
MASSIVELY-PARALLEL SPECTRAL ELEMENT ALGORITHM

DEVELOPMENT FOR HIGH SPEED FLOWS

A Dissertation

by

JOSHUA LANE CAMP

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Andrew Duggleby
Committee Members, Devesh Ranjan

Robert Handler
Edward White

Head of Department, Andreas Polycarpou

December 2013

Major Subject: Mechanical Engineering

Copyright 2013 Joshua Lane Camp

ABSTRACT

The need to reduce both the time and cost of product design has allowed numer-

ical analysis to play an ever-increasing role in design cycle analysis. This is particu-

larly true in the aerospace industry, where the use of computational fluid dynamics

can help reduce the need for costly prototype testing. Due to the extremely high com-

putational costs associated with simulating complex industrial flows directly, most

modern simulation tools employ solvers that rely heavily on turbulence modeling.

However, the combination of modern supercomputers and algorithms that can take

full advantage of them allows for higher fidelity solvers, with reduced dependence on

turbulence modeling, to be included in design cycle analysis.

This work employs the discontinuous Galerkin spectral element method in a solver

designed for high fidelity simulations in the subsonic and transonic flow regimes. The

algorithm is implemented using NEK5000, an open-source incompressible spectral

element solver, as a code base. Details of the algorithm are given, and the code is

validated against several canonical inviscid and viscous test cases. The validation

cases show that the code is accurate, stable, and a good performer on supercom-

puters. The new solver is then used to study the effectiveness of a cylindrical film

cooling hole. The results show a much improved prediction capability of film cooling

effectivness as compared to previous low-Mach simulation results. The algorithm is

proven to produce quality large-eddy simulation data in a time frame accessible for

design cycle analysis. At the end, a suggested direction for future development of the

algorithm is discussed, with a focus on how to improve the stability and performance

of the solver.

ii

DEDICATION

To my loving wife

iii

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Andrew Duggleby, for the support

he has given me throughout my tenure here at Texas A&M University. I know that

the knowledge and the skills I have gained under your wing will benefit me greatly

in attaining my future career goals. I can only hope to repay the great debt I owe

to you someday. I would also like to thank Yuval “UV” Doran and Mike Martell.

Although computational fluid dynamics and numerical analysis is not in your area

of expertise, you both were willing to listen to my ideas. I cannot count how many

times a major breakthrough in the development has come from one of you asking the

right questions. I would like to thank Dr. Paul Fischer at Argonne National Labs for

the many fruitful conversations over the years, whether that be in person or through

email, that have significantly aided me in getting my code up and running. The

support and love I have received from my family has been crucial to my graduate

success, and I hope you know it has not gone unappreciated. Finally, I would like

to thank my beautiful wife Kaleigh. This has been a long process for both of us,

through the sleepless nights, frustrations, and triumphs. Your love and continued

support has helped me in ways that cannot possibly be described in words. I love

you, and I look forward the next phase in our lives.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Numerical Analysis in the Design Cycle 1
1.2 Computational Fluid Dynamics in the Design Cycle 3

1.2.1 Nature of the Flow Equations and Turbulence 3
1.2.2 Industrial CFD Use . 5
1.2.3 Massive-parallelism and CFD 7
1.2.4 Towards Improving Design Cycle Analysis 7

1.3 Keys for Effective High-Fidelity CFD 9
1.3.1 Need for High Order . 9
1.3.2 Need for High Parallel Efficiency 12
1.3.3 Need for Geometric Flexibility 15

1.4 Extension to NEK5000 . 17
1.5 Statement of Purpose . 18

2. LITERATURE REVIEW AND NUMERICAL METHODS 20

2.1 Literature Review . 20
2.2 Conservation of Mass, Momentum, and Energy 23
2.3 Numerical Methodology . 27

2.3.1 Discontinuous Galerkin Spectral Element Method: Fundamen-
tals . 27

2.3.2 Lagrange Interpolating Polynomials and Semi-Discrete Oper-
ators . 29

2.3.3 Transformation Metrics and Quadrature Rules 33
2.3.4 A Word on Aliasing . 38
2.3.5 Performance Improvements using Tensor Products 41
2.3.6 Time Advancement . 42

v

2.4 DGSEM: Euler Equations . 43
2.4.1 Numerical Fluxes . 44

2.5 DGSEM: Navier-Stokes . 47
2.6 Boundary Conditions . 50

2.6.1 Inviscid Boundary Conditions 50
2.6.2 Viscous Boundary Conditions 53

2.7 Implementation Details . 54

3. VALIDATION TESTS . 57

3.1 Euler Cases . 57
3.1.1 Subsonic Flow in Channel with Bump 57
3.1.2 Subsonic Flow over a Cylinder 58
3.1.3 Subsonic Flow through Converging-Diverging Nozzle 62

3.2 Navier-Stokes Cases . 65
3.2.1 Manufactured Solution . 66
3.2.2 Viscous Cylinder . 69
3.2.3 Weakly Turbulent Sphere . 71
3.2.4 Turbulent Channel . 77

4. FILM COOLING SIMULATION . 79

4.1 Background on Film Cooling . 79
4.2 Overview of Large Eddy Simulation 81
4.3 Problem Setup . 82
4.4 Current Results . 86

5. CONCLUSIONS . 98

REFERENCES . 100

vi

LIST OF FIGURES

FIGURE Page

1.1 Flowchart of basic design cycle. 2

1.2 Narrowing of a design space through numerical analysis 3

1.3 CFD levels ranked in a generic numerical framework 8

1.4 Sample waveform representative of turbulent signal 10

1.5 Comparison of convergence rates for low and high order methods . . . 11

1.6 Example of exponential convergence for variable high order method . 12

1.7 Example of good and poor scaling . 15

2.1 Comparison of evenly-spaced and GLL points for interpolation 31

3.1 Mesh for channel flow with semicircular bump 59

3.2 Contours of Mach number for channel with semicircular bump 59

3.3 Convergence of L2 norm of entropy error for channel problem 60

3.4 Coarse mesh for inviscid subsonic cylinder 61

3.5 Contours of Mach number of subsonic inviscid flow over cylinder . . . 62

3.6 Coefficient of pressure along cylinder surface 63

3.7 Convergence (h- and p-type) plot for inviscid subsonic cylinder 64

3.8 Mesh for converging-diverging verification nozzle test case 65

3.9 Variation of static pressure and Mach number along axial midline for
nozzle . 65

3.10 Strong scaling plot for converging-diverging nozzle at N = 7 66

3.11 Density for manufactured solution case at t = 1 = 0.5. 68

3.12 Convergence plot for manufactured solution case. 69

3.13 Unstructured mesh for viscous cylinder cases. 70

vii

3.14 Comparison of drag coefficients for subsonic and transonic viscous
cylinder . 72

3.15 Contour of velocity magnitude with streamlines for viscous cylinder
cases . 73

3.16 Mesh used for simulation of sphere at Re = 1000 74

3.17 Details of surface mesh for subsonic sphere simulation 74

3.18 Small scale structures in subsonic sphere flow at Re = 1000 76

3.19 Mean and rms streamwise velocity for sphere simulation 76

3.20 Mesh for turbulent channel case . 77

3.21 Mean and rms velocity profiles for turbulent channel DNS 78

4.1 Details of geometry used for film cooling simulation 83

4.2 Closeup of mesh near film cooling hole 84

4.3 Average Mach number in cooling hole from low-Mach simulation in
Duggleby et al . 86

4.4 Instantaneous contour of non-dimensional temperature in low-Mach
simulation in Duggleby et al . 87

4.5 Inlet velocity profile for film cooling case 88

4.6 Instantaneous and average Mach number in cooling hole for compress-
ible film cooling simulation . 89

4.7 Contours of θ, θrms and v′θ′ at z/D = 0.00 91

4.8 Contours of θ, θrms and v′θ′ at z/D = 0.25 92

4.9 Contours of θ, θrms and v′θ′ at z/D = 0.50 93

4.10 Contours of θ, θrms and v′θ′ at z/D = 0.75 94

4.11 Contour of average film cooling effectiveness for film cooling case . . . 95

4.12 Plots of centerline and spanwise film cooling effectiveness for film cool-
ing hole . 96

4.13 Contour of instantaneous Mach number for entire film cooling domain 97

viii

LIST OF TABLES

TABLE Page

2.1 Listing of variables in Navier-Stokes equations 25

ix

1. INTRODUCTION

The engineering design cycle is an iterative process. A concept is tested against

a set of constraints, and the design is adjusted and re-tested if the constraints are

not met. A simple sketch of a design cycle process is shown in Figure 1.1; however,

this does not give the complete picture. Due to a globally competitive market, it

is no longer sufficient to simply meet design constraints. A successful product must

also perform its duty in the most optimal fashion possible [1]. An example of this is

a consumer vehicle. Most vehicles have the ability to transport passengers from one

destination to another safely. Top sellers will also be optimal in other attribute(s)

such as the price point or fuel economy. Thus, in addition to testing design variants

against hard constraints, the designer must rank satisfactory designs according to an

optimization objective (commonly known as a cost function [1]).

As a product’s success ultimately depends on its level of optimization, it is bene-

ficial for the product to undergo many iterations in the design cycle before advancing

to the market. However, the role of time as a factor should not be understated; it is

advantageous in most circumstances to bring a concept to market in a reasonably fast

timeframe. One method of accelerating the design phase is to study design iterations

on the computer using numerical analysis.

1.1 Numerical Analysis in the Design Cycle

With the advances in modern computing power, the testing phase of the design

cycle has trended largely towards numerical modelling [2, 3]. Prototype testing can

be an expensive and time consuming process; therefore, numerically exploring the

design space can help the designer arrive at an optimal solution faster and at a lower

cost. Although numerical analysis will never fully replace prototype testing, it can

1

Initial Design

Analysis
and

Evaluation

Acceptable?

Redesign

Acceptable
Design

Yes

No

Components

Material
Properties

Experimental
Data

Figure 1.1: Flowchart of basic design cycle. The design cycle resembles a feedback
loop, as evaluation of a design informs subsequent redesigns until the final forms
meets all goals and contraints. Adapted from [1].

2

Figure 1.2: Narrowing of a design space through numerical analysis. As the space
narrows towards an optimal design (left to right), the required sophistication of the
numerical tools increases (and thus the cost).

be used to narrow the design space significantly, thus reducing the number of design

variants that must be prototyped and tested.

Figure 1.2 shows an example of how a generic design space might be studied

through numerical analysis. Throughout the analysis, trade-offs are continually made

between simulation accuracy and simulation runtime. Initially, when there are po-

tentially hundreds or thousands of design variants, simulation runtime needs to be

on the order of minutes, even seconds, to narrow the design space in an efficient

manner. This reduced runtime is achieved by easing the accuracy requirements of

the results. Conversely, towards the end of the cycle when only a few design variants

remain, simulations employing accurate physics are needed to differentiate between

the designs at the cost of increased runtime (perhaps to days, even weeks).

1.2 Computational Fluid Dynamics in the Design Cycle

1.2.1 Nature of the Flow Equations and Turbulence

One area that benefits greatly from numerical analysis is fluid dynamics. Fluid

dynamics is the study of fluid motions and their corresponding forces. If the full flow

field is known, then other quantities of interest can be derived, such as drag or lift.

3

The Navier-Stokes equations (shown in Section 2) are a well-proven mathematical

model for fluid dynamics. However, the equations are difficult to work with directly.

All variables are strongly coupled, and thus must be solved for simultaneously. Also,

the equations are highly non-linear. As a consequence, analytical solutions are only

available for simple, textbook flows. In order to study flows of engineering conse-

quence, the equations must be solved numerically in an area known as computational

fluid dynamics (CFD), although this is not where the difficulties of fluid dynamics

analysis end.

Almost all flows in real-world situations are turbulent. Turbulent flow fields

are characterized by seemingly random fluctuations of the field variables in both

space and time [4], making them difficult to predict. A defining (and simultaneously

burdensome) feature of turbulent flow fields is a large range of length and time

scales. For highly turbulent flow fields, there are large motions, or eddies, that are

mostly unaffected by viscosity, known as integral length scales. Through the idea of

an energy cascade, these largest eddies transfer energy to smaller and smaller eddies

until the eddies are small enough for viscous forces to dissipate the energy as heat [4].

Another important feature of turbulent flow fields is enhanced mixing. This leads

to both increased heat transfer and increased drag as compared to non-turbulent,

or laminar, flows. As drag and heat transfer are important design parameters for

gas turbine engines, it is crucial that the designer take into account how they are

affected by the turbulence in the flow.

The most accurate method of simulation involves discretizing and solving the

Navier-Stokes equations directly, resolving all spatial and time scales present in the

flow. This is known as a direct numerical simulation, or DNS. Unfortunately, due

to the large disparity of length and time scales in a turbulent flow, DNS has histori-

cally been impractical for flows of engineering interest. For example, the computing

4

power needed to perform a DNS of just one airplane wing is estimated to not be

available until the year 2050, and a full airplane won’t be possible until 2080. How-

ever, the numerical methodology presented in this work, in conjunction with modern

supercomputing capabilities, opens up the possiblities of directly simulating smaller

industrial components, such as a high pressure turbine blade in a gas turbine engine.

In order to understand the motive behind the current development, the progression

of CFD tools used in industry is now discussed.

1.2.2 Industrial CFD Use

One of the largest benefactors of CFD in design is the aerospace industry [5, 6,

7, 8, 9]. The earliest usage of CFD was to solve the equations assuming there are

no viscous interactions. The modified equations are known as the Euler equations.

The main advantage of this approach is the drastic reduction of length scales that

need to be resolved (particular in smooth cases with no shocks). Thus, the stringent

computational requirements seen for DNS are greatly relaxed, allowing for relatively

complex Euler flows to be solved on desktop computers. For high speed flows, Euler

solutions can provide fairly good approximations of certain items of engineering inter-

est, such as lift for airfoils. However, conceptually, there is a large difference between

a high speed turbulent flow, where the effects of viscosity on large scale motions

approach zero, and an inviscid flow, where there are no viscous effects. For example,

due to the absence of viscous effects, an Euler simulation incorrectly predicts zero

drag around a symmetric object.

Since drag (and heat transfer) are important in the aerospace industry, viscous

effects must be included. However, for many problems, direct resolution of all length

and time scales is not important; rather, we are typically only interested in the large

scale motions and their effect on engineering quantities such as heat transfer and drag.

5

In a DNS, most of the computational effort is spent on directly simulating the energy

cascade; a relatively small portion of the modes are needed to capture the larger

scales [4]. On this basis, the next logical approximation step is to time average the

Navier-Stokes equations, resulting in the Reynolds Averaged Navier-Stokes (RANS)

equations. The equations can then be solved for average flow quantities and average

engineering effects (such as drag) can be computed directly. Due its ability to deliver

results in a timely fashion on modest computing resources, RANS is the default

method for most commercial solvers. The drawback of this approach is that the

effects of turbulence on mean flow quantities are described entirely by a turbulence

model. As the nature of a turbulent flow field can change drastically due to a

variety of factors, creating turbulence models applicable to general flow fields is

quite difficult. Turbulence modeling continues to be a large research area, and this

focus continues to improve the effectiveness of RANS solvers. However, for the time

being, it appears that higher-fidelity models are needed for areas where RANS solvers

typically struggle (an example of this being combustor flows).

A relatively recent compromise between the stringent requirement of DNS and

the reduced accuracy of RANS is large-eddy simulation, or LES. Although many

variants exist, a common approach among LES models is to apply a spatial filter to

the Navier-Stokes equations. Like the RANS approach, the filtering process creates

additional terms in the equations that must be modeled. The key difference, however,

is that the accuracy (or inaccuracy) of the model has a much less pronounced effect

on the accuracy of the solver as a whole. LES models are also easier to extend to

general turbulent flows, as they only attempt to model the smallest turbulent scales,

which are generally thought to exhibit behaviors universal to all flows [4]. The main

drawback is that, while reduced compared to DNS, the computational cost of LES

is still far greater than RANS, which has thus far made it inaccessible for most

6

problems. However, the advent of modern supercomputing has made high-fidelity

flow models, such as LES and DNS, a viable option for many industrial flows.

1.2.3 Massive-parallelism and CFD

The complexity of a numerical problem can generally be described in terms of

its degrees of freedom (DOF). As the DOF increases, so does the amount of time

needed to solve the problem. Modern supercomputing is the solution to tackling

problems with impractically large DOF counts, such as those seen with high-fidelity

CFD models. Supercomputers vary in size and power, but in general, they feature

tens or hundreds of thousands of cores. In addition, supercomputers feature large,

high-speed memory resources and efficient inter-processor communications. These

characteristics combined allow supercomputers to effectively “spread” the problem

out over hundreds of thousands of cores, allowing the cores to work on smaller seg-

ments of the problem in parallel. Ideally, as the number of cores employed in a parallel

computation is doubled, the computation time should be cut in half. However, this

is only possible if the method used is designed specifically for efficient parallel com-

putations; using massively-parallel machines does not guarantee massively-parallel

performance.

