
 

 

 

 

PREGNANCY RATES IN MARES INSEMINATED WITH 0.5 OR 1 MILLION 

SPERM USING HYSTEROSCOPIC OR TRANSRECTALLY GUIDED DEEP-HORN 

INSEMINATION TECHNIQUES 

 

A Thesis 

by 

SHELBY SHALENE HAYDEN  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Chair of Committee,  Charles C. Love  
Committee Members, Dickson D. Varner 
 Steven P. Brinsko  
 Katrin Hinrichs  
Head of Department, Allen Roussel 

 

December 2013 

 

Major Subject: Biomedical Sciences 

 

Copyright 2013 Shelby Shalene Hayden



 

ii 

 

ABSTRACT 

 

Placement of sperm deep in the equine uterine horn allows fewer sperm to be 

inseminated while maintaining acceptable fertility, and has been promoted for use in 

circumstances when fertility would be expected to be low if standard insemination were 

used (e.g. semen from a subfertile stallion, or frozen-thawed semen). Two main deep-

horn insemination techniques, transrectally guided (TRG) and hysteroscopic (HYS) 

insemination, have been developed for this purpose; however, there is some controversy 

regarding their comparative efficacy. This study was conducted to compare pregnancy 

rates when mares were inseminated by TRG or HYS, utilizing sperm numbers 

approaching and under the threshold for maximal fertility, resulting in reduced fertility. 

Pregnancy rates were not different between HYS and TRG techniques when 1 x 106 or 

0.5 x 106 sperm were inseminated. Combined pregnancy rates for the two techniques 

were also not different. Pregnancy rates using a subthreshold number of sperm were not 

significantly affected by a deep-horn insemination technique. 

Dilution of semen to less than 20 x 106 sperm/mL has been reported to decrease 

semen quality in multiple species, a phenomenon known as the semen “dilution effect.” 

The sperm concentrations utilized in Experiment 1 were 5 and 2.5 x 106/mL (1 and 0.5 x 

106 sperm doses, respectively). This experiment was performed to evaluate whether the 

lower pregnancy rates obtained with 0.5 x 106 sperm was due to lower quality plasma 

membrane integrity (PMI) and sperm motion characteristics (TMOT, PMOT, VCL, 

VAP, VSL, STR). Treatments evaluated included 2.5 x 106 sperm/mL with the addition 
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of 0, 7.5, and 25% seminal plasma, 30 x 106 sperm/mL, and 3:1 extender:semen. The 2.5 

x 106 sperm/mL treatments have lower initial PMI, TMOT, and PMOT, but they 

maintain their initial quality following 24 and 48 h of cool-storage. The sperm velocity 

and straightness parameters suggest that sperm swim faster but have a more circular 

pattern as seminal plasma increases to 25% at a given concentration. Based on the 

findings from this experiment, the semen “dilution effect” may not significantly alter 

stallion sperm characteristics when a commercially-available semen extender is used for 

semen dilution. 
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NOMENCLATURE 
 
 

2.5/0 2.5 x 106 Sperm/mL with 0% Seminal Plasma Added 

2.5/7.5 2.5 x 106 Sperm/mL with 7.5% Seminal Plasma Added 

2.5/25 2.5 x 106 Sperm/mL with 25% Seminal Plasma Added 

30 30 x 106 Sperm/mL 

3:1/30 Semen Diluted 3 Parts Semen to 1 Part Extender Than Diluted to 

30 x 106 Sperm/mL Prior to Analysis 

3:1SD Semen Diluted 3 Parts Semen to 1 Part Extender 

AI Artificial Insemination 

DHI Deep-Horn Insemination 

Experiment 1 Chapter II Experiment 

Experiment 2 Chapter III Experiment 

HYS Hysteroscopic Deep-Horn Insemination 

INRA-T INRA 96 (IMV, Maple Grove, MN, USA) containing 1 mg/mL 

(w:v) ticarcillin disodium and clavulanate potassium (Timentin®; 

GlaxoSmithKline, Research Triangle Park, NC, USA) 

PMI Plasma Membrane Intact 

PMS Progressively Motile Sperm 

SP Seminal Plasma 

T0 At the Time of Semen Collection 

T24 Following 24 Hours of Cooled Storage at 7-8°C 
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T48 Following 48 Hours of Cooled Storage at 7-8°C 

T-End Following Insemination of All Mares for the Day 

TRG Transrectally guided Deep-Horn Insemination 

UBI Uterine Body Insemination 

UGIUI Ultrasound-Guided Intrauterine Injection  

V:V Volume to Volume Ratio 

WBFSH  World Breeding Federation of Sport Horses 

W:V Weight to Volume 
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 CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

 

I.1. Deep-Horn Insemination 

Artificial insemination (AI) has become a common technique in the equine 

industry with most breed registries permitting its use. Traditional AI in the mare 

typically involves depositing a minimum of 250 to 500 x 106 progressively motile sperm 

(PMS) in the uterine body of the mare [1]. To accommodate decline in motility 

following cooling to 4-6°C for 24 h, an insemination dose of 1 x 109 PMS is commonly 

used as a cool-stored insemination dose [1]. A lower cool-stored insemination dose, such 

as the recommendation of ≥600 x 106 PMS by the World Breeding Federation of Sport 

Horses (WBFSH), has also been recommended [2]. Frozen semen doses are not as 

standardized as fresh and cool-stored doses; however, the WBFSH recommends that a 

frozen semen dose have a minimum post-thaw progressive motility of 35% and contain a 

minimum of 250 x 106 PMS [2].  

In the last 15 years, a form of AI called deep-horn insemination (DHI) has been 

reintroduced to the equine industry. Deep-horn insemination involves deposition of a 

low volume of extended semen at or near the oviductal papilla ipsilateral to the 

preovulatory follicle. In a study comparing the percentage of sperm in the oviducts of  

_____________________ 
 
*Part of this chapter is reprinted with permission from Hayden SS, Blanchard TL, Brinsko SP, Varner DD, 
Hinrichs K, Love CC. Pregnancy rates in mares inseminated with 0.5 or 1 million sperm using 
hysteroscopic or transrectally guided deep-horn insemination techniques. Theriogenology 2012;78:914-20. 
Copyright 2012 by Elsevier Publishing. 
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mares 18 h following uterine body (UBI) or DHI with 500 x 106 total sperm extended to 

a 10-mL volume, Rigby et al. [3] reported no difference in the percentage of sperm in 

the two oviducts (UBI = 0.0007%, DHI = 0.0006%). When comparing the percentage of 

recovered sperm found within the oviduct ipsilateral or contralateral to the preovulatory 

follicle, a higher percentage was found in the oviduct ipsilateral to the preovulatory 

follicle in mares inseminated with DHI (77%) versus UBI (54%). Based on these results, 

sperm deposition closer to the site of fertilization, rather than in the uterine body, may 

enhance fertility, in circumstances when sperm numbers are limited or compromised. 

Deep-horn insemination has been successfully used in conjunction with frozen-thawed 

sperm from fertile stallions [4-8], with fresh [9-14] or cool-stored [10,11,14] sperm from 

subfertile stallions, with sex-sorted sperm [15-18], and with epididymal sperm [19-21].  

Three types of DHI have been described in the mare: hysteroscopic (HYS), 

transrectally guided (TRG), and ultrasound-guided intrauterine injection (UGIUI). Deep-

horn insemination was first reported by two teams of investigators in 1998. Vazquez et 

al. [22] achieved a 30% (3/10) pregnancy rate when they placed 20 µL of semen 

containing 7 million total sperm from a known fertile stallion onto the oviductal papilla 

using a flexible endoscope with an insemination catheter passed through its biopsy 

channel (HYS). Manning et al. [23] also used a videoendoscopic-assisted insemination 

procedure, attempted to cannulate the oviductal papilla at the time of insemination. Zero 

of 11 (0%) and 2 of 9 mares (22%) became pregnant when inseminated with 10 million 

(250 µL), or 1 million (<160 µL), morphologically normal, progressively motile sperm, 

respectively. In comparison, 4 of 12 (33%) and 2 of 12 mares (17%) of mares were 
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pregnant following insemination into the uterine body with 100 x 106 or 10 x 106 

morphologically normal, progressively motile sperm, respectively.  

Subsequent to the first two HYS studies, Buchanan et al. [15] introduced the 

transrectally guided deep-horn insemination (TRG) technique. These workers passed 

either a flexible plastic AI pipette (1-mL dose volumes) or a disposable implant gun 

(0.2-mL dose volumes) to the tip of the uterine horn ipsilateral to the preovulatory 

follicle utilizing transrectal manipulation, confirmed the pipette or gun location with 

transrectal ultrasonography, and then deposited semen at the tip of the uterine horn. They 

reported no difference in pregnancy rates when they inseminated 25 x 106 progressively 

motile sperm (PMS) in a 1-mL volume (57%, 12/21), 5 x 106 PMS in a 1-mL volume 

(30%, 3/10), and 5 x 106 in a 0.2-mL volume (4/10, 40%) utilizing the TRG technique. A 

significant difference, however, did exist between the TRG pregnancy rates and the 

pregnancy rate obtained when 500 x 106 PMS was inseminated utilizing a conventional 

UBI (18/20, 90%). 

The third and less commonly used technique in a commercial setting is the 

ultrasound-guided intrauterine injection (UGIUI). It is a technique that was first 

developed to inject a treatment solution into the uterine lumen of non-pregnant mare 12 

days post-ovulation without traversing the mare’s cervix [24]. It was then modified into 

a method for embryo transfer [25,26] and DHI [25]. Utilizing a transvaginal probe 

handle fitted with a 5 MHz convex-array transducer and needle guide, Silva et al. [25] 

inserted a 17-gauge needle, containing an epidural catheter (0.85 x 0.45 x 1000 mm) 

preloaded with the inseminate and attached to a 1-mL syringe, through the vaginal fornix 
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into the tip of the uterine horn (positioned against the vaginal fornix against the 

transducer by transrectal manipulation). The epidural catheter was then passed to the tip 

of the uterine horn, semen was deposited, and the tip of the uterine horn was manually 

held in a ventral position for 3 minutes to facilitate pooling of semen against the 

oviductal papilla. These workers achieved a 50% (5/10) pregnancy rate with an 

insemination dose containing 20 x 106 progressively motile sperm. 

Each of these DHI techniques has advantages and disadvantages. The 

hysteroscopic technique allows direct visualization of the oviductal papilla prior to 

semen deposition. However, the equipment is expensive and requires proper cleaning 

and sterilization to prevent iatrogenic infection (e.g. Escherichia coli and Pseudomonas 

aeruginosa), especially from contamination of the internal channels of the endoscope 

[27-31]. In addition, care must be taken to ensure that disinfectant solutions do not leave 

spermicidal residues within or on the endoscope. The sterilization and washing 

procedure is lengthy, and with the potential of spermicidal residues, the endoscope 

cannot be sterilized between mares that require insemination within a short period of 

time. If cleaning is done improperly post-insemination, residual semen may remain 

within the biopsy channel of the endoscope, creating the potential for inseminating with 

the wrong stallion’s semen when the endoscope is used to breed with semen from more 

than one stallion. Another consideration is the possibility of inseminating the incorrect 

uterine horn if insemination is based only on visualization; this is the primary reason 

Lindsey et al. [17] advocated confirming endoscope location transrectally prior to 

deposition of semen.  
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The TRG technique avoids the need for expensive equipment but does not allow 

visualization to confirm that direct semen deposition onto the oviductal papilla has 

occurred. To compensate for this weakness, some proponents of TRG advocate holding 

the tip of the uterine horn in a ventral location during and for a short time after 

insemination to allow pooling of the inseminate on or near the oviductal papilla. 

Transrectally guided deep-horn insemination has the benefit of using a sterile disposable 

insemination pipette, eliminating the possibility of contamination of the uterus from the 

equipment and the need to clean or sterilize equipment between uses. It can be 

performed in a relatively short period of time but does require greater expertise than 

HYS to obtain optimal results. 

The UGIUI technique is probably the most invasive of the three DHI techniques. 

It does not allow direct visualization of the oviductal papilla, but semen deposition can 

be visualized ultrasonographically. As with TRG, the tip of the uterine horn can be held 

in a ventral location during and after insemination, thereby theoretically allowing 

pooling of the inseminate on or near the oviductal papilla. It probably requires the 

greatest expertise of all three DHI techniques but once the expertise is possessed it is 

reported to only take approximately 48 seconds from insertion of the UGIUI equipment 

into the vagina to completion of the procedure [25]. Like the HYS technique, UGIUI 

requires relatively expensive equipment that requires proper cleaning and sterilization 

with the associated risks and labor costs (as described above with HYS). Even if rare, the 

risk of introducing bacteria into the peritoneal cavity seems possible since the UGIUI 

equipment is likely to become contaminated with bacteria from the caudal reproductive 
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tract [32] before the needle is introduced into the peritoneal cavity. Due to its procedure 

similarities to transvaginal aspiration of ovarian follicles, the risk of severe internal 

hemorrhage is also a rare but potential possibility with UGIUI [33]. 

Whether DHI results in the development or prevention of endometritis has been 

controversial. Lindsey et al. [17] suggested that the manipulation required to pass the 

pipette to the tip of the uterine horn with TRG could traumatize the endometrial wall, 

creating an inflammatory environment unsuitable for sperm survival and embryonic 

development. Schiemann et al. [34] reported that endoscopic examination of the diestrus 

uterus and the associated necessity of distending the uterus with air resulted in a 100% 

incidence (8/8) of histopathologic endometritis with isolation of pathogenic bacteria in 

six of these mares five days after the procedure, suggesting that the hysteroscopic 

procedure is inflammatory to the uterus and may be associated with induction of 

bacterial endometritis. When Sieme et al. [4] compared pregnancy rates following 

insemination of fresh semen in a clinical setting, he reported that HYS (5/15, 33%) 

resulted in lower pregnancy rates than UBI (16/19, 84%) in problem mares, but no effect 

of insemination technique was noted in normal mares (27/38, 71% and 18/38, 47%, 

respectively). These findings suggest that detrimental effects of the hysteroscopic 

procedure might be especially pronounced in mares with suboptimal uterine 

environments.  

Controlled studies evaluating the relationship of DHI to endometritis have shown 

that DHI does not induce more inflammation within the uterus than does conventional 

UBI in reproductively normal mares [35,36]. Güvenc et al. [35] evaluated the amount of 
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inflammation present in the uterine lumen of normal mares 24 h post-insemination with 

20 x 106 and 200 x 106 sperm (0.5 mL) following UBI or TRG (i.e. 4 treatment groups). 

Specifically, they evaluated the amount of intrauterine fluid present ultrasonographically 

(compared to amount present at time of insemination), then obtained uterine fluid 

samples by first absorbing fluid into a tampon and then performing uterine lavage. The 

uterine fluid was analyzed for aerobic microbial growth, number of polymorphonuclear 

leukocytes per mL (PMN/mL), and lysozyme and trypsin-inhibitor capacity (TIC) levels. 

These investigators concluded that TRG and insemination dose (concentration) did not 

affect the level of inflammation 24 h post-insemination in normal mares. Ferrer et al. 

