)

for our parallel computing model is necessary. To meet such a memory boundary, the

static memory management policy is proposed as follows:

On the generator side, we observe that repetitive allocation and release of GPU

memory for the LI type wire labels are unnecessary because the host control thread can

39

re-use one device memory chunk in multiple kernel functions. In other words, if the

maximum device memory usage per task has been correctly estimated, then all tasks

could repetitively utilize this memory block since they serially dispatched to the GPU

device. The same memory management policy can be applied to the host memory, which

only stores the encryption results of block-cipher operations as intermediate results for

the generator. The memory allocation only happens in the system initialization phase,

and the memory release operation only occurs in the system de-construction phase. As a

result, the numbers of allocation and release operations in the host and GPU memory

spaces are minimized.

Due to the slice-by-slice policy for de-garbling GC-slots on the evaluator side,

the de-garbling result per slice does not need to be maintained in the GPU memory space

until the whole execution ends. Instead, only de-garbling results of the latest three slices

are kept in a separate memory chunk for the next slice. On the generator side, to simplify

the synchronization between computation and network transferring, all computation

results are copied to a separate memory block for network transferring. And then the

memory space for storing computation results of the current task is ready for being re-

used by the next task.

A scheduling step is a process on the CPU that sets up start-offsets of wire labels

of LI, LO and LG, and start-offsets of output results for each GC of each GC-slot in the

current task (slice) on the generator (evaluator) side. To locate these start-offsets, it is

necessary to collect information of GCs from their SHDL code. The objective of this

parser is two-fold. First, it collects GC information, such as the number of LI, LO and LG,

40

the number of output entries and the dependency among gates within one GC. Second, by

using collected information, it assesses the maximum memory usage of a task (slice) in

the whole SFE-based protocol. Such a parsing process happens in the system

initialization phase. And right now, this parsing process is hard coded in our system.

After this parsing process, there is another necessary preparation step in the

initialization phase. This preparation step needs to generate static structural information

for each GC-slot. It records which version of the compacted GCs is used in each GC-slot,

how many wire labels of LI, LO and LG are consumed in each GC-slot, and how many

output entries will be generated by the block-cipher operations for each GC-slot. It also

marks several flags for the utilization of wire labels LG, for example, the overflow flag for

the Add_one GC. With the structural information of GCs and GC-slots, computing the

start-offset of wire labels of LI, LO, LG, or entries of output results for each GC is simply

accumulating offsets of that of the specific GC-slots, and the relative start-offsets of GC

in the GC-slot.

These extension and overflow flags are critical to maintain the correctness of the

logic, however, a general solution that uses conditional statement to check these flags for

each GC and each gate during garbling/de-garbling may bring a large number of branch

divergences on GPU. As such, this is a trade-off between the generality and performance

of the system. Because this work focuses on the ED problem and the SW problem, our

code is highly associated with the structure of GC-slots for the SFE-based ED problem

and the SFE-based SW problem, so that a “if-else” statement for checking extension or

overflow flags are triggered only when it is necessary.

41

SFE system init
OT

Runtime phase

scheduler

task 0

task 1

LO and LI pre-assignment2

1
scheduling

2

GPU

controller
communicatior

Lo overwriting
31

2

4

3

4

5 send garbling outputs

5

5

communicatior scheduler+

GPU

controller

1

receive

encrypted data

count no. of slices

ready for de-garbling2

3 scheduling

3

de-garbling
4

1

GPU

GPU

slice 1

slice 2

Generator Evaluator

3

4

slice ...

GPU

GPU

garbling

Figure 4.6 The Pipelined Garbling & De-garbling Process (ED)

Figure 4.6 illustrates the pipelined processing flows between the garbling and de-

garbling processes for the ED problem. On the generator side, the three CPU threads are

a scheduler, a GPU controller and a communicator. The generator’s step 1 (the

evaluator’s step 3), named as “scheduling” are the scheduling step presented in last

several paragraphs. When the scheduling work for the current task is completed, the

scheduler pushes the current task to a queue shared with the GPU controller. Then the

GPU controller revises slots’ output wire label pairs for XOR gates as the step 3 (of the

generator), and runs gate garbling on GPU. Meanwhile, the scheduler starts the

scheduling step for the next task. Once the garbling process completes, the

42

communicator transfers encrypted truth tables, encrypted permute-and-encrypt bits [65],

and wire labels for extension wires (only one of a pair that associates with value 0) used

in the current task, to the evaluator.

On the evaluator side, the two CPU threads are a communicator and a

scheduler+GPU controller. Its scheduler+GPU controller first determines how many

slices are ready for de-garbling after receiving the encryption data of the latest task.

Figure 4.6 illustrates an example that the most recent received task, task 0, contains

multiple slices. As such, the scheduling step and the GPU-based de-garbling step are

invoked multiple times, each time for one slice in the task 0.

Table 4.2 Pipeline Execution Time Break Down (ED)

Exec Time Generator Evaluator

1. SFE System initialization 6.92s 2.94s

2. Scheduling 6.06s 23.04s

3. GPU garbling/de-garbling (without

GPU-CPU data copy)

1062.95s (0.218

s/task)

136.55s

(0.014s /slice)

4. CPU-GPU data copy, resource mgmt 99.13s 50.21s

5. Total computing latency 1520s 345.3s

43

4.2.3 Experiment Result and Analysis

Following the previous study [43], we select the test case 5000×5000 8-bit

alphabet ED problem, which is composed of 1.88 billion non-free gates, as the test case

to evaluate the performance of our parallel computing model on a CPU-GPU system.

The generator runs 4883 tasks on a Xeon E5504 CPU at 2.00GHz with 16GB memory

plus a GTX 680, and the evaluator runs 9999 slices on an Intel i7-3770K CPU at 3.5GHz

with 8GB memory plus a GTX680 GPU.

Table 4.2 lists the break down of execution times for major pipeline steps of the

test case. Row (2) matches the generator’s step 1 (in Figure 4.6), and the evaluator’s step

2+3. Row (3) matches the generator’s step 2+3+4, and the evaluator’s step 4. Row (5)

lists the total computing latencies (1520s, 345.3s), which does not include networking

transmission latencies, nor the system initialization time. There is a difference between

the total computing latencies (row 5), and the sum of rows 2, 3, and 4. Such a difference

is mainly spent in a compaction process of the garbling outputs. In this compaction

process, encrypted truth table entries are compressed to eliminate bubbles caused by our

static memory management policy. This step is necessary to reduce network transferring

cost. And on the evaluator side, the time difference is spent in a reverse process of the

generator’s compaction process, which normalizes lengths of the garbling outputs.

In Table 4.2, it is also shown that the time spent in garbling is much longer than

that for de-garbling. It fits the expectation since the cost of de-garbling a gate is reduced

to 12.5% (for a 3-bit in 1-bit out gate) or 25% (for a 2-bit in 1-bit out gate) of garbling a

gate when the permute-and-encrypt technique [65] is applied. Another reason would be

44

that, in most cases, the computing logic of slots in one task is much more diverse (uses

more different versions of the Min_of_2, Min_of_2_mux or Add_One circuits) than that

in one slice. Such diversity results in greater synchronization cost under the SIMT

architecture.

The computation between the two principals is also pipelined. In this test case,

the generator usually completes its total computing tasks when the evaluator completes

93% of de-garbling slices. The overall running time, excluding networking delays, to

compute the 5000×5000 test case is 1555 seconds, which translates to a throughput of

1.209×10
6
 gates per second. Compared with the computing speed of 96000 gates per

second [43], the acceleration rate is 12.5 folds.

Table 4.3 Major Memory Utilization on the Generator Side (ED)

 Generator side memory usage

LG for DP[1][j] and DP[i][1] 1.1MB (host & GPU)

LG for overflow 0.3MB (host & GPU)

circuits structural info of DP[i][j] 286MB (host)

relative start addresses of LO, LI, or LG

for each GC-slot in one task

0.3MB (host & GPU)

LI for each GC-slot in one task 12.5 MB (GPU)

garbling output of one task 80MB (host & GPU)

LO of GC-slots in latest three slices in

the previous task

3.8MB(GPU)

network transferring queue 3.2GB (host)

45

Table 4.3 illustrates the major host & GPU memory consumption on the

generator side. As shown in Table 4.3, the major memory utilization is storing circuit

structural information for the 5000×5000 GC-slots. Comparing with that, the

computation-related memory utilization for one task is negligible. In sum, the overall

memory utilization excluding network transferring-related part is around 400MB. Due to

the bursty of garbling outputs pushing into the network transferring queue as we

observed, an empirical memory upper bound 3.2GB is set for the network transferring

queue to prevent memory exhaustion. After counting in the network transferring

memory cost, the total memory usage is around 3.6GB, which is acceptable for personal

computers or small servers.

4.3 DP-level: Computing SFE-based Smith-Waterman

In this subchapter, we present the DP-level design for the SFE-based Smith-

Waterman (SW) problem, especially the part different from that for the SFE-based ED

problem. At the beginning of this subchapter, we present the structure of a GC-slot in the

DP matrix of the SW problem. Our revised SW algorithm is displayed as Figure 4.7. The

algorithm inputs are two genome sequences α and β from the generator and the evaluator

respectively, a function gap(x) = a + b x (where a and b are public co-efficients) and a 2-

dimensional score matrix. Our selection of gap(x) and score matrix follows [65], that is,

gap(x) = -12-7x and the score matrix BLOSUM62 [41]. There are 20 types of genome

enumerated in BLOSUM62, and thus the bit-width of each symbol in α and β is 5.

46

Smith-Waterman(α, β, gap, score):

1: for i from 0 to α.length:

2: DP[i][0] = 0;

3: for j from 0 to β.length:

4: DP[0][j] = 0; (j=[0, β.length])

5: for i from 1 to α.length:

6: for j from 1 to β.length:

7: signed tmp = DP[i-1][j-1] + score[α[i]][β[j]];

8: m = 0;

9: for o from 1 to i, and then 1 to j:

10: m = max(m, signed (DP[x][y]-|gap(o)|)),

 here {x,y}={i-o,j}or{i,j-o}, DP[x][y] >= |gap(o)|

11: DP[i][j] = max(m, signed tmp);

 Figure 4.7 The Revised Smith-Waterman Algorithm

For convenience of parallelization, we make several small revisions to further

partition the SW algorithm into steps (lines 7 and 11) of O(N
2
) time complexity and

steps (lines 8-10) of O(N
3
) time complexity. Line 7 includes a lookup function that

generates a score from the score matrix, and an addition function that sums results of

DP[i-1][j-1] and the newly generated score. It is noticeable that the score would be a

negative value, and thus the sum may also be negative. Therefore, the addition function

needs to export a 1-bit sign flag as part of its output. For lines 8-10, the original version

of SW algorithm differentiates the dependency among GC-slots in the same column and

the same row, and separates the logic into two for loops (one for column, the other for

row). Here, we consider them as the homogeneous inter-dependency with different

sources of wire labels. This loop can be further translated as a sequence of

{signed_Subtraction, Max} circuits. And such a sequence in an arbitrary GC-slot is

denoted as SEQ. Line 11 only includes one Max circuit which compares the result of

47

SEQ and that of line 7. Noting that the value of an arbitrary DP[i][j] should always

greater or equal to 0, this final Max circuit does need to export a sign flag.

At runtime, there is one opportunity for further optimization. Line 9 in Figure 4.7

indicates that the original length of SEQ is i+j. However, one node (DP[x][y] – gap(o))

in the SEQ can be skipped if it is negative for sure. Checking whether (DP[x][y] –

gap(o)) of SEQ is negative does not break the privacy. According to the computation

nature of the plain-text version of SW, the maximum possible value of DP[x][y] is

min(x,y) × SMAX, where SMAX is the maximum positive value in BLOSUM62. The

other operand of the subtraction, gap(x) = -12-7x, is also public. As such, if the

maximum possible value of DP[x][y] ≤ gap(o), a node (DP[x][y] – gap(o)) is skipped.

SubSub

signed_Add ScoreLookup

of α[i]

β[j]

sign

DP[i-1][j-1]
extension

wire

5 bits
1 bit

A sequence SEQ

DP[i][j]Legend

LSO LG LI

circuit

LCO or LCO+LG

4 bit

tmp

1 bit

sign

DP[x0][y0] DP[x1][y1] ...

gap(o0) gap(o1)

max

0

1 bit

sign

1 bit

sign

max

width-

alignment

Sub

max

...
max

m1

M

m0

m0

m1

m0

score

n0

n1

width-

alignment

m0

M=(m0-m1)+(m0-m2)…+(m0-n1)

LCO

...

Figure 4.8 The SFE Building Block (a GC-slot at DP[i][j]) for SW

48

The structure of a GC-slot DP[i][j] is shown in Figure 4.8. It includes a

scoreLookup circuit, a signed_Addition circuit, a sequence of unsigned_Max(m,

signed_Subtraction(DP[x][y], |gap(o)|)) circuits, and an unsigned_Max(m, tmp) circuit.

The gap(o) is treated as the generator’s input wires since it is independent with the

evaluator.