1.2.4 Towards Improving Design Cycle Analysis

In order to expand the usefulness of CFD tools to areas where RANS may not

be as effective, an effort was made over the past decade to extend existing RANS

solvers to LES. However, because the solvers weren’t built specifically with efficient

parallel computing in mind, they have not been able to take full advantage of modern

supercomputing power, making the much increased DOF count a barrier to their

success. In order to make more direct methods attractive for design cycle analysis,

solvers employing them must be designed from the ground up to work well in a

7

Figure 1.3: CFD levels ranked in a generic numerical framework. Historically, indus-
trial CFD has limited to the RANS stage. However, advances in computing power
have made high-fidelity models, such as DNS or LES, feasible as an additional stage
in numerical design.

massively-parallel environment.

The need for high-fidelity CFD capabilities does not exclude RANS from contin-

ued use in design cycle analysis. Although RANS solvers currently see widespread

use in the aerospace industry, the reduced order models that were once only used for

post-design analysis are continuously improved upon and still see heavy use in design

cycle analysis. Figure 1.3 shows how CFD tools form a natural hierarchy similar to

what was seen generically in Figure 1.2. As discussed previously, the correct CFD

tool at each phase is one which delivers the required accuracy to differentiate be-

tween design choices at a computational cost appropriate for the given stage. While

industrial CFD usage currently ends with RANS, a tool that efficiently solves the

Navier-Stokes equations with a reduced dependence on turbulence modeling, such as

DNS or LES, will allow another stage to be added in the numerical analysis portion

of the design cycle.

8

1.3 Keys for Effective High-Fidelity CFD

In order for a code employing LES or DNS to be successful in industrial applica-

tions, it must exhibit the following characteristics:

• High order/high accuracy

• High parallel efficiency

• Efficient geometric flexibility

1.3.1 Need for High Order

The main advantage of RANS solvers is the less stringent discretization require-

ments. However, the manner in which RANS solvers typically model turbulence

makes it difficult to obtain a stable numerical solution (i.e., in a manner in which

numerical errors are bounded). Thus, most RANS algorithms are implemented using

low order methods that offer enhanced stability at the expense of resolution. This

is an acceptable compromise for RANS solutions as the resolution needed to resolve

the time-mean flow field accurately is not too great. However, the lack of resolu-

tion quickly becomes an issue once turbulent structures must be resolved. Consider

the complex function shown in Figure 1.4. Although this function does not come

directly from a turbulent flow, turbulent flows will exhibit similar high frequency

characteristics.

A common measure of a method’s accuracy characteristics is its convergence

rate. Essentially, the convergence rate predicts how much the accuracy of a method

improves if the degrees of freedom are increased. While the convergence rate of a

method is somewhat problem dependent, in general a high order method will have a

higher rate of convergence than a low order method–this is essentially why one would

choose a high order method in the first place. To illustrate why this is important,

9

0 0.2 0.4 0.6 0.8 1−0.5

0

0.5

1

1.5

2

Figure 1.4: Sample waveform representative of turbulent signal. Low order methods
require large DOF counts to capture this properly.

a fixed low order method is compared to a fixed high order method in terms of

their abilities to represent the wave form in Figure 1.4 discretely. In both methods,

the domain x ∈ [0, 1] is broken down into equal segments, known as elements, and

the resolution is increased by increasing the number of elements used. The low

order method uses linear interpolation between points, while the high order method

interpolates the solution within each element using a fifth order polynomial.

Figure 1.5 compares the errors of the low and high order methods as the resolution

is increased. The important item to note is the rate at which the error drops as the

resolution is increased, termed the convergence rate. The computed convergence

rates for the low and high order methods are two and six, respectively. Simply

put, the convergence rate for the high order method is greater because it can make

more use out of the available grid points. The real practical advantage of a high

accuracy method in general is that fewer grid points are needed to reach a desired

accuracy level. For example, referring to Figure 1.5, the high order approximation

needs approximately an order of magnitude fewer points than low order to achieve

10

an error level on the order of 10−6. In the context of turbulent flows, this means

that the stringent discretization requirements for LES or DNS can be lessened quite

dramatically when using a high order method.

101 102 103 104 10510−12

10−10

10−8

10−6

10−4

10−2

100

Number of Points

L2
 E

rro
r

Low Order

High Order

Figure 1.5: Comparison of convergence rates for low and high order methods. The
larger convergence rate of the high order method is advantageous in that far fewer
grid points are required to reach a certain error level.

While the preceding results are promising, even further gains can be made by

implementing a method where the order used is variable. Figure 1.6 shows the

vastly reduced error rates possible by leaving the number of elements fixed and

instead increasing the order of each element. The errors below 1000 DOF are higher

for the variable order method than the fixed, high order method. However, past

1000 DOF, the variable order method quickly reaches machine precision accuracy.

The convergence rate seen is termed exponential convergence, and by definition, it is

faster than what is realized by any fixed order method. It is important to note that

11

this behavior only occurs for solutions that are sufficiently smooth, such as the one

used for this test. Actual CFD solutions will not typically exhibit such smoothness,

and thus the convergence rate will be limited by the smoothness of the problem. For

industrial flow applications, a method with the flexibility of varying both the number

of elements used and the order of the elements can allow for a wider variety of flows

to be analyzed.

101 102 103 104 10510−15

10−10

10−5

100

Number of Points

L2
 E

rro
r

Low Order

High Order

Variable Order

Figure 1.6: Example of exponential convergence for variable high order method. For
smooth problems, variable order methods are often more accurate than fixed high
order methods.

1.3.2 Need for High Parallel Efficiency

Modern supercomputers have the ability to transform an impossibly large prob-

lem into thousands, even millions, of small, more manageable problems. However,

such a feat is not achieved automatically; only codes that are built with parallel

12

computing in mind can take full advantage of modern supercomputing capabilities.

In terms of a design cycle, prototype testing is much more expensive than nu-

merical analysis. However, it should be understood that the use of supercomputers

is not “free.” Based on the amount of wattage needed to run a personal computer,

one can imagine the massive amount of power consumed to run supercomputers that

contain millions of computing cores. Supercomputer time should be considered a

finite resource that must be used wisely and efficiently. One of the most common

measures of the parallel efficiency of a code is termed scaling. There are a few dif-

ferent definitions of scaling, but we will use strong scaling for the purposes of the

following discussion. For strong scaling, the total number of grid points is kept con-

stant, and the speed of the code is measured as a function of the number of processors

used. Ideal scaling is defined as a one-to-one relationship between the speedup of

the simulation and the relative increase in computing cores used. For example, for

a code with perfect scaling, a simulation that uses 1000 processors should run twice

as fast as a simulation using only 500 processors. While a code will never exhibit

perfect scaling for arbitrarily large processor counts, it should always be the goal.

Once a code reaches the point where its scaling deviates too far from ideal, adding

additional computing cores to the simulation would be considered wasteful.

Although it can vary from code to code, in general, the parallelization structure

of CFD solvers follow a common formula. Once the domain is discretized, the total

grid points are divided and distributed among the processors being employed. The

operations of a parallel CFD code can be broadly categorized as

• local operations, where all the needed data is immediately available to the

processor, and

• non-local operations, where a portion of the needed data currently resides on

13

other processors and must be retrieved.

The key to a highly-efficient code that scales well on massively-parallel machines

is keeping the ratio of time of spent in local operations to time spent in non-local

operation as high as possible. In general, local operations should exhibit near-ideal

scaling. On the other hand, the time spent on non-local operations will at best stay

flat, although the time would be expected to rise slightly as the number of processors

used is increased. Therefore, the ratio of local to non-local operation time for a given

processor count is a fairly good indicator of how far a code’s scaling will reach, and

this is more or less dependent on the method (but also dependent on the problem

size).

Figure 1.7 shows an example of how a code’s initial local to non-local operation

ratio affects scaling. Using P processors, the code represented by the blue curve has

a local to non-local ratio of 50, while the ratio for the code represented by the red

curve is 2.5. Because communication time stays relatively flat in parallel operations

(at best), this ratio quickly becomes less than one for the red code, and the result

is that the speedup gains for the local operations have only a marginal effect on the

code performance as a whole. On the other hand, the ratio for the blue code never

dips below 5, and thus sizable speedups are achieved each time the processor count

is doubled.

Even when choosing a high order method, the number of grid points needed for

adequate solution resolution will still be high. Therefore, it is vital that the code be

developed in such as way as to take full advantage of supercomputers, allowing the

large problem size to be spread out to tens or hundreds of thousands of computing

cores working in parallel.

14

P 2P 4P 8P

1

2

4

8

Processors

Sp
ee
du
p

Figure 1.7: Example of good and poor scaling. The percentage of total time spent
in non-local operations is a good indicator of well a code will scale. The curve in
blue initially has a non-local time percentage of approximately 2%, while the curve
in red is nearly 30%. Since the parallel communication time typically stays flat, the
code represented by the red curve deviates quickly from ideal (dashed line).

1.3.3 Need for Geometric Flexibility

There are a few methods to choose from that are both high order and have

demonstrated good scaling properties on massively-parallel supercomputers. How-

ever, a third requirement for industrial CFD is the ability to handle complex ge-

ometries while still maintaining high accuracy and high parallelism. The geometric

flexibility of a code can be quantified by two characteristics: its ability to perform

efficiently on unstructured discretizations, and the accuracy in which it discretizes

domain boundaries.

In a structured grid, the elements are ordered in such a way that an element’s

neighbors are automatically identified by the unique index given to that element.

15

For example, in 2D, the neighboring element to the right of element (4, 5) might be

element (5, 5), while the element immediately above element (4, 5) would be (4, 6).

This type of structure greatly simplifies the coding of the numerical scheme. It also

can also lead to performance gains, as a structured grid will minimize the number of

elements connected to a given element (and therefore the number of elements that

a given element must share data with). The downside of these grids is that they

are difficult to adapt to geometries that are not logically a square (or a cube in

three dimensions); thus, their utility for the complex geometries seen in industrial

flows is fairly limited. Unstructured grids, on the other hand, work well in complex

geometries, as the elements no longer have to be ordered in a certain way. However,

greater care must be taken to ensure the performance of the code is not degraded

by the use of unstructured grids. In the context of high-fidelity simulations, the use

of methods which handle unstructured grids is a must; otherwise, more time may be

spent in setting the problem up than actually simulating the flow.

Oftentimes, the accuracy of a simulation depends greatly on how well the dis-

cretization captures the boundary. This is particularly true in the simulation of

turbulent flows, where much of the turbulent production occurs at walls [4]. This

is why the grid is typically clustered near walls in CFD simulations. However, in

many discretizations, more elements are used along domain boundaries than would

be required by the physics of the problem. This is particularly true for low order

methods, where the domain boundaries are discretized using linear interpolation.

High order boundary representations are preferred in order to keep overall element

counts low while still maintaining appropriate resolution.

16

1.4 Extension to NEK5000

The desired characteristics for a high-fidelity industrial CFD code are high accu-

racy, high parallel efficiency, and geometric flexibility. The spectral element method

(SEM) is uniquely qualified for industrial LES/DNS use because it contains these

characteristics. In the spectral element method, the domain is broken down into

elements, and the solution is approximated within each element as a high order (typ-

ically 7th to 15th order) polynomial. The method is flexible in that higher resolution

can be achieved by increasing the number of elements used or increasing the poly-

nomial order (or both), thus leading to high, even exponential, convergence rates.

The inherent data locality of the method lends itself well to highly efficient parallel

computations, as the ratio of local work to non-local work is extremely high. Finally,

the geometry in SEM is typically represented discretely using the same high order

polynomials as the solution itself. Thus, high order boundary representations are

available, reducing the number of elements required near walls while maintaining

solution accuracy.

Fortunately, the characteristics of SEM are not simply theoretical niceties; they

have been proven in practical CFD simulations. A particular code that our group

has worked with extensively is NEK5000, an incompressible spectral element code

developed out of Argonne National Lab [10, 11, 12, 13]. Recently, the code has

shown strong scaling on over one million processes with a parallel efficiency of over

60% [10]. Using NEK5000, our group has simulated several gas turbine components

using LES and DNS, including a high pressure turbine blade [14], low pressure turbine

blade [15], and cold flow combustor [16].

While NEK5000 has the necessary attributes to run high-fidelity industrial CFD

simulations on massively-parallel machines, there is one attribute remaining that

17

specifically pertains to the aerospace industry: compressiblity. Currently, NEK5000

is only set up to handle incompressible (constant property) or weakly compressible

(low-Mach) codes. There are some areas in the aerospace industry where this is

sufficient, but many flows are transonic or supersonic. In these areas, the standard

NEK5000 algorithm struggles on two ends. First, using an incompressible or low-

Mach formulation will produce incorrect physics when applied to a transonic flow;

for one thing, pressure has a different meaning in an incompressible code and a

compressible code. Also, extending NEK5000 to compressible flows is not as simple

as changing the equations that are solved. Compressible flows also behave differently

than incompressible flows numerically, and so the algorithm must be changed in order

to handle compressible flows properly; otherwise, the simulation may be unstable.

Therefore, in order to increase NEK5000’s utility in the aerospace industry, it must

be extended to fully compressible flows and its current algorithm must be modified

in order to do so.

1.5 Statement of Purpose

Leveraging the proven performance of NEK5000, it is hypothesized that a com-

pressible Navier-Stokes spectral element algorithm can be developed which meets the

three requirements for successful industrial CFD use:

• High accuracy

• Efficient parallelism

• Geometric flexiblity

Such an algorithm will allow for larger, high-fidelity simulations to gain further trac-

tion in the aerospace community.

18

In section 2, after a review of the literature, the details of the new algorithm

are given. In Section 3, the algorithm is validated against several canonical inviscid

and viscous test cases in order to test various aspects of the code. Then the code

is used to simulate film cooling heat transfer, with the results compared to both

experimental data as well as a previous CFD study using a low-Mach incompressible

solver; the details of this simulation are given in Section 4. Finally, in Section 5,

concluding remarks are given.

19

2. LITERATURE REVIEW AND NUMERICAL METHODS

2.1 Literature Review

The most popular method for the solution of compressible flows, especially in

commercial solvers, is the finite volume (FV) method. In a classical finite volume

method, the domain is discretized into cells and the solution is approximated by

piecewise constants, although improvements to the overall scheme have included lin-

ear reconstructions to increase the formal order. Much of the theory into appropri-

ate numerical flux functions has started with the FV method [17]; further reference

into the method and how it can be applied to the Navier-Stokes equations can be

found in [18, 19]. Z̆aloudek used FV coupled with the Advection Upstream Splitting

Method (AUSM) and linear reconstruction with slope limiters to study some simple

Euler flows [20]. The effect of different limiters on solution accuracy was tested on

a simple GAMM channel. Unsurprisingly, the standard FV first order scheme pro-

duced inferior results to higher order reconstructions. However, there was not a large

difference between the different slope limiters. Also, for wall boundary conditions,

using a simple, zeroth order extrapolation for wall pressure gave approximately the

same results as higher order extrapolation.

The standard finite element method (FEM) at first is not a good fit for compress-

ible flows, as it tends to produce spurious oscillations. However, methods have been

developed to stabilize the scheme, such as Streamline-Upwind Petrov Galerkin [21].

Soulaimani uses an edge-based stability (EBS) method that borrows from SUPG as

well as discontinuous Galerkin methods [22]. Tests are performed for both the Eu-

ler equations as well as the Navier-Stokes equations (coupled with the one equation

Spallart-Almaras RANS model). The EBS method showed to be less diffusive than

20

SUPG, but also was more computationally expensive. Martinez uses FEM to com-

pute solutions of the Boussinesq equations and the acoustically-filtered equations at

large Rayleigh numbers [23]. The effort was in large part to study the differences

between the methods for certain flows. Recently, Kirk used the SUPG scheme to

simulate the compressible Navier-Stokes equations with the libMesh finite element

library [24].

Don used spectral methods to solve flow around a cylinder in polar coordi-

nates [25]. A Fourier series was used in the angular direction (due to the periodicity)

and a Chebyshev series was used in the radial direction. Because spectral methods

are sensitive to boundary conditions, care was taken to ensure the boundary con-

ditions were implemented properly through characteristic analysis. Don also used

multi-domain spectral methods in 2003 to study reactive compressible flows in a

scramjet cavity [26]. The penalty method was used as interface conditions to pro-

vide a connection between domains, and filtering was used to stabilize the solution.

Hesthaven also investigates spectral penalty methods, both single and multidomain,

in a series of papers [27, 28, 29]. In the series, the question of proper boundary con-

ditions is addressed, and as a unique contribution, both inviscid and viscous parts

are patched simultaneously at element interfaces and boundaries.