[36] evaluated the amount of inflammation present in normal mares and in mares with 

delayed uterine clearance 48 h post-insemination with either 1 x 109 sperm (20 mL) with 

UBI, 5 x 106 sperm (0.5 mL) with HYS, semen extender (0.5 mL) with HYS, or sperm-

free seminal plasma (0.5 mL) with HYS. Severity of the inflammatory response was 

determined by ultrasonographically evaluating the amount of intrauterine fluid at 24 and 

48 h post-insemination, and by evaluating the total number, concentration, and 

percentage of neutrophils in intrauterine fluid samples collected 48 h post-insemination 

with a tampon. The severity of post-breeding inflammation 48 h post-insemination did 

not differ between UBI and HYS in normal and delayed clearance mares. Delayed 

clearance mares, however, had more intrauterine fluid following HYS than following 

UBI at 24 h post-insemination. These investigators concluded that HYS was not 

contraindicated in mares with delayed uterine clearance, but that it should not be used as 

method to reduce post-breeding endometritis in these mares. 
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Results of HYS and TRG studies in 1998 and 2000 [15,23] did not support the 

use of DHI over a conventional uterine body insemination. Two studies presented at the 

2002 International Symposium on Equine Reproduction [37,38], however, indicated that 

use of DHI could allow fewer sperm to be used than was needed for conventional UBI, 

with comparable pregnancy rates. In 2003, Morris et al. [39] substantiated these 

findings. Utilizing 86 mares inseminated with frozen-thawed semen from identical twin 

stallions, they found that pregnancy rates with 14 x 106 PMS were not significantly 

different between mares inseminated utilizing conventional UBI (8/12, 67%) or HYS 

(9/14, 64%) techniques. When the insemination dose was decreased to 3 x 106 PMS 

sperm, deposition of semen into the tip of the uterine horn ipsilateral to the preovulatory 

follicle resulted in higher pregnancy rates (16/34, 47%) than did deposition of semen 

immediately cranial to the internal cervical os (2/14, 14%), or at the tip of the uterine 

horn contralateral to the preovulatory follicle (1/12, 8%). An endoscopic technique was 

used for insemination at all 3 of these sites to eliminate confounding factors created by 

its use. These findings indicated that the benefits of HYS are not seen until the 

insemination dose contains less sperm than needed to achieve acceptable pregnancy rates 

with UBI.  

Morris et al [40] further showed that a threshold level of sperm numbers exists 

that even HYS cannot overcome to sustain optimal pregnancy rates. In this study, 

optimal pregnancy rates were achieved when mares were inseminated with 10 x 106 

(60%), 5 x 106 (75%), or 1 x 106 (64%) fresh motile sperm following Percoll® (Sigma 

Chemical Co., St. Louis, MO, USA) gradient separation (to improve sperm quality 
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within the inseminate) from two stallions. Pregnancy rates were less when the 

insemination dose was decreased to 0.5 x 106 (29%), 0.1 x 106 (22%), and 0.001 x 106 

(10%). 

Studies examining the motility and morphology of the sperm found in the 

oviducts of mares post-insemination have shown the presence of a higher percentage of 

sperm with normal morphology [41] and motility [42,43] than was present within the 

inseminate. Scott et al. found that morphologically normal sperm accumulate in the folds 

of the oviductal papilla, suggesting that the uterotubal junction (UTJ) may act as a sperm 

reservoir and “gatekeeper” to the oviduct [44]. Mares bred to subfertile stallions had 

fewer sperm in their oviducts 4 h after breeding than did mares bred to fertile stallions 

[41]. These studies suggest that increasing the reservoir of morphologically normal, 

motile sperm on the UTJ and within the oviduct could potentially enhance fertility 

especially in circumstances where subfertile semen is involved. The above described 

studies, however, did not evaluate other measures of sperm quality in the population of 

sperm found within the oviducts. 

Woods et al. [45] were not able to increase the pregnancy rates of a stallion with 

teratospermia (18-26% morphologically normal sperm) by changing the site of 

insemination of 25 x 106 total sperm from the uterine body (4/14, 29%) to the tip of the 

uterine horn (4/14, 29%). Mari et al. [12] improved per cycle pregnancy rates for a 

commercial breeding stallion with teratospermia and oligospermia via implementation of 

TRG with 50 x 106 morphologically normal, progressively motile sperm (1 mL). Semen 

was processed with cushion (iodixanol solution) centrifugation alone or in combination 
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with discontinuous density gradient centrifugation (90:45% silicon coated silica colloids, 

RediGradTM; Amersham Biosciences, NJ, USA). To obtain an insemination dose of 50 x 

106 morphologically normal, progressively motile sperm, ~500 x 106 post-centrifugation 

sperm or ~130 x 106 RediGradTM purified sperm were needed. The semen processed 

through the RediGradTM (44/71, 62%) resulted in higher pregnancy rates than did the 

semen processed with cushion centrifugation only (30/71, 42%). Both pregnancy rates 

were, however, better than that for the previous season (27/105, 26%). The study 

suggests that the presence of abnormal sperm interferes with normal fertilization or with 

development of a viable pregnancy. It also suggests that selecting for sperm quality prior 

to insemination could enhance fertility of some stallions. Similar improvements in 

fertility have been reported with semen processed with cushion (iodixanol solution) 

centrifugation only and with cushion centrifugation followed by discontinuous (80:40% 

density gradient) or single-layer (80% density gradient) density gradient centrifugation 

with the colloidal silica-particle solution EquiPureTM (80% density gradient, EquiPure 

Bottom LayerTM; 40% density gradient, EquiPure Top LayerTM; Nidacon International 

AB, Mölndal, Sweden) [10,11,14]. 

Studies comparing the relative effectiveness of HYS and TRG (but not UGIUI) 

have been performed. Lindsey et al. [17] reported higher pregnancy rates with HYS 

(5/10, 50%) than with a modified TRG technique (0/10, 0%) following insemination of 5 

x 106 motile sperm following Percoll® gradient separation. Brinsko et al. [46] reported 

no difference between HYS and TRG (12/18, 66% and 10/18, 56%, respectively) 

following insemination of 5 x 106 total sperm (3.1 – 3.9 x 106 progressively motile 
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sperm). In a follow-up study utilizing the TRG technique described by Brinsko et al. 

[46], Lindsey et al. [18] reported no difference in pregnancy rates (12/22, 56% and 9/24, 

38%, for HYS and TRG, respectively) following insemination with 20 x 106 sex-sorted 

sperm. Nevertheless, based on the earlier paper by Lindsey et al., it was suggested that 

HYS may be the preferred method of DHI when less than 25 to 50 x 106 sperm are used, 

especially if the semen is frozen-thawed or sex-sorted [47]. 

The findings of the above-referenced studies indicated that differences in 

pregnancy rates related to insemination technique may not be detected if “excess” sperm 

are available to compensate for limitations in the technique [48,49]. Thus, to best 

demonstrate differences between techniques, assessment should be made using a 

subthreshold number (i.e. subfertile level) of sperm. The importance of utilizing 

subthreshold insemination doses was demonstrated by Morris et al. [39] in their 

comparison of uterine insemination sites (described above). Previous studies comparing 

HYS to TRG have not been conducted using subthreshold insemination doses.  

The objective of the studies reported here was to determine if HYS or TRG 

techniques provided equivalent pregnancy rates when a subfertile dose of sperm was 

inseminated. A preliminary study was performed to identify an insemination dose below 

the threshold level for normal pregnancy rates for one particular stallion. The objective 

of the main study was to compare the pregnancy rates achieved after HYS or TRG 

techniques utilizing a subthreshold insemination dose from this stallion. 
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I.2. Effects of High Dilution on Sperm Quality 

To perform the low-dose inseminations performed in the deep-horn 

insemination study, the semen was diluted to 2.5 to 5 million sperm/mL. 

Excessive dilution of semen (below 20 million sperm/mL) has been demonstrated 

to have detrimental effects on sperm quality especially as duration of exposure to 

the diluent increases. This phenomenon known as the “dilution effect” was first 

described by Milovanov in 1934 [50]. He evaluated the ability of sperm within an 

ejaculate to resist immobilization following dilution with increasing proportions 

(volume of diluent to volume semen) of 1% sodium chloride. 

Multiple hypotheses have been made regarding etiology of the “dilution 

effect.” Milovanov [50] attributed the loss of sperm motility to sodium chloride 

toxicity. Subsequent researchers proposed that it is due to the loss of adequate 

proportions of protective seminal plasma components [51-54], and/or intracellular 

and/or cell-surface components from the sperm [51-53,55-58] triggering a 

capacitation-like state and ultimately premature acrosome reaction [59]. 

Researchers studying the hydrodynamics of sperm motility have postulated an 

alternative hypothesis: they determined that the flagellar undulations of sperm 

induce motions in the fluid medium that move enzymes, ions, and other dissolved 

chemicals and gases to and from the plasma membranes of other sperm in close 

proximity, especially when sperm are within one body length from each other. As 

sperm concentration decreases, the distance between sperm is increased, which 
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results in impaired exchange of the components within the liquid medium that are 

important to maintain sperm viability [60] 

The “dilution effect” has been described in multiple species including the 

rabbit [51,52,55,61], ram [52,54,57,61], bull [52,56-58,62-66], boar [59], dog 

[53], stallion [67,68], and human [52,69]. In all these species, this phenomenon 

occurs when the neat semen in diluted to less than 20 million sperm/mL [51-

59,61,65,66,69,70]; even though neat semen concentration [71], diluent type and 

seminal plasma concentration varies within species and individuals. Ejaculates 

with low neat semen concentrations, however, tend to have more severe effects 

than do ejaculates with high neat semen concentrations at equivalent dilution rates 

(v:v), suggesting that a lower final sperm concentration is more detrimental to 

sperm quality than is simply dilution of seminal plasma [62,65,66,69,70]. 

Regardless of initial sperm concentration, the severity of the “dilution effect” 

appears to increase as the diluent to neat semen ratio (v:v) increases [51-59,61-

66,69].  

The type of diluent used does not appear to alter the concentration at 

which the “dilution effect” is seen; however, it does influence the severity of the 

effect [52-59,61,63,64,66,69,72]. Seminal plasma is not a suitable diluent for 

maintenance of sperm quality [58,69,70,73]. Supplementation of seminal plasma 

to other diluents, however, has reduced the detrimental effects of high dilution on 

sperm motility (rabbit [55], bull [57,58], ram [57], and dog [53]), plasma 

membrane integrity (ram [54], bull [66], and boar [59]), and mitochondrial 
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membrane potential (bull [66] and boars [59]). Isotonic semen diluents with 

suitable levels of buffers, electrolytes, energy sources and antibiotics have been 

found to improve the overall sperm quality of extended semen samples and to 

diminish the severity of the “dilution effect” [54]. High molecular weight 

compounds such as egg yolk [56], milk [70], and serum proteins [61,74] exhibit 

protective effects on highly diluted semen and are common components of the 

above semen diluents. 

When comparing motility of rabbit sperm following dilution with Baker’s 

solution to 20, 2.8, 0.4 and 0.06 x 106 sperm/mL, Emmens and Swyer [55] 

reported that sperm motility decreased as the level of dilution increased. Adding 

sperm-free seminal plasma to the Baker’s solution at a concentration (v:v) 

equivalent to the 20 x 106 sperm/mL suspension improved sperm motility at the 

0.4 x 106 sperm/mL concentration. Further improvements in sperm motility were 

seen when the source of the Baker’s solution and seminal plasma diluent was the 

supernatant of a semen suspension allowed to incubate overnight at a 

concentration of 20 x 106 sperm/mL, but sperm motility did not necessarily return 

to the level of the 20 x 106 sperm/mL suspensions. These findings suggest a 

partial protective effect of seminal plasma in Baker’s solution especially when the 

seminal plasma may contain factors released either from the sperm plasma 

membrane or from within the sperm.  

 To evaluate the effect of diluent to seminal plasma ratio in the highly 

diluted samples, Emmens and Swyer [55] subjected 20 x 106 sperm/mL 
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suspensions (diluted in Baker’s solution) to two centrifugation treatments 

followed by resuspension to 20 x 106 sperm/mL with either fresh Baker’s solution 

or its own supernatant. The semen resuspended in the Baker’s solution was 

estimated to have equivalent diluent to seminal plasma ratios as the 0.6 x 106 

sperm/mL simple dilution samples (described in the previous paragraph). This 

semen resulted in higher sperm motilities than did the semen resuspended in its 

own supernatant. However, if all of the seminal plasma was removed utilizing six 

centrifugation treatments followed by resuspension with fresh Baker’s solution to 

20 x 106 sperm/mL, sperm motility was almost completely eliminated. 

Resuspension of the sperm following the final centrifugation with Baker’s 

solution containing 10% seminal plasma revitalized the motility to the level of the 

control semen sample (centrifuged semen resuspended into its own supernatant). 

The better motility of 20 x 106 sperm/mL than 0.4 sperm/mL preparations at the 

same seminal plasma concentration suggests that the lower sperm motility in the 

0.4 x 106 sperm/mL suspension is likely due to a lower sperm concentration. 

Secondly, sperm motility was improved in Baker’s solution when seminal plasma 

was present, but the amount of seminal plasma needed was very small (present 

after 2 centrifugation but not after 6 centrifugations). Finally, the findings of this 

study demonstrate that immotile does not mean “dead” and that Baker’s solution 

containing 10% seminal plasma can rejuvenate motility of sperm immobilized by 

the lack of seminal plasma.  
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Garner et al. [65] evaluated plasma membrane integrity (SYBR-14 and 

propidium iodide), mitochondrial membrane potential (JC-1), and motility of bull 

sperm following 24 h of cool-storage (5°C) or after cryopreservation at 2, 10, 20, 

40, and 60 x 106/mL. They found that all three sperm parameters decreased as the 

level of dilution increased. The plasma membrane integrity was more severely 

affected than the mitochondrial membrane potential and the motility. 

Supplementing the lower four semen concentrations with seminal plasma at the 

concentration (v:v) found in the 60 x 106 sperm/mL reduced the severity of 

damage to plasma membrane integrity, mitochondrial membrane potential and 

motility but did fully eliminate the “dilution effect.” 

No studies evaluating the “dilution effect” in stallions at less than 20 x 106 

sperm/mL on in vitro semen parameters were found on literature search. Varner et 

al. [70] evaluated the effects of simple dilution of stallion semen with a skim 

milk-glucose extender (Kenney extender) to concentrations greater than 20 x 106 

sperm/mL (25, 50, and 100 x 106 sperm/mL; control = undiluted semen) on sperm 

motility following room-temperature (25°C) storage for 0.5, 3, 6, 12, and 24 h. 

They further evaluated the effects of neat semen concentration and seminal 

plasma content by comparing the motility of the sperm-rich fraction to that 

representative of the total ejaculate (sperm-rich fraction diluted 1:1 with the 

sperm-poor). Over all of the dilutions, mean total sperm motility at 12 and 24 h of 

storage and mean progressively motility at 24 h was greater in the sperm-rich 

fractions than in the total ejaculate. In addition, mean total sperm motility was 
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higher at 25 x 106/mL than at 50 x 106/mL starting at 12 h of storage, higher than 

at 100 x 106/mL starting at 3 h of storage, and higher than that for undiluted 

samples starting at 0.5 h of storage. The 25 x 106/mL treatment also had higher 

mean progressive motility than did the other three semen concentrations following 

3 to 24 h of storage. The changes in motility in this study were not due to the 

“dilution effect” as the 25 x 106/mL samples performed better than the less dilute 

samples. They were due either to higher sperm concentration causing reduction of 

motility, possibly due to accumulation of metabolic byproducts, or to the higher 

percentage of seminal plasma (v:v) in the more concentrated samples, with higher 

levels of seminal plasma resulting in lower sperm motility parameters especially 

as storage time increased. 