In Figure 4.8, colors for of LI, LO and LG follow the color usage in last subchapter,

but LO is further divided to two different types of wire labels, denoted by LSO and LCO: LSO

represents the set of paired labels for wires of GC-slots’ outputs, LCO the set of paired

labels for wires of circuits’ outputs within GC-slots. Separating LCO and LSO is necessary

to construct a more fine-grained parallel computing model for SW. LI represents the set

of paired labels for wires within circuits. Furthermore, LI also include labels for

extension wires for Max in SEQ, since the number of these wires for all GC-slots in the

entire DP matrix is too large to be kept as global wire labels. Based on the same reason,

if a garbled gate in signed_Subtraction does not accept any input from the evaluator, it

are treated as a wire in LI. LG includes sets of wires labels for the overflow bits of the

signed_Addition circuit of all GC-slots in the DP matrix, and the evaluator’s input β[N].

Special cases are GC-slots DP[1][j] and DP[i][1]. Their GC-slot structure can be

simplified as one scoreLookup circuit because DP[i-1][j-1]=0, and the outputs of Max

circuits are always 0.

49

4.3.1 GPU Mapping Policies

The GPU resource mapping policies for the SFE-based SW problem is similar to

that for the SFE-based ED problem. That is, the task partition of the cross-slice-mapping

(CSMP) policy for the generator, and the partition of slice-by-slice policy for the

evaluator are the same as that for the ED problem. For example, the task[0] on the

generator side also contains 5120 GC-slots. And on the evaluator side, GC-slots are de-

garbled slice by slice. However, the policies for the SFE-based SW problem are more

fined-grained than that for the SFE-based ED problem because the former problem has

much more complicated computation structures of its GC-slots.

0 1 2 3 ... 100 101 ...

1

2

3
...

i

j

0 1

0

1

2

3

100

...

100
...

...

2 3 ... 100 101 ...

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

Score

Lookup

max

sub

thread

0

0

sub

max

...

thread

0

Task[0]: slice 1~101

thread

1

slice 100

...

...

(a)

(b)

thread

5119

DP[99][2]

Add

Score

Lookup

DP[1][1] DP[2][1]

DP[98][3]

Score

Lookup

DP[32][70]

max

sub

0

...

max

sub

0

...

...

DP[2][99]...

...

Figure 4.9 The Generator's CSMP (SW) for (a) Line 7 and (b) Lines 8-11 in Figure 4.7

50

Figure 4.9 (a) illustrates a snapshot of task[0]. It is clear that only {scoreLookup,

signed_Addition} circuits for each GC-slot in task[0] are contained in Figure 4.9 (a).

This part has O(N
2
) time complexity, and therefore, each GC-slot has only one pair of

{scoreLookup, signed_Addition} circuits. Next step is garbling the the O(N
3
) time

complexity part, in a manner of slice-by-slice and within the scope of one task. Taking

the task[0] as an example, for each slice in current task, we calculate the number of

paired {signed_Subtraction, Max} circuits of all GC-slots per slice. Then, each pair of

{signed_Subtraction, Max} circuits of the current slice is mapped to one GPU gate

garbler thread. Figure 4.9 (b) uses the 100
th

 slice in task[0] as an example and illustrates

the mapping policy for the O(N
3
) time complexity part (lines 8-10) and line 11.

(a)

(b)

max

sub

0

max

...

sub

... max

0

max

sub

...

thread

97

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

slice 100

Add

Score

Lookup

thread

0

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

thread

0

...

...

 slice 100:

thread

1

...

slice 100:

slice 100:

...
thread

0

DP[100][1] DP[99][2]

Score

Lookup

DP[1][100]

Score

Lookup

thread

99
...

sub

DP[99][2] DP[50][51]

sub
...

...

...

DP[2][99]

......

...

sub

...

DP[99][2]DP[2][99]

Figure 4.10 The Evaluator’s slice-by-slice Mapping Policy (SW) for (a) Line 7 and (b)

Lines 8-11 in Figure 4.7

51

The evaluator also has a fine-grained slice-by-slice resource mapping policy,

which does not only separate the de-garbling processes of the O(N
2
) time complexity

part and the O(N
3
) time complexity part, but also separates the de-garbling processes of

signed_Subtraction circuits and Max circuits in all GC-slots of a slice. Figure 4.10 (a)

illustrates the slice-by-slice mapping policy of 100 {scoreLookup, signed_Addition (if

applicable)} circuits in the 100
th

 slice to 100 GPU threads. Then, as shown in Figure

4.10 (b), for all signed_Subtraction circuits of all GC-slots in the 100
th

 slice, each circuit

is mapped to one GPU thread because they are independent of each other. Later, in the

same slice, all Max circuits of one GC-slot are mapped to one GPU thread to enforce

serial de-garbling of Max circuits.

4.3.2 Pipelined Scheduling

The assignment of wire labels for the SFE-based SW problem is also slightly

different from that for the SFE-based ED problem. LCO and LI are pre-assigned at

initialization of a new task, but LSO and LG at initialization of the SFE system. LSO is

treated as global variables during the entire privacy-preserving computing because their

dependency crosses the DP matrix. The static memory allocation for LSO, LCO, LG and LI is

similar to its counterpart in the ED problem. The only difference is the assessment of the

maximum memory usage for saving LCO and LI for line 7 (in Figure 4.7) is per task, and

LCO and LI for line 7-11 (in Figure 4.7) per slice.

Comparing with the SFE-based ED problem, the structure of GC-slots for the

SFE-based SW problem contains richer flags: first, because all unsigned_Max circuits

52

within one GC slot need to have the same I/O bit width, extension-wire flag is necessary

for each circuit in the sequence of {unsigned_Max} circuits. Second, it saves start-

offsets of LCO associated with unsigned_Max, signed_Subtraction and signed_Addition

circuits’ output wires are contained. Third, each unsigned_Max circuit saves two offsets,

one points to its predecessor unsigned_Max circuit in the SEQ, the other points to the

signed_Subtraction circuit that passes its output to the unsigned_Max circuit.

Runtime phase (Generator) Runtime phase (Evaluator)

scheduler

task 0

task 1

1

2

GPU

controller
communicatior

3

1

2

(scoreLookup+Add)

4

7

5

5

communicatior scheduler+GPU

controller

1 2

3

1

slice 1

slice ...

6

2

2

3

Sub sequence

Max sequence

4

5

6

slice 1

slice 2,...

networking

{Sub+Max}

sequence

(scoreLookup+Add)

scheduling

2 LSO, LCO and LI pre-assignment

receiving

encrypted data

LSO, LCO overwriting

2 scheduling4

Figure 4.11 The Pipelined Garbling & De-garbling Process (SW)

Figure 4.11 illustrates the runtime pipeline of the garbling and de-garbling

process for the SW problem. On the generator side, the step 3 overwrites paired wire

label that map to outputs of signed_Addition circuits. Then the step 4 garbles

scoreLookup plus signed_Addition circuits in the task[0]. Meanwhile, the step 6

53

schedules the garbling of the {signed_Subtraction, unsigned_Max} circuit sequence

SEQ for all slices in the task[0]. Then, step 7 garbles the SEQ slice-by-slice.

On the other hand, the evaluator’s step 2 schedules the de-garbling process for

{scoreLookup, signed_Addition} slice by slice, and step 4 for the {unsigned_Max,

signed_Subtraction} sequence. Step 3, 5, 6 de-garble {scoreLookup plus

signed_Addition}, the signed_Subtraction circuits sequence, and the unsigned_Max

circuits sequences respectively. In Figure 4.11, the benefit of pipelined computing line 7

and line 8-11 (in Figure 4.7) can be easily high-lighted. That is, part of the latency for

transferring garbled result of SEQ of all GC-slots in one task is covered by the slice-by-

slice de-garbling {scoreLookup, signed_Addition}.

4.3.3 Experiment Results and Analysis

Follow previous studies [43][52], we select the 60×60 SW problem as the test

case to verify the efficiency of our system. Table 4.4 lists the break down of execution

time on the generator and the evaluator side. In Table 4.4, it shows that a very large

proportion of execution time is spent in the garbling (de-garbling) process of Max

circuits on the generator (evaluator) side. It meets the expectation because the amount of

Max circuits is huge, and all Max circuits within one GC-slot have to be de-garbled

sequentially. Garbling and de-garbling process of signed_Subtract circuits takes much

less execution time due to the independency of signed_Subtract within one GC-slot. In

this test case, the execution times of garbling and de-garbling the time complexity O(N
2
)

part are trivial.

54

Table 4.4 Execution Time Break Down (SW)

Exec Time Generator Evaluator

SFE system initialization 2.6s 4.51s

Scheduling 0.0176 0.014s

garbling & de-garbling(scoreLookup) 0.02s 0.0018s

garbling & de-garbling(signed_Addition) 0.044s 0.037s

garbling & de-garbling(signed_Subtract) 0.45s 0.091s

garbling & de-garbling(Max) 2.7s 8.5s

Total computing latency 5.6s 8.64s

The time latency from the generator’s task 0 to the evaluator’s de-garbling of

slice 119 is 9.69 seconds, and the total computing latency (two initialization phases +

9.69, excluding networking cost) is 16.79 seconds. This result represents a 24.7x

acceleration factor over the computing time (415 seconds) for the same 60×60 SW

problem reported in Huang et al. [43]. In terms of the memory usage, for the studied

case, it took about 40MB to store encrypted truth table entries and permute-and-encrypt

bits. The statically allocated memory for saving all paired wire labels of GC-slots’ and

circuits’ outputs is less than 4MB.

4.4 Summary

According to the experimental result reported in subchapter 4.2 and 4.3, it can be

concluded that the GPU-based parallel computing model proposed in this dissertation

can effectively accelerate the SFE-based ED and the SFE-based SW problems.

Comparing with the CPU-based SHA-256 version reported on Intel i7 CPU [37], our

55

GPU-based SHA-256 version in this work has roughly 3 folds throughput enhancement.

Comparing with the CPU-version benchmark reported in [43], which parallel computed

the SFE-based ED and SW problems on two computes with Intel Duo E8400 3GHz

CPUs, our 10+ folds speed up rates can be due to reasons as follows: first, when

mapping the computing structure of the SFE-based ED problem and SFE-based SW

problem to the GPU-based gate garbler, the degree of parallelism provided by the gate

garbler is fully utilized by the generator, and is maximally utilized by the evaluator while

it needs to satisfy the inter-dependency among slices. Second, the pipeline mechanism

causes few idle cycles on the CPU-GPU architecture. Third, the static memory

management policy eliminates unnecessary memory allocation and release in both host

and GPU memory spaces.

The CSMP and slice-by-slice GPU resource mapping policies are general

policies for an arbitrary problem size N of SFE-based DP problems which satisfy the

wavefront parallel patterns. Our experiment results further show that, if the time

complexity reaches O(N
3
), fine-grained mapping policies that partition time complexity

O(N
3
) part and O(N

2
) part of a DP instance have better chance than coarse-grained

counterparts to fully utilize the degree of parallelism provided by the GPU-based gate-

garbler. Knowing the “general purpose” computing nature of the SFE protocol, our

design experiences is also helpful for system design of other SFE-based problems.

A tool chain for an automatic execution process of SFE-based DP problems on

GPU is the future purpose. Currently, the runtime execution part is automatic, but the

offline part is still manual. To support an automatic offline process, a new language is

56

needed to define the inter-dependency among GCs within one GC-slot of the DP matrix,

and a new parser is needed to convert both SHDL-based GC files and the inter-

dependency among GC-slots to structural information in memory.

57

CHAPTER V

PARALLEL ECC ALGORITHMS ON GPU

In this chapter, we present the parallel computing models of two ECC

algorithms, point multiplication and bilinear pairing, on the contemporary GPU

architecture. To study the computing requirement of point multiplication and bilinear

pairing, we first study how to utilize ECC-based PSI and SH in the health-care cloud

service SAPPHIRE [77] to protect the health records of patients (privacy information)

from the cloud service provider.

Four roles of SAPPHIRE are formally defined as follows: the patient(s) Bob, the

clinic(s) Alice, the cloud service provider (CSP), and the request routing server (RRS).

An instance of the SH protocol is called when Bob authenticates a request from Alice, or

the RRS authenticates a request from Bob or Alice. As a 1-to-N server setting, the RRS

may need to authenticate a large number of clients (Alice or Bob) in a short time

interval. A PSI instance is called when Alice queries Bob’s health record from the CSP.

When such a query occurs, the CSP first sends the RRS a large number of encrypted

health records, in which only one of the records is Bob’s. And then Alice runs a PSI

instance with the RRS to receive Bob’s health record without telling the RRS which

record it is interested in. In one PSI instance, each encrypted health records on the RRS

side triggers a number of point multiplication on both the RRS side and the Alice side.

Therefore, when the RRS meets bursts of urgent PSI or SH transactions in an emergency

58

response situation, it requires a solution that is capable to handle a large volume of PSI

and SH transactions timely.

For security considerations, it is assumed that the server can be compromised,

and it is unclear that GPU forbids other host processes to read the GPU memory.

Therefore, when designing utilization scenario for GPU-based point multiplication and

bilinear pairing, only the public computation are considered. On the RRS, the two inputs

of bilinear pairing are the CSP/customer/clinic's public key and a group secret (a large

integer) encrypted via ECC point multiplication. Both inputs are public data and

therefore they can be safely computed on a server without privacy concern.

In the rest of this chapter, we first analyze the PSI and SH protocols used in

SAPPHIRE. Next, we present the parallel computing model of multi-precision

arithmetic operations, which are fundamental functions for both ECC algorithms. Then,

we discuss optimization techniques applied for high-level arithmetic operations in both

ECC algorithms. And then, the experimental results are presented. In the end, the major

bottlenecks of parallelized ECC algorithms on contemporary GPU architecture are

analyzed.