Spectral collocation or spectral differencing formulations offer an interesting com-

promise between spectral element and finite differences. Kopriva used a staggered

grid Chebyshev multidomain method in [30] for the Euler equations. The key point

is that the flux computations were done on the Gauss quadrature points, not the

Gauss-Lobatto points, which allows one to avoid the computation of multidimen-

sional Riemann solutions. Kopriva also extended the method to non-conforming

elements in [31] to compute solutions to the Navier-Stokes equations. This allowed

the method greater flexibility in terms of local mesh refinement. Liu later formal-

21

ized the method as the spectral difference method [32], and extended it to triangles.

Jameson’s group has contributed much to the method, using it for Large Eddy Sim-

ulation [33], adapting it for discontinuity/shock capturing [34], and studying transi-

tional flows over airfoils [35].

Discontinuous Galerkin finite element methods (DGFEM) and spectral element

methods (DGSEM) relax the continuity requirements on the solution from their more

classical counterparts (FEM and SEM), thus making it more amenable to convection

dominated flows. In fact, some of the first works were on the Euler equations. Bassi

used DGFEM to study a canonical test case of inviscid flow over a cylinder [36]. It is

concluded that isoparametric elements must be used to receive any benefit from using

higher order polynomials; in fact, the solution quality deteriorated as the polynomial

order increased if the simulation was still using first order representations of the

geometry. Bassi also developed one of the first schemes to handle the viscous operator

in the Navier-Stokes equations; the scheme is dubbed the “BR1” scheme [37]. In

it, the Navier-Stokes equations are recast as strictly first order equations. In [38],

improvements are made to the original BR1 scheme, which include shortening the

stencil for the viscous operator and including a mechanism for handling the viscous

flux implicitly using a GMRES iterative scheme, and in [39], the scheme is extended

to solve the RANS equations. Other schemes for handling the viscous operator

have also been developed, including local discontinuous Galerkin (LDG) [40] and

the Baumann-Oden scheme (BO) [41]. Warburton [42] and Kirby [43] extend the

tensor product-based quadrilateral and hexahedral spectral elements to more general

shapes, such as triangle and tetrahedrals, and give examples for Euler and Navier-

Stokes. More information on these types of elements can be found in [40]. Nodal

type DG schemes are discussed in [44] and also in the book by Hesthaven [45]. These

schemes exhibit fairly high efficiency in some areas, but lose the performance gains the

22

tensor-product bases have to offer. Recently, Kopriva discussed the requirements on

the contravariant metrics in order for DGSEM to be constant solution preserving [46],

and Hindenlang showed great performance both in terms of accuracy and parallelism

for their DGSEM code [47].

2.2 Conservation of Mass, Momentum, and Energy

As discussed in Section 1, the most common definition of CFD is the numeri-

cal solution of the Navier-Stokes equations. In index notation, the Navier-Stokes

equations are

∂ρ

∂t
+
∂ (ρuj)

∂xj
= 0,

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
+
∂p

∂xi
=

∂τij
∂xj

, (2.1)

∂ (E)

∂t
+
∂ [uj (E + p)]

∂xj
=

∂ (uiτij)

∂xj
− ∂qj
∂xj

,

which represent conservation of mass, momentum, and energy. The primary, or

conserved, variables are the density ρ, momentum ρui, and total energy E (note

that the momentum and energy variables actually represent momentum and energy

per unit volume). The transport terms are the stress tensor τij and the heat flux qj.

Secondary, or primitive, variables that are derived from the primary variables are

the pressure p and velocity ui.

At this point, no assumptions have been made beyond continuum mechanics.

However, common assumptions are that of a Newtonian fluid and Fourier’s law,

which affect the stress tensor and the heat flux, respectively. The stress tensor for a

23

Newtonian fluid, coupled with Stoke’s approximation, is

τij = 2µSij

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij, (2.2)

where µ is the dynamic viscosity of the fluid. Fourier’s law for heat conduction is

qj = −k ∂T
∂xj

, (2.3)

where k and T are the thermal conductivity and temperature, respectively, of the

fluid. The dynamic viscosity and thermal conductivity are related through the

Prandtl number as

Pr =
µcp
k
. (2.4)

The dependence of viscosity on temperature for gas flows is most commonly defined

through Sutherland’s formula [48]:

µ(T) = µref

(
T

Tref

)3/2
Tref + C

T + C
, (2.5)

where the quantities with the underscore “ref” denote reference quantities, and C is

a constant depending on the gas. This work uses a simpler power law approxima-

tion [49],

µ

µref

=

(
T

Tref

)0.76

, (2.6)

which gives reasonable results over the small temperature changes seen in the simu-

lations in Sections 3 and 4.

The final assumption made in this work is that of a calorically perfect case.

Through this assumption, the pressure, density, and temperature are related through

24

the ideal gas law as p = ρRgT , where Rg is the gas constant. Also, the total energy

and pressure are related as E = p/(γ − 1) + ρuiui/2, where γ = cp/cv is the ratio

of specific heats, with cp and cv as the constant pressure specific heat and constant

volume specific heat, respectively. In this work, the Prandtl number and the specific

heats are all assumed to be constant, a reasonable assumption for subsonic flows. A

summary of the variables, with their corresponding units in the SI system, are given

in Table 2.1.

Table 2.1: Listing of variables in Navier-Stokes equations.

Conservative Variables
ρ kg/m3 Density
ρui N s/m3 Momentum (per unit volume)
E J/m3 Total energy (per unit volume)
Transport Terms
τij Pa Stress tensor
qj W/m2 Heat flux
Primitive Variables
ui m/s Velocity vector
p Pa Pressure
T K Temperature
Fluid Properties
µ Pa s Dynamic viscosity
k W/(m K) Thermal conductivity
cp J/(kg K) Constant pressure specific heat
cv J/(kg K) Constant volume specific heat
Rg J/(kg K) Gas constant (cp − cv)

While the Navier-Stokes equations as given in Equation 2.1 are analytically suf-

ficient to work with, potential problems arise when working with them numerically

using physical units. This is because flow variables can have vastly different scales

associated with them, leading to errors stemming from numerical precision. For ex-

25

ample, standard atmospheric pressure is on the order of 100,000 Pa, while the density

is near 1 kg/m3. In order to combat this, the equations are non-dimensionalized.

Choosing a reference velocity (Uref), density (ρref), length scale (Lref) and tempera-

ture (Tref), reference quantities are derived for all other flow variables:

tref = Lref/Uref pref = ρrefU
2
ref aref =

√
γRgTref Eref = ρrefU

2
ref

µref = µ(Tref) τref = µrefUref/Lref qref = µrefcpTref/(LrefPr)

Here, aref is the speed of sound at the reference temperature, and tref is the

reference time interval.

Inserting these reference variables into the Navier-Stokes equations and perform-

ing some manipulations, we arrive at

∂ρ∗

∂t∗
+
∂
(
ρ∗u∗j

)
∂x∗j

= 0,

∂ (ρ∗u∗i)

∂t∗
+
∂
(
ρ∗u∗iu

∗
j

)
∂x∗j

+
∂p∗

∂x∗i
=

1

Re

∂τ ∗ij
∂x∗j

,

∂E∗

∂t∗
+
∂
[
u∗j (E∗ + p∗)

]
∂x∗j

=
1

Re

∂
(
u∗i τ

∗
ij

)
∂x∗j

− 1

RePr(γ − 1)Ma2

∂q∗j
∂x∗j

, (2.7)

τ ∗ij = µ∗
(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i
− 2

3

∂u∗k
∂x∗k

)
,

q∗j = −µ∗∂T
∗

∂x∗j
,

where the * quantities denote variables normalized by their corresponding reference

quantity. From here on, the * indicators will be dropped, and thus any flow variables

will be assumed to refer to non-dimensional quantities unless stated otherwise.

The non-dimensional equations give rise to two new non-dimensional param-

eters that have yet to be discussed. The reference Mach number is defined as

Ma = Uref/aref . The reference Mach number is an indicator of the compressib-

lity of the flow. The higher the chosen reference Mach number is, the further the

26

flow will deviate from an incompressible (constant property) flow. The Reynolds

number, defined as Re = ρrefUrefLref/µref , is an important non-dimensional flow pa-

rameter in fluid mechanics. It is a ratio of the inertial forces to viscous forces in

the flow. In general, turbulent flow fields are described by a high Reynolds number,

although what qualifies as “high” is dependent on the particular flow problem. The

Reynolds number is also an indicator of how difficult the problem is to solve numer-

ically in terms of required resolution. For example, for the DNS study of isotropic

turbulence in a periodic box using a Fourier spectral method (currently the most

accurate method available), the number of operations required scales as Re3. While

the actual operation count will change depending on the flow in question (and the

method used), the takeaway is that the required resolution increases rapidly with

the Reynolds number.

2.3 Numerical Methodology

The algorithm employed in the current work is the tensor product-based DGSEM.

The method has shown great parallelism and accuracy [47] and robustness to obtain

accurate solutions in realistic geometries [37, 38].

2.3.1 Discontinuous Galerkin Spectral Element Method: Fundamentals

For the purposes of clarity, a generic scalar conservation law is used as a means

to introduce the discontinuous Galerkin spectral element method,

∂u

∂t
+∇ · f = 0, (2.8)

where the flux f = f(u) in general is non-linear in u. Similar to the standard Galerkin

approach, Equation 2.8 is multiplied by a test function v from a suitable test space

27

and integrated over the domain, resulting in

∫
Ω

(
∂u

∂t
+∇ · f

)
vdx = 0. (2.9)

Since the test function v is arbitrary, any solution u to Equation 2.9 will satisfy

Equation 2.8.

Thus far, the formulation has represented a standard Galerkin formulation, where

the function space is C0 continuous. However, conservation laws tend to have solu-

tions that are at best piecewise smooth, and thus may have discontinuities [40]. The

function space typically used for standard Galerkin methods (such as the classical

spectral element method) may not be the best choice for this particular problem. In-

stead, we choose a space of piecewise continuous functions for both our approximate

solution and our test function.

To seek an approximate solution to Equation 2.9, the domain Ω is broken down

into a tesselation of simpler domains, known as elements. For each element, the

solution is approximated by a trial function uh from a finite dimensional version of

the function space described above. Choosing vh from the same space and considering

a single element, we have

∫
Ωeh

(
∂ueh
∂t

+∇ · f(ueh)
)
vehdx = 0. (2.10)

We now employ the divergence theorem to obtain

∫
Ωeh

∂ueh
∂t

vehdx−
∫

Ωeh

∇veh · f(ueh)dx +

∮
∂Ωeh

f(ueh) · nvehds = 0, (2.11)

where n is the outward pointing normal along the surface of element e. However, the

formulation as-is employs only information local to the element, and thus currently

28

there is no mechanism for information to propagate between elements. The necessary

coupling is accomplished through the surface flux term. Consider one of the faces of

element e and the neighboring element e + 1 that shares that face with element e.

As the approximation spaces are only piecewise continuous, in general the solutions

contributed to the shared face by element e and e + 1 will not be equal. Thus, the

surface flux term f ·n is replaced by a numerical flux function f̃(u−, u+,n−) where the

minus and plus superscripts refer to the contributions made by element e and e+ 1,

respectively. There are many choices for the numerical flux function, although a good

choice would be one that considers proper flow of information from upwinding [40].

Appropriate flux functions for the Navier-Stokes equations are detailed later; for

now, it is assumed that a proper flux function has been chosen.

2.3.2 Lagrange Interpolating Polynomials and Semi-Discrete Operators

As of yet, the nature of the trial function and test function has not been specified.

To keep the discussion concise, the h subscript will be dropped from the following

discussion; it is now assumed that u refers to the approximate solutions we are

seeking. In spectral element methods, both ue and ve are composed of a linear

combination of basis functions from our test space on element e as

ue(x) =
N∑
n=0

ûenψ
e
n(x)

ve(x) =
N∑
n=0

v̂enψ
e
n(x), (2.12)

where ûen are the coefficients to be determined. There are numerous choices for ψen.

One choice is a set of orthogonal polynomials, such as the Legendre or Chebyshev

polynomials, resulting in a modal scheme. If, instead, Lagrange interpolation poly-

nomials are chosen, the scheme is nodal. While the choice of schemes will affect the

29

algorithm in some areas, ultimately the choice is not too important as one can easily

convert back and forth using appropriate transforms. In this work, the nodal scheme

is chosen due to some inherent advantages discussed later.

The Lagrange polynomials in one dimension are

`n(x) =
Nx∏

i=0;i 6=n

x− xi
xn − xi

, (2.13)

where xn are the interpolation points. These polynomials have the property that

`n(xi) = δni. Thus, when combined with the definition of our trial and test func-

tion (Equation 2.12), we see that our coefficients are in fact just the value of the

approximation at the node point (i.e., ûn = u(xn)); hence the name “nodal.” For

clarity, then, we will represent ûn as simply un for the rest of the discussion. In order

to completely define the Lagrange polynomials in Equation 2.13, the interpolation

points must be chosen. One choice is to use evenly spaced points, as is done in finite

elements. However, as the polynomial order increases, the quality of the interpo-

lation decreases significantly, which has historically kept finite element methods at

polynomial orders less than three or four. A good choice of points that minimizes

this interpolation error are the Gauss Lobatto Legendre (GLL) points, which are

defined on x ∈ [−1, 1] as the zeros of

(1− x2)L′N(x) = 0, (2.14)

where L′N(x) is the derivative of the Nth order Legendre polynomial [50, 45]. These

points keep the interpolation error to a minimum even for high order (> 12) interpo-

lations. Figure 2.1 shows the increased quality of the interpolation using GLL points

versus evenly spaced points.

30

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

(a) Evenly-spaced Points

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

(b) Gauss Lobatto Legendre

Figure 2.1: Comparison of evenly-spaced and GLL points for interpolation. Evenly-
spaced points a are typically used in finite elements, while GLL points b are seen in
spectral elements. The use of evenly-spaced points for high order polynomials can
introduce interpolation errors.

They are also beneficial in applying boundary conditions and in computing the

numerical surfaces fluxes, as they include the end points (removing the need for extra

interpolations). Higher dimensional variations typically use a tensor product of the

1D points, although the exact formulation differs for element types. This work uses a

tensor product of the one dimensional Lagrange polynomials for higher dimensional

formulations, which means that a tensor product of GLL grid points are also used to

formulate the higher dimensional internal “grids.” While the reasons for this choice

are shown later, for now, the discussion will be kept general assuming a general family

of Lagrange interpolants ψj with the exact nature of the corresponding interpolation

points left undetermined.

With the form of the trial and test functions decided, we now look at the com-

31

ponents of Equation 2.11 in further detail. Examining the first component, we have

∫
Ωe

∂ue

∂t
vedx =

∫
Ωe

∂

∂t

(
N∑
j

uejψj(x)

)(
N∑
i

veiψi(x)

)
dx

=
N∑
i

vei

N∑
j

∂uej
∂t

∫
Ωe
ψi(x)ψj(x)dx

= veTM euet , (2.15)

where the underline denotes an N + 1 vector of coefficients, the subscript t refers

to the time derivative, and M e
ij =

∫
Ωe
ψi(x)ψj(x)dx is the elemental mass matrix.

Inserting our trial and test functions into the second volume integral,

∫
Ωe
∇ve · f(ue)dx =

∫
Ωe
∇
(

N∑
i

veiψi(x)

)
·
(

N∑
j

f ejψj(x)

)
dx

=
N∑
i

vei

N∑
j

f ej ·
∫

Ωe

∇ψi(x)ψj(x)dx

= veTCe · f e, (2.16)

where Ce = [Ce
x, C

e
y , C

e
z]
T is the elemental weak divergence operator. The notation

Ce · f e is meant to imply a dot product of matrix vector operations. For example, in

2D, this is

Ce · f e = Ce
xf

e
x + Ce

yf
e
y . (2.17)

For now, it is simply assumed that each component of the flux vector can also be

represented as an Nth order polynomial; the details of this computation are left for

32

later discussion. Finally, examining the surface flux term, we have

∮
∂Ωe

f̃(u−, u+,n−)veds =

∮
∂Ωe

(
N∑
j

f̃jψj(x)

)(
N∑
i

viψi(x)

)
ds

= veTM e
s f̃

e,

with M e
s as the elemental surface mass matrix. Again, the details of how the coeffi-

cients f̃ ej are computed are left for later. However, because we are using the Lagrange

interpolants through GLL points, it should be noted that M e
s is quite sparse. Only

nodes that lie on the faces of the element will contribute to the surface integral due

the properties of Lagrange interpolation.

Putting it all together, the semi-discrete form of Equation 2.11 is

veT
(
M euet −Ce · f e +M e

s f̃
e
)

= 0. (2.18)

As the test function is arbitrary, Equation 2.18 represents N + 1 equations for N + 1

unknowns (on each element). From here, the equations could be advanced in time

using an appropriate time-stepping algorithm. However, we have yet to specify how

the individual operators are computed.

2.3.3 Transformation Metrics and Quadrature Rules

In theory, the operators M e, Ce, and M e
s could be computed analytically for each

element as a pre-processing step, as the Lagrange polynomials are known functions.