The percentage of seminal plasma in a semen suspension that optimizes 

semen quality following storage is dependent on the composition of the diluent. In 

Kenney (skim-milk/glucose) -based extenders, sperm motility is optimized in 5 – 

20% seminal plasma (v:v) [75]. However, when Kenney-based extender is 

supplemented (65:35) with high-potassium Tyrode’s medium (KMT), sperm 

motility is optimized when all seminal plasma is removed from the semen 

suspension [76-78]. DNA integrity following 24 and 48 h of cool-storage (5°C), 

however, is optimized in both the Kenney-based and KMT extenders when no 

seminal plasma is present [78]. 

Insemination of stallion semen at less than 20 x 106 sperm/mL, the sperm 

concentration where the “dilution effect” is seen in vitro in other species, has had 
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mixed effects on fertility. In one study, conventional UBI of 250 x 106 PMS 

resulted in both lower and similar pregnancy rates when the sperm concentration 

was 5 x 106 PMS/mL (50 mL) compared to a 25 x 106 PMS/mL (10 mL); 

however, different stallions were used in this study which may account for 

differences in pregnancy rates [67]. In another study, pregnancy rates were lower 

with UBI of 250 x 106 PMS at 2.5 x 106 PMS/mL (100 mL) compared to 25 x 106 

PMS/mL (10 mL) [68]. It is not clear what may have caused this lower fertility 

since total sperm numbers in the inseminate were not reported.. The “dilution 

effect” may have reduced the sperm quality, but other possibilities suggested by 

the authors include retrograde sperm loss due to expulsion of the higher volume 

treatment resulting in an effectively lower sperm dose, or detrimental effects 

directly related to instilling large volumes of semen. This latter possibility was 

later disproven [79].  

Because of the limited information available on the effect of dilution on 

equine sperm viability and motility, and its direct relationship to use in low-dose 

insemination programs, a study was conducted to evaluate the in vitro quality of 

stallion sperm subjected to the high levels of dilution. Sperm parameters 

evaluated included sperm motion characteristics and plasma membrane integrity.  
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CHAPTER II 

PREGNANCY RATES IN MARES INSEMINATED WITH  

0.5 OR 1 MILLION SPERM USING HYS OR TRG* 

 

II.1. Materials and Methods 

 A preliminary study and a main study were conducted to compare the pregnancy 

rates associated with two different deep-horn insemination techniques, TRG and HYS, 

when a subthreshold insemination dose was used. The experiments were conducted 

during the summer and fall months of 2007 and 2008. All experimental procedures were 

performed according to the United States Government Principles for Utilization and 

Care of Vertebrate Animals Used in Testing, Research and Training and were approved 

by the Laboratory Animal Care Committee at Texas A&M University. 

The preliminary study was conducted to identify the number of total sperm in an 

insemination dose that would result in suboptimal pregnancy rates for a specific stallion. 

The stallion, a 1989 American Quarter Horse, was a stallion of known high fertility. This 

stallion was selected to eliminate possible confounders being introduced by male-factor 

subfertility. 

 The subsequent study compared pregnancy rates at Days 14 to 16 after ovulation 

following TRG and HYS utilizing the subthreshold insemination dose identified in the  

_____________________ 
 
*Part of this chapter is reprinted with permission from Hayden SS, Blanchard TL, Brinsko SP, Varner DD, 
Hinrichs K, Love CC. Pregnancy rates in mares inseminated with 0.5 or 1 million sperm using 
hysteroscopic or transrectally guided deep-horn insemination techniques. Theriogenology 2012;78:914-20. 
Copyright 2012 by Elsevier Publishing. 
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preliminary study. Mares with complicating reproductive factors were excluded from 

this study to eliminate possible confounders being introduced by female-factor 

subfertility. In this study, each mare was inseminated with each deep-horn insemination 

technique in a cross-over design to control for the effect of the mare. 

II.1.1. Preliminary study  

II.1.1.1. Mare management  

 Twenty-eight mares ranging in age from 3 – 18 yrs (mean 6.5; median 6) were 

inseminated utilizing either TRG or conventional uterine body insemination for a total of 

44 estrous cycles. Mares were monitored from August through October of 2007 utilizing 

palpation and ultrasonographic evaluation (B-mode, real time ultrasonography, 5MHz 

linear transducer, Sonovet 600; Universal Solutions, Inc., Bedford Hills, NY, USA) of 

the reproductive tract per rectum to determine estrous cycle stage. Sexual receptivity to a 

stallion was also intermittently assessed to facilitate determination of estrous cycle stage. 

Evaluations were performed only on weekdays as the mares were inaccessible on the 

weekends.  

If the mares had a preovulatory follicle ≥32 mm in diameter and prominent signs 

of uterine edema on ultrasonography, the mare was treated with human chorionic 

gonadotropin (hCG; Chorulon®; Intervet, Millsboro, DE, USA; 2500 IU, iv), or 

BioRelease Deslorelin (BET Pharm, Lexington, KY, USA; 1.5 mg, im). The same day or 

the following day, if a preovulatory follicle was still present, mares were inseminated 

with 1.0 x 106 or 0.5 x 106 total sperm utilizing TRG, or with a minimum of 1 x 109 

progressively motile sperm utilizing conventional uterine body insemination. With the 
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TRG method, sperm were inseminated in the horn ipsilateral to the dominant follicle. In 

mares with more than one follicle >30 mm, the sperm were placed in the horn ipsilateral 

to the follicle showing the most pronounced preovulatory characteristics (softness on 

palpation, thickening of the follicle lining and loss of circularity on ultrasonographic 

evaluation). Mares were inseminated only once per cycle. Ovulation was confirmed by 

daily transrectal ultrasonographic examination except when these examinations would 

have occurred over the weekend; then ovulation was confirmed the following Monday. 

Pregnancy determination was made utilizing transrectal palpation and ultrasonography 

13 to 16 days from the first day that the ovulation was detected (n = 42) or following 

uterine flush for embryo recovery 7 days post-ovulation (n = 2). Mares determined to be 

pregnant 13 to 16 days post-ovulation and mares subjected to uterine flush 7 days post-

ovulation were treated with cloprostenol sodium (Estrumate®; Schering-Plough Animal 

Health Corp., Union, NJ, USA; 250 µg, im), or dinoprost tromethamine (Lutalyse®; 

Upjohn Pharmacia, Kalamazoo, MI, USA; 5 mg, im) to terminate pregnancy unless 

continuation of pregnancy was desired for other purposes (e.g., fetal sexing laboratory). 

Non-pregnant mares 13 to 16 days post-ovulation were either administered the same 

luteolytic regimen as for the pregnant mares, to return the mare to estrus, or they were 

allowed to return to estrus naturally. 

If the mares were not found in estrus after this time, they were periodically 

monitored as described above until they returned to estrus naturally, or they were treated 

with a luteolytic agent to terminate the luteal phase and return them to estrus. If it was 

known that the most recent ovulation occurred ≥7 days previously, the mare was 
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scheduled for recheck evaluation 1 to 4 days later based on the diameter of the largest 

follicle (40 to <15 mm, respectively). If it was not known, when the mare last ovulated, 

the mare was re-evaluated 1 to 3 days after treatment with a luteolytic agent to determine 

whether luteolysis had occurred. In some mares, during the estrus following luteolysis, 

ovulation was induced by treatment with hCG, then luteolytic treatment was 

administered 7 days after this ovulation, and mares were used for the study on the 

subsequent estrus. 

In this preliminary study, the insemination technique used was dictated based on 

the needs of the TAMU Section of Theriogenology. If it was imperative that the mares 

became pregnant (i.e. for the use in laboratories and other research projects), 

conventional uterine body insemination utilizing ≥1.0 x 109 progressively motile sperm 

was performed to optimize fertility rates. Otherwise, mares were bred with TRG. The 

dose used in the TRG breeding was not randomized; rather, it was determined based on 

equality of number of mares inseminated with each dose (e.g., if there were 2 more 

mares inseminated with one dose, the next 2 mares would be inseminated with the other 

dose). 

II.1.1.2. Semen collection   

Semen was collected from stallions using a Missouri-model artificial vagina 

(Nasco, Ft. Atkinson, WI, USA) lightly lubricated with 3 – 5 mL of sterile, non-

spermicidal lubricating jelly (Priority Care; First Priority, Inc., Elgin, IL, USA) and 

fitted with an in-line nylon gel filter (Animal Reproduction Systems, Chino, CA, USA). 

A mare exhibiting behavioral estrus was used for sexual stimulation. The mount source 
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was a breeding phantom. Immediately prior to collection, the stallion’s erect penis was 

cleansed with warm water and thoroughly dried. 

II.1.1.3. Semen processing  

II.1.1.3.1. General semen processing 

Immediately following semen collection, the gel filter was removed from the 

collection bottle to prevent leakage of the gel into the gel-free semen. The gel-free 

semen was transported to an adjacent laboratory and placed in a 37°C incubator. The 

total number of sperm in the ejaculate was determined by measuring the volume of the 

neat semen using a 100-mL graduated cylinder and measuring the concentration using 

the NucleoCounter® SP-100TM (ChemoMetec A/S, Allerød, Denmark). 

An aliquot of neat semen was diluted with pre-warmed (37°C) semen extender 

(INRA 96; IMV, Maple Grove, MN, USA) to a final concentration of 30 x 106 

sperm/mL and a volume of 1.0 mL in a 1.2-mL Cryogenic vial (Corning Life Sciences, 

Lowell, MA, USA) using the following formulas: 

 Volume of raw semen required = (30 x 106 sperm/mL) ÷ (raw semen 

concentration) * (1.0 mL) 

 Volume of extender = (1.0 mL) - (volume of raw semen required) 

The Cryogenic vial was placed directly on a 37°C covered slide warmer for 10 minutes 

prior to evaluation of initial sperm motion characteristics using a computer-assisted 

sperm motion analyzer (CASMA; IVOS Version 12.2L; Hamilton Thorne Biosciences, 

Beverly, MA, USA). 
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II.1.1.3.2. Semen processing for deep-horn insemination dose  

 A 3:1 extended semen sample was made by adding 0.5 mL of neat semen to a 

2.0-mL Cryogenic vial (Corning Life Sciences, Lowell, MA, USA) containing 1.5 mL of 

pre-warmed (37°C) INRA 96. The concentration of this 3:1 extended semen sample was 

measured using the NucleoCounter® SP-100TM. 

 To obtain TRG insemination doses of 1 x 106 and 0.5 x 106 sperm in 200 µL, 

final dilution of semen to 5 x 106 or 2.5 x 106 sperm/mL, respectively, was made. 

Depending on the number of mares to be bred that day, a 1- or 2-mL aliquot of semen at 

the above concentrations was made utilizing the 3:1 extended semen sample, pre-

warmed (37°C) INRA 96, and frozen-thawed, sperm-free seminal plasma to ensure that 

each inseminate contained 7.5% seminal plasma [75,77,80]. The amount of each of these 

components was determined using the following formulas: 

 volume of sample desired = X + Y + Z 

 X = volume of 3:1 extended semen 

 Y = volume of INRA 96 

 Z = volume of frozen-thawed sperm-free seminal plasma 

 X = (concentration of sample desired) ÷ (concentration of 3:1 extended 

semen) * (volume of sample desired)  

 combined amount of INRA 96 and frozen-thawed, sperm-free seminal 

plasma = (volume of sample desired) - X 

 % of seminal plasma in final inseminate if no seminal plasma was added = 

[(25%) * (X) ÷ (volume of sample desired)] * 100 
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 % of seminal plasma in INRA 96 to make a final inseminate containing 7.5% 

seminal plasma = 7.5% - (% of seminal plasma in final inseminate if no 

seminal plasma was added) 

 Z = (combined amount of INRA 96 and frozen-thawed, sperm-free seminal 

plasma) * (% of seminal plasma in INRA 96 to make a final inseminate 

containing 7.5% seminal plasma) 

 Y = (combined amount of INRA 96 and frozen-thawed, sperm-free seminal 

plasma) - Z  

For example, to make 1.0 mL of an inseminate that was 5 x 106 sperm/mL from a 3:1 

semen sample that was 75 x 106 sperm/mL: 

 X = (5.0 x 106 sperm/mL) ÷ (75 x 106 sperm/mL) * (1.0 mL) 

 0.067 mL = volume of 3:1 extended semen 

 combined amount of INRA 96 and frozen-thawed, sperm-free seminal 

plasma = (1.0 mL) – (0.067 mL) 

 0.933 mL 

 % of seminal plasma in final inseminate if no seminal plasma was added = 

[(25%) * (0.067mL) ÷ (1.0 mL)] * 100 

 1.67% 

 % of seminal plasma in INRA 96 to make a final inseminate containing 7.5% 

seminal plasma = (7.5%) – (1.67%) 

 5.83% 

  



 

26 

 

 Z = (0.933 mL) * (5.83%) 

 0.054 mL = volume of frozen-thawed, sperm-free seminal plasma 

 Y = (0.933 mL) – (0.054 mL) 

 0.879 mL = volume of INRA 96 

The concentrations of the insemination doses were evaluated using the NucleoCounter® 

SP-100TM. Samples not within 0.3 x 106/mL of the desired final concentration were 

discarded. Calculations were checked twice. If samples were discarded new 

insemination doses were made, and evaluated using the procedures as previously 

described. 

II.1.1.3.3. Semen processing for conventional uterine body insemination dose  

 A minimum of 1 x 109 progressively motile sperm was diluted with INRA 96 to 

make an insemination dose that contained ≥1 part INRA 96 to 1 part neat semen (v:v) 

and had a final volume of 10 – 60 mL. Fulfilling this criteria meant that the maximum 

volume of neat semen per insemination dose was ≤30 mL. 

The following formula was used to determine the minimum volume of neat 

semen needed to make an insemination dose that contained ≥1 x 109 progressively 

motile sperm: 

 Volume of neat semen containing 1 x 109 progressively motile sperm =        

(1 x 109) ÷ [(neat semen concentration) * (% of progressively motile sperm)] 

If the entire ejaculate was used for insemination, the volume of neat semen per 

insemination dose was determined using the following formula: 
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 Maximal volume of neat semen available per insemination = [(total volume 

of neat semen in ejaculate) * (volume of neat semen in ejaculate) * (% of 

progressively motile sperm)] ÷ (number of mares requiring insemination) 

Based on the results of these two formulas and the above defined criteria, the appropriate 

volume of neat semen was diluted with the appropriate amount of INRA 96. The product 

was aspirated into either a 25 mL or 60 mL non-spermicidal, all-plastic, sterile syringe 

(NORM-JECT®; Henke Sass Tolf, Tuttlingen, Germany). The extended semen was 

inseminated utilizing a conventional uterine body insemination within one hour of semen 

collection. 

II.1.1.4. Inseminations  

II.1.1.4.1. General insemination protocol 

The mares were placed in stocks for restraint. No tranquilization was used. The 

mares’ tails were bagged in non-sterile rectal sleeves and tied up, and their perinea were 

prepared by scrubbing with 7.5% povidone-iodine surgical scrub, rinsing with water, and 

drying with paper towels. 