5.1 Computation Requirements in PSI and SH

Figure 5.1 illustrates the authentication process between the RRS and Alice. For

simplicity, Figure 5.1 only illustrates part of the authentication process which involves

bilinear pairing:

59

As a prior process occurred before launching an SH session between Alice and

the RRS, Alice had negotiated a group secret ssa with the RRS when it was registered in

this cloud service, and the RRS returned sR = [ssa] PR to Alice as the registration result.

In this prior process, the RRS did not directly return ssa to prevent Alice from guessing

how a group secret is generated.

Request

Routing

Server

(RRS)

Clinic Alice

personal ID: “Alice-RRS-Session”, maps to

an elliptic curve point PA (PA is public)

resA = e(sR, PA) = e([ssa] PR, PA)

an elliptic point sR = [ssa] PR

Authenticated Clinics

...

...

Alice ssa

...

...

PA

...

...

Secret HandShaking

resRRS = e(PA, [ssa] PR)

personal ID: “RRS-Alice-Session”,

maps to an elliptic curve point PR (PR

is public)

Alice knows sR in the prior process

Figure 5.1 The Secret Handshake between Alice and the RRS

Then, as shown in Figure 5.1, an SH session starts between Alice and the RRS.

In Figure 5.1, PR is an elliptic curve point mapped from the RRS’s personal ID.

Similarly, Alice also has a point PA associated with its ID. These personal ID can be

60

arbitrary strings, and hence do not necessarily associate with their identities such as the

full name, the driver license No., or the MAC address. In an SH session, Alice computes

a pairing function e(sR, PA) = e([ssa] PR, PA); on the other hand, the RRS computes

another pairing function e(PA, [ssa] PR). According to the bilinear property e([a] P, Q) =

e(P, [a] Q), if and only if the two principals share a common group secret ssa, results of

the two pairing functions can be the same.

For the case that the RRS authenticates different clinics in a short time interval,

several observations are drawn as follows. First, these authentication requests are

independent to each other. Second, on the RRS side, the code path of the pairing

function is determined by the order of the select elliptic curve, not the inputs PA and [ssa]

PR. And hence, when all players in the system use the same elliptic curve for SH,

different bilinear pairing instances on the RRS have the same code path, and hence fit

the restriction of “single instruction” in the SIMT architecture.

Next, we present the utilization of PSI in SAPPHAIRE. A PSI session is called

when the RRS returns the patient Bob’s health record to the clinic Alice. The purpose of

using PSI is protecting Bob’s health record from a carious RRS who may assess Bob’s

health status based on clinics’ requests, or an unauthorized Alice who wants to guess the

storage structure of health records on the CSP. In order to protect the privacy of Bob, the

CSP will return k health records to the RRS, and then Alice runs a PSI session with the

RRS to select one health record. No matter the result of the PSI session, Alice does not

know any information of other health records, and the RRS does not know which record

is matched by the Alice. If Alice is authorized to access Bob’s record, then the PSI

61

session will return it Bob’s record, and both Alice and the RRS know a unique match

occurs; otherwise, the PSI session indicates that nothing is matched and the RRS rejects

Alice’s query.

encrypted health-record of BobEnc(j)
...

Enc(k)

......
Clinic Alice

Request

Routing

Service

(RRS)

Inputs:

kDB is a large integer,

P is a public point on a public elliptic curve,

kEB=[kDB]P

rB1 and rB2, two large integers

Inputs:

kDA is a large integer,

P is the same point used by RRS

kEA = [kDA] P

rA1 and rA2 are two large integers

Enc(j): the index of Bob’s record in CSP

For each record:

 compute H2(Enc(k));

 EBk = {[rB1]P, [rB1 * H2(Enc(k))] kEB }

exchange EA

and EBk

send MA(EBk)

k health records

encrypted health record of someone

...

Public knowledge: elliptic curve, P, and hash

function H2

k point mul, and the same kEB for all point mul

compute H2(Enc(j));

EA = {[rA1]P, [rA1 * H2(Enc(j))] kEA };

For each H2(Enc(k):

 MBk(EA) = {[rB2 * rA1 * H2(Enc(k)]P,

 [rB2* rA1 * H2(Enc(j))] kEA};

k point mul, and the same

[rA1]P for all point mul

For each record:

 MA(EBk) = {[rA2 * rB1 * H2(Enc(j)]P,

 [rA2* rB1 * H2(Enc(k))] kEB};

random disorder MA(EBk)

k point mul, and different

[rB1*H2(Enc(k))]kEB for each point mul

kDB * [rA2 * rB1 * H2(Enc(j)]P

= [kDB * rA2* rB1 * H2(Enc(j))] P;

For each record in MA(EBk):

 check [kDB * rA2* rB1 * H2(Enc(j))] P

 == [rA2* rB1 * H2(Enc(k))] kEB?

 if yes, send MBk(EA) to Alice

send MBk(EA)

kDA * [rB2 * rA1 * H2(Enc(k)]P

= [kDA * rB2* rA1 * H2(Enc(k))] P

k point mul, and different [rB2 * rA1 *

H2(Enc(k)]P for each point mul

For each record in MBk(EA):

 check [kDA * rB2* rA1 * H2(Enc(k))] P

 == [rB2* rA1 * H2(Enc(j))] kEA?

 if yes, then Alice knows there is a

match, and which index matches

with k associated

encrypted health-records

Figure 5.2 Private Set Intersection between Alice and the RRS

62

Figure 5.2 illustrates such a PSI session between Alice and the RRS. Before the

PSI session launches, the CSP sends the RRS k encrypted health records associated with

the cipher-text of their storage indices in the CSP. The encrypted storage indices are

denoted by Enc(k), and that associates with Bob’s health record is denoted by Enc(j),

which is generated by the CSP when Bob’s health record is submitted. If Alice is

authorized by Bob to access its health record, Alice has received Enc(j) from Bob.

In one PSI session, the RRS holds k encrypted health records, but only one of

them belongs to Bob, which is Alice’s query target. If Alice has been authorized by Bob,

the RRS can find a match in the end of the PSI process. Due to the randomly disordering

step of Alice, RRS does not know which entry in the original set is matched. As such,

the RRS cannot assess Bob’s health status according to the medical specialty of Alice. If

no match had found by the RRS, the RRS rejects to send any health records to Alice.

In one PSI session, the possibility of the RRS to correctly guess out which entry

Alice is looking for is 1/k. Larger k means better protection for Bob’s health status, and

therefore larger k is preferred. To complete one PSI session, Figure 5.2 shows that there

are 2×k point multiplications on each side. On the RRS side, the point multiplication

computations are in the format of [Ik] P, where the point P is the same in the k instances.

However, on Alice side, the format is [I] Pk, where points Pk are different and the scalar I

is the same in the k instances. As we will present in subchapter 5.3, comparing with than

[Ik] P, [I] Pk requires much more computation cost for generating the pre-calculated

tables for Pk during the computing process of point multiplication.

63

5.2 Computing Model of Multi-precision Arithmetic

The fundamental arithmetic functions of point multiplication and bilinear pairing

are multi-precision arithmetic such as add/sub/mul/div/exp, whose operands have n×32

bit length and n ≥ 2. Our first task for exploring the design and the performance

evaluation of point multiplication and bilinear pairing on the contemporary GPU

architecture is designing the low level parallel computing model for the multi-precision

arithmetic and the storage format of arithmetic operands, and selecting a suitable number

system for GPU.

Before presenting the formal design of the parallel computing model of ECC

algorithms, we first evaluate the throughput of INT32/SPF instructions on GTX-680.

The initial result is in Table 5.1, which shows that single addition and multiplication in

SPF is roughly 3-folds faster than its INT version.

Table 5.1 Execution Time of INT32 and SPF arithmetic on GTX-680

Instruction INT32

A+B

SPF A+B INT32

A×B

SPF A×B INT32

A×B+C

SPF

A×B+C

Exec

times (ms)

0.0308 0.012 0.0326 0.011 0.0114 0.0117

As we know, earlier generation GPUs have only implemented fused

multiplication plus addition (FMA) as one instruction for SPF. However, Table 5.1

indicates that such a FMA for INT32, or a similar mechanism, has been supported by

GK104 architecture. This may be the reason why SPF and INT32 have similar

64

throughputs of MUL+ADD. As such, using SPF may be a good choice, and using INT32

is also acceptable. Eventually, INT32 is adopted because of the reasons as follows.

Given the parameters of elliptic curve and security strength select in this

dissertation, each operand of the low-level multi-precision arithmetic is an 8×32 bit =

256 bit integer (n = 8). Two previous studies [12][70] used SPF/DPF to represent the

integer operands of low-level multi-precision arithmetic. In [12], the bit length of their

operands is 224-bit, and they saved one 224-bit integer into an array of 24 floating

points, each floating point saved 10 bits of the original integer. Such a representation

triples (and more) the memory consumption, which is one of the reasons result in a

relative small degree of parallelism of their computing model. Instead, we adopted the

SPF type but represented a 256-bit integer by a float32[8] array. And then the round up

problem is met during iteratively MUL+ADD of floating point values. Converting

intermediate floating point results to integer after several MUL+ADD might avoid

rounding up effect, but there is no good way to ensure an optimal insertion method. [70]

represented a 256-bit integer as in the polynomial format with 12 double-precision

floating point coefficients. Knowing that the throughput of Double-Precision-Floating

(DPF) is 1/24 of that of SPF on GTX-680, such a DPF-based data representing is not

advisable on Kepler Architecture.

The next problem is selecting a suitable number system for GPU. Previous

studies on parallelization of ECC algorithms were mainly based on either conventional

Montgomery [68] or Residue Number System (RNS) Montgomery system. In the

conventional Montgomery system, the modular multiplication c = a × b mod q is

65

implemented by one multiplication step T = a × b following by one reduction step

reduct(T). The reduct(T) avoids to call the expensive division operation. On the other

hand, based on the Chinese Reminder Theorem (CRT), RNS decomposes a modulus M

to n co-prime integers m1, m2, …, mn, then an arbitrary integer X < M can be uniquely

represented as xi = X mod mi, 1 < i < n, M =

 . Computation in mod mi is

independent with each other, so that RNS is well suited for the SIMT architecture.

However, the RNS system cannot be directly used in a prime field since the modulus M

is not a prime, unless two extra Base Extension (BE) steps [8] are inserted in the

reduction step. As such, a multi-precision modular multiplication a[n] × b[n] mod q in

RNS needs 2n
2
+5n 32-bit MUL by using four threads, while 2n

2
+n MUL in the

conventional Montgomery by using one thread. The other two extra costs are from the

synchronization for the complicated comparison under RNS in each reduction and

modular subtraction, and the potential branch divergence in each modular subtraction.

Such synchronization cost grows as more threads are set to compute one instance.

Although the computing cost of one modular multiplication in the parallelized

RNS is greater than that in the (serial) conventional Montgomery, as concluded in [19],

the parallelized RNS is more efficient when it is applied to a long addition sequence of

modular multiplication (a × b+ c × d+ e × f +…) mod q. Such sequences frequently

appear in the bilinear pairing algorithm, and lengths of such sequences are closely

dependent to which extension fields the lazy reduction technique [3] is applied to.

Therefore, comparison of RNS and conventional Montgomery will be discussed together

with the evaluation of general lazy reduction in subchapter 5.4. In this subchapter, we

66

quantitatively evaluate the performance of multi-precision arithmetic in the conventional

Montgomery system.

In terms of the suitability of parallelizing multi-precision arithmetic in the

conventional Montgomery system, we note that the multi-precision multiplication T=a×b

is consisted of multiple independent sequences of MUL+ADD operations, mapping them

to multiple threads is similar to mapping computing of multiple sub-residues in RNS to

multiple threads. Second, the reduction step reduct(T) includes two multiplications and

one addition, most of which can be easily parallelized.

In this research, because a × b mod q in the base field Fq is not only the most

expensive operation in Fq, but also the most frequently invoked low-level arithmetic

operation in point multiplication and bilinear pairing, it is selected as the representative

code segment to evaluate several parallel computing model options. As aforementioned,

in the conventional Montgomery system, c = a × b mod q is composed of (1) T = a × b

and (2) c = reduction(T). In both point multiplication and bilinear pairing algorithms, the

modulus q, elements a, b, c needs one uint32[8] array, and the intermediate result T one

uint32[16] array. Four parallel computing models are worth evaluating, they can be

formally named as CI-1/2/4/8thread models, where each computing instance (CI) is

performed by 1/2/4/8 co-operative thread(s). Another common computing model, known

as the bit-slice model proposed in [54], is ignored in our work because the reduction in

this model shows highly sequential nature.

In the computation of (1) T = a × b and (2) c = reduction(T), the access pattern of

a and b in the shared memory space can affect the access speed and thus affect the

67

overall performance. In the shared memory, operands a and b are defined as

“__shared__ uint32[8× BLK_CI_SIZE]”, where BLK_CI_SIZE is the number of

CIs per block. Taking the CI-2thread model as an example, each two threads access the

same uint32[8i+0,8i+7], 0 < i < BLK_CI_SIZE. As such, threads {0,16}, {2,18}, ...,

{12,28}, {14,30} will concurrently read the eight uint32[0], which is a typical access

pattern in the multiplication addition/subtraction/multiplication. However, knowing that

GK-104 has 32 64-bit shared memory banks, the real concurrency of such an access

pattern is only 1/2 of the expectation because threads 0 and 16 are access different ties (a

low-level GPU memory architecture) of bank 0 and thus they compete the memory

interface. Because each SMX in GK-104 has 32 LD/ST units, analyzing this type of

bank conflict is limited within a warp of threads.