However, since the primary interest in this work is to compute flows in complex

geometries, it is highly likely that the elements used will be deformed (i.e., not reg-

ular), and computing analytical integrals and derivatives of high order polynomials

in complex elements is non-trivial. As such, the computation of the operators is

greatly simplified if the physical element is transformed to a simpler reference ele-

33

ment. As the method is already employing the GLL points for the interpolation, a

good choice for a reference element in one dimension is the line segment ξ ∈ [−1, 1].

Higher dimensional elements also have corresponding master elements; for example,

the corresponding master element for quadrilaterals is the square ξ ∈ [−1, 1]2. It is

assumed from this point that all matrix operators and associated quantities refer to

a single element; as such, the superscript e is dropped in the further discussion for

clarity.

To make the transformation, we first assume a mapping ξ → x from the master

element to the physical element, so that we have x = x(ξ). This can be obtained

numerically using any number of methods, such as transfinite interpolation [51] or

the Gordon Hall method [50]. From this mapping, we can obtain what are termed as

the covariant metrics [51], H = ∂x
∂ξ

. However, it is desired to use derivative operators

than act on the master element and then transform the results back to the physical

element; as such, we will need the contravariant metrics, G = ∂ξ
∂x

. From the chain

rule, we have (in 3D)


∂
∂x

∂
∂y

∂
∂z

 =


∂ξ1
∂x

∂ξ2
∂x

∂ξ3
∂x

∂ξ1
∂y

∂ξ2
∂y

∂ξ3
∂y

∂ξ1
∂z

∂ξ2
∂z

∂ξ3
∂z




∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

 (2.19)

and 
∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

 =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3




∂
∂x

∂
∂y

∂
∂z

 . (2.20)

Comparing Equations 2.19 and 2.20 reveals that G = H−1.

Now that we have a means for computing the divergence on the master element

34

and transforming the result back to physical space, we also need a similar manner to

compute the integrals on the master element. To begin, we first need a manner to

transform from dx to dξ. This can be done through dx = Jdξ, where J = |H|. We

can define a similar “surface” Jacobian Js for the surface integrals. The final piece is

to prescribe how the integral on the master element is carried out. Using numerical

quadrature rules is an efficient and accurate manner to compute an integral. With

numerical quadrature, one approximates a generic integral on the master element as

∫
y(ξ)dξ ≈

Nq∑
k=0

y(ξk)ωk, (2.21)

where ξk are the quadrature points with corresponding weights ωk. There are many

choices for a quadrature rule. In fact, the GLL points described earlier come from

the GLL quadrature rule, and thus have a corresponding set of weights. The GLL

quadrature rule is exact for polynomials y(ξ) up to 2Nq − 1, where Nq is the order

of the quadrature set. There is also the Gauss-Legendre (GL) rule. The points are

similar to the GLL rule, except that no points are forced to be the end points. As

such, the rule is more accurate, being exact up to 2Nq + 1. For this work, we will

only focus on the GLL and GL rules.

After a quadrature rule and order is chosen, we can now return to our core

operators. The mass matrix becomes

Mij =

∫
Ω

ψi(x(ξ))ψj(x(ξ))dx

=

∫
Ω̂

ψi(ξ)ψj(ξ)J(ξ)dξ

≈
Nq∑
k

ψi(ξk)ψj(ξk)J(ξk)ωk.

35

The above definition of the elemental mass matrix is true for any quadrature rule

and order we choose, and in general is full. However, if we match the quadrature

rule to our interpolation grid (with Nq = N), we get

Mij ≈
N∑
k

δikδjkJ(ξk)ωk = diag(Jkωk), (2.22)

again due to the property ψi(ξk) = δik. Here, Jk = J(ξk). This choice results in

the mass matrix being diagonal, and thus the computation of M−1 (needed once we

discretize the equations in time) is trivial. It should be noted, however, that this

particular choice in general is not exact, as the polynomial being integrated is at

least of order 2N (it is higher for deformed elements [45]), while the GLL quadrature

being used is only exact for polynomials up to 2N − 1. Thus, we are incurring an

error through this choice, although this error should be very small (and will vanish

exponentially for a given problem as the polynomial order N is increased).

Before the operator C is addressed, some notation is given to aid in the following

discussion. First, the Lagrange derivative operator is given as,

Dξa
ij =

∂ψj
∂ξa

∣∣∣∣
ξ=ξi

. (2.23)

The interpretation of this operator is “the ξa derivative of the jth Lagrange interpolant

evaluated at the point ξi”. As we are going to be performing Gaussian integrations,

it is efficient to choose ξi as the quadrature points from our Gaussian rule. We also

define a discrete version of our contravariant metric matrix G, named G and defined

as

Gab
k =

∂ξb
∂xa

∣∣∣∣
ξ=ξk

ωkJk, (2.24)

where wk are the weights of our chosen quadrature rule. The operator Gab represents

36

d2 diagonal matrices, where d is the dimension of the problem. With these two

operators in mind, we now analyze C. To keep things concise, we concentrate first

on Cx. Using numerical quadrature for the integral, we get

Cx,ij =

∫
Ω

∂ψi(x(ξ))

∂x
ψj(x(ξ))dx

=

∫
Ω̂

∂ψi(ξ)

∂x
ψj(ξ)J(ξ)dξ

≈
Nq∑
k

(
d∑
b=1

∂ψi
∂ξb

∣∣∣∣
ξ=ξk

∂ξb
∂x

∣∣∣∣
ξ=ξk

)
ψj(ξk)J(ξ)ωk

≈
Nq∑
k

(
d∑
b=1

Dξb,T
ik Gxb

k

)
ψj(ξk)ωk (2.25)

If we again assume that we are matching the quadrature rule exactly to the solution

points, this reduces further to

Cx,ij ≈
Nq∑
k

(
d∑
b=1

Dξb,T
ik Gxb

k

)
δijωk =

(
d∑
b=1

Dξb,TGxb

)
diag(ωk). (2.26)

The form for Cy and Cz is similar. Expanding Cxfx+Cyfy +Czfz and collecting like

terms, the operation C · f can be written as

(
Dξ1,T Dξ2,T Dξ3,T

)
Gxξ1 Gyξ1 Gzξ1

Gxξ2 Gyξ2 Gzξ2

Gxξ3 Gyξ3 Gzξ3




fx

fy

fz

 . (2.27)

The computation of Ms follows along the same lines as M . A quadrature rule is

chosen for the face (1D for 2D simulations, 2D for 3D simulations). If the chosen

quadrature rule is chosen to match the nodes on the face, efficiency gains similar to

those found in M are obtained. However, in this case, not only will Ms be diagonal,

37

it will only be non-zero when a node is on a face.

2.3.4 A Word on Aliasing

A case has been made for the efficiency gains by matching the order and type of

the quadrature rule to the interpolation points used for the Lagrange polynomials

(GLL in this case). Although this introduced an error for the elemental mass matrix,

the error should be small. This error is known as aliasing, and is a well known problem

from spectral methods [52]. The basic idea is that, by integrating a polynomial on

a quadrature rule insufficient to be exact, information about the polynomial is lost.

If the aliasing error is large enough, this information can, in some cases, energize

the high frequency modes in the solutions, and eventually can cause the solution to

become unstable.

Nothing has been specified about the flux function f(u) in Equation 2.8 thus

far. If it is linear in u, then most likely a scheme using inexact quadrature will be

sufficient. However, the same cannot be assumed if the flux is non-linear. Consider,

for example, the Burger’s flux, f(u) = Vu2/2, where V can be taken as the vector

of ones for the purposes of discussion. To simplify matters, we will assume that

the element we are computing the weak divergence operator on is an undeformed

element, such that the contravariant metrics are constants. Take the case now where

our approximation is marginally resolved such that all N + 1 modes of u are non-

zero. To compute the flux coefficients for the matching GLL quadrature scheme

discussed previously, we would simply square the coefficients uj and divide by two.

Then, the weak divergence operator would be applied as discussed before. In this

case, we are attemping to integrate a polynomial of order 3N with a quadrature only

exact for 2N − 1; this constitutes a more egregious aliasing error than seen for the

mass matrix. In Hesthaven’s book [45], it is shown how such an error results in a

38

rapid Gibb’s phenomenon near discontinuities and ultimately drives the simulation

unstable. To counteract this, we can choose to use more quadrature points than we

have nodal points (i.e., Nq > N). If we choose Nq = 3/2N , then our GLL rule is

exact for 3N − 1 order polynomials. Although this is not exact for our worst case

scenario, it at least brings the aliasing error to a comparable level with the aliasing

error of the mass matrix. If we instead use a GL rule, then the integral is exact for the

choice Nq = 3/2N in undeformed elements. For either choice, the modification made

to the operator C is the same. To compute the flux on the Nq quadrature points,

we first interpolate the solution to the Nq points by the matrix-vector operation

Bu, where the operator Bij = ψj(ξi) is a basis matrix that effectively interpolates

the solution from the solution grid points to the quadrature grid points. The flux

is then computed as before, instead using the interpolated solution this time. The

generalized weak divergence operation is

(
Dξ1,T Dξ2,T Dξ3,T

)
Gxξ1 Gyξ1 Gzξ1

Gxξ2 Gyξ2 Gzξ2

Gxξ3 Gyξ3 Gzξ3




Bfx

Bfy

Bfz

 , (2.28)

where the operation Bfx, for instance, is shorthand for fx(Bu). The points where

Dξa and Gab are evaluated are also changed to the new quadrature points (as such,

the matrices Dξa are no longer square). The case where the Nth order GLL points are

chosen is recovered by setting B to the identity matrix. The same problem applies

for the surface flux terms. In this case, the surface nodal values are interpolated to

the higher order quadrature rule on the faces, and then the numerical flux function

is computed. The generalized surface mass matrix operation is

M e
s f̂ = BT

s WsBsf̂ , (2.29)

39

where Bs is the surface basis matrix and Ws = diag(Js,kws,k), k = 0, 1, ..., Nq,s. Sim-

ilarly to the weak divergence operator, the operator Bsf̂ implies f̂(Bsu
−, Bsu

+,n−).

Although compelling evidence is shown in [50, 40, 45] that this act of “dealias-

ing” can help stabilize solutions, even severely under-resolved solutions, the cost for

the interpolations can be quite large. A more cost effective method for marginal

resolution is to apply a weak filter to the higher modes. It is shown in [45] that

this approach can have the same stabilizing effect as true dealiasing, although the

accuracy will take a slight hit because of it.

The filtering approach is used in this work, primarily because of the nature of

equations being solved. The requiredNq to compute exact integrals can be derived for

the Burgers flux above because the flux can naturally be represented as a polynomial.

However, as will be seen later in this section, most of the fluxes in the Navier-Stokes

equations involve a division by density; as such, the Navier-Stokes fluxes are rational

functions, and cannot be represented exactly as a polynomial. Because of this, Nq

can never be chosen large enough to compute the integrals in the DG formulation

exactly (and avoid aliasing errors), meaning that some filtering may be needed even

if dealiasing is performed. The filter employed is the exponential filter seen in [45].

The filter has the form

f(η) = e−αη
β

, (2.30)

where η = (i − Nc)/(N − Nc), i = Nc, Nc + 1, ..., N . The α parameter determines

the strength of the filter, and β determines the shape. The cutoff parameter Nc can

be adjusted to exclude as many lower modes from the filter as possible (although,

as shown, the lowest mode is always left unaffected). While the proper choice of the

filter parameters is part science, part art, the default values chosen for this work for

smooth flows are Nc = 0, α = 0.01, and β = 30. For marginally-resolved turbulent

40

flows, α should be increased (α = 20 effectively wipes out the last mode). For under-

resolved flows, β should also be decreased in order to filter more of the medium to

high modes.

2.3.5 Performance Improvements using Tensor Products

As mentioned previously, the current algorithm uses a tensor product of one

dimensional Lagrange interpolants to formulate approximate solutions for 2D and

3D variables. In order to understand the motivation behind this, we now examine in

further detail the derivative operator shown in Equation 2.23.

In a general nodal formulation, the solution and test function are represented as

shown in Equation 2.12; expanding what is seen there, we have

u(ξ1, ξ2, ξ3) =
N∑
n=0

unψn(ξ1, ξ2, ξ3) (2.31)

For a general formulation, the derivative operators given in Equation 2.23 are full

(N + 1)× (N + 1) matrices, and thus, for example, the matrix vector product Dξ1u

is an (N + 1)2 operation. If we specifically choose a tensor product formulation, the

solution is represented as

u(ξ1, ξ2, ξ3) =

N1∑
i=0

N2∑
j=0

N3∑
k=0

uijk`i(ξ1)`j(ξ2)`k(ξ3) =

N1,N2,N3∑
i,j,k=0

uijk`i(ξ1)`j(ξ2)`k(ξ3).

(2.32)

Because of this specific choice, the derivative in the ξ1 direction is

∂u

∂ξ1

=

N1,N2,N3∑
i,j,k=0

uijk`
′
i(ξ1)`j(ξ2)`k(ξ3). (2.33)

In the context of the integrations seen in the discontinuous Galerkin formulation, we

41

can now make use of an alternative differential operator,

D̂ξ1
ij =

∂`j
∂ξ1

∣∣∣∣
ξ1=ξ1,i

, (2.34)

which is an (N1+1)×(N1+1) matrix (with similar matrices for ξ2 and ξ3). Assuming

that the i index runs fastest, the tensor product version of the operator in (2.23) for

ξ1 is a block diagonal matrix with D̂ on the diagonals. The operational cost for Dξ1u

using the tensor product formulation is (N1 + 1)2(N2 + 1)(N3 + 1). To illustrate the

differences between a general nodal formulation and the tensor product formulation,

assume that N1 = N2 = N3 and N + 1 = (N1 + 1)3. From these assumptions, we see

that the cost of Dξ1u is (N1 + 1)6 for the general nodal formulation and (N1 + 1)4 for

the tensor product formulation. For the high order formulations used in this work,

this represents a significant savings in computational work. As operations such as

Dξ1u occur frequently in the DGSEM formulation, this savings greatly enhances the

serial performance of the algorithm.

2.3.6 Time Advancement

Returning to Equation 2.18 and dropping the test function coefficients, we have

(for a single element)

uet = (M e)−1
(
Ce · f e −M e

s f̂
e
)

= R(ue, t), (2.35)

where R is termed the residual. The final step is to determine how advancement in

time is handled. There are many choices for the time discretization [50], but this

work chooses from the family of low storage explicit Runge-Kutta schemes. This is

mostly due to the large non-linearities in the flux functions seen in the Navier-Stokes

equations (even the viscous terms), making implicit schemes difficult to implement.

42

Specifically, this work uses the 3rd order RK scheme detailed in [51]:

u0 = u(tn)

G0 = R
(
u0, tn

)
u1 = u0 +

1

3
∆tG0

G1 = −5

9
G0 +R

(
u1, tn +

1

3
∆t

)
u2 = u1 +

15

16
∆tG1

G2 = −153

128
G1 +R

(
u2, tn +

3

4
∆t

)
u
(
tn+1

)
= u2 +

8

15
∆tG2 (2.36)

Here, ∆t is the chosen timestep. It should be noted that the only a single vector

u and G need be stored for each element; for example, u0 is overwritten by u1,

which is overwritten by u2. This particular scheme is chosen because it includes

a portion of the imaginary axis in its stability region, allowing it to be useful for

hyperbolic systems such as the Euler equations as well as mixed systems such as the

Navier-Stokes equations [51].

2.4 DGSEM: Euler Equations

If we assume that the viscous forces are neglible compared to inertial forces (i.e.,

Re → ∞), then the terms on the right hand side of Equations 2.7 can be dropped

resulting in the inviscid flow equation, or Euler equations. In vector form, these are

∂Q

∂t
+∇ · F(Q) = 0, (2.37)

43

where Q = [ρ, ρu, E]T is the vector of conservative variables, and F(Q) is the flux

vector, which is constructed using the inviscid terms from Equations 2.7. The Euler

equations are very similar to the example conservation law given in Equation 2.8,

with the exception that we are now dealing with a system of equations. Carefully

following the discretization process seen in the previous section, we arrive at the

semi-discrete form of the Euler equations:

Qe
t = (M e)−1

(
Ce · Fe −M e

s F̃
e
)
, (2.38)

and these equations are advanced in time using the low storage Runge Kutta scheme

given in Equations 2.36. To clarify the formulations above (and in the subsequent

discussion), it should be noted that the bold face font will only be used for vectors

in the Cartesian sense (e.g., a vector with x, y, and z components, such as u). Thus,

although Q is indeed a vector with five components, it will not use a bold face font

in order to keep the notation between the scalar law in Equation 2.8 and a system

such as the Euler equations consistent.