II.1.1.4.2. Transrectally guided deep-horn insemination (TRG)  

 Transrectally guided deep-horn insemination was performed as described by 

Brinsko et al. [46], except that a commercially available 75 cm flexible, intrauterine 

insemination catheter with an 80 cm flexible inner catheter (IUI Pipette with Inner 

Catheter; Minitube of America, Inc.TM, Verona, WI, USA) (Figure 1) attached to a 5 mL 

non-spermicidal, all-plastic, sterile syringe (NORM-JECT®; Henke Sass Wolf, 

Tuttlingen, Germany) was used. The syringe was preloaded with 3 mL of air. A sterile 
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sleeve was donned. Two hundred microliters of semen, as described in section II.1.1.3.2, 

was aspirated into an air-displacement pipette (PIPETMAN ClassicTM P200; Gilson®, 

Inc., Middleton, WI, USA). The distal tip of the air-displacement pipette was inserted 

into the lumen of the tip of the 80 cm flexible inner catheter. The pipette plunger was 

slowly depressed as gentle negative pressure was gently applied by the syringe plunger. 

Care was taken to keep the semen at the distal end of the inner catheter (i.e. the end 

furthest from the syringe). The inner catheter was re-inserted into the outer catheter. The 

entire double catheter was bent 5 cm from the distal end to an approximate 45o angle. 

The catheter was carried transvaginally (Figure 2) and passed through the cervix. The 

arm was withdrawn from the vagina, inserted into the rectum (Figure 3), and the catheter 

was guided transrectally to the tip of the uterine horn ipsilateral to the dominant follicle. 

When the end of the catheter was confirmed by palpation to be at the end of the uterine 

horn, the plunger of the 5-mL syringe was depressed slowly to expel the semen into the 

uterine lumen (Figure 4). The syringe was detached, loaded with 3 mL of air, reattached, 

and then the air was expressed slowly through the catheter to aid in full evacuation of the 

contents. The inner catheter with the syringe attached was removed through the outer 

catheter, and evaluated for presence of semen (Figure 5). If semen was visible in the 

inner catheter, it was inserted again, and the process was repeated. After withdrawal of 

the inner catheter, the contents of the outer catheter were also evacuated (in case any 

semen pooled in the end of the outer catheter) by injecting 5 mL of air through the outer 

catheter (Figure 6). The tip of the uterine horn was directed ventrally via manipulation 
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per rectum throughout these procedures, and was held in this position, if possible, for up 

to 3 min after removal of the insemination device (Figure 7). 

 

Figure 1. The 75 cm flexible, intrauterine insemination catheter with an 80 cm flexible 
inner catheter (IUI Pipette with Inner Catheter; Minitube of America, Inc.TM, Verona, WI, 
USA). 
 

 

 
 
Figure 2. The insemination catheter was passed transvaginally through the cervix into 
the uterus. Note the attached 5-mL syringe containing 3 mL of air to the catheter. 
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Figure 3. Insertion of the operator’s arm in the rectum (after the catheter has been passed 
transvaginally in the uterus). 
 

 
 
 
 
Figure 4. Slow depression of the 5-mL syringe plunger following confirmation of 
placement of the tip of the catheter at the end of the uterine horn ipsilateral to the 
preovulatory follicle. 
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Figure 5. Removal of the flexible inner catheter with examination of it for presence of 
semen. The inner catheter was reinserted into the outer catheter if semen was grossly 
visualized. 
 

 
 
 
 
Figure 6. Passage of 5 mL of air through the outer catheter (following removal of the 
inner catheter) to remove any semen that may have pooled within the tip of it. 
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Figure 7. Removal of the outer catheter as the operator held the tip of uterine horn 
ipsilateral to the preovulatory follicle in a ventral position per rectum. Ventral orientation 
of the tip of the uterine horn was done throughout the insemination and if possible, for up 
to 3 minutes after removal of the outer catheter.  
 

 
 
 
 
II.1.1.4.3. Conventional uterine body insemination (UBI)  

The 60-mL syringe containing the extended semen as described above was 

attached to a standard, sterile, equine insemination pipette. A sterile sleeve was donned. 

Five to six milliliters of air was aspirated into the semen syringe to aid in full evacuation 

of the semen from the syringe and insemination pipette. The insemination pipette was 

carried transvaginally and passed through the cervix. The distal end of the pipette was 

advanced into the cranial uterine body. To move the air bubble into a position that would 

allow it to “chase” all remaining semen from the syringe and pipette, the syringe tip was 

rotated to the 6 o’clock position and the plunger-end of the syringe was elevated to a 45° 
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angle. The cervix was held closed by the inseminator’s hand and the plunger was slowly 

depressed until all semen was expelled into the uterus. The inseminator’s arm was 

slowly withdrawn from the vagina to prevent aspiration of air into the vagina. 

II.1.1.5. Embryo recovery  

Two mares underwent uterine lavage for embryo recovery 7 days after ovulation. 

The mares were restrained and the perineum prepared in the same manner as described 

above in section II.1.1.4.1, with the addition that mares were sedated with detomidine 

(Dormosedan®; Pfizer, Lees Summit, MO, USA; 3 to 4 mg, iv). 

A sterile sleeve was donned. A sterile, equine lavage catheter (37 Fr, 75 mL, 36 

in; Bioniche Life Sciences, Inc., Belleville, Ontario, Canada) was connected to an equine 

Y-tube set with spike (Bioniche Life Sciences Inc., Belleville, Ontario, Canada). The 

spike was inserted in a bag containing ViGROTM Complete Flush Solution (Bioniche 

Life Sciences Inc., Belleville, Ontario, Canada) and the tubing was primed with flush 

solution. The equine lavage catheter was carried transvaginally and passed through the 

cervix. The catheter balloon was inflated with 30 – 40 mL of air. A sufficient volume of 

flush solution was instilled into the uterine lumen to entirely fill it (1 – 2 L). After 

approximately 200 – 500 mL of flush solution had been instilled, the operator’s arm was 

withdrawn from the vagina and inserted into the rectum. After the uterine lumen was 

distended fully, the fluid was held in place for 2 minutes. The flush solution was then 

removed from the uterus by gravity flow, through a 150-mL embryo collection cup fitted 

with a 75-µm nylon mesh filter (Millipore Non-Vented Embryo Collection Filter; 

Bioniche Life Sciences, Inc., Belleville, Ontario, Canada). The uterine flush was 
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repeated two more times but without delay in removing the solution from the uterus. The 

mare was treated with 20 IU oxytocin iv at the completion of the third influx of solution 

to improve myometrial contraction and facilitate complete removal of the solution from 

the uterus. The uterus was intermittently, ballotted manually per rectum during the 

flushing process in an attempt to suspend the uterine contents within the fluid. 

After the final flush, the catheter balloon was deflated and the lavage catheter 

was removed from the mare. With the flush catheter held in a vertical position with the 

tip uppermost, it was allowed to fill with flush solution to the level of the catheter 

balloon. The flush solution was then released through the efflux portion of the tubing 

into the embryo collection cup. This process was performed 2 – 3 times in an attempt to 

ensure that any embryo present no longer remained within the catheter and tubing.  

One centimeter depth of flush solution was maintained above the filter in the 

embryo collection cup. The cup was then transported into an adjacent laboratory. The 

cup was inverted and its contents were thoroughly rinsed into an embryo search dish 

(100 x 15 mm round searching grid dish; Bioniche Life Sciences, Inc., Belleville, 

Ontario, Canada) using a 20-mL all-plastic syringe fitted with a 20-gauge 1.5-in needle. 

The entire dish was systematically searched for the presence of an embryo ≥2 times 

using a stereo microscope (13.4-80x).  

II.1.2. Main study  

II.1.2.1. Mare management  

For this experiment, 37 mares ranging in age from 4 to 19 y (mean 9.2; median 

8) were used. The time of ovulation was synchronized by daily intramuscular 
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administration of progesterone (150 mg) and estradiol-17ß (10 mg) in oil (Hagyard 

Pharmacy, Lexington, KY, USA) for 10 d [81], with a single intramuscular injection of 

250 µg cloprostenol sodium administered on the 10th day of treatment. BioRelease 

Deslorelin (BET Pharm, Lexington, KY, USA, 1.5 mg) was administered im once a 

preovulatory follicle ≥32 mm diameter and prominent uterine edema were detected. At 

the time of deslorelin administration, mares were assigned in random pairs to be 

inseminated the following day with 1 x 106 sperm by either HYS or TRG. Sperm were 

inseminated in the horn ipsilateral to the dominant follicle. In mares with more than one 

follicle >30 mm, the sperm were placed in the horn ipsilateral to the follicle showing the 

most pronounced preovulatory characteristics (softness on palpation, thickening of the 

follicle lining and loss of circularity on transrectal ultrasonographic examination). Mares 

were inseminated only once, and were examined by transrectal ultrasonography daily 

thereafter to confirm ovulation and at 14 to 16 d post-ovulation for pregnancy 

determination.  

At 14 to 16 days after ovulation, mares were treated with 250 µg, cloprostenol im 

to terminate pregnancy and/or return the mare to estrus. All mares were then allowed a 

minimum of one estrous cycle without treatment. Thirty-three mares were then treated 

again for estrus synchronization as described above. Mare management, semen 

collection and insemination were the same as for the previous replicate except that mares 

were assigned to the opposite treatment group (HYS or TRG), and were inseminated 

with 0.5 x 106 sperm.  
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II.1.2.2. Semen collection  

 Semen was collected as described above in section II.1.1.2. 

II.1.2.3. Semen processing  

Immediately following semen collection, the gel filter was removed from the 

collection bottle to prevent leakage of the gel into the gel-free semen. The gel-free 

semen was transported to an adjacent laboratory and placed in a 37°C incubator. The 

total number of sperm in the ejaculate was determined by measuring the volume of the 

neat semen using a 100-mL graduated cylinder and measuring the concentration using 

the NucleoCounter® SP-100TM. 

An aliquot of neat semen was diluted with pre-warmed (37°C) INRA 96 

containing 1 mg/mL (w:v) ticarcillin disodium and clavulanate potassium (Timentin®; 

GlaxoSmithKline, Research Triangle Park, NC, USA), hereafter referred to as INRA-T, 

to a final concentration of 30 x 106 sperm/mL and a volume of 4.0 mL in a 4-mL 

Cryogenic vial (Corning Life Sciences, Lowell, MA, USA) using the following 

formulas: 

 Volume of raw semen required = (30 x 106 sperm/mL) ÷ (raw semen 

concentration) * (4.0 mL) 

 Volume of extender = (4.0 mL) - (volume of raw semen required) 

One milliliter aliquots of the 30 x 106 sperm/mL extended semen were pipetted into three 

1.2-mL Cryogenic vials. One of these vials was placed directly on a 37°C covered slide 

warmer for 10 minutes prior to evaluation of initial sperm motion characteristics using a 

CASMA. The second and third vials were packaged in a commercial semen-transport 



 

37 

 

container (Equitainer®I; Hamilton Research, Inc., South Hamilton, MA, USA), as 

recommended by the manufacturer with sufficient ballast to control the cooling rate, for 

evaluation of sperm motion characteristics immediately following the deep-horn 

insemination of the final mare of the day and following 24 h of cooled storage (7-8°C). 

A 3:1 extended semen sample was made by adding 1.0 mL of neat semen to a 4-

mL Cryogenic vial containing 3.0 mL of pre-warmed (37°C) INRA-T. The 

concentrations of this 3:1 extended semen sample were measured using the 

NucleoCounter® SP-100TM. 

A 5.0-mL aliquot of either 5 x 106 sperm/mL or 2.5 x 106 sperm/mL was made 

by diluting the appropriate amount of 3:1 extended semen with INRA-T containing 5% 

(v:v) frozen-thawed, sperm-free seminal plasma into 5-mL Cryogenic vials (Corning 

Life Sciences, Lowell, MA, USA). Seminal plasma (SP) was added to the INRA-T to 

ensure that each inseminate contained a minimum of 5% seminal plasma to preserve 

semen quality [75,77,80]. The following formulas were used to produce this semen 

aliquot: 

 volume of sample desired = X + Y 

 X = volume of 3:1 extended semen 

 Y = volume of INRA-T with 5% frozen-thawed, sperm-free seminal 

plasma (v:v) 

 X = (concentration of sample desired) ÷ (concentration of 3:1 extended 

semen) * (volume of sample desired)  

 Y = (volume of sample desired) - X 
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For example, to make 5.0 mL of an inseminate that was 2.5 x 106 sperm/mL from a 3:1 

semen sample that was 75 x 106 sperm/mL: 

 X = (2.5 x 106 sperm/mL) ÷ (75 x 106 sperm/mL) * (5.0 mL) 

 0.167 mL = volume of 3:1 extended semen 

 Y = (5.0 mL) – (0.167 mL) 

 4.833 mL = volume of INRA-T with 5% frozen-thawed, sperm-free 

seminal plasma (v:v) 

Final concentration was evaluated with the NucleoCounter® SP-100TM. The sample was 

adjusted as needed until the concentration reported by the NucleoCounter® SP-100TM 

was within 0.3 x 106 sperm/mL. The vial containing the remaining 3:1 extended semen 

was placed in the Equitainer®I as for the 30 x 106 sperm/mL samples for evaluation 

following 24 h of cooled storage. 

One milliliter aliquots of the 5.0 x 106 sperm/mL or 2.5 x 106 sperm/mL 

extended semen were pipetted into three 1.2-mL Cryogenic vials. The remaining 2 mL 

of extended semen was transferred from the original 5-mL Cryogenic vial to a 2-mL 

Cryogenic vial. One of the 1.2-mL Cryogenic vials was placed immediately on a 37°C 

covered slide warmer for 10 minutes prior to evaluation of initial sperm motion 

characteristics using a CASMA. The 2-mL Cryogenic vial and the remaining two 1.2-

mL Cryogenic vials were packaged in the same Equitainer®I as the 30 x 106 sperm/mL 

samples as described above. The 2-mL Cryogenic vial was stored for deep-horn 

insemination. The 1-mL extended semen samples were stored for evaluation of sperm 
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motion characteristics immediately following the deep-horn insemination of the final 

mare of the day and following 24 h of cooled storage. 

Immediately prior to breeding each mare, a total of 210 µL of semen extended to 

either 5 x 106 sperm/mL or 2.5 x 106 sperm/mL was placed in a 1.5-mL microcentrifuge 

tube for later loading into the appropriate insemination catheter. Losses within the 1.5-

mL microcentrifuge tube were evaluated (data not included) and estimated to be 

approximately 10 µL, thus delivering 200 µL from the catheter during insemination. 

II.1.2.4. Inseminations  

II.1.2.4.1. General insemination protocol 

The mares were restrained and prepared for insemination as described in section 

II.1.1.4.1, except they were sedated with detomidine (4 to 8 mg, iv). 