0,1 ...

A0

0 ...banks

GPU threads in a warp (32 threads)

...
A1 A30 A31

memory tiers

in each bank

1 3 4

2,3 6,7 0,1 ...

... 7

6,7

8

0,1 ...

... 11

6,7 0,1 …

12 ...

...

... ... 28

0,1 ...

... 31

6,7

chaff 0,1 ...2,3 6,7 0,1 ... 6,7 0,1 ... 6,7 0,1

A0 A1 A2 A3 A4 A5 A6 A14 A15

… ... 0,1 ... 4,5

A16 A17 A18 A19 A20 A21 A22 A30 A31

6,7 0,1 ...2,3 6,7

A0, but from a different warp

chaff6,7 0,1

...

...

a CI

chaff

4,5

Figure 5.3 Collision-free Memory Access of a 256-bit Variable (CI-2thread)

68

Taking the CI-2thread model as an example, to remove such bank conflicts, a

strip of 64-bit chaff spacer in the front of every eighth-uint32[8]. Figure 5.3 illustrates

such an insertion scheme for saving a[8×BLK_CI_SIZE] in the shared memory.

Furthermore, the insertion of the chaff spacer in the 3
rd

 row of Figure 5.3 is not

necessary, but it is placed there to simplify locating the start addresses of each a. After

applying this insertion scheme, threads 0 and 16 read bank 0 and 1 respectively when

they are reading the first element of uint32[8] associated with their CIs. As such, this

type of bank conflict is removed. We further insert spacer to ensure the address of each

variable in the shared memory always starts from bank 0.

Next, the workload balance of T = a × b is analyzed. The workload of T[16]=a[8]

× b[8] can be considered as eight sequences of T[x]=a[i] × b[j=0~7], 0≤i≤7, and x=i + j

respectively. Considering the overflow effect of a[i] × b[j], each sequence would rather

be T[x] += (low 32-bit) a[i] × b[j=0,1,...,7], and T[x+1] = (high 32-bit) a[i] ×

b[j=0,1,...,7]. Therefore, the inter-dependency among sequences are the R/W order of

T[x] and T[x+1]. If each T[0-15] vector in the shared memory is partitioned into multiple

segments with a constant size, each segment is mapped to one thread, and R/W address

of each thread has a constant offset which is large enough, our observation is that there

would be no race condition on R/W T[x] and T[x+1]. Considering the bank width on

GK104 is 64-bit, meaning T[x] and T[x+1] are in the same bank (if x is even), the size of

the segment should be at least one bank width. It also implies the infeasibility of the CI-

8thread model where two neighboring threads in one CI would simultaneously read and

write the same bank respectively and thus causes the inter-CI bank conflict. This

69

observation indicates that the multi-precision multiplication T[2n]=a[n] × b[n] under the

conventional Montgomery system shows a similar parallel workload balance result to

that under RNS. As a result, the parallelized T[16]=a[8] × b[8] in the CI-2/4thread

models are designed as shown in Figure 5.4.

a0

b0

a1

b1

a2

b2

a3

b3b4b5b6b7

a4a5a6a7

×
a0b0a1b0...... ...a7b0

a0b1a1b1
.........a7b1

a0b2a1b2.........a7b2

a0b3a1b3.........a7b3

a0b4a1b4.........a7b4

a0b5a1b5.........a7b5

a0b6a1b6.........a7b6

a0b7a1b7...... ...a7b7

T0T1T3T4T5T6T7T8 T2T9T10T12T13T14T15 T11

a0

b0

a1

b1

a2

b2

a3

b3b4b5b6b7

a4a5a6a7

×
a0b0a1b0...... ...a7b0

a0b1a1b1.........a7b1

a0b2a1b2.........a7b2

a0b3a1b3.........a7b3

a0b4a1b4.........a7b4

a0b5a1b5.........a7b5

a0b6a1b6
.........a7b6

a0b7a1b7.........a7b7

T0T1T3T4T5T6T7T8 T2T9T10T12T13T14T15 T11

thread 1

thread 0

thread 2

a. parallel multiplication in
CI-2thread model b. parallel multiplication in CI-4thread

model

banks 012345...

mem ties in

each bank

T

T

A0A1

A8A9

T

T

A16
A17

A24
A25 bank conflict

banks 012345...

mem ties in

each bank

T

T

A0A1

A16A17

A2A3

A18A19

bank conflict

thread 1

(mem acces A1)

thread 0

(mem acces A0)

A0 writes T0

A1 writes T4

thread 3

Figure 5.4 Parallel Multi-precision Multiplication T = a×b

We prove that there is no bank conflict within each CI and across multiple CIs as

follows. For the CI-2thread model, Taking the first CI thread {0,1} as an example, as

shown in Figure 5.4.a, thread 0 computes ai ×{b0, b1, b2, b3}, and thread 1 computes ai

×{b4, b5, b6, b7}. Here, operands bj read by thread 0 are on bank 0 or 1, and that read by

thread 1 are on bank 1 or 2. When thread 0 updates {Tx, Tx+1}, thread 1 is updating {Tx+4,

70

Tx+5}, which are two banks away from {Tx, Tx+1}. For the CI-4thread model, as shown in

Figure 5.4.b, thread 0 computes ai × {b0, b1}, thread 1 ai × {b2, b3}, thread 2 ai × {b4,

b5}, and thread 3 ai × {b6, b7}. Here, operands bj read by thread 0/1/2/3 are on bank

0/1/2/3 respectively. When thread 0 updates {Tx, Tx+1}, thread 1/2/3 is updating {Tx+2/ x+4/

x+6, Tx+3/ x+5/ x+7} respectively. The writing address of each thread is one bank away from

each other. It is evident that threads in the same CI, or across different CIs do not meet

any bank conflict during computing a[i] × b[j=0~7] in current execution order.

However, a new type of bank conflict across-CIs on GK104 is clearly shown in

Figure 5.4. Such bank conflicts occur when threads sum the multiplication results and

write back to T. Comparing with earlier GPU architectures, the bank width of GK104

grows from 32-bit to 64-bit, that is, T[0-15] in one tier are stored denser than in earlier

GPUs. As such, two segments of T with different start offsets and associated with

different CIs may be placed on the same bank. One example is shown in Figure 5.4, in

the CI-2thread model, threads {0,1}, {8,9}, {16,17}, {24,25} for four CIs are writing

result T0 = a0 × b0 and T4 = a0 × b4 back to shared memory, the banks of T0 and T4 for the

four CIs are {0,2}, {1,3}, {2,4} and {3,5}. Noting that these eight threads are in the

same warp, and thread 1 and thread 16 are competing for bank 2. To eliminate this type

of bank conflict, 12 registers are used to temporarily save the multiplication results of

T0-T11 or T4-T15 for each thread, and then a serial step accumulates results of two threads.

In the end, the NVIDIA profiling tool nvprof is utilized to validate the bank conflict

elimination schemes discussed in this subchapter, and the profiling result of the number

of bank conflict of T=a×b in the CI-2thread model is shown in Figure 5.5.

71

Figure 5.5 Profiling Result of Bank Conflict for T = a×b (CI-2thread)

Theoretically, a[n] × b[n] (n=8) in the CI-2thread model cost n
2
/2 MUL, which

is the same as computing it in RNS when using 2 threads per instance. Taking into count

of the synchronization overhead for bank conflict elimination, the actual cost of a[n] ×

b[n] is slightly above n
2
/2 MUL. On the other hand, elimination of the type of bank

conflict presented in the previous paragraph is also necessary under RNS if T[2n] is

consecutively placed in shared memory, and thus switching to RNS would not bring

obvious extra gain for multi-precision multiplication. (An alternative, which saves T[2n]

as n separate variables in shared memory, would avoid this bank conflict. But this option

will grossly complicate the code structure of low level multi-precision arithmetic

functions, especially the division function).

According to [68], the multi-precision version of (2) c = reduction(T=a×b) is

serially optimized as an iterative loop, where the dependency across iterations impedes

the parallelization [54][98]. For parallelization, the CI-2thread model and the CI-4thread

model adopt the single-precision version of reduction, which includes two parallelized

multiplication (1) m = (T mod R) q' mod R, and (2) m × q, and one parallel addition

T+mq, where R × R
-1

 – q × q' = 1 and R = 2
256

. Since (1) m = (T mod R) q' mod R

computes the low-256 bit half of T, this step costs only 56% of MUL+ADD of a full

multi-precision multiplication. The parallelization solution for this step is similar to that

72

for a full multi-precision multiplication, which is shown in Figure 5.6. It is shown that

the workload can be equally balanced in the CI-2thread model, but in the CI-4thread

model, explicit synchronization is necessary since the workloads per thread are different.

b. (T mod R) * q’ mod R in CI-4thread

T0

q’0

T1

q’1

T2

q’2

T3

q’3q’4q’5q’6q’7

T4T5T6T7

×

T0q’0

T0T1T3T4T5T6T7 T2

thread 0

T1q’0T7q’0

T0q’1T1q’1T6q’1

T0q’2T1q’2T5q’2

T0q’3T1q’3T4q’3

T0q’4T1q’4T3q’4

T0q’5T1q’5T2q’5

T0q’6T1q’6

T0q’7

thread 2

T2q’0T3q’0T4q’0T5q’0T6q’0

T2q’4

T2q’1T3q’1T4q’1T5q’1

T3q’3 T2q’3

T2q’2T4q’2 T3q’2

a. (T mod R) * q’ mod R in CI-2thread

T0

q’0

T1

q’1

T2

q’2

T3

q’3q’4q’5q’6q’7

T4T5T6T7

×

T0q’0

T0T1T3T4T5T6T7 T2

thread 0

T1q’0T7q’0

T0q’1T1q’1T6q’1

T0q’2T1q’2T5q’2

T0q’3T1q’3T4q’3

T0q’4T1q’4T3q’4

T0q’5T1q’5T2q’5

T0q’6T1q’6

T0q’7

thread 1

T2q’0T3q’0T4q’0T5q’0T6q’0

T2q’4

T2q’1T3q’1T4q’1T5q’1

T3q’3 T2q’3

T2q’2T4q’2 T3q’2
thread 1

thread 3

Figure 5.6 Implementation of Reduction(T)

To evaluate which computing model option results in the optimal throughput, we

compare the combination of serial/parallel multiplication (1) T = a × b plus (2) serial or

parallel version of reduction(T) (S-/P-reduct) in the CI-1/2/4thread model on GTX-680.

The degree of parallelism of GPU in the CI-1/2/4thread models are 160/352/738 GPU

threads per block, equivalent to 160/176/184 CIs per block. Furthermore, when

computing T + m × q, the parallel version of reduction(T) (denoted by P-reduct) reads T

from global memory. These configuration parameters are optimized settings, borrowed

from the shared memory usage analysis of bilinear pairing, as will be discussed later.

73

11938 times of multi-precision multiplication and 8312 times of reduction are repeated,

which are an estimation of these two functions in one complete R-ate pairing. Here, the

number of multi-precision multiplication and reduction is not 1:1 matched because the

lazy reduction scheme has been applied.

Table 5.2 Performance of 11938 mul + 8321 reduct in Various Models

models T=a×b S-reduct P-reduct best

mul+reduct

thread

per SMX

throughput

(/sec)

CI-1thread 57.87ms 39.95ms N/A 97.82ms 160 13085.3

CI-2thread 39.40ms 36.71ms 48.73ms 76.11ms 352 18499.5

CI-4thread 28.58ms 51.64ms 83.59ms 80.22ms 738 18349.5

The execution time of multiplication and reduction(T) in the CI-1/2/4thread

models are listed in Table 5.2. The last column of Table 5.2 presents the throughput (per

second). According to Table 5.2, several important conclusions can be drawn:

(1) The parallelization of multi-precision multiplication T = a × b works.

However, the gain from parallelization shrinks as the thread count per CI

increases. A possible reason of this shrinking effect is, as the thread count per CI

grows, more synchronization is needed for summing T[i] in registers;

(2) If the shared memory usage per CI is bisected into two threads, the increase

of thread number per SMX is usually greater than doubling. Due to the limit of

placing complete warps into SMX, a large shared memory usage per THREAD

usually results in an insufficient shared memory utilization rate. As each thread

consumes less shared memory resource, it is possible to put more complete warps

74

into SMX to approach the shared memory limit. As a result, we observe a

maximum degree of parallelism per SMX in the CI-4thread model in Table 5.2.

The positive effect of greater thread count per instance on the shared memory

utilization rate is one of the reasons that result in a higher throughput in the CI-

2thread model than in the CI-1thread model;

(3) The serial version of reduction (S-reduct) in the CI-2thread model is slightly

faster than that in the CI-1thread model, possibly due to an outlier of the micro-

architecture;

(4) In the CI-2thread model, the parallel version of reduction is much slower

than its serial counterpart. The breakdown of execution time shows that

computing m = (T mod R) q' mod R and m × q took 43% execution time of

reduction, the rest time is spent in the addition T + m q because the T in this

addition is a copy in the global memory. Because performing the addition

instructions in a multi-precision addition is very cheap, 48.73ms × 43% = 21ms

would be the true execution time of 8312 parallel reduction if all variables are in

shared memory. Furthermore, a quantitative understanding of cost to run multi-

precision addition with one of its operands in the global memory is obtained: its

overhead is close to 0.76 serial version of reduction in the CI-2thread model

(calculated from (48.73ms × 0.57) / 36.71ms); most of it contributed by the

global memory access. Such a quantitative understanding will be critical for us to

design the general lazy reduction scheme on GPU. In brief, it can be concluded

75

that one multi-precision ADD/SUB operation in the global memory space is

roughly costs 76% execution time of one reduction in the shared memory.