2.4.1 Numerical Fluxes

In general, any choice for a flux function should have the properties

F̃ (Q,Q,n) = F(Q) · n, (2.39)

F̃ (Q−, Q+,n−) = −F̃ (Q+, Q−,n+), (2.40)

with the former ensuring the flux is consistent and the latter ensuring the flux is

conservative. An extremely simple flux function that follows these properties is

F̃ (Q−, Q+,n−) =
1

2
(F− + F+) · n−, (2.41)

44

where F− = F(Q−). This numerical flux is simply the average of the fluxes using the

two states at the element boundary. Unfortunately, while this is the simplest flux to

use, it is not well suited for use in the Euler equations. This is due to the nature

of hyperbolic systems. For example, if we assume a one dimensional flow moving

from left to right at purely supersonic speeds, then the proper flow of information is

also from left to right (upwind). Thus, the appropriate numerical flux at an element

interface in this case should use the state on the left of the interface. For subsonic

flows, the answer is not as simple, but the goal is the same; an appropriate numerical

flux for the Euler equations is one the considers proper flow of information due to

upwinding.

For linear equations, it is relatively simple to identify the correct state (or com-

bination of states) to use. This is because the flux is not a function of the state

variables; this is not true for the non-linear fluxes seen in the Euler equations. The

essential idea behind constructing the flux at an element interface (or physical bound-

ary) is the solution of the Riemann problem. The Riemann problem is a classical

conservation law problem where the initial condition has a discontinuity at a single

point. The computation of the numerical flux at in interface is essentially the same

as solving a Riemann problem. The most accurate solution method is solving the

Riemann problem exactly. However, this approach is unattractive because iteration

is required to compute the solution. As the Riemann problem must be solved at

each grid point on each face, this process would end up being very expensive. An

alternative approach is to seek an approximate solution. The basic idea behind ap-

proximate solvers is to linearize the flux vector around a constant state that depends

on the variables on the left (Q−) and the right (Q+) of the element surface. Further

details on approximate Riemann solvers can be found in [17].

A simple, yet robust approximate Riemann flux is the Lax-Friedrichs flux. This

45

flux is formulated as [45]

F̃LF(Q−, Q+,n−) =
1

2

(
F(Q−) + F(Q+)

)
· n− − |C|

2

(
Q+ −Q−

)
, (2.42)

where C is the maximum eigenvalue of the approximate state flux Jacobian Â =

∂F
∂Q

(Q̂) · n, where Q̂ is a yet to be determined combination of the left and right

states. The general flux Jacobian A = ∂F
∂Q
· n has the eigenvalues u · n + a, u · n− a

and u · n (with the latter having a multiplicity of three). Therefore, the maximum

absolute eigenvalue for positive u · n is the first eigenvalue (the second eigenvalue if

u · n < 0). As a quick approximation, C can be chosen by choosing the maximum

of the eigenvalues of A(Q−) and A(Q+). However, this could lead to the numerical

flux being overly-diffusive. A better choice for Q̂ is the Roe-averaged state. This is

defined as [45]

ρ̂ =
√
ρ−ρ+

û1 =

√
ρ−u−1 +

√
ρ+u+

1√
ρ− +

√
ρ+

û2 =

√
ρ−u−2 +

√
ρ+u+

2√
ρ− +

√
ρ+

(2.43)

û3 =

√
ρ−u−3 +

√
ρ+u+

3√
ρ− +

√
ρ+

Ĥ =

√
ρ−H− +

√
ρ+H+

√
ρ− +

√
ρ+

,

where H = E+p
ρ

is the enthalpy. The velocities (with subscripts 1, 2, and 3) refer to

a rotated coordinate system with x1 aligned with n− and x2 and x3 as the tangential

components. The Roe speed of sound is

â2 = (γ − 1)

(
Ĥ − û · û

2

)
. (2.44)

46

Finally, C = max (û1 + â, û1 − â). While this approach is a bit more computational

intensive, it should reduce the diffusion at the element interfaces.

While the Lax flux is sufficient for the flows studied in this work, a more accurate

choice that is still computationally efficient is from Roe’s approximate Riemann

solver. This flux is given as [17]

F̃Roe(Q
−, Q+,n−) =

1

2

(
F− + F+

)
· n− 1

2

5∑
i=1

α̂i|λ̂i|K̂i, (2.45)

where λ̂i is the ith eigenvalue of the Roe-averaged flux Jacobian Â(Q̂) with cor-

responding right eigenvector K̂i, and α̂i is the corresponding wave strength. The

details of this flux can be found in [17]. Other choices for the numerical flux are

possible, such as the Harten-Lax-van Leer (HLL) and Harten-Lax-van Leer Contact

(HLLC) fluxes. However, these approaches are computationally more expensive, and

did not give any noticeable improvements for the test cases shown in Section 3. As

such, the Roe flux is chosen for the purposes of this work.

2.5 DGSEM: Navier-Stokes

The Navier-Stokes equations in vector form are

∂Q

∂t
+∇ · F(Q) = ∇ · Fv (Q,∇Q) , (2.46)

with Fv as the viscous flux vector. The subsequent semi-discrete DGSEM form is

Qe
t = (M e)−1

(
Ce ·

(
Fe − Fe

v

)
−M e

s

(
F̂ e − F̂ e

v

))
, (2.47)

with Fe
v = Fv(Q

e,∇Qe) and F̃ e
v = F̃v

(
Q−,∇Q−, Q+,∇Q+,n−

)
as the viscous nu-

merical flux. The proper formulation for F̃v is not immediately obvious; we use the

47

heat equation to help formulate an appropriate numerical flux for diffusion operators.

The heat equation is

∂u

∂t
= ∇ · q, (2.48)

where q = k∇u is the heat flux vector. The first attempt at solving this equation in

a discontinuous Galerkin framework is to use q in a manner similar to how f was used

in the scalar conservation law (Equation 2.8). The resulting semi-discrete scheme is

uet = − (M e)−1 (Ce · qe +M e
s q̃

e
)
, (2.49)

with q̃e(u−, u+,n−) = 1
2

(q(u−) + q(u+)) as the numerical flux (similar to average

numerical flux in Equation 2.41). Unfortunately, this scheme does not perform as

desired; at low polynomial orders N , the scheme does not converge by increasing

the number of elements used, and the scheme is unstable at high N [45]. Thus, an

alternative approach is needed.

Equation 2.48 is first split into a first order system of equations as

∂u

∂t
= ∇ · (kS) (2.50)

S = ∇u, (2.51)

with S denoted as auxiliary variables. Multiplying Equation 2.50 by the test function

v and Equations 2.51 by the vector valued test function φ and applying the divergence

theorem where appropriate, the DG formulation is obtained as

∫
Ωe

∂u

∂t
vdx = −

∫
Ωe
∇v · qdx +

∮
∂Ωe

q̃vds, (2.52)∫
Ωe

S · φdx = −
∫

Ωe
u∇ · φdx +

∮
∂Ωe

ũφ · nds, (2.53)

48

with q = kS. The new numerical fluxes are

q̃(S−,S+,n−) =
1

2

(
q(S−) + q(S+)

)
· n−, (2.54)

ũ(u−, u+) =
1

2

(
u− + u+

)
. (2.55)

A mathematically equivalent formulation for Equation 2.53 is obtained by integrating

by parts again:

∫
Ωe

S · φdx =

∫
Ωe
∇u · φdx +

∮
∂Ωe

[[u]]φ · nds, (2.56)

with [[u]] = (u+ − u−)/2 the jump in the solution variable.

The semi-discrete form for Equations 2.52 and 2.53 or 2.56 are then obtained

by inserting approximations for u and S. This formulation is known as the BR1

scheme [37]. Other types of schemes are possible, but for the simulations done in

this work, the BR1 scheme gives accurate and stable results.

Applying the BR1 scheme to the Navier-Stokes equation, we get

Qe
t = (M e)−1

(
Ce ·

(
Fe − Fe

v

)
−M e

s

(
F̂ e − F̂ e

v

))
, (2.57)

Se = (M e)−1
(
DeQe +M e

s [[Q]]
)
, (2.58)

with Fe
v = Fv

(
Qe,Se

)
and

F̂ e
v = F̂v(Q

−,S−, Q+,S+,n+) =
1

2

(
F−v + F+

v

)
· n−. (2.59)

It should be noted that while the viscous flux vector originally involved the prim-

itive variables (velocity and temperature), they must be computed numerically using

the conservative variables Q as well as S = ∇Q. For example, the gradient of the

49

velocity in the x direction, u, is computed as

∇u =
1

ρ

(
∇m− m

ρ
∇ρ
)
, (2.60)

where m = ρu. In the above formulation, the S equivalents of ∇m and ∇ρ are used;

it is not sufficient to simply use the gradient of m and ρ, as this would not take into

account the discontinuous nature of the solution at element boundaries.

2.6 Boundary Conditions

In the DG framework, boundary conditions are weakly imposed through the use

of the numerical fluxes on the boundary. In general, at a boundary, the numerical

fluxes become

F̃ = F̃ (Q−, QBC,n−), (2.61)

F̃v = F̃v(Q
−,S−, QBC,SBC,n−), (2.62)

[[Q]] = QBC −Q−. (2.63)

The exact form of QBC and SBC depends on the type of boundary condition being

specified.

2.6.1 Inviscid Boundary Conditions

The inviscid boundary conditions are applied through the inviscid numerical flux,

F̃ . As such, they are applicable to both the Euler equations and the Navier-Stokes

equation.

One of the most important boundary conditions is a wall. The only condition that

can be stipulated at the wall is no penetration; i.e., u · n = 0. This is accomplished

numerically by copying the interior density and total energy to the boundary state

50

vector, and reflecting the momentum vector. That is, we set QBC to

QBC =


ρ−

(ρu)− − 2((ρu)− · n−)n−

E−

 (2.64)

Inlets and outlets can be set in multiple ways. The simplest inlet/outlet boundary

condition is the far field boundary condition. This can be applied if the full state

of the boundary is known. This is typically applied in external flow problems if the

external boundaries are placed far enough away from the object being studied. The

boundary state is simply set using the external flow variables. The advantage of

this boundary condition is that the question of whether a particular point on the

boundary is an inlet or outlet does not need to be settled a priori ; the Riemann

solver will compute the flux correctly either way.

If all variables are not known prior to the simulation (as is common for internal

flows), then other approaches can be taken using the variables that are known. A

common method for inlets is to specify the total pressure, total temperature, and

flow direction [53]. The total pressure and temperature of a flow (also known as

the stagnation pressure and temperature) is the pressure and temperature of the

flow if it is brought isentropically to rest; that is, in the absence of viscous forces or

shocks. Using this these quantities, and assuming that the flow across the boundary

is adiabatic and isentropic, the appropriate boundary state can be set. First, the

total enthalpy, as well as the outgoing Riemann invariant [19], is computed using the

51

internal variables as

Ht =
p−

ρ−

(
γ

γ − 1

)
+

1

2
u− · u− (2.65)

R+ = u− · n +
2a−

γ − 1
(2.66)

From the assumption of an adiabatic flow, the total enthalpy is conserved across the

boundary [53], giving

Ht =
aBC, 2

γ − 1
+

1

2

(
uBC · n

)2
. (2.67)

Also, by definition, the outgoing Riemann invariant gives

R+ = uBC · n +
2aBC

γ − 1
. (2.68)

Combining Equations 2.68 and 2.67 results in a quadratic equation for the boundary

speed of sound (not shown here for brevity). The normal velocity at the boundary is

computed using Equation 2.68, and then the boundary Mach number follows. The

Mach number is used to compute the boundary temperature and pressure using the

specified stagnation temperature and pressure. Finally, the boundary velocity is

rotated using the specified flow direction. Further details can be found in [53].

An outlet boundary condition commonly used for internal flow problems is the

specifiction of a back pressure. The density and velocity at the outlet are set as [53]

ρBC =
pbγMa2

T−
,

uBC = u−,

where pb is the back pressure being set. From here, the conservative variables at the

boundary can be constructed.

52

2.6.2 Viscous Boundary Conditions

As seen in Equation 2.62, the specification of boundary conditions through the

viscous flux can potentially have two parts; a Dirichlet condition through QBC, and

a Neumann condition through SBC. For inlets and outlets, SBC is simply set to S−,

and the numerical flux is computed according to Equation 2.62.

There are two types of wall boundary conditions employed in this work: an

isothermal wall and an adiabatic wall. For both walls, a no slip condition is applied

(uBC = 0). For an isothermal wall, the temperature is also set as TBC = Twall.

The pressure at the wall is set equal to the internal pressure, and the density at

the wall is computed according to the ideal gas law. The boundary values for the

auxiliary variables are set to the values of the internal state. For the adiabatic wall,

the pressure and temperature (and thus, density) are copied from the internal state.

The auxiliary variables for density and momentum are set to the interior values,

and the auxiliary variable for energy is modified such that ∇T · n = 0. For both of

these cases, the numerical flux is computed directly from the specification of QBC

and SBC as opposed to averaging with the internal viscous flux (as suggested by

Equation 2.62).

The symmetry condition is another wall-type boundary condition, and it behaves

in a similar fashion as a wall in the Euler equations. Like the inviscid wall, the

component of the velocity normal to the boundary is set to zero; the rest of the

boundary state is copied from the internal state. In addition to specifying zero heat

flux (as in an adiabatic wall), the shear stress is also set to zero. This can be done

numerically in two steps (using Einstein index notation):

• Compute τw,i = τijnj

• Set τw,it1,i = 0 and τw,it2,i = 0, where t1 and t2 are the two tangential vectors

53

at the wall.

As in the wall boundary conditions specified above, the numerical flux is computed

using the specified boundary values for Q and S.

In all cases, the jump vector [[Q]] is computed as in Equation 2.63.

2.7 Implementation Details

As mentioned in the introduction, the algorithm in question is implemented using

NEK5000 as a framework. This allows us to focus only on the implementation of the

method itself, leveraging the existing NEK5000 pre- and post-processing infrastruc-

ture, as well as NEK5000’s excellent communication library.

A current limitation of the code is that the polynomial order must be the same

in the three master element coordinate directions; that is, N1 = N2 = N3 (except

for 2D simulations, where N3 is set to zero). The same polynomial order must also

used for all elements; the algorithm is currently not set up for variable polynomial

orders. These two limitations greatly simplify the coding of the algorithm, and also

help guarantee that the load balancing on each processor is optimal. However, as the

discontinuous Galerkin method is particular well suited for non-conformal meshes,

this is an obvious improvement in the future development of the code. From hereon,

the polynomial order N will be taken to mean the polynomial order in each direction.

In the standard Galerkin formulation (which NEK5000 uses in normal opera-

tion), a solution that is continuous throughout the domain is sought. Thus, while

the domain is still discretized into individual elements in the spectral element for-

mulation, the problem is still ultimately a strongly global problem. As such, the

discrete representation of Equation 2.9 is

Mgu+ Cg · f = 0, (2.69)

54

where Mg and Cg are global versions of the discrete mass matrix and advection

operators discussed previously. In order to avoid explicit formation of the global

system, the idea of a gather-scatter operation is exploited.

To simplify the following discussion, we will consider the one-dimensional form of

the conservation law. Consider a solution point uj (in the global sense) is shared by

elements e and e+1. This solution data (which by definition is the same for elements

e and e+1) is stored locally for each element as ueN and ue+1
0 . In order to compute, for

example, the global matrix vector product Mgu, one first computes locally he = M eue

and he+1 = M e+1ue+1. To form the global product at the global solution point j, we

simply sum the contributions heN and he+1
0 together (gather), and then the resulting

sum is stored back in the local representations (scatter). In summary, the gather

operation forms the global representation from the local operations, and the scatter

operation ensures that the local representations have the same data.

As this is essentially the only communication operation in a Galerkin spectral

element formulation, it is vital that the gather-scatter operation be efficient in order

for the code to perform well in parallel. As such, a focus of the NEK5000 devel-

opment has been to optimize this portion of the code, leading to unprecedented

parallel performance on massively-parallel machines. In the discontinuous Galerkin

formulation, only local problems are solved which are weakly tied together through

numerical fluxes; as such, the gather-scatter operation does not play a direct role.

Instead, information needs to be swapped between neighboring elements. However,

rather than rewrite NEK5000’s communication library, the gather-scatter operation

is manipulated mathematically allowing the performance of the existing communi-

cation library to be leveraged.

A simple example of this is in the inviscid flux computations. For these numerical

fluxes, assuming the same 1D simulation as above, element e needs the data at ue+1
0

55

and element e+ 1 needs ueN . This swap is performed in parallel as

• Element e copies ueN to a temporary variable he, and element e+ 1 copies ue+1
0

to he+1.

• Gather-scatter is performed on h, giving the result he = he+1 = ueN + ue+1
0 .

• Element e extracts ue+1
0 by subtracting ueN from he, and element e similarly

extracts ueN .

While some extra operations are involved than a simple swap, they are miniscule

compared to the scheme as a whole. Finally, the flux is computed locally for each

element using the newly gathered neighbor data, relying on the conservation property

of the chosen numerical flux in order to ensure that the flux contributions are in fact

equal and opposite. This simple leveraging of the existing NEK5000 communication

framework ensures that the current algorithm will also see the same excellent parallel

performance.