II.1.2.4.2. Transrectally guided deep-horn insemination (TRG)  

 Transrectally guided deep-horn insemination was performed as described in the 

preliminary study (section II.1.1.4.2) except that loading of the semen into the TRG 

catheter was modified so that the TRG and HYS catheters could be loaded in a similar 

manner. Specifically, the operator donned a sterile sleeve, inserted the distal end of the 

inner catheter into the 1.5-mL microcentrifuge tube, and drew the semen dose into the 

catheter by negative pressure with the syringe which was preloaded with 3 mL of air 

(Figure 8). 
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Figure 8. Aspiration of semen into the distal end of the inner catheter from a 1.5-mL 
microcentrifuge tube. 
 

 

 
 
II.1.2.4.3. Hysteroscopic insemination (HYS)  

 For HYS, semen was held in a 1.5-mL microcentrifuge tube, as described above 

with the TRG technique. The distal end of the inner cannula of an intra-fallopian 

insemination catheter (Cook Veterinary Products®, Spencer, IN, USA) was placed into 

the vial (Figure 9), and the semen was aspirated using a 3-mL syringe preloaded with 2 
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mL of air. The operator donned a sterile sleeve and carried a 1 m flexible video-

endoscope (Olympus GIF Type Q180, Olympus America Inc., Irving, TX, USA) 

transvaginally and passed it through the cervix. The arm was withdrawn from the vagina, 

inserted into the rectum, and the endoscope was guided transrectally to the middle of the 

uterine horn ipsilateral to the dominant follicle (Figure 10), as described by Sieme et al. 

[4]. The proximal end of the uterine horn was compressed around the endoscope, the 

distal uterine horn was insufflated, and the endoscope was advanced until the oviductal 

papilla was visualized. The intra-fallopian insemination catheter was advanced through 

the biopsy channel of the endoscope, then the inner catheter was advanced until it was 

seen to be adjacent to the oviductal papilla, at which time the semen was expelled onto 

the papilla. The syringe was refilled with air and this air was injected through the 

catheter until residual semen could no longer be expelled (Figure 11). The entire catheter 

was drawn back into the endoscope channel, and the endoscope withdrawn to the base of 

the uterine horn. The air was aspirated from the uterine horn only if it was not seen to 

promote semen migration towards the uterine bifurcation. The endoscope and catheter 

were then withdrawn from the mare’s reproductive tract. 
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Figure 9. Aspiration of semen into the distal end of the inner cannula of an intra-fallopian 
insemination catheter (Cook Veterinary Products®, Spencer, IN, USA) from a 1.5-mL 
microcentrifuge tube. 
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Figure 10. The arm was withdrawn from the vagina, inserted into the rectum, and the 
endoscope was guided transrectally to the middle of the uterine horn ipsilateral to the 
dominant follicle. 
 

 
 
 
 
Figure 11. Semen was expelled onto the oviductal papilla. Then, the 3-mL syringe was 
refilled with air and injected through the catheter until residual semen could no longer be 
expelled.  
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II.1.2.5. Cleaning of hysteroscopic equipment  

II.1.2.5.1. Cleaning of the endoscope 

The 1-m flexible video-endoscope used in this study was purchased specifically 

for this study and HYS. It was not exposed to disinfecting agents such as glutaraldehyde 

prior to or during the study, to ensure that no spermicidal residue was present in or on 

the endoscope. The endoscope was, however, cleaned with a combination of high 

pressure air, sterile saline, deionized water, and isopropyl alcohol (70%) before the study 

and after the final deep-horn insemination of each day. Specifically, high pressure air 

was blown through the biopsy channel until fluid was no longer expelled. A clean 4x4 

gauze sponge soaked in sterile saline followed by a dry sponge to wipe off the insertion 

tube and distal head. The suction, air/water, and biopsy valves were removed from their 

respective valve housing within the control body of the endoscope. The valves were 

rinsed with deionized water, then placed in a sterile cup containing isopropyl alcohol 

(70%) until completion of the sterilization process for the rest of the endoscope.  

Aseptic technique was used for the remainder of the cleaning of the endoscope. 

One person held the control body of the endoscope so that the insertion and 

universal/light guide tubes hung vertically. The water-resistant cap was placed on the 

electrical connector, completely sealing the electrical components from water 

contamination. The injection tube was attached to the air pipe, suction connector, and the 

water/air connector. The injection tube intake filter was submerged in a sterile cup 

containing deionized water and a 60-mL syringe was attached to the air/water channel 

port of the injection tube. Deionized water was then injected into the air/water channel, 
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60 mL at time, for a total of 300 – 500 mL. To clean the full length of the air/water 

channel, the endoscope holder plugged the opening to the air/water channel in the 

control body with an index or middle finger, and intermittently allowed some water to 

escape through the opening. This process was repeated with the suction channel except 

that the biopsy channel opening and the suction channel opening in the control body 

both were held closed by the endoscope holder with the right and left index or middle 

fingers. Then, 60 mL of deionized water was injected into the openings of the biopsy, 

suction, and water/air channels in the control body. This entire process of both channels 

and all 3 channel openings was repeated using isopropyl alcohol (70%) to promote 

drying and inhibit bacterial growth. The channels and channel openings were then fully 

dried with high pressure air filtered through a 0.2 µm hydrophobic PTFE filter 

(Millex®-FG Syringe Filter Unit, Hydrophobic PTFE, 50 mm; © EMD Millipore 

Corporation, Billerica, MA, USA). The injection tubes were disconnected and the entire 

outer surface of the endoscope and the injection tubes were thoroughly cleaned with 

sterile 4x4 gauze sponges soaked in deionized water, followed by sponges soaked in 

isopropyl alcohol (70%). The insertion tube of the endoscope was inserted into a sterile 

obstetrical sleeve and then hung from the endoscope rack. The suction, water/air, and 

biopsy valves were placed in a sterile cup to dry overnight.  

The endoscope was not subjected to the above described cleaning and 

sterilization procedures between inseminations within the same day due to practicality 

and the potential spermicidal effects of the deionized water and isopropyl alcohol if not 

given sufficient time to evaporate. Instead, after each insemination, high pressure air was 
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blown through the biopsy channel until fluid was no longer expelled. Then, the insertion 

tube and distal head of the endoscope was aseptically cleaned using a sterile 4x4 gauze 

sponge soaked in 0.9% saline, then dried with a dry, sterile 4x4 gauze sponge. 

II.1.2.5.2. Cleaning of the intra-fallopian insemination catheters 

The intra-fallopian catheter consists of an inner and outer cannula (Figure 12). It 

has a plastic case (Figure 13) that prevents damage to the catheter when not in use. All 

three of these components were individually cleaned/sterilized, re-assembled and 

packaged into a new, clean, gallon storage bag (Ziploc® brand Storage Bags with the 

Smart Zip® Seal; S. C. Johnson & Sons, Inc., Racine, WI, USA).  

 

Figure 12. The inner and outer cannulas of the intra-fallopian insemination catheter (Cook 
Veterinary Products®, Spencer, IN, USA). The inner cannula can be seen coming out of 
the distal end of the outer cannula. 
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Figure 13. The intra-fallopian insemination catheter (Cook Veterinary Products®, 
Spencer, IN, USA) contained within the plastic tubing packaging. 

 

  
 
 

 
The outer plastic case and the inner and outer cannulas were disassembled and 

wiped off with a dry, clean, 4x4 gauze sponge. Using aseptic technique, each component 

was flushed with deionized water, followed by an equal volume of isopropyl alcohol. 

The volume of flush and syringe size used for the outer plastic case, outer cannula, and 

inner cannula were 180-mL/60-mL syringe, 120-mL/20-mL syringe, and 60-mL/12-mL 

syringe, respectively. After each component was flushed, it was placed in a container 

with isopropyl alcohol and allowed to soak until all the catheters and cases used that day 

had been flushed and were in alcohol. Then, in the same order that the catheters had 

been cleaned, they were flushed with high pressure air filtered through a 0.2 µm 

hydrophobic PTFE filter to remove all remaining alcohol from the lumen, and their outer 
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surfaces were dried with sterile 4x4 gauze sponges. The catheters were then reassembled 

and inserted into their plastic case as described above. 

II.1.3. Seminal plasma (SP) processing 

Two ejaculates were collected from the same stallion used in the experiments to 

obtain sperm-free seminal plasma. Semen was collected as described in section II.1.1.2. 

Following semen collection, the semen was placed into two 15-mL polypropylene 

conical-bottom tubes (Corning Life Sciences, Lowell, MA, USA), and centrifuged at 

2000 x g for 10 min (IEC Centra CL2; Thermo Scientific, Waltham, MA, USA). The 

seminal plasma was decanted into 20-mL all-plastic syringes (2-part disposable syringes 

HSW Norm-Ject®; Henke Sass Wolf, Tuttlingen, Germany) fitted with tandem 5.0 µm 

and 1.2 µm nylon filters (Cameo 30N Syringe Filter, Nylon, 30 mm; Sigma-Aldrich, St. 

Louis, MO, USA). The seminal plasma was passed through the filters into a 50-mL 

conical vial (Corning Life Sciences, Lowell, MA, USA) to remove any remaining sperm. 

Aliquots (1 mL) of seminal plasma were stored in 1.5-mL snap-cap microcentrifuge 

tubes (disposable/conical economy micro tubes with snap caps; VWR International, 

USA) which were frozen and stored in a freezer at -80°C until used. 

II.1.4. Measurement of sperm concentration  

A NucleoCounter® SP-100TM (ChemoMetec A/S, Allerød, Denmark) was used 

for all semen concentration measurements. It utilizes a proprietary reagent, Reagent S-

100 (ChemoMetec A/S, Allerød, Denmark) to permeabilize the sperm plasma 

membranes and propidium-iodide to label the DNA in the permeabilized spermatozoa. 

The dilution factors used in these experiments were 1:100 for raw semen and for 3:1 
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extended semen (10 µL of semen to 1.0 mL of Reagent S-100), and 1:10 for 2.5 x 106 

and 5.0 x 106 sperm/mL (100 µL of semen to 1.0 mL of Reagent S-100). 

To prepare the dilutions, each semen sample was thoroughly mixed and the 

appropriate volume of semen was drawn up into a positive displacement pipette (10 µL 

with a 1-10-µL pipette; 100 µL with a 10-100-µL pipette). The sides of the pipette tip 

were wiped with a delicate task wiper (Kimtech ScienceTM Kimwipes®, Kimberly-Clark 

ProfessionalTM, Roswell, GA, USA) to remove excess semen. The semen was dispensed 

into the 1.2-mL Cryogenic vial preloaded with 1.0 mL of Reagent S-100. The vial was 

inverted a minimum of 10-15 times to thoroughly mix its contents. The tip of the SP-1 

Cassette (ChemoMetec A/S, Allerød, Denmark) was immersed into the reagent-semen 

solution, the cassette piston depressed, pulling the appropriate amount of solution into 

the cassette. The cassette was inserted into the NucleoCounter® and the total sperm/mL 

was measured. 

II.1.5. Evaluation of sperm motion characteristics (sperm motility) 

Because the inseminations for each insemination dose did not occur on the same 

day, sperm motility characteristics were evaluated to ensure that mares included in the 

analysis of pregnancy rates were being inseminated with similar quality semen. All 

semen samples were evaluated using computer-assisted motion analyzer (CASMA; 

IVOS version 12.2L; Hamilton Thorne Biosciences, Beverly, MA, USA) following 10 

minutes of warming at 37°C on a covered slide warmer. The extended semen was 

thoroughly mixed then 6 µL of the semen was loaded into a warmed (37°C) disposable 

counting chamber (Leja 20 um, 2 chamber slide; Leja Products B.V., Nieuw-Vennep, 
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The Netherlands). The slide was placed onto a warmed stage and inserted into the 

CASMA. For the 30 x 106 sperm/mL samples, a minimum of 10 microscopic fields and 

500 sperm cells were analyzed per sample. For the 5.0 x 106 and 2.5 x 106 sperm/mL, all 

microscopic fields on a slide were analyzed to compensate for the low sperm 

concentration in the samples. The preset values for the IVOS system were as follows: 

frames acquired – 45; frame rate – 60 Hz; minimum contrast – 70; minimum cell size – 4 

pixels; minimum static contrast – 30; straightness (STR) threshold for progressive 

motility – 50; average-path velocity (VAP) threshold for progressive motility – 30; VAP 

threshold for static cells – 15; cell intensity – 106; static head size – 0.60 to 2.00; static 

head intensity – 0.20 to 2.01; static elongation – 40 to 85; LED illumination intensity – 

2200. Experimental endpoints for these studies were total sperm motility (TMOT), 

progressive sperm motility (PMOT, %), curvilinear velocity (VCL, µ/s), average-path 

velocity (VAP, µ/s), straight-line velocity (VSL, µ/s), and straightness (STR, %). 

II.1.6. Statistical analysis 

II.1.6.1. Pregnancy rates  

Pregnancy rates between groups were compared using Chi-square analysis. 

Fisher’s exact test was used when a value of less than 5 was expected for any square. For 

all analyses, P < 0.05 was considered significantly different. 

II.1.6.2. Sperm motion characteristics (sperm motility)  

A mixed model analysis of variance (SAS Institute, Cary, NC) was used to 

determine differences in treatment (sperm concentration). Parameters expressed as a 

percentage (TMOT, PMOT, and STR) were arcsin square root transformed to normalize 
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the data prior to analysis. The effects of stallion, ejaculate and ejaculate within stallion 

were considered random. 

II.2. Results 

II.2.1. Preliminary study  

 Twenty-eight mares were inseminated utilizing either TRG or conventional 

uterine body insemination for a total of 44 estrous cycles. Conventional uterine body 

insemination (≥1 x 109 progressively motile sperm) was used on 18 cycles; whereas, 

TRG was used on 14 and 12 cycles for 1 x 106 and 0.5 x 106 total sperm, respectively. 

Exact day of ovulation was determined for 40 cycles. The four cycles with unconfirmed 

days of ovulation (2 – 0.5 x 106 TRG; 2 – 1 x 106 TRG) were in mares bred on Friday 

that could not be examined over the weekend due to inaccessibility to the mares. All four 

had a prominent corpus luteum the following Monday. In these four mares, the two 

mares that received an ovulatory induction agent the day before breeding (1 – 0.5 x 106; 

1 – 1 x 106) were pregnant while the two mares that received the ovulatory induction 

agent the day of insemination (1 – 0.5 x 106; 1 – 1 x 106) were not pregnant. 

 In the 40 cycles for which the exact day of ovulation was determined (based on 

daily transrectal ultrasonographic examinations starting the day the mares were treated 

with an ovulatory induction agent), ovulation occurred the same day as insemination (n 

= 1), and within 24 (n = 30), 48 (n = 8), and 96 (n = 1) hours of insemination. Mares 

bred with conventional uterine body insemination ovulated within 24 h (n = 13) and 48 h 

(n =5) of insemination. All but 3 of these mares were pregnant; the three non-pregnant 

mares ovulated within 24 h of insemination. Mares inseminated with 1.0 x 106 sperm 
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ovulated within 24 (n = 9), 48 (n = 2), and 96 (n = 1) of insemination. A total of 5 

pregnancies resulted, all from breedings that occurred within 24 h of insemination. 

Mares inseminated with 0.5 x 106 sperm ovulated within 0 (n = 1), 24 (n = 8), and 48 (n 

= 1) hours of insemination. Two mares were pregnant; these mares ovulated within 24 or 

48 h of ovulation.  