(5) Overall, Table 5.2 shows that the CI-2thread model with a serial version of

reduction illustrates the best performance among three options. And the CI-

2thread model is used as the low-level parallel computing model in both point

multiplication and bilinear pairing implementations.

5.3 Sliding Window–based Point Multiplication

The sliding window-based algorithms [56] are the most widely used

implementation methods for point multiplication. Among these sliding window-based

algorithms, the algorithm with dynamic window sizes and both positive and negative

window values is commonly recognized as the most efficient serial implementation [56],

because it needs a minimum number of point addition for one point multiplication. This

implementation can be described as follows: The scalar k in a point multiplication

instance [k] P is viewed as a stream of binary bits, given a point table which includes

pre-calculated [-L] P, [-L+2] P, …, [L-2] P, [L] P (here L is a positive odd integer), a

window slides k from its most significant bit (MSB) to its least significant bit (LSB),

then a formula (2
α
 + a) × 2

β
 = λ is calculated, where λ = the binary value of the segment

of k in the current window, a is a value satisfy -L ≤ a ≤ L, if a ≠ 0, one point

addition/subtraction is triggered if a > 0 / a < 0, and α and β are the numbers of point

doubling before and after this point addition. Such a window sliding process continues

until the window goes through all bits of k. The arithmetic operations used in this

76

algorithm include elliptic curve point addition, point subtraction and point doubling

operations, which rely on arithmetic operations in the base field Fq.

Although the sliding window-based algorithm with dynamic window sizes is

efficient on CPU, it is not GPU-friendly algorithm. For example, assuming k1 and k2 are

two scalars in two parallel point multiplication instances, and k2 has a higher hamming

weight than k1. When these two point multiplication instances simultaneously execute in

the SIMT architecture, a possible snapshot could be: for the instance that runs [k1] P, it is

executing α times of point doubling, at the same time, for the other instance that runs [k2]

P, a much higher hamming weight of scalar indicates more frequent invocation of the

point addition, and therefore this instance may have done the point doubling part and

want to run a point addition operation. In SIMT, the latter instance has to wait for the

former.

Comparing with sliding window-based algorithms with dynamic window sizes,

the variant with a fixed window size is a more SIMT-friendly option for point

multiplication. In this variant of point multiplication, no matter the values of k1 and k2,

the instances using k1 and k2 will computes the same number of point doubling followed

by a point addition/subtraction. Knowing that the bit length of scalars is selected as 256-

bit to achieve the 128-bit security level, if the window size equals N, then the number of

point addition is 256/N (or 256/N + 1 if 256 cannot be divided by N). When adopting the

variant with a fixed window size, a larger size of the window is preferred since it results

in fewer point addition operations.

77

Assuming that the window size is set as N, the pre-calculated table for point P

has 2
N
-2 entries {[2] P, …, [2

N
-1] P}, and its memory size is (2

N
-2) × 64Bytes. Because

the pre-calculated table is read only during the point multiplication, it is preferred to

utilize the 48KB (per SMX) read-only data cache provided by GK104 GPUs to store it.

However, when N becomes too large, the pre-calculated table cannot be fully stored in

the read-only data cache, some of its entries need to be stored in the global memory

space.

To utilize a large N with few access of global memory, we adopt a large N and

store the most frequently visited entries of the pre-calculated table in the read-only data

cache, and store the rest entries in the global memory. N = 9, 10, 11 are evaluated in this

work. In these three cases, the sizes of pre-calculated table will be slightly greater than

48KB (the size of data cache). When N = 9 / 10 / 11, storing the whole table needs 32 /

64 / 128 KB, and 29 / 26 / 24 point addition is needed to run one point multiplication

operation. N = 9 is not a good choice since the data cache is not fully utilized. When N =

11, the size of table becomes too large, so that the majority of the pre-calculated table

needs to be stored in the global memory space. Furthermore, comparing with the case

N=10, using N=11 can only reduce two 2 point addition operations. As such, N=10 is

adopted, and nearly 75% entries of the table is saved in the read-only data cache, which

have almost fully occupied the 48KB read-only data cache.

78

sliding window-based point multiplication on GPU

ith window

N Pt double

sync

Pt add

code paths on

GPU threads

k0

k1

k2

kn-3

kn-2

kn-1

...

offline

visit

frequency

analysis

pre-calculate

table placement

pre-calculate

table

generation

online

[2]P, [3]P,

…, [2N-1] P;

(window size

is N=10 bits)

Data cache Global mem

75% entries 25% entries

storage

analysis results read

i+1th window

N Pt double

sync

Pt add

...

legend

idle code path

executed code path

Figure 5.7 GPU-based Point Multiplication (the Same P among Instances)

Figure 5.7 illustrates the execution effect of sliding window-based point

multiplication on GPU. Because all instances use the same public point P, the generation

of table {[2] P, [3] P, … [2
N
-1] P} can be constructed before the point multiplication

starts. 26 windows slide are needed to go through the 256-bit scalars. In each window

(except the last window), 10 point doubling operations are invoked, followed by a point

addition if the value in the current window interval of the scalar ki’s bit sequence is non-

zero. In sum, the overall cost for online computation part of point multiplication can be

predicted. That is, 256 point doubling operations, 26 point addition operations, 26 data

cache / global memory read of elliptic curve points, 26 synchronization instructions.

79

Pre-calculate [2] P, [4] P, [8] P,..., [512] P and [3] P, mark them as calculated

For each entry i marked in V, i = 1022, 1021,...5:

 recursive_func(i);

recursive_func(int i):

 find the largest calculated j in C, that j < i and compute x = i – j ;

 if (x is not mark as calculated yet)

 {

 recursive_func(x):

 mark x as calculated

 }

 [i] P = [j] P + [x] P;

 mark i as calculated

[2] P [3] P [4] P ... [1022] P[1021] P online part visiting flags V

0 0 1 1 0

[2] P [3] P [4] P ... [1022] P[1021] P
offline pre-

calculation flags C

1 1 1 1 0

value value value value

flag of calculated

P

1

value

Figure 5.8 Online Generation of Pre-calculated Table (Various Points among Instances)

Next, we discuss another utilization case of the parallelized point multiplication

(shown in Figure 5.2), which sets the same scalar and different points as the input for

each instance. Its (on-line) sliding-window algorithm is skipped since it is similar to the

case with different scalars and the same point, which have been presented in last

paragraph. For this utilization case, the generation of pre-calculated table is more

complicated since each point multiplication instance needs to run a pre-calculated table

generation process for its point Pi. Because at most 26 of 1022 entries of the pre-

calculated table will be visited by the sliding window algorithm, constructing a complete

pre-calculated table {[2] Pi, [3] Pi, … [2
N
-1] Pi} for point Pi is over complicated. An

80

more efficient way is only calculating entries that will be visited by the sliding window

algorithm. Based on this observation, a pre-calculated table generation algorithm for

point Pi is proposed and displayed in Figure 5.8. The vector V flags all entries visited by

the sliding window algorithm, and the vector C flags all entries need to be calculated to

calculate V. By default, it is assumed as all [2
n
] Pi need to be calculated in C. Then, as

shown in Figure 5.8, a recursive process is invoked to calculate V.

At the first glance, the recursive processes of generating the pre-calculated table

for different points Pi are not suitable for GPU architecture due to their extensive branch

divergences. However, the code path of these recursive processes are determined by the

scalar of the point multiplication. Because all point multiplication instances are using the

same scalar, their recursive processes of generating the pre-calculated tables for Pi have

the same code path, and thus fit the SIMT architecture. As such, we implement the GPU-

based parallel pre-calculated table generation process for Pi. We will present the

experiment result of this part in the sub-chapter 5.5.

81

5.4 Optimization of Arithmetic in Extension Fields

Comparing with point multiplication, which only needs arithmetic operation in

the base field Fq, bilinear pairing needs arithmetic operations in higher extension fields

such as Fq
2
, Fq

4
, Fq

6
, Fq

12
. An arithmetic operation in higher extension fields can be

represented as a tower of arithmetic in lower extension fields [87]. Taking the field Fq
2

as an example, an element in Fq
2
 can be represented as a polynomial a+bx, where a and b

are elements in Fq, and x is the root of the irreducible polynomial x
2
 + β. That is, x

2
 can

be replaced by –β. By doing so, the arithmetic in Fq
2
 becomes the analogy with

arithmetic of complex numbers, with imaginary square root of –β. For example, the

multiplication in Fq
2
 is in the format as: (a + xb) (c + xd) = (ac - bd) + x (bc + ad). In this

computation, 4 modular multiplications in Fq are called.

The lazy reduction scheme can be applied to the multiplication in Fq
2
. First, the

computation process of (a + xb) (c + xd) can be optimized as (ac - bd) + x [(a+b)(c+d) –

ac -bd], which reduces the number of modular multiplication in Fq to three. Second,

instead of invoking modular multiplication for ac, bd, and (a+b)(c+d), multiplication is

invoked. The reduction step is moved after the accumulation of (ac - bd), and

[(a+b)(c+d) – ac -bd], so that only two reduction is necessary, one for (ac - bd), the

other for the result of [(a+b)(c+d) – ac -bd]. Furthermore, a general lazy reduction

scheme was first proposed in [3], which can be applied to Fq
2
 or higher extension fields

such as Fq
6
 and Fq

12
. When the general lazy reduction scheme is applied in Fq

12
, it can

reduce the number of reduction in a modular multiplication in Fq
12

 to 12. The experiment

result in [3] showed that the general lazy reduction scheme could significantly reduce the

82

computational complexity of modular multiplication and squaring in Fq
12

, and thus

greatly increase the throughput of bilinear pairing on CPU.

On the other hand, the lazy reduction scheme has a side effect. That is, delaying

reduction operations to higher extension fields means that each variable in lower

extension fields has to occupy the doubled memory space before the reduction occurs.

To apply the lazy reduction scheme on GPU, the increase of memory space usually

means a vast of number of temporary variables need to be stored in the global memory.

One design option to reduce the global memory visit is assigning more shared memory

to each CI. However, such a design option also decreases the degree of parallelism. An

alternative option is keeping the shared memory usage per CI while using more global

memory for each CI. With this design option, the degree of parallelism is kept, but more

global memory access will occur.

Table 5.3 Performance of 1000 Modular Multiplication in Fq
4

Optimization

choices

Execution

time

Threads per

SMX

Shared mem

per CI

Throughput

(/sec)

lazy reduct in Fq
2
 265.4ms 352 256 bytes 5313×10

3

lazy reduct in Fq
4
 301.8ms 352 256 bytes 4662×10

3

prefetch + lazy

reduct in Fq
4

304.7ms 352 256 bytes 4617×10
3

lazy reduct in Fq
4
 233.7ms 224 320 bytes 3829×10

3

lazy reduct in Fq
4
 225.2ms 224 384 bytes 3982×10

3

We first examine the throughput of the modular multiplication in Fq
4
 with the

general lazy reduction scheme applied in Fq
2
 and Fq

4
. Table 5.3 lists the performances of

83

1000 modular multiplication with several different design options. The difference

between row 1 and 2 of Table 5.3 is where the lazy reduction is applied. It is found that

the latter case returns a worse performance outcome, even though it calls fewer

reductions. It shows that the increase of slow global memory access has dominated the

benefit of fewer reduction operations. Such a result is opposite to the observations of

applying lazy reduction on CPUs. We further investigated the software-based pre-

fetching scheme [59]. In this scheme, before reading a variable of the current warp from

the global memory, variable that will be read by threads in the next warp is pre-fetched

to L2 cache. Row 3 illustrates the performance of applying the pre-fetching scheme with

the lazy reduction to Fq
4
, it shows that no noticeable performance gain was obtained by

pre-fetching. Such a result is not surprising since it is commonly known that pre-fetching

may not always accelerate the computing process, and sometimes pre-fetching can even

trigger some hurtful memory accesses. In this experiment, because the runtime

scheduling of warps on SMX is transparent to programmer, the pre-fetching for next

warp policy without hardware support cannot guarantee to make a positive hit at run

time.

Rows 2, 4, and 5 in Table 5.3 illustrate some marginal improvement of execution

time when more shared memory is allocated to each CI. The execution gain is only

marginal because the memory usage of EAGL is spatially and timely optimized. And

therefore, less benefit can be further gained as more shared memory is assigned to each

CI. On the other hand, assigned more shared memory for each CI led to significant drop

of throughput due to the reduced degree of parallelism.

84

Based on the results of applying lazy reduction in Fq
2
 and Fq

4
, it is the time to

answer whether it is suitable to apply lazy reduction to field Fq
12

on GPU. A quick

analysis of computational complexity for applying the lazy reduction to Fq
12

 suggested a

sharp increase of the global memory access than that in the case of applying the lazy

reduction in Fq
4
: when applying the lazy reduction to Fq

12
, the memory size of all

temporary variables in a modular multiplication in Fq
12

doubles, and most computation

steps have to either fully reside in the global memory, or frequently invokes data

swapping between shared memory and global memory. As a result, on the contemporary

GPU architecture, when applying the lazy reduction to Fq
12

, its overhead of global

memory access was deemed to be too high to make this technique useful. In summary,

despite applying lazy reduction in higher extension fields Fq
4
 or Fq

12
 has further reduced

the computational complexities, applying lazy reduction in extension fields Fq
2
, which

triggers much fewer global memory accesses, is best suited for contemporary GPU

architecture.