56

3. VALIDATION TESTS

The current algorithm is now validated against a variety of test flows, using

both the Euler equations and the Navier-Stokes equations. The tests for the Eu-

ler equations are subsonic flow in a channel with a bump, over a cylinder, and in

converging-diverging nozzle. The test cases for the Navier-Stokes equations include

a validation case with a manufactured solution, subsonic, transonic, and supersonic

flow over a viscous cylinder, weakly turbulent flow over a sphere, and turbulent flow

in a channel.

3.1 Euler Cases

Although the ultimate purpose of this code is the simulation of turbulent flows,

the Euler equations are an important test in the development of the code. In high

Reynolds number flows, the most important terms are the inviscid terms; simulating

the Euler equations allows these terms to be tested in isolation, ensuring they are

performing as expected. Additionally, high order methods are more prone to insta-

bilities than low order methods due to the lack of numerical dissipation. Simulating

the Euler equations, with their inherent lack of diffusion, is a strong test of the sta-

bility of the method. If the method can be proven stable for the Euler equations,

then it will most likely be stable for viscous simulations as well.

3.1.1 Subsonic Flow in Channel with Bump

The flow in question is a subsonic (Ma = 0.3) flow in a channel with a semicircular

bump obstruction. This particular case is chosen to test the convergence properties

of the algorithm. The flow is isentropic; thus, the accuracy of the algorithm for this

case can be judged by tracking any changes in entropy. As the problem is refined,

57

any deviations from the initial entropy value should vanish.

The geometry (along with a sample mesh) is shown in Figure 3.1. The limits of

the domain are x ∈ [−3, 3] and y ∈ [0, 2]. The semi-circular bump located at x = 0

has a radius of 0.5. The domain is discretized with an unstructured mesh consisting

of 14 elements. The polynomial order is varied between N = 3 and N = 13 in

increments of two. The left and right boundaries of the domain are set as far field

boundaries, with the specification [ρBC, uBC, vBC, TBC] = [1, 1, 0, 1]. The top and

bottom boundaries are set as inviscid slip walls. The flow is initialized using the far

field values, and solution is advanced until a steady state is reached.

Figure 3.2 shows contours of Mach number for the N = 7 case. The plot shows

the relatively large acceleration seen at the top of the bump. The results compare

well qualitatively with those seen in [54]. As there are no shocks present in the flow,

the flow is isentropic. Therefore, any deviations from isentropic error are due to

errors from the discretization. The entropy error is defined as

Serr =
p/pref

(ρ/ρref)
γ − 1, (3.1)

where pref and ρref can be chosen as in the inlet values, for convenience. Figure 3.3

shows the convergence (in the L2 norm) of the error in entropy, exhibiting the expo-

nential convergence property of spectral elements.

3.1.2 Subsonic Flow over a Cylinder

The next test case is 2D inviscid flow over a cylinder, a test case detailed in [55].

The flow variables are similar to the bump case, except that the reference Mach num-

ber is 0.38. While the steady state solution is purely subsonic, the flow experiences

a weak shock near the cylinder surface during the transition period. As such, this is

a good test of the code’s stability properties in the presence of discontinuities.

58

Figure 3.1: Mesh for channel flow with semicircular bump. The mesh consists of
14 elements, which are shown with the thicker lines. The lighter lines represent the
Gauss-Lobatto-Legendre points for polynomial order N = 7.

Figure 3.2: Contours of Mach number for channel with semicircular bump. As the
flow progresses over the bump, the flow accelerates, causing a drop in pressure. For
the chosen flow variables, no shocks are seen; as such, the entropy in the flow should
remain constant everywhere.

59

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

 2 4 6 8 10 12 14

||Serr||L2

N

Figure 3.3: Convergence of L2 norm of entropy error for channel problem. As the
polynomial order is increased, the entropy error approaches zero exponentially fast.

Far field boundaries are set at R/D = 20 using the same conditions seen for the

bump case. The initial conditions are set to the far field boundary conditions, and the

simulation is run until a steady state is reached. Simulations were run on 3 different

meshes (4×16, 8×32, and 16×64) and with polynomial orders ranging from N = 3

to N = 7. The coarse mesh at N = 5 is shown in Figure 3.4 for the window [−2, 2]2.

For each mesh, the elements are spaced evenly in the circumferential direction, and

the elements in the radial direction are grown with a geometric rato of approximately

3.3, 1.8, and 1.3 respectively.

Figure 3.5 shows contours of Mach number at N = 3 for the 8× 32 mesh, which

compares qualitatively well to the results shown by Bassi and coworkers [55]. An

important thermodynamic variable for aerodynamic calculations is the coefficient of

pressure,

Cp =
p− pref

1
2
ρrefU2

ref

, (3.2)

60

Figure 3.4: Coarse mesh for inviscid subsonic cylinder. The mesh uses 16 equally
spaced elements circumferentially and 4 elements radially with a geometric growth
factor of approximately 3.3. The element boundaries (darker lines) are shown along
with the GLL points (N = 5).

where the reference variables are taken as the inlet quantities. To give a quantitative

measure of accuracy, Figure 3.6 shows the coefficient of pressure for the coarse mesh

at N = 7 as compared to the data given in the work by Bassi [55], showing good

agreement with the previous CFD results.

Figure 3.7 shows convergence of the error in entropy for both h-type (increasing

the number of elements) and p-type (increasing the polynomial order) refinement.

The h-type refinement is done on the three meshes at N = 3, while the p-type

refinement is done on the coarsest mesh. As the figure shows, achieving an error on

the order of 10−6 requires approximately 4 times fewer points using p-type refinement

over h-type refinement, and the trend of the two refinements show that the this gap

would be greater if the desired error is lower. This is a practical example of how a

method with a variable order discretization, such as spectral elements, can quickly

61

Figure 3.5: Contours of Mach number of subsonic inviscid flow over cylinder. The
results shown are for medium mesh at N = 3. Contour lines shown are Ma0 + i∆Ma,
with Ma0 = 0 and ∆Ma = 0.038.

achieve convergence for smooth problems.

Due to the start up shock, the polynomial degree could not be increased beyond

N = 7 without significantly increasing the filter strength (which effectively reduces

the accuracy of the scheme back to a lower order). While the goals of this work are

to simulate subsonic and transonic viscous flows, where the inherent dissipation of

the viscous terms would stabilize weak shocks such as the one seen here, more robust

shock-handling schemes will be developed in future work to expand the usefulness of

the code.

3.1.3 Subsonic Flow through Converging-Diverging Nozzle

The final Euler test case is a subsonic converging-diverging nozzle verification

test found on the NPARC Alliance CFD Verification and Validation Archive [56].

Although the case is axisymmetric, it is solved with the current algorithm as a test

62

-2

-1

 0

 1

 2

 3

 4

 5

 6

-0.4 -0.2 0 0.2 0.4

x

−Cp

Bassi1997
Current

Figure 3.6: Coefficient of pressure along cylinder surface. Data from current algo-
rithm taken from coarse mesh at N = 7, which shows good agreement with data
from [55].

for the 3D solver. The profile of the nozzle is given by

A(z) =

 1.75− 0.75 cos((0.2z − 1.0)π), z < 5.0

1.25− 0.25 cos((0.2z − 1.0)π), z > 5.0
, (3.3)

where z is the axial coordinate in inches and A is the cross-sectional area in squared

inches. The mesh for the duct is shown in Figure 3.8.

At the inlet, the total temperature and pressure are specified as Pt = 1 psi and

Tt = 100◦R, with the flow direction given as n = [0, 0, 1]. At the outlet, the back

pressure is specified at pb = 0.89 psi. The initial conditions are set by assuming

an inlet Mach number of 0.2. The flow variables are non-dimensionalized using the

stagnation flow properties (the chosen reference velocity in this case is the speed of

sound at the stagnation properties), and the geometry is non-dimensionalized by the

duct length, Lref = 10 in. The simulation is advanced in time until the solution stops

oscillating and a steady state has been reached.

Figure 3.9 shows the static pressure and Mach number variation along the axial

63

1E-06

1E-05

1E-04

1E-03

1E-02

1E+03 1E+04 1E+05

||Serr||L2

DoF

h-conv
p-conv

Figure 3.7: Convergence (h- and p-type) plot for inviscid subsonic cylinder. The
h-type convergence is shown on a sequence of three successively refined meshes using
a relatively low polynomial order of N = 3, while the p-type convergence is demon-
strated on the coarsest mesh. For this smooth problem, convergence is achieved in
a more efficient manner by varying the polynomial order than refining the physical
mesh.

midline as compared to the analytical solution given by the validation archive [56].

Overall, the current results show good agreement with the analytical solution.

Although NEK5000 has many desirable traits for a competitive CFD code, its

true advantage is its extreme scalability. Thus, an important goal for this work is to

maintain the inherent parallel performance of the base NEK5000 code. Figure 3.10

shows speedup as a function of processor count for the converging-diverging nozzle

case at N = 7. For this case, optimal performance is seen up to 64 processors,

translating to around 2 elements per processor or 1000 points per processor. At

one element per processor, we still see a performance increase, although the parallel

efficiency (a ratio between actual scaling and ideal scaling) drops from over 90% at

64 processors to under 70% at 120 processors.

64

Figure 3.8: Mesh for the converging-diverging verification nozzle test case. The cross
sectional area is meshed with 12 elements and is extruded in the axial direction with
10 evenly spaced elements. The mesh is shown with the GLL points at polynomial
order N = 5.

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0

Current
Analytical

z/Lref

p/pref

(a) Static Pressure

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Current
Analytical

z/Lref

M

Figure 3.9: Variation of static pressure and Mach number along axial midline for
nozzle. The results shows good agreement to the analytical solution from [56].

3.2 Navier-Stokes Cases

Simulation of turbulent, compressible flows is the true goal of this work. With

the inviscid portion of the code validated, the viscous terms are now tested.

65

 16

 32

 64

 120

 16 32 64 120

P

S

Figure 3.10: Strong scaling plot for converging-diverging nozzle at N = 7. The
algorithm maintains greater than 90% parallel efficiency up to 64 processors (≈ 2
elements per processor, ≈ 1000 points per processor).

3.2.1 Manufactured Solution

A common method to test particular aspects of a code is through the use of

manufactured solutions. The main idea here is to derive forcing terms that will force

the equations into a pre-determined solution. As an example, assume that a code is

developed to numerically solve the simple linear wave equation

∂u

∂t
+
∂u

∂x
= 0. (3.4)

A test solution is chosen arbitrarily to be v = x+2t. Inserting this into Equation 3.4

does not result in the right hand side being zero. Instead, the new equation is

∂v

∂t
+
∂v

∂x
= 3. (3.5)

66

Thus, in order to test correctness of the code, one solves Equation 3.5, applying

the correct boundary conditions, and tests whether the chosen solution is obtained.

While this choice was arbitrary, the test solution can be constructed in order to test

particular aspects of the code.

The manufactured solution chosen to test the implementation of the 3D Navier-

Stokes solver is Q = [r, r, r, r, r2]
T

, with r = c1 sin(c2(x + y + z) − c3t) + 2. For

brevity, the resulting forcing terms are not shown here; they can be found in [44].

The chosen parameters are c1 = 0.1, c2 = π, and c3 = 2, and the domain used is

the box [−1, 1]3 with periodic boundary conditions. The reference Mach number and

Reynolds number are 1.0 and 1000, respectively. The exact solution at t = 0 is used

as the initial condition, and the simulation is run until t = 1. The accuracy of the

simulation is measured by comparing the numerical solution to the exact solution in

the L2 norm. An example solution for ρ at t = 0.5 is shown in Figure 3.11.

Both h-type and p-type convergence runs are performed. For h-type convergence,

a sequence of evenly spaced meshes are used. Starting with three elements in each

direction, each subsequent simulation increases the number of elements in each direc-

tion by one until the number of elements in each direction is ten. The initial 3×3×3

mesh is chosen for p-type convergence tests, and simulations are run from N = 3 to

N = 11. Convergence to the correct solution is shown for both runs in Figure 3.12.

Comparing the finest mesh used for the h-convergence run to the highest polynomial

used for the p-convergence run, we see a difference of accuracy of nearly two orders of

magnitude. The large boost in accuracy is not the only benefit of using p-refinement.

Both runs were performed using 8 cores to test the performance differences between

the two. The run using the finest mesh with a moderate polynomial order needed

100 seconds to complete, consuming approximately 0.2 core-hours, whereas the run

using the highest polynomial on a coarse mesh used up only 0.04 core-hours, taking

67

Figure 3.11: Density for manufactured solution case at t = 0.5. This solution is
taken from the E = 27, N = 11 case, with an L2 error of 3 × 10−9 as compared to
the exact solution.

68

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E+02 1E+03 1E+04 1E+05

L2(ρ)

DoF

h-type
p-type

Figure 3.12: Convergence plot for manufactured solution case. Convergence is
demonstrated by either refining the mesh (h-type, solid line) or increasing the poly-
nomial order (p-type, dashed line).

approximately 16 seconds to complete. Thus, not only does fixing the mesh size and

increasing the polynomial order result in higher convergence rates, it also performs

better in the context of spectral element methods.

The ability to obtain accurate results by either refining the mesh or increasing

the polynomial order is an important attribute of the code. Although, as shown here,

p-refinement typically results in faster convergence rates for smooth problems, real

Navier-Stokes simulations will most often not be infinitely smooth. In these cases,

mesh refinement near areas with large solution gradients is most likely the better

course of action.

3.2.2 Viscous Cylinder

A classic test case is viscous flow over a cylinder. As the Reynolds number of

the flow changes (based on the freestream properties and the cylinder diameter), the

flow undergoes several transistions. For extremely low Reynolds numbers, Stokes

flow is seen, but above Re = 6 or so, the flow separates on the dowstream end of the

69

Figure 3.13: Unstructured mesh for viscous cylinder cases. The mesh contains 883
elements, with elements clustered near the cylinder and in the wake to properly
capture the physics in these regions.

cylinder, forming two attached eddies. Above Re = 40, an instability in the wake

causes the vortices to detach in an alternating fashion in what is commonly known

as the von Kármán vortex street. Beyond Re = 150, the vortex street becomes

turbulent and the flow can no longer be considered two dimensional.

However, these trends are for incompressible flow. This next study examines the

flow over a cylinder at Re = 100 for a subsonic , transonic, and supersonic flow (Ma =

0.2, 0.7, and 1.0, respectively). The subsonic and transonic cases are simulated in

the domain x ∈ [−20D, 60D], y ∈ [−30D, 30D] with the mesh shown in Figure 3.13.

The supersonic case uses a mesh with the width extended to y ∈ [−60D, 60D].

The subsonic case should compare well to incompressible data, as the Mach num-

ber is low enough for compressibility effects to be neglible. As discussed at the be-

ginning, incompressible flow at this Reynolds number exhibits an instability in the

wake, causing a vortex street. The frequency of the vortex street is computed by ex-

70

amining the oscillations of the lift coefficient. The Strouhal number (St = fD/Uref),

of this flow is measured to be 0.165, and the computed mean drag coefficient, defined

as Cd = 2Fd/(ρU
2
refA), is 1.366. Both values are in good agreement with previous

simulations and experimental data [57], which reported the Strouhal number as 0.165

and the drag coefficient as 1.375.

In the transonic case, the drag coefficient increases quite dramatically to 1.82.

The reason for this is shown in Figure 3.14; the pressure drag (or form drag) increases

by almost 50%. This is due to the increased speed of the flow. The higher speed flow

will experience a relatively larger pressure increase as it stagnates on the front of the

cylinder, leading to an overall larger differential pressure from the front to the back

of the cylinder. On the other hand, the viscous portion of the drag is approximately

the same for each case. The Strouhal number is slightly less for this case than the

Ma = 0.2 case, measured at 0.158. Both the drag coefficient and the Strouhal number

compare well to previously published compressible simulation data [57].

In the sonic case, the vortex street disappears entirely, and is instead replaced

by a rather large recirculation zone, causing the drag coefficient to climb to 2.1. It

is theorized that the stabilizing stratification term, ∇ρ×∇p, is sufficiently large at

Ma = 1.0 to squash the viscous instabilities, resulting in a steady flow. Contours

of velocity magnitude are shown in Figure 3.15, showing the unsteady nature of the

first two cases and the long recirculation zone of the sonic case.

3.2.3 Weakly Turbulent Sphere

To test the code’s ability to correctly simulate bulk 3D fluid motions, the next

validation case chosen is subsonic (Ma = 0.3) flow over a sphere at a moderate

Reynolds number, Re = 1000, based on the diameter of the sphere, D, and the free

stream flow properties.

71

0.0

0.4

0.8

1.2

1.6

2.0

 350 360 370 380 390 400

Cd

Cd,p

Cd,v

Time

Figure 3.14: Comparison of drag coefficients for subsonic and transonic viscous cylin-
der. The Ma = 0.7 case is shown with the dashed line, and the solid line represents
the Ma = 0.2 case. While there are no major increases in the viscous drag, the pres-
sure drag increases by approximately 50% at Ma = 0.7 as compared to Ma = 0.2.