Pregnancy rates were higher for conventional uterine body insemination (UBI) 

than for TRG with 1 x 106 sperm (15/18, 83% vs. 6/14, 43%, respectively; P = 0.03) and 

with 0.5 x 106 sperm (15/18, 83% vs. 3 /12, 25%, respectively; P = 0.002) (Table 1). 

Pregnancy rates were not different between TRG insemination doses (6/14, 43% vs. 

3/12, 25%, respectively; P = 0.4) (Table 1).  

 

Table 1. Pregnancy rates relative to time of ovulation (n = 44) for mares bred with 
conventional uterine body insemination (UBI) using ≥1 billion progressively motile 
sperm or with TRG using either 1 or 0.5 x 106 sperm from one Quarter Horse stallion. 
 

Day of Ovulation 
Relative to 

Insemination (hrs) 

Insemination Dose & Method 

≥1 x 109 – UBI 1 x 106 – TRG 0.5 x 106 – TRG 

0 -- -- 0 / 1 (0%) 
≤24 10 / 13 (85%)a 5 / 9 (56%)ac 1 / 8 (13%)bc 

≤48 5 / 5 (100%)a 0 / 2 (0%)bc 1 / 1 (100%)ac 

≤96 -- 0 / 1 (0%) -- 
Unknown* -- 1 / 2 (50%)a 1 / 2 (50%)a 

Total 15/18 (83%)a 6 / 14 (43%)b 3 / 12 (25%)b 

* Unknown = mares bred on a Friday and next examination was Monday 
abc Within rows, rates with different superscripts differed (P < 0.05) 
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II.2.2. Main study  

II.2.2.1. Pregnancy rates  

Of the 37 mares that started this experiment, nine were eliminated due to 

development of hemorrhagic anovulatory follicles (n = 3), failure to ovulate within 72 h 

after insemination (n = 2), presence of excessive endometrial cysts (n = 1), excessive 

intrauterine fluid accumulation after breeding (n = 2), or presence of hyperechoic 

intrauterine fluid at the end of the second estrus synchronization (n = 1). This resulted in 

28 mares that were inseminated using both techniques (Table 2). All 28 mares 

inseminated with 1 x 106
 sperm and 26/28 mares inseminated with 0.5 x106 sperm 

ovulated with 24 h of insemination. The remaining 2 mares inseminated with 0.5 x 106 

sperm ovulated within 48 h of insemination; both were bred by HYS and neither was 

pregnant. There was no significant difference in pregnancy rates between HYS and TRG 

methods when mares were inseminated with 1 x 106 sperm (HYS 10/13, 77% vs TRG 

11/15, 73%; P = 1) or with 0.5 x 106 sperm (HYS 3/15, 20% vs TRG 4/13, 31%; P = 

0.7). Pregnancy rates were not different between insemination techniques when the 

insemination doses of 0.5 or 1 x 106 sperm were combined (HYS 13/28, 46% vs TRG 

15/28, 54%; P = 0.8). Pregnancy rates were higher in mares inseminated with 1 x 106 

sperm than in mares inseminated with 0.5 x 106 sperm (21/28, 75% vs. 7/28, 25%, 

respectively; P < 0.01). This difference in pregnancy rates between sperm doses held 

true even when mares that ovulated more than 24 h after insemination were excluded 

(21/28, 75% vs. 7/26, 27%, respectively; P < 0.001). 
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Table 2. Pregnancy rates in mares (n = 28) inseminated hysteroscopically (HYS) or 
transrectally (TRG) with either 1.0 or 0.5 x 106 sperm from one Quarter Horse stallion. 

 

Insemination 
Method 

Number of Sperm Inseminated 

1 x 106 0.5 x 106 Combined 
1 and 0.5 x 106 

HYS 10/13 (77%)a 3/15 (20%)b 13/28 (46%) 
TRG 11/15 (73%)a 4/13 (31%)b 15/28 (54%) 
Total 21/28 (75%)a 7/28 (25%)b  

ab  Within adjacent columns, rates without a common subscript differed (P < 0.05). 
 
 
 

II.2.2.2. Sperm motion characteristics (sperm motility) 

To ensure that mares included in the analysis of pregnancy rates were being 

inseminated with similar quality semen, sperm motion characteristics were evaluated on 

every ejaculate at the time of collection (T0), following insemination of all mares for the 

day (T-End), and following 24 h of cooled storage (T24) at 7-8°C. The TMOT and 

PMOT for T0 and T-End for each ejaculate included in the pregnancy rate data are 

included in Table 3-4. Because difference in sperm quality often become more evident 

following storage, the mean and standard error the mean (± SEM) were calculated for 

TMOT, PMOT, VCL, VAP, VSL, and STR for the ejaculates at T24 (Table 5). The 3:1 

samples had a mean sperm concentration of 55 x 106/mL (range = 23 to 138 x 106/mL).  
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Table 3. Total and progressive motility at the time of semen collection (T0) and following insemination of all mares for the day 
(T-End) for the ejaculates used for the 1.0 x 106 insemination dose. 
 

Ejaculate 

Semen Samples 

T0 / 30 x 106* T-End / 30 x 106* T-End / 5 x 106* 
TMOT§ PMOT§ TMOT§ PMOT§ TMOT§ PMOT§ 

1 97 77 -- -- 92 84 
2 95 69 89 74 77 71 
3 92 70 88 70 85 76 
4 96 78 89 71 77 66 
5 95 68 89 64 83 65 
6 91 67 91 67 81 64 
7 94 70 94 70 83 73 
8 95 74 94 79 91 87 
9 96 74 96 74 91 87 
10 97 74 96 72 91 73 

Mean (Range) 95 (91-97) 72 (67-78) 92 (88-96) 71(64-79) 85 (77-92) 75 (64-87) 
§ TMOT = total sperm motility (%) 
 PMOT = progressive sperm motility (%) 
* T0 / 30 x 106 = 30 x 106 sperm/mL at the time of semen collection 
 T-End / 30 x 106 = 30 x 106 sperm/mL following insemination of all mares for the day 
 T-End / 5 x 106 = 5 x 106 sperm/mL following insemination of all mares for the day 
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Table 4. Total and progressive motility at the time of semen collection (T0) and following insemination of all mares for the day 
(T-End) for the ejaculates used for the 0.5 x 106 insemination dose. 
 

Ejaculate 

Semen Samples 

T0 / 30 x 106* T-End / 30 x 106* T-End / 2.5 x 106* 
TMOT§ PMOT§ TMOT§ PMOT§ TMOT§ PMOT§ 

1 96 77 92 82 84 80 

2 95 68 89 72 69 61 

3 96 75 92 79 79 73 
4 97 79 88 74 73 70 

5 91 61 86 65 81 75 

6 90 67 88 70 70 63 
7 94 75 91 77 87 75 

Mean (Range) 94 (90-97) 72 (61-79) 89 (86-92) 74 (65-79) 78 (69-87) 71 (61-80) 
§ TMOT = total sperm motility (%) 
 PMOT = progressive sperm motility (%) 
* T0 / 30 x 106 = 30 x 106 sperm/mL at the time of semen collection 
 T-End / 30 x 106 = 30 x 106 sperm/mL following insemination of all mares for the day 
 T-End / 2.5 x 106 = 2.5 x 106 sperm/mL following insemination of all mares for the day 
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The TMOT for the 1.0 x 106
 insemination dose at T0 (30 x 106), T-End at 30 x 

106 sperm/mL, and T-End at 5 x 106 sperm/mL had means of 95% (range 91 to 97%), 

92% (range 88 to 96%), and 85% (range 77 to 92%), respectively. The PMOT for the 1.0 

x 106 insemination dose at T0, T-End at 30 x 106 sperm/mL, and T-End at 5 x 106 

sperm/mL had means of 72% (range 67 to 78%), 71% (range 64 to 79%), and 75% 

(range 64-87%), respectively. The TMOT for the 0.5 x 106
 insemination dose at T0, T-

End at 30 x 106 sperm/mL, and T-End at 2.5 x 106 sperm/mL had means of 94% (range 

90 to 97%), 89% (range 86 to 92%), and 78% (range 69-87%), respectively. The PMOT 

for the 0.5 x 106 insemination dose at T0, T-End at 30 x 106 sperm/mL, and T-End at 2.5 

x 106 sperm/mL means of 71% (range 61 to 79%), 74% (range 65 to 79%), and 71% 

(range 61-80%), respectively.  

 
 
Table 5. Sperm motion characteristics following 24 h of cooled storage (T24) in an 
Equitainer®I (mean ± SEM).  
 

Motility 
Parameter§ 

Semen Samples 

2.5 x 106* 5 x 106* 30 x 106* 3:1SD* 

TMOT 83 (2)b 85 (2)b 90 (1)a 87 (2)ab 
PMOT 68 (2)a 66 (3)a 57 (3)ab 52 (3)b 
VCL 212 (7)ab 204 (9)b 225 (6)a 220 (8)ab 
VAP 103 (4)b 102 (5)b 114 (3)a 114 (4)a 
VSL 76 (2)a 72 (2)a 72 (2)a 73 (3)a 
STR 75 (2)a 73 (3)a 62 (2)b 62 (1)b 

§ TMOT = total sperm motility (%); PMOT = progressive sperm motility (%); 
 VCL = curvilinear velocity (µm/s); VAP = average-path velocity (µm/s); 
 VSL = straight-line velocity (µm/s); STR = straightness ([VSL/VAP]100; %) 
* 2.5 x 106 = 2.5 x 106 sperm/mL (n = 7) 
 5 x 106 = 5 x 106 sperm/mL (n = 10) 
 30 x 106 = 30 x 106 sperm/mL (n = 17) 
 3:1SD = 3:1 Simple Dilution (n = 17) 
ab Within rows, rates with different superscripts differed (P < 0.05) 
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At T24 (Table 5), the TMOT was higher than 2.5 x106 and 5 x 106 (P < 0.05) but, 

similar to 3:1SD; and 3:1SD was similar to 2.5 x 106 and 5 x 106. The PMOT for 2.5 

x106 and 5 x 106 was higher than 3:1SD (P < 0.05); and 30 x 106 was similar to 2.5 x 106 

and 5 x 106. The VCL for 30 x 106 was higher than 5 x 106 (P < 0.05); and similar to 2.5 

x 106 and 3:1SD (P < 0.05). The VAP for 30 x 106 and 3:1SD were higher than 2.5 x 106 

and 5 x 106 (P < 0.05). The VSL was similar among all treatments (P ≥ 0.05). STR at 2.5 

x 106 and 5 x 106 were higher than 30 x 106 and 3:1SD (P < 0.05). 

II.3. Discussion  

Low-dose deep-horn insemination is commonly used in equine practice because 

it is believed that delivering a small volume of relatively concentrated semen closer to 

the site of fertilization (tip of the uterine horn ipsilateral to the site of ovulation) may 

improve fertility [1]. Fertility trials involving horses commonly utilize an insemination 

dose of 250 to 500 x 106 progressively motile sperm for uterine body insemination, 

which should provide optimum pregnancy rates, regardless of inter-stallion variability. 

However, using supra-threshold sperm numbers can mask the ability of the experimental 

design to detect a difference in technique (i.e. HYS vs. TRG) due to excess sperm 

numbers. In the present study, we performed a preliminary trial to establish a sperm 

insemination number that was below the threshold for optimal fertility for the stallion in 

this study. The results of the preliminary trial indicated that for this stallion deep-horn 

insemination of either 1 or 0.5 x 106 sperm resulted in pregnancy rates (43 and 25%, 

respectively) that were lower than if more sperm (≥1 x 109) were inseminated into the 

uterine body (83%). Establishing a “subthreshold” sperm level allowed us to evaluate 
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whether one technique (HYS or TRG) would provide higher pregnancy rates than the 

other.  

In our main experiment, the efficacy of HYS and TRG techniques were similar; 

this finding agrees with previous studies utilizing 5 x 106 total, cool-stored sperm [46] 

and 20 x 106 sex-sorted sperm [18]. However, in contrast to the preliminary experiment, 

in this experiment only the 0.5 x 106 insemination dose appeared to be below the 

threshold number required to achieve normal pregnancy rates. Thus, mares were 

inseminated with a subthreshold insemination dose using only one of the deep-horn 

insemination techniques, preventing the complete removal of mare variability. But, 

because all mares in this experiment were proven, fertile mares, the similarity in 

pregnancy rates between HYS and TRG achieved with 0.5 x 106 sperm confirmed that 

these two techniques can be expected to achieve similar efficacy when below-threshold 

levels of sperm are inseminated. These results, therefore, contradict the recommendation 

of Squires [47] to utilize HYS when sperm numbers in the inseminate are less than 25 to 

50 x 106. This finding also suggests that there is a subthreshold level of sperm, even in 

fertile stallions, that cannot be overcome by using the deep-horn technique. Therefore, 

there are clinical circumstances (e.g. stallions with inherently poor semen quality or 

frozen semen from some stallions) under which it cannot be assumed that either 

technique will improve fertility. 

It is unclear why pregnancy rates with TRG insemination of 1 x 106 sperm were 

higher in the main experiment than they were in the preliminary trial. Improvements in 

pregnancy outcome did, however, occur as the operator gained more expertise in the 
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TRG technique. In addition, they may have been due to administration of detomidine 

prior to insemination, since mares bred in the preliminary trial were not tranquilized as 

opposed to the mares in the main study. Detomidine is an α2-adrenergic receptor agonist 

that increases uterine contractions in the normal non-pregnant mare [82]; there initially 

was concern that it might interfere with uterine contractions necessary to propel sperm 

toward the oviduct, or cause premature evacuation of sperm from the uterus. However, 

the normal pregnancy rates (73 to 77%) achieved with insemination of 1 x 106 sperm 

using either technique in this study, as well as the good pregnancy rates achieved in 

previous studies [46], suggested that detomidine administration prior to deep-horn 

insemination was not detrimental. Likewise, tranquilization of maiden mares prior to 

natural service did not reduce pregnancy rates [83]. Due to its ability to reduce rectal 

peristalsis and tone, detomidine may allow a more accurate and consistent placement of 

the intrauterine catheter at the tip of the uterine horn and it may facilitate the operator’s 

ability to orient the tip of the uterine horn ventrally. We postulate that the ventral 

orientation of the uterine horn tip may promote pooling of the inseminate on or around 

the oviductal papilla. The value of holding the tip of the uterine horn ventrally, however, 

has not been critically evaluated. 

From these findings, we conclude that whereas high fertility can be achieved 

with very low sperm numbers, there is a functional threshold below which fertility 

cannot be improved through deep-horn insemination techniques alone, even in a fertile 

stallion. Previous workers were not able to increase fertility in a subfertile stallion using 

TRG insemination of 25 x 106 sperm (29% pregnancy rate) compared to that achieved 
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with a fertile stallion with good semen quality (63% pregnancy rate) [45]. Sperm quality 

(DNA quality, sperm morphology and motility) can be selected for by centrifugation 

through density gradients [84-87], which aids in removal of sperm with abnormal heads 

and midpieces, bent midpieces, bent tails, coiled tails and premature germ cells [84]. 

Low-dose deep-horn insemination of these purified samples may increase fertility in 

some circumstances [10-12,14].  