As discussed in subchapter 5.2, although the RNS and conventional Montgomery

system only determine the implementation of low-level multi-precision multiplication

and reduction, the efficiency of these number system is closely related to which

extension field the lazy reduction policy is used. Assuming that the same lazy reduction

policy applied, it is concluded that our conventional Montgomery-based CI-2thread

model needs slightly less computational complexity to run a modular multiplication in

Fq
12

than the RNS-based computing models in [2][19]. We assert this conclusion as

follows. First, when comparing the multi-precision multiplication under RNS with 2

85

threads and that in our CI-2thread model, as aforementioned, they have similar

computational complexity – n
2
/2 MUL plus some synchronization cost. Second, in terms

of the computational complexity of the reduction function, [19] showed that a serial

reduction function in RNS costs 2n
2
+3n MUL, where 2n

2
 was spent in two matrix

operations in the Base Extension (BE). It is known that the workload of a matrix

operation can be equally balanced to two threads, and thus the cost of a reduction in their

RNS-based model would be n
2
+3n MUL when two threads are used. On the other hand,

the reduction in the CI-2thread model costs n
2
+n MUL. Therefore, the computational

complexity of one reduction function in the RNS-based model is slightly higher than that

in the CI-2thread model. The last factor is the computational complexity reduction by

applying the lazy reduction technique. A modular multiplication in Fq
12

can be

considered as multiple addition sequences of modular multiplication, each sequence is in

a format as (a × b+ c × d+ e × f +…) mod q. When the lazy reduction is applied to higher

extension field, the average length of these sequences becomes larger, and the number of

reduction becomes less. In other words, the lazy reduction technique determines the

numbers of multi-precision multiplication and reduction operations, and the selection of

a number system determines the computational cost of the multi-precision multiplication

(a × b, c × d, or e × f) and the reduction (implied in “mod q”). As such, the RNS-based

computing model and our CI-2thread model get the same decrease of computational cost

from the lazy reduction technique.

Other state-of-the-art optimization techniques for arithmetic in extension fields

Fq
2
, Fq

4
, Fq

12
 applied in our work include: (1) type D sextic twist [89] of the Barreto-

86

Naehrig (BN) curve [10] over Fq
2
 for input points; (2) a low hamming weight BN curve

[24]; (3) denominator elimination and lazy reduction in [87] and final exponentiation

optimization for BN curves in [24] and [88]; (4) Karatsuba multiplication for

multiplication in Fq
12

, Chung-Hasan SQR3 [21] for squaring in Fq
12

; (5) for unitary

elements of Fq
12

 generated during the final exponentiation, fast squaring of elements in

Fq
4
 [92] and Granger-Scott fast squaring [35] in Fq

12
. We acknowledge that the new

implementation-friendly curve family [78] (a subclass of BN curve) for the optimal Ate

pairing [94] is also important, but it is not considered in this work because of the

extensive additional efforts to rewrite its lazy reduction-related parts for the cross

verification of EAGL.

Next, we analyze the trade-off between the pipelining effect on GPU and the

overhead for memory access by adjusting the shared memory (smem) usage per CI. Less

shared memory per CI means more threads per block and thus better pipeline utilization,

while it also means more slow memory visits. Without a clear guidance for an optimal

configuration rule, we gradually tune the shared memory usage per CI in an ascend order

to find the peak point for the throughput of bilinear pairing. By summarizing the

memory usage of point and field arithmetic functions in the bilinear pairing, it is found

that the most frequently accessed cache could be reduced up to four elements in Fq
2
 per

CI, quantitatively 256 bytes, while the overhead for chaff spacers and shared memory

bank alignment is negligible. Therefore, we select the 256-byte as the pivot point, tune

the shared memory (smem) usage per CI from 192-byte to 384-byte, stepped by one

element in Fq
2
 (64 bytes), and observe the fluctuation of throughput.

87

Table 5.4 Throughput Fluctuation as Shared Memory Usage per CI Changes

smem usage per CI (bytes) 192 256 320 320 (P-reduct) 384

gpu thread per block 480 352 224 224 224

smem utilization rate 93.6% 91.7% 79.1% 79.1% 87.5%

throughput (pairing/sec) 2926 3350.9 2077 2564.6 2861

Throughputs of bilinear pairing with different configuration parameters are listed

in columns 2-6 of Table 5.4. It is noticeable that when the smem usage per CI equals

320-byte, the parallel version of reduction (P-reduct) can move the T in the of T+mq step

from the global memory space (in Table 5.2) from the shared memory space. The result

of this version is shown in the 5
th

 column of Table 5.4. It is found that the peak

throughput occurs when each CI caches four elements of field Fq
2
 in the shared memory

space (the 3
rd

 column of Table 5.4). According to Table 5.4, when the shared memory

usage per CI equals 320-byte, the shared memory usage utilization rate is fairly poor due

to the limitation of assigning complete warps of threads to the SMXs. When this

parameter grows to 384-byte, the negative effect of worse pipeline utilization begins to

negate the benefits of more fast memory hits. In sum, the lazy reduction in Fq
2
 is

adopted, and 256-byte as the shared memory (smem) usage per CI in EAGL.

5.5 Experiment Results of Point Multiplication

In this sub-chapter, we first report the experiment result of our GPU-based point

multiplication with the same point P and different scalars in each instance. The GPU

platform is a GTX-680 card. Parameters of the degree of parallelism are 8 SMX × 384

88

threads, equivalent to 8×192=1536 concurrent instances. 1536 256-bit random generated

scalars are inputs of this experiment. As a result, the execution time, including pre-

processing of scalars on CPU and point multiplication on GPU, is 32.68ms, equivalent to

47000 point multiplication per second, where the CPU-based pre-processing process for

analyzing the visit frequency of entries of the pre-calculated table takes less than 1ms.

Table 5.5 Comparison of Throughputs of Point Multiplication among GPU

Implementations

Implementations Key size Throughput (/sec) Device Device peak

GFLOPS

[12] 224 bit 5895 GTX 285 1062

[2] 224 bit 9827 GTX 295 1788

EAGL 256 bit 47000 GTX 680 3090

Table 5.5 compares the throughputs of point multiplication between our work

and two recent GPU-based implementations. Before comparing the throughput

enhancement of EAGL with existing benchmarks which obtained on earlier generations

of GPUs, throughputs are normalize by the difference of peak device GFLOPS.

Although the difference on peak GFLOPS can roughly reflect the difference of their

processing strength, we understand that it is not a perfect method to measure the

processing strength since the architectural changes across generations of GPU are

usually coupled with different memory bandwidth and frequency, and new features to

facilitate off-chip or on-chip memory access. After normalizing the throughputs by the

difference of peak device GFLOPS, it is shown that EAGL has roughly 2.76 times

89

higher throughput than that in [2]. Noting that the peak GFLOPS scale up between GTX-

680 and GTX-295 is 1.72 folds, which is smaller than the throughput grows between

EAGL and [2], it indicates that the CI-2thread model in EAGL efficiently utilize the on-

chip resources of GK-104 architecture.

Next, EAGL is compared with several recent CPU-based point multiplication

implementations in Table 5.6. For more benchmarks of point multiplication on CPU or

other platforms such as FPGA, PS3, we refer readers to [2]. It is found that EAGL can

provide 2.1 times higher throughput than that in [63]. Furthermore, it is noticeable that

EAGL and [69] have similar code paths; and EAGL and [63] are based on different

types of elliptic curves, where EAGL is based on a standardized elliptic curve, and [63] a

twisted curve over Fq
2
.

Table 5.6 CPU vs. GPU-based Point Multiplication Implementations

Implementations Key size Elliptic curve Throughput (/sec) Device

Optimized GLS

method [63]

256 bit twisted Edward

curves

22472 2.6GHz AMD

Opteron

MIRACL [69] 224 bit standardized 14509 3.0GHz AMD

Phenom II

EAGL 256 bit standardized 47000 GTX 680

In the end, we present the experiment result of point multiplication with different

points and the same scalar. Because this research is the first work to discuss this type of

parallel point multiplication, no existing experiment result are found for comparison. In

this experiment, 1000 random generated scalars are tested, and the average number of

point addition/doubling to generate the pre-calculated table is 39.5, much less than 1022

90

point addition/doubling needed by the MIRACL’s pre-calculated table generation

method. On GTX-680, the execution time of the pre-calculated table generation (in

Figure 5.8) is 8.52ms. The rest part of point multiplication with different points and the

same scalar has a similar computational cost to point multiplication with different scalars

and the same point. As a result, the point multiplication with different points and the

same scalar needs roughly 25% execution time than the point multiplication with the

same point and different scalars.

5.6 Experiment Results of Bilinear Pairing

In this subchapter, we present the experiment result of bilinear pairing and some

further analysis based on the result. First, EAGL is compared with GPU-based

implementations in the literature [54][98]. As illustrated in Table 5.7. The configuration

parameter of the degree of parallelism is 8 SMX × 352 threads (8×176=1408 instances).

On a GTX-680, the execution time is 420.19ms for 1408 instances, equivalent to 3350.9

pairings/sec. In comparison, the throughput of ηT pairing under 128-bit AES security

strength is 254 pairings/sec on one Tesla C2050 card [54]. The peak GFLOPS of GTX-

680 is roughly three times larger than M2050/C2050, after taking into account the

difference of computational strength, the throughput of EAGL is roughly 4.4 times

greater than that in [54]. Furthermore, this performance comparison does not even count

in the factor that as the FE step in [54] was not parallelized. According to such a

comparison, it could be concluded that following the traditional parallel computing

mapping policy, the CI-2thread computing model fits the SIMT architecture better than

91

the bit-slice model, which greatly complicates the variable manipulation in multi-

precision integer arithmetic operations under SIMT architecture.

In the end of Table 5.7, we also include the results of [98] which achieved

23.8ms/pairing for the composite-order pairing as a reference. However, making

quantified comparison between EAGL and that in [98] is difficult because of the

significant difference on computational complexity between the prime-order and

composite-order pairing.

Table 5.7 Comparison of Execution Time Among GPU Implementations

Implementations Algorithm Curve

Type

Security Exec time

(ms)

Device

EAGL R-ate, prime

order

ordinary 128-bit

AES

0.298 GTX-680

[54] ηT, prime order ordinary 128-bit

AES

3.94 C2050

[98] Tate, composite

order

super-

singular

80-bit AES 23.8 M2050

Next, EAGL is compared with existing CPU-based pairing solutions [3][14][70],

where all the performance results were based on a single CPU core by their authors. Our

objective is two-fold: First, we would like to evaluate the performance of EAGL by

comparing with the benchmarks on contemporary commodity CPUs. Furthermore, our

purpose is obtaining some in-depth understanding on the bottlenecks of different system

architectures. Lack of actual experimental results, a perfect acceleration model is

adopted for CPU cases where the speed up is proportional to the number of available

92

processor cores. The performance figures of studied cases are summarized in Table 5.8.

One can see that EAGL on one GTX-680 board has about half of the throughput that

could be achieved in [3] based on the perfect acceleration model for multi-core CPUs.

Comparing with the acceleration rate of EAGL on point multiplication, we found a much

worse acceleration rate on bilinear pairing on the contemporary GPU architecture.

Table 5.8 Comparison of Throughput, EAGL vs. CPU-based Solutions

Implementations Algorithm Device Core clock Throughput

EAGL R-ate pairing GTX-680 1006MHz 3350.9

[70] Ate pairing Intel Q6600 2.4GHz 4×669 (est.)

[14] Ate pairing Intel i7 860 2.8GHz 4×1202 (est.)

[3] Ate pairing Intel i5 760 2.8GHz 4×1661 (est.)

However, GPU-based bilinear pairing solution supported by EAGL is not

meaningless. It is noted that the CPU host thread that runs on CPU has negligible

performance cost. As such, the CPU host processor(s) can utilize GPU as a pairing co-

processor, while the host processor(s) can run other business logic such as database

management, high-throughput networking or file I/O. For an application requiring small

to moderate throughput of bilinear pairing, EAGL can be a supplement for CPU-based

solutions. Furthermore, EAGL is a scalable solution to provide excessive throughput of

bilinear pairing.

93

5.7 Analysis of System Bottleneck

Computing performance is affected by computational complexity of the

algorithm, programming techniques, and the underlying architectures. All three factors

need to be seamlessly integrated to achieve top performance. When the acceleration rates

of EAGL on point multiplication and bilinear pairing are cross compared, it is found that

EAGL shows different performance relationships when it compares with CPU-based

implementations. When comparing the best CPU-based benchmarks reported in [63] (for

point multiplication) and [3] (for bilinear pairing), EAGL’s throughput enhancement rate

is around 2.1 folds for point multiplication, but roughly 50% for bilinear pairing. It is

interesting to investigate reasons of such a phenomenon.

The first question is whether the CI-2thread computing model, which is based on

the conventional Montgomery number system, fits contemporary GPU architecture. The

compilation result of CUDA compiler shows that almost all shared memory are occupied

under current parallelism configuration, and the register count per thread reaches 63,

which is the upper-bound on GK104 GPUs. As such, the CI-2thread model has fully

utilized the on-chip resources of GTX-680.