The domain extends 25D downstream of the sphere, and 4.5D upstream and cir-

cumferentially. To discretize the domain, a block structured mesh of 17,920 elements

is used with a polynomial order of N = 5, resulting in 3.87 million grid points. A slice

of the domain at z = 0 is shown in Figure 3.16, showing the block structured nature

of the mesh. A closeup of the mesh near the sphere is given in Figure 3.17, showing

the details of the surface mesh and the boundary layer refinement. It should be noted

that although the mesh is block-structured, it is still used as a general unstructured

mesh in the simulation.

Far field boundary conditions are set for the boundaries away from the sphere,

and isothermal no-slip walls are used at the sphere surface. The initial condition is

set to the freestream properties. The simulation is first run for 300 non-dimensional

time units to ensure a statistically steady state is reached. Then the results are

72

(a) Re = 100, Ma = 0.2

(b) Re = 100, Ma = 0.7

(c) Re = 100, Ma = 1.0

Figure 3.15: Contour of velocity magnitude with streamlines for viscous cylinder
cases. The subsonic and transonic cases feature a vortex street, while the increased
speed in the supersonic case prevents the wake instability from growing.

73

Figure 3.16: Mesh used for simulation of sphere at Re = 1000. The mesh contains
17,920 elements, and polynomial order N = 5 is used (GLL points not shown for
clarity). Pictured is a slice at z = 0, showing the semi-structured nature of the mesh.

Figure 3.17: Details of surface mesh for subsonic sphere simulation. The discretiza-
tion employs 1536 surface elements, and elements are clustered near the sphere sur-
face to properly capture the boundary layer.

74

time-averaged for another 100 time units.

The computed drag coefficient is 0.48, which is in good agreement with previous

DGSEM results [47] and with incompressible empirical correlations. There are two

Strouhal numbers reported in [58]; the main frequency of 0.195 and a secondary

frequency of 0.35. The current results give frequencies of 0.19 and 0.38, although the

signal is quite noisy and thus it was difficult to define clear dominating frequencies.

At this Reynolds number, small scale structures appear due to an instability

in the shear layer, rendering the wake turbulent [58]. One method of identifying

vortical structures indicative of turbulent flow is the λ2 criterion given by Jeong and

Hussan [59]. Essentially, λ2 is the second eigenvalue of the matrix SikSkj + ΩikΩkj,

where Ωij is the antisymmetric portion of the velocity strain rate tensor defined as

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (3.6)

The symmetric portion Sij is as defined before in Section 2. Isosurfaces of λ2, colored

by Mach number, are shown in Figure 3.18. Small scale structures show up in the

wake of the sphere, and further downstream, vortical structures with a size on the

order of the sphere are seen.

The current results are compared to published incompressible DNS results [58]

and experiment data [60] down the streamwise axis in Figure 3.19. The current

simulation shows good agreement with the DNS and experimental results except in

the region very close to the sphere, where the current results undershoot the previous

data. The rms component of the current simulation overshoots the incompressible

DNS and experiment, but the slope of the curve is similar.

75

Figure 3.18: Small scale structures in subsonic sphere flow at Re = 1000. Isosurfaces
of λ2 = −0.001 are shown, colored by Mach number.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

U
Uref

x/D

DNS (Current), Re = 1000

DNS (Tomboulides), Re = 1000

Experiment (Wu), Re = 960

(a) Mean streamwise velocity

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30

u′
Uref

x/D

DNS (Current), Re = 1000

DNS (Tomboulides), Re = 1000

Experiment (Wu), Re = 960

(b) Streamwise rms velocity

Figure 3.19: Mean and rms streamwise velocity for sphere simulation. The mean
component agrees well with previous incompressible DNS [58] and experimental [60]
data. The rms velocity is overpredicted downstream of the sphere, but the slope is
similar.

76

Figure 3.20: Mesh for turbulent channel case. Eight elements are used in each
cardinal direction, resulting in 512 elements. The element spacing in the wall normal
direction varies from 0.04δ at the wall to 0.45δ at the interior. The GLL points for
N = 7 are also shown in the figure.

3.2.4 Turbulent Channel

The final validation test is a DNS study of turbulent channel flow. This is a

classical flow case, both experimentally and numerically, and thus there is a wealth of

information to compare to. The domain in question has the dimensions [Lx, Ly, Lz] =

[4π, 2, 4π/3]. The Reynolds number based on the mean shear velocity is Reτ =

ρuτδ/µ = 100, where uτ =
√
τw/ρ is the friction velocity and δ is the channel half

height. The Mach number at the centerline is kept to approximately 0.3 in order to

facilitate comparison to incompressible DNS results reported in [61].

The mesh used for the simulation is shown in Figure 3.20. The domain is meshed

using 8 evenly spaced elements in the both the x and z directions, and a stretched

mesh is used in the y direction. The polynomial order is set to N = 7. In terms of wall

units (∆+ = ρuτ∆/µ), the minimum wall-normal spacing used is ∆y+ ≈ 0.5, and the

spacing in the flow and spanwise directions are ∆x+ ≈ 22 and ∆z+ ≈ 7.5. As such,

the simulation may be slightly under-resolved in the flow direction for the purposes

of a DNS, although this does not appear to have an adverse effect on the results.

The solution is initialized using a turbulent mean profile with random perturbations,

and the simulation is run until the flow reaches a statistically steady state.

77

 0

 5

 10

 15

 20

 0.1 1 10 100 1000

U+

y+

(a) U+

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

u+

y+

u+rms

v+rms

w+
rms

(b) urms

Figure 3.21: Mean and rms velocity profiles for turbulent channel DNS. The current
DGSEM results (solid lines) are in good agreement with incompressible DNS results
(dashed lines) reported in [61] The theoretical law of the wall also shown in (a) for
reference using dotted lines.

The results of the simulation are shown in Figure 3.21 as solid lines, with the data

from [61] shown with dashed lines. Figure 3.21a shows the mean velocity profile,

normalized by the shear velocity as U+ = U/uτ . For reference, the theoretical “law

of the wall” profile is shown with dotted lines, which is

U+ = y+ y+ < 5, (3.7)

U+ = 2.44 ln(y+) + 5.1 30 < y+ < 150. (3.8)

Figure 3.21b shows the root-mean-square (rms) turbulent quantities, defined as

urms,i =
√
〈u′i〉2, with u′i the deviation from the mean velocity Ui. Good agreement

is seen for both the mean velocity profile and the rms quantities with the previous

DNS results [61].

78

4. FILM COOLING SIMULATION

4.1 Background on Film Cooling

One of the predominant design problems in the gas turbine community is the

task of increasing the efficiency of gas turbine engines while also ensuring safety

and reliability factors are met. A common route towards increasing gas turbine

performance is by increasing the inlet temperature into the turbine section (usually

by burning more fuel). However, turbine inlet temperatures are already far beyond

the melting temperature of the materials used in the turbine [62]. In order to prevent

melting, relatively cooler air is extracted from the compressor section and is used to

cool the turbine parts, such as the endwall and the blades themselves. This extraction

results in an overall loss of efficiency, so the amount of cooling air and how it is used

must be optimized.

Turbine blades are cooled through many mechanisms, often simultaneously. The

coolant air enters the blade through where it is attached to the endwall. The air flows

through a serpentine-type passage, cooling the metal from the interior. Ribs or pins

are often used to increase the internal heat transfer. To protect the external metal

surface, the coolant air is diverted through tiny holes that are drilled from the blade

surface to the internal hollow passages of the blade. The objective of these holes is

to eject a layer of cooling air over the blade surface, acting as a buffer between the

extreme temperatures of the air exiting the combustor and the vulnerable materials

of the blade. This buffer is termed “film cooling,” and its optimization has been a

major subject of research in gas turbine.

The performance of film cooling is most commonly determined, at least in labo-

79

ratory experiments, by the film cooling effectiveness, defined as

η =
T∞ − Taw
T∞ − Tc

, (4.1)

where T∞ is the freestream temperature, Taw is the adiabatic wall temperature, and

Tc is the temperature of the coolant at the exit of the hole. Film cooling performance

is affected by a variety of parameters, such as freestream turbulence and the hole

geometry used [63]. The density ratio and blowing ratio, defined as

DR =
ρc
ρ∞

, (4.2)

BR =
ρcUc
ρ∞U∞

, (4.3)

are two important parameters in predicting film cooling effectiveness. As noted by

Bogard [63], an increase of BR gives an initial increase in η, but if this is increased

too high, the coolant will instead jet from the hole and into the freestream, negating

its effectiveness. For a given BR, a decrease in DR increases the velocity ratio, and

therefore the momentum ratio. However, the density ratio appears to have less of an

effect on η overall than the blowing ratio.

The accurate simulation of film cooling is a difficult task. Even for one hole,

there is a large difference between length scales associated with the cooling hole

and the blade, making direct simulation impractical. RANS models are able to

capture time mean large scale structures, but they often struggle to predict the

spreading and diffusion of the coolant [64]. Large eddy simulation has been the next

step towards the accurate simulation of film cooling at reasonable computational

cost, and has been used in recent studies that saw results superior to typical RANS

simulations [65, 66].

80

4.2 Overview of Large Eddy Simulation

The goal behind LES is the same as RANS; in order to reduce the prohibitive

computational costs of DNS, we seek to instead only resolve a portion of the scales,

and model the rest. In RANS, this means applying a time average to the Navier-

Stokes equations, and thus computing only the time mean variables (and modeling

all time fluctuations). In LES, a spatial filtering approach is used instead. The flow

variables are decomposed into a filtered quantity and an unresolved residual. Thus,

for density, we have ρ = ρ+ ρ′, where the overbar denotes the filtering operation. A

similar decomposition is performed for pressure. For compressible flows, it is conve-

nient to consider the density weighted, or Favre-filtered, velocities and temperatures:

ũ =
ρu

ρ
(4.4)

T̃ =
ρT

ρ
. (4.5)

For brevity, we will only consider the momentum equations. After applying the filter

to the momentum equations, the result is

∂ (ρũi)

∂t
+

∂

∂xj
(ũiρũj) +

∂p

∂xi
=
∂τ ij
∂xj
− ∂τSGSij

∂xj
, (4.6)

with τSGSij = ρ (ũiuj − ũiũj) known as the sub-grid scale (SGS) stress tensor [67].

While the resolved filtered stress tensor, τ ij, has its own issues, the focus is on the

SGS tensor. The first thing to point out is that, while it has the units of stress, the

SGS stress tensor is not actually a stress. It is merely an artifact from the filtering

operation performed on the equations; a similar term appears in RANS. For both

LES and RANS, this residual term is unknown, and thus the SGS tensor must be

81

modeled.

The earliest developments of LES employed the Smagorinksy model. In the

Smagorinsky model, the SGS stress tensor is related to the resolved strain rate tensor

as

τSGSij − 1

3
τSGSkk δij = −2 (Cs∆)2 |S|Sij, (4.7)

where ∆ is the filter width, CS is the Smagorinksy coefficient, and |S| =
√

2SijSij [4].

Various improvements have been made to this model in continued development of

LES, such as dynamic Smagorinsky [68] and the high-pass filtered eddy-viscosity

model [69]. The desired effect for any LES model is to add diffusion in areas where

small scale structures are not resolved directly and to do nothing in areas where

the resolution is adequate to DNS standards. Thus, a much simpler model, made

practical through high order schemes such as spectral elements, is to simply apply

a spectral filter to the resolved flow variables. In regions that are well resolved,

the filter will have little to no effect, as the high frequency spectral coefficients will

have low weights. However, in marginally-resolved or under resolved regions, the

filter emulates the effects that an additional diffusion term in the equations would

have. The benefit of the model is that no additional terms for the Navier-Stokes

equations need be computed, saving on computational cost. At the moment, the

model still needs to put through rigorous validation tests. However, the model has

seen promising results in previous studies, such as in [70]. The simplified model is

used in this work for the simulation of film cooling.

4.3 Problem Setup

The problem at hand is the large-eddy simulation of a single film cooling hole

on a flat surface. The pertinent details of the geometry are given in Figure 4.1.

Although the figure shows the dimensions in millimeters, the simulation is performed

82

Figure 4.1: Details of geometry used for film cooling simulation. A simple, cylindrical
film cooling hole of diameter D = 7 mm is used. The domain extends 10D upstream
and 30D downstream of the hole, and domain is truncated vertically at 10D. The
simulated pitch is 3D.

83

Figure 4.2: Closeup of mesh near film cooling hole. In total, 85,048 elements are
used at a polynomial order of N = 5, resulting in 18.3 mio grid point.

on a geometry non-dimensionalized by the diameter of the film cooling hole. The

blowing ratio and density ratio are BR = 1.0 and DR = 1.5, respectively. The inlet

Mach number is 0.3, and the Reynolds number based on the hole diameter and free

stream properties is ReD = 32, 000. A closeup of the mesh near the film cooling hole

is shown in Figure 4.2. The mesh contains E = 85, 048 elements at N = 5, resulting

in 18.3 million grid points.

A key difficulty with high-fidelity CFD models, such as LES or DNS, is the ac-

curate imposition of turbulent inflow boundary conditions. In RANS, prescribing a

turbulent inflow is more or less accomplished by inputting various mean parameters,

such as turbulence intensity. Because LES and DNS solve the time dependent equa-

tions, the inflow must also be time dependent. One method of generating realistic

inflow conditions is to extend the inflow boundary far enough upstream to allow

for natural development of the turbulent boundary layer. However, this method is

prohibitively expensive in the context of LES/DNS, where the resolution require-

ments are very high. Another method is to artificially prescribe a turbulent inflow.

However, this is not as simple as randomizing the velocity inputs, as turbulent flows

are not truly random. Many sophisticated methods have been proposed to fulfill the

task of turbulent inflow generation; for the purposes of this work, the recycling and

rescaling method (RRM) proposed by Urbin and Knight for compressible flows is

84

used [71]. The essentials of the RRM method are to take the velocity and temper-

ature profile at some point downstream from the inlet, modify them according to

theoretical wall scaling laws, and reintroduce them at the inlet. A realistic turbulent

boundary layer profile develops over time, without the need for a large inlet flow

length. For brevity, the details of the method are not given here; further details can

be found in the original paper [71].

Previously, a large-eddy simulation of this geometry was performed using the

low-Mach formulation in NEK5000 (Duggleby et al, [64]). The pressure is split

into a thermodynamic and hydrodynamic component, p = pth + ph. In the low-

Mach formulation, the density is allowed to change due to temperature changes

or transient thermodynamic pressure changes, but is independent of hydrodynamic

pressure. Allowing for density changes with respect to temperature, the normal

divergence free condition on incompressible flows is instead replaced with

∂uj
∂xj

=
1

T

DT

Dt
, (4.8)

where D(·)/Dt = ∂(·)/∂t + uj∂(·)/∂t is the material derivative. The divergence

term acts as a source in the pressure Poisson equation that arises in incompressible

simulations [64].

The low-Mach formulation is technically only supposed to be used for Mach num-

bers below 0.3; beyond this, the variation of density with respect to hydrodynamic

pressure changes begins to become too significant to ignore. Unfortunately, in the

low-Mach simulation, the Mach number in hole exceeds this limitation, as shown

in Figure 4.3. Because the low-Mach formulation does not account for compression

due to hydrodynamic forces, the density remains constant in the hole, causing the

velocity to have an unphysically high values and detach from the plate. The con-

85

Figure 4.3: Average Mach number in cooling hole from low-Mach simulation in
Duggleby et al [64]. The Mach number exceeds 0.4 in the hole in violation of the
low-Mach assumption. The lack of real compressibility in the low-Mach formulation
cause the coolant to accelerate too much, leading to the coolant lifting off the surface
of the flat plate.

sequences of this are shown in Figure 4.4. The high velocity in the hole causes the

coolant to jet from the hole, where it is quickly mixed into the turbulent freestream

instead of laying on the surface. This leads to largely different film cooling behavior

as compared to experimental results [72], resulting in a false prediction of poor film

cooling performance. This behavior was observed even with when the mesh was re-

fined in and around to the hole to DNS quality, suggesting that a fully compressible

formulation is needed to accurately simulate this case.

4.4 Current Results

The current compressible LES simulation was run for 280 time units, with the

time averaging taking place over the last 40 units. The total computational cost was

35,000 CPU hours, spread out over 256 processors.

In the experimental rig described in Aga [72], the inlet momentum thickness and

displacement thickness are δ2 = 0.05 and δ1 = 0.12, giving a shape factor of H = 2.31.

Thus, the velocity profile is not fully developed at the inlet in the experiment; to trip

86

Figure 4.4: Instantaneous contour of non-dimensional temperature in low-Mach sim-
ulation in Duggleby et al [64]. Because the Mach number in the hole exceeds the
low-Mach limit of 0.3, the velocity in the hole is too high. This leads to the coolant
being ejected into the freestream, where it is quickly mixed and dissipated due to
turbulence. The end result is that the film cooling effectiveness is grossly underpre-
dicted.

the boundary layer, the cooling insert was pushed up slightly above the flat plate.