Use of the hysteroscope may [4,34] or may not [4,9] increase the chance of 

endometritis. Schiemann et al. [34] reported histopathologic evidence of endometritis in 

all eight mares subjected to diagnostic hysteroscopy, and bacterial pathogens were 

isolated in 6/8 mares. Hysteroscope-derived post-insemination endometritis was not 

reported in one study following repeated inseminations [9]. Sieme et al. [4] reported no 

clinical effect of hysteroscopy in reproductively normal mares, but pregnancy rates were 

lower for HYS of fresh semen compared to standard uterine body insemination in 

subfertile mares, suggesting that mares susceptible to infection may be at greater risk 

with the HYS technique. Nie et al. [88] found that post-breeding endometritis was lower 

following the TRG technique compared to conventional uterine body insemination, 

whereas Güvenc et al. [35] found no difference in post-breeding endometritis following 

the same two techniques. 

Despite routine sterilization between procedures, endoscopes used for human 

applications have been identified as a source for the biofilm-producing bacteria 

Escherichia coli and Pseudomonas aeruginosa, resulting in nosocomial infections [27-

31]. These bacteria are known pathogens of the equine endometrium [89,90]. They were 
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isolated from 6 of 8 mares following diagnostic hysteroscopy in one study [34] and have 

been associated with reduced pregnancy rates in mares [89]. In contrast, the catheter 

used for TRG is inexpensive and a new catheter may be used for each mare, eliminating 

the possibility of nosocomial infection.  

 In summary, similar pregnancy rates were achieved with low-dose insemination 

using a subthreshold number of sperm when either hysteroscopically guided or 

transrectally guided techniques were used. Due to simplicity, lower cost, reduction of 

time involved, and reduction of the possibility of nosocomial infections, the transrectally 

guided technique may be the method of choice for low dose insemination in the mare. 
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CHAPTER III 

EFFECT OF DILUTION AND SEMINAL PLASMA ON MOTION 

CHARACTERISTICS AND PLASMA MEMBRANE INTEGRITY 

OF STALLION SPERM 

 

III.1. Materials and Methods 

A study was conducted to evaluate the sperm motion characteristics and plasma 

membrane integrity of stallion semen when processed to 2.5 x 106 sperm/mL as used for 

low-dose insemination. Three ejaculates were collected from each of three stallions, two 

20-yr old American Quarter Horses and a 9-yr old American Paint Horse, for a total of 9 

ejaculates. The study was conducted in September 2009 in southeast Texas. All 

experimental procedures were performed according to the United States Government 

Principles for Utilization and Care of Vertebrate Animals Used in Testing, Research and 

Training and were approved by the Laboratory Animal Care Committee at Texas A&M 

University. 

III.1.1. Semen collection  

An ejaculate was collected daily as described in section II.1.1.2 from each of 3 

stallions for 3 consecutive days, for a total of 9 ejaculates (3 ejaculates/stallion). 

III.1.2. Semen processing  

Immediately following semen collection, the gel filter was removed from the 

collection bottle to prevent leakage of the gel into the gel-free semen. The gel-free 

semen was placed in a 37°C incubator. The total number of sperm in the ejaculate was 
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determined by measuring the volume of the neat semen using a 10- mL graduated 

cylinder and measuring the concentration using the NucleoCounter® SP-100TM as 

detailed in Chapter II. 

Using pre-warmed (37°C) INRA-T and neat semen, a 3:1 extended semen 

sample (3:1SD) and a 30 x 106 sperm/mL sample (30) were made. The 3:1SD sample 

was made by adding 1.5 mL of neat semen into a 15-mL conical vial containing 4.5 mL 

INRA-T. A 5.0-mL semen sample with a concentration of 30 x 106 sperm/mL (30) was 

made using the following formula and placed into a 5.0-mL Cryogenic vial: 

 Volume of raw semen required = (30 x 106 sperm/mL) ÷ (raw semen 

concentration) * (5.0 mL) 

 Volume of extender = (5.0 mL) - (volume of raw semen required) 

The total sperm and non-plasma membrane-intact sperm concentrations were determined 

for both semen samples using the NucleoCounter® SP-100TM as described below in 

Section III.1.4. Aliquots for evaluation of initial sperm motion characteristics were made 

by pipetting 0.5 mL of the 3:1SD and 30 preparations into 0.5-mL Eppendorf tubes. The 

aliquots were then placed on a 37°C covered slide warmer for 10 minutes prior to 

evaluation. Two 1.2-mL aliquots were placed in separate 1.2-mL Cryogenic vials for 

evaluation following 24- and 48-h of cooled storage (7-8°C) in an Equitainer®I. 

Five-milliliter semen samples with a concentration of 2.5 x 106 sperm/mL were 

made by diluting the appropriate amount of 3:1 extended semen with INRA-T, INRA-T 

with 7.5% frozen-thawed, sperm-free seminal plasma (v:v), or INRA-T with 25% 

frozen-thawed, sperm-free seminal plasma (v:v); thus, a total of 3 samples were made at 
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2.5 x 106 sperm/mL. These 2.5 x 106 sperm/mL treatments extended with 0, 7.5 and 25% 

seminal were designated as 2.5/0, 2.5/7.5, and 2.5/25. The following formulas were used 

to produce these semen samples: 

 volume of sample desired = X + Y 

 X = volume of 3:1 extended semen 

 Y = volume of semen extender 

 X = (2.5 x 106 sperm/mL) ÷ (concentration of 3:1 extended semen) * (5.0 

mL)  

 Y = (5.0 mL) - X 

The total sperm and non-plasma membrane-intact sperm concentrations were determined 

for all 2.5 x 106 sperm/mL semen samples using the NucleoCounter® SP-100TM. A 0.5-

mL aliquot of each of the 2.5 x 106 sperm/mL samples was pipetted into a 0.5-mL 

Eppendorf tube, then placed on a 37°C covered slide warmer for 10 minutes prior to 

evaluation of initial sperm motion characteristics using a CASMA. Two 1.2-mL aliquots 

of each of the 2.5/25 samples were pipetted into separate 1.2-mL Cryogenic vials for 

evaluation following 24 and 48 h of cool storage (7-8°C) in an Equitainer®I. 

Two Equitainers per stallion were used for the 24- and 48-h cooled storage 

samples to ensure that cooling was not disturbed when the 24-h samples were evaluated. 

Semen samples were packaged as recommended by the manufacturer with sufficient 

ballast to control the cooling rate. In addition to the above-described semen samples, a 2-

mL Cryogenic vial containing 2 mL of INRA-T with 25% frozen-thawed, sperm-free 



 

66 

 

seminal plasma (v:v) was placed into each of the Equitainers. This extender was used to 

make a 30 x 106 sperm/mL aliquot of the 3:1SD for motility analysis. 

Following 24 and 48 h of cool storage, 0.5-mL aliquots of all semen samples 

were pipetted into 0.5-mL Eppendorf tubes for analysis. When the concentration of the 

3:1SD sample was greater than 30 x 106 sperm/mL, a 0.5-mL aliquot was made by 

diluting the appropriate amount of the sample with INRA-T containing 25% frozen-

thawed seminal plasma (v:v) to a concentration of 30 x 106 sperm/mL (3:1/30) using the 

following formulas:  

 Volume of 3:1 extended semen required = (30 x 106 sperm/mL) ÷ (3:1 

extended semen sperm concentration) * (0.5 mL) 

 Volume of extender = (0.5 mL) - (volume of 3:1 extended semen required) 

All of these 0.5-mL aliquots were placed on a 37°C covered slide warmer for 10 minutes 

prior to evaluation of sperm motion characteristics using a CASMA. The semen 

remaining in each of the original 1.2-mL Cryogenic vials were evaluated for total sperm 

and non-plasma membrane-intact sperm concentrations using the NucleoCounter® SP-

100TM. 

III.1.3. Seminal plasma (SP) processing  

Prior to the experiment, one ejaculate was collected from each of the 3 stallions 

used in the experiment to obtain sperm-free seminal plasma. Semen was collected as 

described in section II.1.1.2 and processed as described in section II.1.3 to collect 

seminal plasma, which was then frozen and stored in a -80°C freezer, as described in 

section II.1.3, until used. 
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III.1.4. Evaluation of sperm concentration and plasma membrane integrity  

The NucleoCounter® SP-100TM was the system used for determination of total 

sperm and non-plasma membrane-intact sperm concentrations. As described in section 

II.1.4, Reagent S-100 was used for measurement of total sperm concentration because it 

permeabilizes the plasma membrane, allowing propidium-iodide to label the DNA of all 

spermatozoa in the sample. To evaluate the concentration of the non-plasma membrane-

intact sperm, phosphate-buffered saline (PBS, GIBCO® Dulbecco’s Phosphate Buffered 

Saline 1X; Invitrogen; Grand Island, NY, USA) was substituted for the Reagent S-100. 

The dilution factors (DF) used in this experiment were prepared according to the 

following table (Table 6). 

 

Table 6. NucleoCounter® SP-100TM dilution factors used in the evaluation of plasma 
membrane integrity. 

 
Sperm 

Concentration 
(x 106/mL) Dilution Factor 

Diluent Volume 
(µL) 

Semen Volume 
(µL) 

<2.5 6 500 100 
2.5-30  11 1000 100 
30-180 101 1000 10 

180-300 201 2000 10 
 

 

Each semen sample was thoroughly mixed and the appropriate volume of semen 

was drawn up into a positive-displacement pipette (10 µL with a 1 – 10 µL pipette; 100 

µL with a 10 – 100 µL pipette). The sides of the pipette tip were wiped with a Kimwipe 

to remove excess semen. The semen was dispensed into the 1.2- or 2.0-mL Cryogenic 

vial preloaded with the appropriate amount of Reagent S-100 or PBS. The vial was 
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inverted a minimum of 10-15 times to thoroughly mix its contents. The tip of the SP-1 

Cassette (ChemoMetec A/S, Allerød, Denmark) was immersed into the reagent-semen 

solution, the cassette piston depressed, pulling the appropriate amount of solution into 

the cassette. The cassette was inserted into the instrument and the total sperm/mL was 

measured. The total sperm concentration for each semen sample was evaluated prior to 

evaluation of the non-plasma membrane-intact sperm to allow the SemenViewTM 

program (Version 1.21; ChemoMetec A/S, Allerød, Denmark) to calculate the 

percentage of plasma membrane-intact sperm. If an error occurred in the order that the 

tests were run, the percentage of plasma membrane-intact sperm was calculated by hand 

using the following equation: 

 % of plasma membrane-intact spermatozoa = [(total sperm concentration) – 

(non-plasma membrane-intact sperm concentration)] ÷ (total sperm 

concentration) * 100% 

III.1.5. Evaluation of sperm motion characteristics (sperm motility) 

Sperm motion characteristics were evaluated as described in section II.1.5 using 

a CASMA. A minimum of 10 microscopic fields and 500 sperm cells were analyzed in 

the 30, 3:1SD and 3:1/30 samples. The range of the concentration of the 3:1 non-

adjusted samples was 23 to 75 x 106 sperm/mL. For the 2.5/25 samples, all microscopic 

fields on a slide were analyzed to compensate for the low sperm concentration. 

Experimental endpoints for this study were total sperm motility (TMOT), progressive 

sperm motility (PMOT), curvilinear velocity (VCL), average-path velocity (VAP), 

straight-line velocity (VSL), and straightness (STR). 
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III.1.6. Statistical analysis 

A mixed model analysis of variance (SAS Institute, Cary, NC) was used to 

determine differences due to treatment (sperm concentration). Parameters expressed as a 

percentage (TMOT, PMOT, PMI, and STR) were arcsin square root transformed to 

normalize the data prior to analysis. The effects of stallion, ejaculate and ejaculate within 

stallion were considered random. 

III.2. Results 

A total of nine ejaculates was analyzed for each treatment except for the 3:1/30 

which only included 7 samples because the 3:1SD were ≤30 x 106 sperm/mL in two 

samples; the concentration of the 3:1SD samples ranged from 23 to 75 x 106 sperm/mL 

(50 x 106 ± 3, mean ± SEM). The seminal plasma concentration in the 30 treatments 

ranged from 11 to 32% (mean, 18%). The final seminal plasma concentration in the 

2.5/0, 2.5/7.5 and 2.5/25 treatments were 0.9-2.6%, 8.4-10.1%, 25.9-27.6%, 

respectively. 

At T0 (Table 7), the PMI and TMOT were higher in 30 and 3:1SD than all 2.5 x 

106 sperm/mL treatments (P < 0.05). The PMOT for 30 and 3:1SD were higher than 

2.5/7.5 and 2.5/25 (P < 0.05), but similar to 2.5/0 (P ≥ 0.05). In general for VCL, VAP, 

and VSL, velocities were higher in those treatments with higher seminal plasma 

concentration (i.e. >11%; 2.5/25, 30, 3:1SD) compared to 2.5/0 and 2.5/7.5 (P < 0.05). 

The STR was higher in the 2.5/0 than all the other treatments (P < 0.05). 
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Table 7. Initial sperm motion characteristics and sperm plasma membrane integrity for 9 
ejaculates (3 ejaculates per stallion) (mean ± SEM). 
 

Laboratory 
Parameter§ 

Semen Samples 

2.5/0* 2.5/7.5* 2.5/25* 30* 3:1SD* 

PMI 78 (3)b 76 (5)b 75 (4)b 81 (5)a 82 (4)a 
TMOT 71 (5)b 77 (5)b 73 (4)b 87 (4)a 90 (3)a 
PMOT 55 (6)ab 50 (7)bc 47 (6)c 59 (6)a 62 (5)a 
VCL 213 (5)c 226 (11)bc 248 (10)a 241 (6)ab 230 (9)abc 
VAP 104 (2)c 121 (3)b 131 (3)a 127 (4)ab 124 (6) ab 
VSL 77 (4.6)b 81 (5.0)ab 85 (5.0)a 87 (4.7)a 85 (5.9)a 
STR 74 (4)a 67 (3)b 64 (3)b 66 (2)b 66 (2)b 

§ PMI = plasma membranes intact sperm (%) 
 TMOT = total sperm motility (%); PMOT = progressive sperm motility (%); 
 VCL = curvilinear velocity (µm/s); VAP = average-path velocity (µm/s); 
 VSL = straight-line velocity (µm/s); STR = straightness ([VSL/VAP]100; %) 
* 2.5/0 = 2.5 x 106 sperm/mL with 0% seminal plasma added (n = 9) 
 2.5/7.5 = 2.5 x 106 sperm/mL with 7.5% seminal plasma added (n = 9) 
 2.5/25 = 2.5 x 106 sperm/mL with 25% seminal plasma added (n = 9) 
 30 = 30 x 106 sperm/mL (n = 9) 
 3:1SD = 3:1 Simple Dilution (n = 9) 
abc Within rows, rates with different superscripts differed (P < 0.05) 
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Table 8. Sperm motion characteristics and sperm plasma membrane integrity for 9 ejaculates (3 ejaculates per stallion) 
following 24 h of cooled storage (mean ± SEM). 
 