Then, the next question is whether the CI-2thread model is better than the RNS-

based parallel computing model. Because no previous studies implemented RNS-based

bilinear pairing on GPU platforms, to evaluate whether the CI-2thread model is better

than the RNS-based parallel computing model, the comparison target has to switched to

point multiplication since both algorithms share the same low-level computing model. It

is reported in [2] that 9827 224-bit point multiplication/sec can be achieved on a GTX-

94

295 (1788 peak GLOPS). On the other hand, EAGL on a GTX-680 offers 47000 256-bit

point multiplication/sec on a GTX-680 (3090 peak GLOPS). EAGL’s performance on

point multiplication is 2.76 times higher than [2] after normalizing the difference of peak

GFLOPS, even at higher security strength. Moreover, the RNS-based computing model

needs extra memory space to save the matrixes in the BE step in the reduction function.

Although it is very hard to compare the computational strength utilization rate across

different generations of GPUs, a higher growth of throughput (2.76) than that of

GFLOPS (1.72) at least proves that the CI-2thread model is not worse than RNS on

contemporary GPUs.

A comparison of sizes of memory usage per CI between point multiplication and

bilinear pairing gives us some clues on why EAGL obtains different performance

acceleration effect on point multiplication and bilinear pairing, vs. state-of-the-art CPU-

based solutions. The change of memory usage sizes is illustrated in Figure 5.9. It is

shown that, in both point multiplication and bilinear pairing, the sizes of fast cache (in

the shared memory space) are stable. However, in bilinear pairing, the size of slow cache

(in the global memory space) fluctuates, and only in the line function calculation step, its

size of slow cache drops under that in point multiplication. Figure 5.9 clearly suggests

that one bilinear pairing instance needs much more global memory resources than one

point multiplication instance.

95

Execution time (ms)

50

100

200

300

400

500

600

700

800

900

Bytes

50 100 200 300 400 450

smem (point mul)

smem (pairing)

gmem (point mul)

160

224

256

320

32

0

42

gmem (pairing)

point calculation

64

line calculation

1

2

1

2

896

237

3

merge results of

step 1,2
3

448

4 inversion

246

4

5 rest of FE

5

Miller

Loop

 Final

Expon-

ential

Figure 5.9 Shared/Global Memory (s/g mem) Size of Memory Usage per CI in EAGL’s

Point Multiplication of and Bilinear Pairing

To gain some in-depth understanding about the bottleneck, the computation steps

of bilinear pairing are broken down. One pairing computation consists of 11938 multi-

precision multiplication, 8312 reduction, plus over 20k inexpensive multi-precision

addition/subtraction operations. Although EAGL supposes most low-level multi-

precision arithmetic operations occurs only in the shared memory and registers,

computations in higher extension fields have to swap variables between available shared

memory and global memory. As such, some variable swapping occurs as prior steps or

post steps for multi-precision arithmetic operations. If assuming data swapping between

96

shared memory and global memory has negligible cost, then the computation cost of a

bilinear pairing operation is equivalent to the sum of computing 11938 multi-precision

multiplication, 8312 reduction, plus 20k multi-precision addition/subtraction operations.

In those arithmetic operations, the multi-precision addition/subtraction operations take

less than less than 15ms if all operations occur in the shared memory space. According

to the result shown in Table 5.2, running 11938 multiplication plus 8312 reduction

operations in the shared memory space and registers takes 76ms. The overall estimated

execution time is close to 91ms, which is much less than the actual execution time

(420ms).

Even though the hardware level profiling tools is not available for precise

measurement, it is asserted that a large proportion of execution time (420ms) is spent in

variables swapping between shared memory and global memory spaces as follows:

further breakdown of execution time shows that each powering of arbitrary x in Fq
12

 in

the Final Exponential (FE) step takes 47ms. On the other hand, NVIDIA’s profiling tool

nvprof shows that one concurrent global memory copy of elements in Fq
12

 takes 35μs.

Because a global memory access usually takes hundreds of cycles, and GTX-680 has

1006MHz processor unit, such an execution time for one concurrent global memory

copy of elements in Fq
12

 is reasonable. Furthermore, nvprof shows that one powering of

x in Fq
12

 triggers nearly 500 times more global memory hits than a copy in Fq
12

. Such a

ratio indicates that global memory hits in one powering of arbitrary x in Fq
12

 takes almost

17ms, equivalent to 35% of the execution time. And this estimated percentage has not

counted in extra synchronization and branch divergent cost associated with global

97

memory hits, which occurs if one global memory hit is embedded by an if-else statement.

One example is the borrow bit calculation in the multi-precision subtraction operation. In

sum, it can be concluded that a major proportion of execution time is spent in swapping

variable between the shared memory space and the global memory space.

98

CHAPTER VI

CONCLUSION AND FUTURE WORK

This dissertation explores design issues for parallelization of SFE-based secure

Edit distance (ED) and Smith-Waterman (SW) algorithms and the ECC-based Private

Set Intersection (PSI) and Secret Handshake (SH) protocols on the Kepler GPU

architecture.

A parallel computing model for SFE-based ED and SW algorithms are proposed.

It includes a high-throughput GPU-based gate (de-)garbler, a static memory

management strategy, pipelined design, and general GPU resource mapping policies for

DP problems which is parallelized based on the wavefront parallel computing pattern.

This dissertation shows that, with very little waste of processing cycles or memory

space, the Kepler GPU architecture can be fully utilized to run billions of garbled gates

to implement SFE-based ED and SW algorithms.

Second, this dissertation shows that the conventional Montgomery-based number

system is friendlier to the Kepler GPU architecture than the RNS–based Montgomery

number system is, based on the comparison of throughputs in this work vs. those

reported in [2]. Furthermore, on Kepler GPU architecture, the lazy reduction in the

quadratic extension field obtains better throughput results than that in the quad or the

twelfth extension field, which is contrary to the results reported on CPU architectures

[3]. The Elliptic curve Arithmetic GPU Library (EAGL) is implemented, which can run

3350.9 R-ate (bilinear) pairing/sec, or 47000 point multiplication/sec at the 128-bit

99

security level. Although this dissertation does not study other bilinear-pairing-based

secure protocols such as key agreement [29][97], identity-based encryption [18][95],

identity-based signatures [71][90], short signature schemes [15][47][64], EAGL can be

applied in the construction of these protocols in a straight-forward fashion.

Third, this dissertation illustrates that simple ECC-based computations, such as

point multiplication or field arithmetic in the quadratic extension field can be effectively

supported by the Kepler GPU architecture. It is identified that lacking of advanced

memory management functions in the contemporary GPU architecture impose some

limitations on bilinear pairing operations. Substantial performance gain can be expected

when the on-chip memory size and/or more advanced memory prefetching mechanisms

are supported in future generations of GPUs.

With respect to the modular structure and the tool chain for automation of SFE-

based computing problems, three new challenges shall be solved for the future

generation of the GPU-based parallel computing model. Firstly, unlike [65] [40] and

[43], where wire label are generated when a gate is garbled, the computing model

proposed in this dissertation pre-assigned wire labels before a task is dispatched to GPU

for garbling. As a result, the parallel computing model proposed in this dissertation

needs a fine-grained categorization of wire labels (Lo, LG and Li), while [65] [40] and [43]

do not. A new description language needs to be invented, so that the tool chain can

extract wire label categorization information for the SHDL execution engine. Second,

because the parallel computing model proposed in this dissertation needs to utilize the

maximum usage for each type of wire label, an offline parser needs to be invented to

100

assess maximum usage of wire labels, encrypted results for each GC-slot of the SFE-

based DP matrix. The offline parser should accept arbitrary sizes of the DP matrix. Third,

Because SHDL cannot cover the inter-dependency specification among garbled circuit,

and among GC-slots, a new specification language needs to be design as a supplement of

SHDL. This new description language should not only be able to describe inter-

connections among GCs, but also describe wire label types of these inter-connections to

facilitate the pre-assigning at runtime. Then, implementing a comprehensive tool chain

becomes practical.

With GPU being a major branch of parallel architectures to support massively

fine-grained parallelism, how to match computing needs of privacy-preserving protocols

with the GPU architecture is an open research challenge for now, and the future. To

understand what revisions are needed for EAGL when expanding it to future generation

GPUs, the specification changes between Fermi (an elder generation of Kepler) and

Kepler are studied, and three major library factors are empirically identified as follows:

The first factor is revising the insertion offset of the chaff spacer in the collision-

free shared memory access model for arithmetic in the base field. Due to the change of

bank width (from 32-bit to 64-bit as Fermi evolves to Kepler), one 256-bit operand is

placed in 4 consecutive banks, instead of 8. A chaffer with the same width of the bank

width needs to be inserted before the first complete operand in a tier. When expanding

EAGL to next generation GPUs, revising the insertion offset is necessary when the

width or the number of banks is changed. The second factor is the degree of parallelism

for a peak benchmark, especially in the implementation of bilinear pairing. Because

101

EAGL relies on a heuristic, which gradually increases the size of fast memory per

instance, to find out the peak performance in the trade-off between memory access speed

and the degree of parallelism, expanding to next generation GPUs needs to repeat such a

heuristic to determine the new peak performance and associated fast memory usage per

instance. Since EAGL is locality aware for storage of temporary variables in low level

arithmetic functions, only the top level function which specifies fast memory usage per

instance needs to be modified. The last most important factor is the efficiency of lazy

reduction may change due to the new global memory accessing speed on next generation

GPUs. It is possible that lazy reduction in Fq
4
 or Fq

12
 will be more effective. EAGL has

implemented lazy reduction in Fq
4
 and thus only lazy reduction in Fq

12
 needs to be done

if lazy reduction in Fq
4
 shows positive acceleration effect.

102

REFERENCES

[1].O. Ahmadi, D. Hankerson, and A. Menezes, “Software Implementation of arithmetic

in GF(3
m

)”. In WAIFI’07, 2007.

[2].S. Antão, J.C. Bajard, L. Sousa. “RNS-based Elliptic Curve Point Multiplication for

Massive Parallel Architectures”. The Computer Journal 2011, vol. 55 issue 5, pp

629-647, 2012.

[3].D.F. Aranha, K. Karabina, P. Longa, C.H. Gebotys, J. Lopez, “Faster Explicit

Formulas for Computing Pairing over Ordinary Curves”. In Eurocrypt 2011, pp 48-

68, 2011.

[4].C. Arene, T. Lange, M. Naehrig, C. Ritzenthaler, “Faster Computation of the Tate

Pairing”. Journal of Number Theory, vol.131, issue 5, pp 842-857, 2011.

[5].K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. “The

Landscape of Parallel Computing Research: A View from Berkeley”. Tech report

UCB/EECS-2006-183, 2006.

[6].G. Ateniese and M. Blanton, “Secret Handshakes with Dynamic and Fuzzy

Matching,” In NDSS’07, 2007.

[7].R. Babich, M.A. Clark, B. Joo, G. Shi, R.C. Brower and S. Gottlieb. “Scaling Lattice

QCD beyond 100 GPUs”. In SC-2011, 2011.

[8].J.C. Bajard, L.S. Didier, and P. Kornerup. “An RNS Montgomery Modular

Multiplication Algorithm”. Computers, IEEE Transaction on 47(7):766-776, 1998.

103

[9].D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong, “Secret

Handshakes from Pairing-based Key Agreements,” In S&P’03, 2003.

[10].P.S.L.M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves of Prime

Order”. In SAC 2005, pp 319-331, 2005.

[11].P.S.L.M. Barreto, S.Galbraith, C.O. hEigeartaigh and M. Scott. “Efficient Pairing

Computation on Supersingular Abelian Varieties”. Designs, Codes and

Cryptography, vol.42, Num.3, pp 239-271, 2007.

[12].D. J. Bernstein, T.R. Chen, C.M. Cheng, T. Lange, and B.Y. Yang, “ECM on

Graphics Cards”. In Eurocrypt 2009, pp 483-501, 2009.

[13].D. J. Bernstein and T. Lange. “Faster Addition and Doubling on Elliptic Curves”. In

Asiacrypt’07, 2007.

[14].J.L. Beuchat, J.E.G. Diaz, S. Mitsunari, E. Okamoto, F. Rodriguez-Henriquez, and

T. Teruya “High-Speed Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves”. In Pairing 2010, pp 21-39. 2010.

[15].D. Boneh, B. Lynn, H. Shacham, “Short Signatures from the Weil Pairing”. In

Asiacrypt 2001, pp 514-532, 2001.

[16].J. Boxall, N.E. Mrabet, F. Laguillaumie, D.P. Le. “A Variant of Millers Formula

and Algorithm”. In Pairing’10, 2010.

[17].C. Cachin. “Efficient Private Bidding and Auctions with Oblivious Third Party”. In

CCS-99, 1999.

[18].A.D. Caro, V. Iovino, G. Persiano, “Fully Secure Anonymous HIBE and Secret-

Key Anonymous IBE with Short Ciphertexts”. In Pairing 2010, pp 347-366, 2010.

104

[19].R.C.C. Cheung, S. Duquesne, J. Fan, N. Guillermin. “FPGA Implementation of

Pairings using Residue Number System and Lazy Reduction”. In CHES’11, 2011.

[20].B. Chor, O. Goldreich, E. Kushilevtiz, M. Sudan. “Private Information Retrieval”.

In 36
th

 IEEE Conference on the Foundations of Computer Science (FOCS), pp 41-50,

1997.

[21].J. Chung and M.A. Hasan. “Asymmetric squaring formulae”. In ARITH 2007, pp

113-122, 2007.

[22].Crypto++5.6.0 benchmarks on Intel Pentium 4 CPU. Available at

http://www.cryptopp.com/benchmarks-p4.html, last modified in 2009.