Laboratory 
Parameter§ 

Semen Samples 

2.5/0* 2.5/7.5* 2.5/25* 30* 3:1SD* 3:1/30* 

PMI 77 (4)ab 75 (4)b 70 (5)c 78 (5)a 78 (5)a 78 (5)a 
TMOT 70 (5)c 73 (6)c 69 (4)c 82 (4)ab 83 (4)a 76 (7)b 
PMOT 48 (7)a 39 (7)b 25 (4)c 42 (6)b 42 (5)b 37 (7)b 
VCL 208 (9)c 248 (11)b 281 (13)a 234 (6)b 229 (8)bc 245 (7)b 
VAP 97 (2.5)c 120 (3.2)b 137 (4.8)a 117 (3.3)b 117 (3.9)b 120 (3.9)b 
VSL 63 (3.6)a 66 (3.5)a 63 (4.2)a 68 (4.1)a 69 (3.9)a 66 (5.0)a 
STR 68 (4)a 56 (3)b 46 (3)c 56 (2)b 57 (2)b 55 (3)b 

§ PMI = plasma membranes intact sperm (%) 
 TMOT = total sperm motility (%); PMOT = progressive sperm motility (%); 
 VCL = curvilinear velocity (µm/s); VAP = average-path velocity (µm/s); 
 VSL = straight-line velocity (µm/s); STR = straightness ([VSL/VAP]100; %) 
* 2.5/0 = 2.5 x 106 sperm/mL with 0% seminal plasma added (n = 9) 
 2.5/7.5 = 2.5 x 106 sperm/mL with 7.5% seminal plasma added (n = 9) 
 2.5/25 = 2.5 x 106 sperm/mL with 25% seminal plasma added (n = 9) 
 30 = 30 x 106 sperm/mL (n = 9) 
 3:1SD = 3:1 Simple Dilution (n = 9) 
 3:1/30 = 3:1 Simple Dilution Samples diluted to 30 x 106 sperm/mL with INRA-T with 25% SP (n = 7) 
abc Within rows, rates with different superscripts differed (P < 0.05) 
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Table 9. Sperm motion characteristics and sperm plasma membrane integrity for 9 ejaculates (3 ejaculates per stallion) 
following 48 h of cooled storage (mean ± SEM). 
 

Laboratory 
Parameter§ 

Semen Samples 

2.5/0* 2.5/7.5* 2.5/25* 30* 3:1SD* 3:1/30* 

PMI 78 (4)ab 75 (4)b 71 (5)c 79 (6)a 80 (4)a 74 (6)b 
TMOT 69 (6)ab 71 (5)a 64 (5)b 75 (5)a 69 (4)ab 63 (6)b 
PMOT 47 (7)a 37 (5)ab 18 (2)d 35 (6)bc 25 (3)cd 24 (6)d 
VCL 197 (13)e 257 (14)b 285 (9)a 242 (11)bc 219 (12)de 230 (12)cd 
VAP 90 (5.2)d 120 (4.3)b 137 (3.4)a 119 (5.6)bc 108 (5.9)c 111 (4.7)bc 
VSL 59 (3.5)b 65 (3.9)ab 56 (2.4)b 68 (5.2)a 58 (3.4)b 59 (4.9)b 
STR 69 (4)a 56 (4)b 41 (1)c 55 (2)b 52 (2)b 53 (3)b 

§ PMI = plasma membranes intact (%) 
 TMOT = total sperm motility (%); PMOT = progressive sperm motility (%); 
 VCL = curvilinear velocity (µm/s); VAP = average-path velocity (µm/s); 
 VSL = straight-line velocity (µm/s); STR = straightness ([VSL/VAP]100; %) 
* 2.5/0 = 2.5 x 106 sperm/mL with 0% seminal plasma added (n = 9) 
 2.5/7.5 = 2.5 x 106 sperm/mL with 7.5% seminal plasma added (n = 9) 
 2.5/25 = 2.5 x 106 sperm/mL with 25% seminal plasma added (n = 9) 
 30 = 30 x 106 sperm/mL (n = 9) 
 3:1SD = 3:1 Simple Dilution (n = 9) 
 3:1/30 = 3:1 Simple Dilution Samples diluted to 30 x 106 sperm/mL with INRA-T with 25% SP (n = 7) 
abc Within rows, rates with different superscripts differed (P < 0.05) 
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At T24 (Table 8), the PMI for 30, 3:1SD, 3:1/30 was higher than 2.5/7.5 and 

2.5/25 (P < 0.05), but similar to 2.5/0 (P ≥ 0.05); and 2.5/7.5 was higher than 2.5/25 (P < 

0.05). The TMOT for 30, 3:1SD, and 3:1/30 was higher than for all of the 2.5 x 106 

treatments (P < 0.05); 3:1SD was higher than 3:1/30 (P < 0.05), but similar to 30 (P ≥ 

0.05). The PMOT for 2.5/0 was higher than all other treatments (P < 0.05), and 2.5/25 

was lower than all other treatments (P < 0.05).The VCL and VAP for 2.5/25 was higher 

than all other treatments (P < 0.05); and 2.5/0 was lower than all other treatments (P < 

0.05) except for the VCL of the 3:1SD treatment (P ≥ 0.05). No difference was seen for 

VSL among all treatments (P ≥ 0.05). The STR for 2.5/0 was higher and for 2.5/25 was 

lower than all other treatments (P < 0.05). 

At T48 (Table 9), the PMI for 30 and 3:1SD was higher than all other treatments 

(P < 0.05), but not different than 2.5/0 (P ≥ 0.05); and 2.5/25 was lower than all other 

treatments (P < 0.05). The TMOT at 2.5/7.5 and 30 was higher than 2.5/25 and 3:1/30 (P 

< 0.05), but was not different than 2.5/0 and 3:1SD (P ≥ 0.05). The PMOT for 2.5/0 was 

higher than all other treatments (P < 0.05) except 2.5/7.5 (P ≥ 0.05); and 2.5/25 and 

3:1/30 were lower than all other treatments (P < 0.05) except 3:1SD (P ≥ 0.05). The 

VCL and VAP for 2.5/25 were higher than all other treatments (P < 0.05). The VSL at 

30 x106 was higher than all other treatments (P < 0.05) except 2.5/7.5 (P ≥ 0.05). The 

STR for 2.5/0 was higher and for 2.5/25 was lower than all other treatments (P < 0.05). 

Values for TMOT at T0 ranged from 71 to 90%. After 48 h of cool-storage, values for 

the 2.5 x 106 sperm/mL treatments declined less than the 30 and 3:1SD treatments. 
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III.3. Discussion  

The “dilution effect” refers to the detrimental effect on sperm quality (typically 

sperm motility) following the addition of a high volume of a diluent to neat semen, 

resulting in a sperm concentration less than 20 x 106 sperm/mL [51-60,65,66,70]. 

Maintenance of sperm quality is important to the success of commercial equine 

artificial insemination programs. Semen dilution with milk-based extenders is a key 

component to maintaining sperm quality especially as storage time increases. In 

stallions, sperm and seminal plasma concentrations typically accepted to optimize sperm 

quality in skim milk-glucose extender are 25 x106 sperm/mL [90] and 5 to 20% seminal 

plasma [75,90]. The optimal sperm concentration is based on a study by Varner et al. 

[70] where the highest total and progressive motility was maintained in semen diluted to 

25 x 106 sperm/mL compared to 50 x 106 and 100 x 106 sperm/mL over 24 h of room-

temperature (25°C) storage. Sperm concentration less than 25 x 106 sperm/mL were not 

evaluated due concerns regarding the “dilution effect” demonstrated in other species [51-

59, 61-69].  

Studies in the stallion evaluating the effect of sperm concentration less than 20 x 

106 sperm/mL on sperm quality have not apparently been previously performed. Some 

low-dose-deep horn insemination studies use, in addition to low sperm numbers in small 

volumes, low sperm concentrations. It is unclear in the Morris et al. study [40] and the 

DHI experiment in Chapter II of this thesis (Experiment 1) whether reduced fertility with 

the 0.5 x 106 insemination dose was due to the low sperm number or low sperm 

concentration (i.e. “dilution effect”). Therefore, it was of interest to compare sperm 
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quality (motility, velocity, and plasma membrane integrity) between conventionally 

diluted semen (i.e. 30 x 106 sperm/mL, 3:1 extender:semen (i.e. 25% seminal plasma)) 

and semen diluted to a very low sperm concentration (the concentration of the sperm 

used for insemination in the 0.5 million sperm group in Experiment 1; i.e. 2.5 x 106 

sperm/mL).  

We found, in contrast to reported finding in other species, that dilution to very 

low concentrations had little effect on sperm quality. Initially at T0, PMI and TMOT for 

conventional semen dilution treatments (30 and 3:1SD) were higher than all 2.5 x 106 

sperm/mL treatments, suggesting that the “dilution effect” may be a factor; however, by 

T48, PMI was similar among the 3:1SD, 30, and 2.5/0 treatments and TMOT was 

similar among the 3:1SD, 30, 2.5/0 and 2.5/7.5 treatments. Notably, at T48, the mean 

PMOT was highest in the 2.5/0 and 2.5/7.5 treatments. These findings suggest that while 

the more dilute samples appear to have slightly lower sperm quality at T0 (e.g. 75-78% 

PMI sperm vs. 81-82% for higher concentrations), the dilute samples maintain PMI, 

TMOT, and PMOT better over time than do more concentrated treatments. The high 

sperm quality in all the 2.5 x 106 sperm/mL samples after 48 h conflicts with the concept 

of the “dilution effect.”  

Historically, the “dilution effect” was studied using electrolyte solutions (e.g., 

sodium chloride, sodium citrate), seminal plasma, or combinations of the two [52-

58,62,63,66,69,73]; however, it was subsequently questioned whether the decrease in 

sperm quality was due to diluent components or was a true “dilution effect” [74]. 
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This study found that component combinations containing BSA, EDTA and/or fructose 

improved sperm longevity; whereas, single component diluents tended to depress 

motility. This difference in single vs. multiple component diluents may explain the 

“dilution effect.” 

Assessment of sperm quality following high dilution has been primarily assessed 

using subjective measures of sperm motility, allowing for bias as sperm density on the 

microscope slide may not only affect the subjective evaluation of motility but will allow 

identification of the dilution treatment. To eliminate this bias, some studies diluted the 

treatments to a uniform concentration prior to analysis [55,57,62,70], whereas other 

studies did not [52,53,56,63,66,69]. Semen samples with higher concentrations could 

have been interpreted to have elevated motility as a result of motile sperm colliding with 

immotile sperm and giving the impression of motility. Makler et al. [73] evaluated 

human sperm motility in semen samples diluted 1:1 to 1:6 (semen volume to diluent 

volume) objectively using multiple exposure photography, and reported no deleterious 

effect of dilution rate on sperm motility. In that study, the neat semen concentrations 

were 12 to 210 x 106 sperm/ml (mean = 73 x 106 sperm/mL) which means that the 

evaluated concentrations were as high as 105 x106 sperm/mL and as low as 1.7 x 106 

sperm/mL. These findings agree with those of the present study and stress the 

importance of objective measures of sperm motility. 

In the 2.5 x 106 sperm/mL treatments, VCL and VAP increased as seminal 

plasma increased. These results are similar to previous studies by Texas workers [77,80] 

that found VCL was higher in 20 vs. 0% seminal plasma when semen was diluted to 25 
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x106 sperm/mL in a skim milk-glucose extender. While they did not evaluate VAP, they 

did report a similar relationship between seminal plasma content and VSL, a finding not 

demonstrated in the present study. It is unclear why the 3:1SD and 3:1/30 samples (also 

with 25% seminal plasma) did not have higher mean VCL and VAP than did the 2.5/7.5 

and 2.5/25 at T24 and T48. It is possible that the relationship between seminal plasma is 

dependent on sperm concentration and that the effect sperm concentration has on pH and 

subsequently velocity. For example, in most species seminal plasma contains ~ 20 mM 

bicarbonate, which may lead to an increase in medium pH and subsequently, sperm 

velocity over time with incubation in air [91]. Higher sperm concentration (30 x 106 vs. 

10 x 106/mL), however, will lower diluent pH and thus may lower sperm velocity [92]. 

In Experiment 1, fertility was less in semen diluted to 2.5 x 106 compared to 5 x 

106 sperm/mL, but this treatment also had the lowest number of sperm in the inseminate 

(0.5 vs. 1 million sperm, respectively). While 2.5 x 106 sperm/mL is more dilute than 5 x 

106 sperm/mL, the latter is still very dilute and resulted in good fertility which suggests 

that, in Experiment 1, fertility differences are due to total sperm number rather than the 

“dilution effect.” 

Previous studies reported that fertility was lower when mares were bred in the 

uterine body with 250 x 106 PMS at concentrations of either 2.5 x 106 sperm/mL in 100 

mL or 5 x 106 PMS/mL in 50 mL compared to 25 x 106 sperm/mL in 10 mL [67,67]. 

Other factors that may have affected the fertility outcome include inseminate volume 

and the possibility of reflux of the semen through the cervix, resulting in a lower number 

of sperm remaining in the uterus. 
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In summary, based on sperm motion characteristics and plasma membrane 

integrity reported in this study, the conception of a “dilution effect” in a stallion at 2.5 x 

106 sperm/mL when diluted with INRA-T is not supported . These findings further 

suggest that there may be other factors such as diluent components, temperature, and 

evaluation method that have led to the concept of the “dilution effect.” 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS* 

 

A comparison of pregnancy rates between hysteroscopic (HYS) and transrectally 

guided deep-horn insemination (TRG) techniques was made using a subthreshold 

insemination dose of 0.5 x 106 total sperm. This subthreshold dose was determined in a 

preliminary experiment using one stallion comparing the fertility of conventional UBI 

with ≥ 1 x 109 sperm (16/18, 89%), 1 x 106 (6/14, 43%), and 0.5 x 106 (3/12, 25%) 

sperm. A subthreshold insemination dose was used to assure that study results would not 

be confounded by supra-threshold levels of sperm that could overcome the effect of 

insemination technique. The results of this study indicate that there was no difference 

detected between the TRG and HYS techniques when a subthreshold insemination dose 

of 0.5 x 106 sperm was inseminated. The TRG technique reduces time factors, 

equipment expense, labor, and risk of possible nosocomial infection. 

The sperm concentration used in Experiment 1 was low (i.e. 2.5 x 106 sperm/mL) 

and there was concern that the “dilution effect” may have affected sperm quality (i.e. 

motility). Experiment 2 (Chapter III experiment) was designed to compare differences in 

sperm extended to 2.5 x 106 sperm/mL to conventional dilution at either 30 x 106 

sperm/mL or 3:1 extender:semen. Initial values for total motility ranged from 71 to 90%;  

_____________________ 
 
*Part of this chapter is reprinted with permission from Hayden SS, Blanchard TL, Brinsko SP, Varner DD, 
Hinrichs K, Love CC. Pregnancy rates in mares inseminated with 0.5 or 1 million sperm using 
hysteroscopic or transrectally guided deep-horn insemination techniques. Theriogenology 2012;78:914-20. 
Copyright 2012 by Elsevier Publishing. 
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and after 48 h of cool-storage, values for the 2.5 x 106 sperm/mL treatments declined  

less than the 30 x 106 sperm/mL and 3:1 extender:semen treatments. These results 

suggest that while total motility for the 2.5 x 106 sperm/mL treatments is initially lower 

than conventional dilution rates, long-term storage (i.e. 48 h) indicates that samples 

diluted to 3:1SD and 30 have a greater rate of decline than the 2.5 x 106 treatments. 

These results suggest that the reduced fertility in the 0.5 million insemination dose (2.5 x 

106 sperm/mL) may be due to the total number of sperm inseminated rather than the low 

sperm concentration. 
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