[23].C. Costello, T. Lange, M. Naehrig. “Faster Pairing Computations on Curves with

High-Degree Twists”. In PKC’10, 2010.

[24].A. J. Devegili, M. Scott, and R. Dahab, “Implementing Cryptographic Pairings over

Barreto-Naehrig Curves”. In Pairing 2007, pp 197-207, 2007.

[25].W. Diffie, M. Hellman. “New directions in cryptography”. IEEE Transactions on

Information Theory 22 (6): pp 644–654. 1976.

[26].P. Duan. “Oblivious Handshakes and Computing of Shared Secrets: Pairwise

Privacy-preserving Protocols for Internet Applications”. Ph.D. thesis available at:

http://repository.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2011-05-

9445/DUAN-DISSERTATION.pdf, 2011.

[27].I. Duursma, H.S. Lee, “Tate Pairing Implementation for Hyperelliptic Curves y
2
 =

x
p
 − x + d”. In Asiacrypt’03, 2003.

http://repository.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2011-05-9445/DUAN-DISSERTATION.pdf
http://repository.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2011-05-9445/DUAN-DISSERTATION.pdf

105

[28].Z. Erkin, M. Franz. J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft.

“Privacy-preserving Face Recognition”. In PET 2009.

[29].D. Fiore, R. Gennaro, and N.P. Smart, “Constructing Certificateless Encryption and

ID-Based Encryption from ID-Based Key Agreement”. In Pairing 2010, pp 167-186,

2010.

[30].T.K. Frederiksen, J.B. Nielsen. “Fast and Malicious Secure Two-Party Computation

Using the GPU”. http://eprint.iacr.org/2013/046.pdf, 2013.

[31].M. Freedman, K. Nissim, and B. Pinkas, “Efficient Private Matching and Set

Intersection”, In Eurocrypto’04, 2004.

[32].D. Freeman, M. Scott, and E. Teske, “A Taxonomy of Pairing-friendly Elliptic

Curves”. Journal of Cryptology, vol. 23, pp 224-280, 2010.

[33].C. Gentry. “A Fully Homomorphic Encryption Scheme”. Ph.D. dissertation.

http://cs.au.dk/~stm/local-cache/gentry-thesis.pdf, 2009.

[34].R. Granger, F. Hess, R. Oyono, N. Theriault and F. Vercauteren, “Ate pairing on

hyperellitpic curves”. In Eurocrypt’07, 2007.

[35].R. Granger, M, Scott. "Faster Squaring in the Cyclotomic Subgroup of Sixth Degree

Extensions". In PKC 2010, pp. 209-223, 2010.

[36].GTX-680 white papers. Available at

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-

FINAL.pdf, 2012.

106

[37].J. Guilford, K. Yap, V. Gopal. “Fast SHA-256 Implementations on Intel

Architecture Processors”. Available at

http://download.intel.com/embedded/processor/whitepaper/327457.pdf, 2012.

[38].N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz. “Comparing Elliptic Curve

Cryptography and RSA on 8-bit CPUs”. In CHES’04, 2004.

[39].C. Hazay and Y. Lindell, “Efficient Protocols for Set Intersection and Pattern

Matching with Security against Malicious and Covert Adversaries”, In TCC’08,

2008.

[40].W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. “TASTY:

Tool for Automating Secure Two-Party Computations”. In CCS 2010.

[41].S. Henikoff and J.G. Henikoff. “Amino Acid Substitution Matrices from Protein

Blocks”. In the National Academy of Sciences of the United States of America,

1992.

[42].F. Hess, N.P. Smart and F. Vercauteren, “The Eta Pairing Revisited”, IEEE Trans.

on Inform Theory, vol.52, pp 4595-4602, 2006.

[43].Y. Huang, D. Evans, J. Katz, L. Malka. “Faster Secure Two-Party Computation

Using Garbled Circuits”. In 20
th

 USENIX Security Symposium, 2011.

[44].Y. Huang, L. Malka, D. Evans, and J. Katz. “Efficient Privacy-preserving Biometric

Identification”. In NDSS 2011.

[45].Y. Huang, D. Evans, J. Katz. “Private Set Intersection: Are Garbled Circuits Better

than Custom Protocols?”. In NDSS 2012.

107

[46].Y. Huang, J. Katz, D. Evans. “Quid Pro Quo-tocols: Strengthening Semi-Honest

Protocols with Dual Execution”, In S&P 2012.

[47].Q. Huang, D.S. Wong, W. Susilo, “A New Construction of Designated Confirmer

Signature and Its Application to Optimistic Fair Exchange”. In Pairing 2010, pp 41-

61, 2010.

[48].Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending Oblivious Transfers

Efficiently”. In Advances in Cryptology – Crytpo, 2003.

[49].K. Jang, S.Han, S. Han, S.Moon, K.S. Park. “SSLShader: Cheap SSL Acceleration

with Commodity Processors”. In NSDI 2011.

[50].S. Jarecki and X. Liu, “Unlinkable Secret Handshakes and Key-private Group Key

Management Schemes,” In Applied Cryptography and Network Security, 2007.

[51].S. Jarecki and X. Liu, “Efficient Oblivious Pseudorandom Function with

Applications to Adaptive OT and Secure Computation of Set Intersection”, In

TCC’09, 2009.

[52].S. Jha, L. Kruger, and V. Shmatikov. “Towards Practical Privacy for Genomic

Computation”. In S&P 2008.

[53].G. S. Kaminsky, M. Freedman, M. J. Karp, B. Mazieres, and H. Yu. “RE: Reliable

Email”, In NSDI’06, 2006.

[54].Y. Katoh, Y.J. Huang, C.M. Cheng, T. Takagi, "Efficient Implementation of the eta

Pairing on GPU". Cryptology ePrint Archive, http://eprint.iacr.org/2011/540.pdf,

2011.

[55].L. Kissner and D. Song, “Privacy-preserving Set Operations”, In Crypto’05, 2005.

108

[56].N. Koblitz, “Elliptic curve cryptosystems”. Mathematics of Computation, Vol.48,

No.5, pp 203-209, 1987.

[57].V. Kolesnikov and T. Schneider. “Improved Garbled Circuit: Free XOR Gates and

Applications”. In ICALP 2008.

[58].B. Kreuter, A. Shelat, C.h. Shen, “Billion-Gate Secure Computation with Malicious

Adversaries”, In 21
th

 USENIX Security Symposium,2012.

[59].J.Lee, N.B. Lakshminarayana, H. Kim, R. Vuduc. “Many-Thread Aware

Prefetching Mechanisms for GPGPU Applications”. In MICRO 2010, pp 213-224,

2010.

[60].E.J. Lee, H.S. Lee and C.M. Park, “Efficient and Generalized Pairing Computation

on Abelian Varieties”. IEEE Transactions on Information Theory, Vol.55, Issue.4,

pp 1793-1803, 2009.

[61].Levenshtein VI. "Binary codes capable of correcting deletions, insertions, and

reversals". Soviet Physics Doklady 10, 1966.

[62].Y. Liu, et al. “CUDASW+2.0: Enhanced Smith-Waterman Protein Database Search

on CUDA-enabled GPUs based SIMT and Virtualized SIMD Abstractions”. BMC

Research Notes 3(1) 93, 2010.

[63].P. Longa and C. Gebotys. “Analysis of Efficient Techniques for Fast Elliptic Curve

Cryptography on x86-64 based Processors”. IACR Cryptology ePrint Archive, 335,

1–34, 2010.

[64].S. Lu, R. Ostrovsky, A. Sahai, “Perfect Non-interactive Zero Knowledge for NP”.

In Eurocrypt’06, pp 339-358, 2006.

109

[65].D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. “Fairplay – a Secure Two-party

Computation System”. In 13
th

 USENIX Security Symposium, vol. 13, pp 20-20,

2004.

[66].S. Matsuda, N. Kanayama, F. Hess, E. Okamoto, “Optimized Versions of the Ate

and Twisted Ate Pairings”. In IMACC’07, 2007.

[67].V. Miller, “Use of elliptic curves in cryptography.” In Crypto’85, 1986.

[68].P. L. Montgomery, “Modular multiplication without trial division”. Mathematics of

Computation 44 (1985), pp 519-521, 1985.

[69].Multi-precision Integer and Rational Arithmetic C/C++ Library, MIRACL.

Available at http://www.certivox.com/miracl/, 2013.

[70].M. Naehrig, R. Niederhagen, and P. Schwabe, “New Software Speed Records for

Cryptographic Pairings”. In Latincrypt 2010, pp 109-123, 2010.

[71].T. Nakanishi, Y. Hira, and N. Funabiki, “Forward-Secure Group Signatures from

Pairings”. In Paring 2009, pp 171-186, 2009.

[72].M. Naor, B. Pinkas, and R. Sumner, “Privacy-preserving Auctions and Mechanism

Design”,In ACM Conference on Electronic Commerce,1999.

[73].National Institute of Standards and Technology, “Secure Hash Standard”, FIPS 186,

US Department of Commerce, Nov. 2001.

[74].National Institute of Standards and Technology, “Advanced Encryption Standard”,

FIPS 197, US Department of Commerce, Jan. 1992.

[75].National Security Agency. “The Case for Elliptic Curve Cryptography”. Available

at http://www.nsa.gov/business/programs/elliptic_curve.shtml. 2009.

http://www.nsa.gov/business/programs/elliptic_curve.shtml

110

[76].M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. “SCiFI: a System for Secure

Face Identification”. In S&P 2010.

[77].J. Pecarina, S. Pu, J.C. Liu, “SAPPHIRE: Anonymity for Enhanced Control and

Private Collaboration in Healthcare Clouds”. In CloundCom 2012, pp 99-106, 2012.

[78].G.C.C.F. Pereira, M.A. Jr. Simplício, M. Naehrig, P.S.L.M. Barreto, “A Family of

Implementation-Friendly BN Elliptic Curves”. Journal of Systems and Software,

vol.84, issue 8, pp 1319-1326, 2011.

[79].B. Pinkas, T. Schneider, N. Smart and S. Williams. “Secure Two-party

Computation is Practical”. In Advances in Cryptology –Asiacrypt, 2009.

[80].Performance Comparison: Security Design Choices. http://msdn.microsoft.com/en-

us/library/ms978415.aspx. 2002.

[81].PolarSSL’s SHA-256 code. https://polarssl.org/sha-256-source-code. 2013

[82].M.O. Rabin. “How to Exchange Secrets with Oblivious Transfer”. Technical Report

81, Harvard University, 1981.

[83].M. Raya and J.P. Hubaux, “Securing Vehicular Ad Hoc Networks”. Journal of

Computer Security, vol.15, pp 39-68, 2007.

[84].R. Rivest, A. Shamir, L. Adleman. “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems”. Communications of the ACM 21 (2): pp 120–126,

1978.

[85].A.R. Sadeghi, T. Schneider, and I. Wehrenberg. “Efficient Privacy-preserving Face

Recognition”. In ICISC 2009.

111

[86].M. Scott, “Faster Pairings using an Elliptic Curve with an Efficient Endomorphism”.

Indocrypt 2005, pp 258-269, 2005.

[87].M. Scott, “Implementing Cryptographic Pairings”. Pairing 2007, pp 177-195, 2007.

[88].M. Scott, N. Benger, M. Charlemagne, L. J. D. Perez and E.J. Kachisa, “On the

Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves”. In

Pairing 2009, pp 78-88, 2009.

[89].M. Scott. “A note on twists for pairing friendly curves”. Available at

ftp://ftp.computing.dcu.ie/pub/crypto/twists.pdf. 2009

[90].N.P. Smart, and B. Warinschi, “Identity Based Group Signatures from Hierarchical

Identity-Based Encryption”. In Pairing 2009, pp 150-170, 2009.

[91].T. F. Smith, and M. S. Waterman. “Identification of Common Molecular

Subsequences”. Journal of Molecular Biology 147: pp 195–197. 1981.

[92].M. Stam, A.K. Lenstra, “Efficient Subgroup Exponentiation in Quadratic and Sixth

Degree Extensions”, In CHES 2002, pp 318-332, 2002.

[93].R. Szerwinski, and T. Guneysu, “Exploiting the Power of GPUs for Asymmetric

Cryptology”. In CHES 2008, pp 79-99, 2008.

[94].F. Vercauteren, “Optimal Pairings”. IEEE transaction of Information Theory,

vol.56, issue 1. pp 455-461. 2010.

[95].L. Wang, L. Wang, M. Mambo, E. Okamoto, “New Identity-Based Proxy Re-

encryption Schemes to Prevent Collusion Attacks”. In Pairing 2010, pp 327-346,

2010.

112

[96].A. Yao. “Protocols for Secure Computations”. FOCS 23
rd

 Annual Symposium on

Foundations of Computer Science, pp 160-164, 1982.

[97].K. Yoneyama, “Strongly Secure Two-Pass Attribute-Based Authenticated Key

Exchange”. In Pairing 2010, pp 147-166, 2010.

[98].Y. Zhang, C.J. Xue, D.S. Wong, N. Mamoulis, S.M. Yiu, “Acceleration of

Composite Order Bilinear Pairing on Graphics Hardware”. Cryptology ePrint

Archive, available at http://eprint.iacr.org/2011/196.pdf, 2011.

[99].C.A. Zhao, F. Zhang and J. Huang, “A Note on the Ate Pairing”. International

Journal of Information Security, Vol.6, No.7, pp 379-382, 2008.