The recycling procedure in the simulation produces δ2 = 0.17 and δ1 = 0.22, resulting

in a shape factor of H = 1.35. Thus, while the momentum and displace thicknesses

are not matched to the experiment, the inlet is a fully developed turbulent profile.

The profile in wall units is given in Figure 4.5, along with the theoretical viscous

sublayer profile showing good agreement in the sublayer.

Figure 4.6 shows contours of instantaneous and time-mean Mach number in the

film cooling hole. As compared to what was seen in Figure 4.3 for the low-Mach

LES [64], the Mach number in the compressible simulation does not exceed 0.3 (at

certain instances in time, the Mach number may reach 0.4-0.5, but this is most likely

a numerical issue than a physical one). Based on this plot alone, it is expected that

the film cooling effectiveness will be higher than what was predicted in the low-Mach

simulation, as the lower speed flow will better allow for the film to lay on the surface.

87

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 1 10 100 1000 10000

y+

U+

Figure 4.5: Inlet velocity profile for film cooling case. The simulated velocity profile
is given by the solid line, and the theoretical viscous sublayer profile is given by
the dashed line for reference. The momentum and displacement thicknesses are
δ2 = 0.17 and δ1 = 22, giving a shape factor of 1.35 that is indicative of a fully
developed turbulent boundary layer.

Figures 4.7 through 4.10 show mean temperature θ, rms temperature θrms, and

turbulent heat transfer v′θ′ for slices at z/D =0, 0.25, 0.5, and 0.75. Here, θ is the

non-dimensional temperature,

θ =
T∞ − T
T∞ − Tc

. (4.9)

In Figure 4.7 (z/D = 0), the contour for θ shows evidence of a slight liftoff at the

exit of the cooling hole, although the coolant reattached fairly quickly. Compared to

the instantaneous contour from the low-Mach LES shown in Figure 4.4, it appears

that the reduced Mach number in the hole indeed leads to less of a jetting effect,

as expected. The rms temperature shows strong turbulent fluctuations in the shear

layer where the free stream and the upstream side of the coolant meet. Numerically,

this can be an issue for high order methods, as this represents a discontinuity. The

88

(a) Instantaneous

(b) Average

Figure 4.6: Instantaneous and average Mach number in cooling hole for compressible
film cooling simulation. Due to the fully compressible nature of the code, the Mach
number does not exceed 0.3, unlike the low-Mach results from Duggleby et al [64].

89

current algorithm, with some dissipation from the spectral filter, proves to handle

this contact in a stable manner.

Halfway across the radius of the hole, there is again evidence of liftoff, as shown

in Figure 4.8a. In the low-Mach case, this complete separation remains until approx-

imately 1.5D downstream of the hole. However, the flow reattaches much closer to

the hole in the fully compressible results. The turbulent mixing, as evidenced by θrms

in Figure 4.8b, is spread out over a larger area at this location, due to its proximity

to the outer edge of the film hole.

At the outer edge of the hole (z/D = 0.5), the coolant is still being spread from

the hole, although at a reduced capacity. This contrasts with the previous low-

Mach results, where the coolant has already been mixed into the freestream at this

location [64]. Although the geometry does not appear in the figure, the turbulent

quantities, particularly the turbulent heat transfer, are most pronounced right at the

wall at x/D = 0. This would result in large amounts of heat transfer into the wall,

although its difficult to say whether this is positive or negative, as it depends on the

fluid temperature at the wall.

Finally, at a quarter pitch (z/D = 0.75), the coolant is mostly absent, although

there is still evidence of turbulent fluctuations and heat transfer even at this location

(albeit located off the wall). At this location for the low-Mach results, there is no

coolant present and almost no evidence of fluctuations, indicating that the turbulent

mixing due to the increased liftoff has prevented the coolant from spreading in the

spanwise direction.

As discussed before, the performance of the film cooling hole is measured by the

film cooling effectiveness (Equation 4.1). A contour of average film cooling effective-

ness at the wall is shown in Figure 4.11. Overall, the film appears to spread across

the span well except for near the holes at z/D = ±0.25, where evidence of coolant

90

(a) θ

(b) θrms

(c) −v′θ′

Figure 4.7: Contours of θ, θrms and v′θ′ at z/D = 0.00. The average temperature
contour shows a slight liftoff near the trailing edge of the film cooling hole. The rms
temperature and the cross term show strong levels of turbulence in the shear layer.

91

(a) θ

(b) θrms

(c) −v′θ′

Figure 4.8: Contours of θ, θrms and v′θ′ at z/D = 0.25. Evidence of complete liftoff
is seen near the hole exit, but the coolant quickly reattaches. The turbulence mixing
appears to be more pronounced, encompassing a larger area.

92

(a) θ

(b) θrms

(c) −v′θ′

Figure 4.9: Contours of θ, θrms and v′θ′ at z/D = 0.50. At the outer rim of the
cooling hole, the coolant is still active, although in a reduced capacity.

93

(a) θ

(b) θrms

(c) −v′θ′

Figure 4.10: Contours of θ, θrms and v′θ′ at z/D = 0.75. Very little cooling has spread
this far, although evident of fairly strong temperature fluctuations is still present.

94

Figure 4.11: Contour of average film cooling effectiveness for film cooling case. The
lift off and subsequent reattachment near z/D = ±0.25 can be seen in the figure.
Overall, the spreading fo the film cooling is much improved as compared the previous
low-Mach simulation in Duggleby et a [64].

separation is seen. Based on what was seen at z/D = 0.25 in Figure 4.8a, this is

not surprising. Quantatively, the centerline film cooling effectivness and spanwise

film cooling effectiveness at x/D = 8 from the current simulation compares well to

the experimental data from Aga [72], as shown in Figure 4.12. The prediction is

not as good at x/D = 2, which is precisely the location where the coolant begins

to reattach in Figure 4.11. Thus, the current simulation appears to overpredict the

precise location of the reattachment, rather than underpredict the actual film cooling

performance.

While the current compressible film cooling LES results are promising, there are a

few outstanding questions that must be addressed in future work with the algorithm.

The first item that could be improved is the inflow turbulence generation technique.

While the RRM method appears to be effective in generating a realistic turbulent

inflow, an unintended side effect is that unphysical cross-correlations appear, as

evidenced in Figure 4.13 by the pulses in Mach number. While the pulses are faint,

they effectively increased the amount of time required for time averaging. In a larger

simulation, this increased time requirement can be problematic.

The simplified LES model also still needs to be quantified more rigorously, par-

95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

x/D

η

Comp. LES
Low-Mach LES (Duggleby)

Experiment (Aga)

(a) Centerline η

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1.5 -1 -0.5 0 0.5 1 1.5

x/D

η

Comp. LES
Low-Mach LES (Duggleby)

Experiment (Aga)

(b) Spanwise η, x/D = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1.5 -1 -0.5 0 0.5 1 1.5

x/D

η

Comp. LES
Low-Mach LES (Duggleby)

Experiment (Aga)

(c) Spanwise η, x/D = 8

Figure 4.12: Plots of centerline and spanwise film cooling effectiveness for film cooling
hole. There is good agreement between the compressible LES and the experimental
data from Aga [72] for the centerline effectivness and the spanwise effectiveness at
x/D = 8. The effectiveness at x/D = 2 for the compressible LES is underpredicted
compared to the experiment, but still provides a better prediction than the low-Mach
LES (Duggleby et al [64]).

96

Figure 4.13: Contour of instantaneous Mach number for entire film cooling domain.
While the recycling and rescaling method does well in generating a turbulent profile,
the downside is that unphysical large scale motions are introduced, which are evident
by the faint pulses of Mach number seen in the freestream. These pulses have a
periodic length that is the same as the recycling length, suggesting that the recycling
technique could use improvement.

ticularly in the context of the current compressible algorithm. The issue at hand

is that, because of the lack of dealiasing in the current algorithm, a small filter is

needed even for DNS studies to stabilize the flow. As such, it is difficult to differ-

entiate between the amount of filtering needed for stability and the amount needed

to represent the unresolved scales in the flow. A proper characterization of the LES

filter is needed to quantify these differences.

97

5. CONCLUSIONS

The globally competitive market has led to increased importance of design op-

timization. Additionally, there is a need for a design cycle analysis to be fast and

efficient, and in conjunction with the vast increases in available computing power,

this has led to an increased use of numerical analysis in the design cycle.

This design shift is very much prevalent in the aerospace community, where com-

putational fluid dynamics plays a large role in everything from aircraft design to film

cooling optimization. Because of the large inherent computational costs of direct

numerical simulation, industrial CFD usage has been limited mostly to the use of

solving the time-averaged equations which rely heavily on turbulence models. The

use of RANS solvers will continue to see heavy use in the aerospace industry, but

RANS models are ineffective in many areas of the industry, necessitating the use of

higher fidelity models such as DNS or LES. The modern supercomputing paradigm,

with increased focus on massively-parallel machines employing hundreds of thou-

sands or millions of processors, allows for LES or DNS to be practical alternatives

for these cases. However, methods that work well for RANS are typically not built for

success on massively-parallel machines, and thus newer methods must be explored.

A successful LES/DNS solver for industrial use must contain three core character-

istics: it must be high order, it must be efficient on parallel machines, and it must be

geometrically flexible. In a survey of modern methods, the spectral element method

appears to be the best candidate for such a method. The high order, geometrically

flexible nature of the discretization allows for high convergence rates in geometries

of industrial interest, and the high data locality of the method lends itself well to

massively-parallel computations. The open source SEM code, NEK5000, has proven

98

these characteristics in practical usage, but thus far has seen relatively limited usage

in the aerospace industry due to its incompressible formulation. This project took

the NEK5000 code base and implemented a new method allowing for the simulation

of compressible turbulent flows of industrial relevance.

The DG compressible spectral element algorithm developed herein was heavily

validated against a variety of inviscid and viscous test cases. These cases were specif-

ically chosen to test certain attributes of the code, such as accuracy, stability and

geometric flexiblity. With the code validated, a large-eddy simulation of film cooling

heat transfer was undertaken to demonstrate the power of the formulation in prac-

tical usage. The new method demonstrated the ability to accurately predict film

cooling effectiveness in an case where a previous low-Mach LES was not sufficient

and RANS struggles. This algorithm which is highly accurate, massively-parallel,

and geometricaly flexible is useful in terms of future design exploration, and will

hopefully reduce the need for costly prototype testing in design cycle analysis.

99

REFERENCES

[1] Jaluria, Y., 2007. Design and Optimization of Thermal Systems. CRC Press,

Boca Raton, FL.

[2] Thomas, V., 2009. “Virtual modeling helps build better cars.”. Machine Design,

81(23), pp. 32 – 37.

[3] Thierry Marchal, 2012. Simulate first; build to last.

http://www.rdmag.com/articles/2012/04/simulate-first-build-last.

[4] Pope, S. B., 2000. Turbulent Flows. Cambridge University Press, New York,

NY.

[5] Fujii, K., 2005. “Progress and future prospects of CFD in aerospace–wind tunnel

and beyond”. Progress in Aerospace Sciences, 41(6), pp. 455 – 470.

[6] Jameson, A., and Ou, K., 2011. “50 years of transonic aircraft design”. Progress

in Aerospace Sciences, 47(5), pp. 308 – 318.

[7] Jameson, A., Martinelli, L., and Vassberg, J., 2002. “Using computational fluid

dynamics for aerodynamics–a critical assessment”. In Proceedings of ICAS,

pp. 2002–1.

[8] Imlay, S., 2012. “The role of parametric CFD analysis in design”. Machine

Design, 84(3), pp. 68 – 70.

[9] Razinksy, E., 2010. Perspective on R&D needs

for gas turbine power generation. UTSR Workshop.

http://www.netl.doe.gov/publications/proceedings/11/Utsr/.

100

[10] Paul F. Fischer, J. W. L., and Kerkemeier, S. G., 2008. NEK5000 Web page.

http://nek5000.mcs.anl.gov.

[11] Fischer, P., Lottes, J., Pointer, D., and Siegel, A., 2008. “Petascale algorithms

for reactor hydrodynamics”. In Journal of Physics: Conference Series, Vol. 125,

IOP Publishing, p. 012076.

[12] Fischer, P. F., Ho, L. W., Karniadakis, G. E., Ronouist, E. M., and Patera,

A. T., 1988. “Recent advances in parallel spectral element simulation of un-

steady incompressible flows”. Comput. & Struct., 30, pp. 217–231.

[13] Tufo, H. M., and Fischer, P. F., 1999. “Terascale spectral element algorithms and

implementations”. In Proc. of the ACM/IEEE SC99 Conf. on High Performance

Networking and Computing, IEEE Computer Soc. Gordon Bell Prize paper.

[14] Schwaenen, M., Meador, C., Camp, J., Jagannathan, S., and Duggleby, A.,

2011. “Massively-parallel direct numerical simulation of turbine vane endwall

horseshoe vortex dynamics and heat transfer”. ASME Paper GT2011-45915.

[15] Jagannathan, S., Schwänen, M., and Duggleby, A., 2011. “Low pressure turbine

relaminarization bubble characterization using massively-parallel large eddy

simulations”. J. Fluids Engineering. In Review.

[16] Camp, J., 2011. “Massively-parallel spectral element large eddy simulation of a

ring-type gas turbine combustor”. Master’s thesis, Texas A&M University, May

2011.

[17] Toro, E., 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics:

A Practical Introduction. Springer-Verlag Berlin Heidelberg, New York, NY.

101

[18] LeVeque, R., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge

Texts in Applied Mathematics. Cambridge University Press, New York, NY.

[19] Hirsch, C., 2007. Numerical Computation of Internal and External Flows:

The Fundamentals of Computational Fluid Dynamics, Vol. 1. Elsevier Science,

Burlington, MA.

[20] Žaloudek, M., Fořt, J., and Fürst, J., 2006. “Numerical solution of compressible

flow in a channel and blade cascade”. Flow, Turbulence and Combustion, 76(4),

pp. 353–361.

[21] Brooks, A. N., and Hughes, T. J., 1982. “Streamline upwind/Petrov-Galerkin

formulations for convection dominated flows with particular emphasis on the

incompressible Navier-Stokes equations”. Computer Methods in Applied Me-

chanics and Engineering, 32(1), pp. 199–259.

[22] Soulaimani, A., Saad, Y., and Rebaine, A., 2001. “An edge based stabilized

finite element method for solving compressible flows: formulation and parallel

implementation”. Computer Methods in Applied Mechanics and Engineering,

190(49), pp. 6735–6761.

[23] Martinez, M. J., and Gartling, D. K., 2004. “A finite element method for

low-speed compressible flows”. Computer Methods in Applied Mechanics and

Engineering, 193(21), pp. 1959–1979.

[24] Kirk, B. S., and Carey, G. F., 2008. “Development and validation of a SUPG

finite element scheme for the compressible Navier-Stokes equations using a mod-

ified inviscid flux discretization”. International Journal for Numerical Methods

in Fluids, 57(3), pp. 265–293.

102

[25] Don, W.-S., and Gottlieb, D., 1990. “Spectral simulations of an unsteady com-

pressible flow past a circular cylinder”. Computer Methods in Applied Mechanics

and Engineering, 80(1), pp. 39–58.

[26] Don, W.-S., Gottlieb, D., and Jung, J.-H., 2003. “A multidomain spectral

method for supersonic reactive flows”. Journal of Computational Physics,

192(1), pp. 325–354.

[27] Hesthaven, J., and Gottlieb, D., 1996. “A stable penalty method for the com-

pressible Navier-Stokes equations: I. Open boundary conditions”. SIAM Journal

on Scientific Computing, 17(3), pp. 579–612.

[28] Hesthaven, J., 1997. “A stable penalty method for the compressible Navier–

Stokes equations: II. one-dimensional domain decomposition schemes”. SIAM

Journal on Scientific Computing, 18(3), pp. 658–685.

[29] Hesthaven, J., 1998. “A stable penalty method for the compressible Navier–

Stokes equations: III. multidimensional domain decomposition schemes”. SIAM

Journal on Scientific Computing, 20(1), pp. 62–93.

[30] Kopriva, D. A., and Kolias, J. H., 1995. A conservative staggered-grid chebyshev

multidomain method for compressible flow. Tech. rep., DTIC Document.

[31] Kopriva, D. A., 1998. “A staggered-grid multidomain spectral method for

the compressible Navier–Stokes equations”. Journal of Computational Physics,

143(1), pp. 125–158.

[32] Liu, Y., Vinokur, M., and Wang, Z., 2006. “Spectral difference method for

unstructured grids I: basic formulation”. Journal of Computational Physics,

216(2), pp. 780–801.

103

[33] Liang, C., Premasuthan, S., Jameson, A., and Wang, Z., 2009. “Large eddy sim-

ulation of compressible turbulent channel flow with spectral difference method”.

AIAA Paper, AIAA-2009-402, Orlando, FL.

[34] Premasuthan, S., Liang, C., and Jameson, A., 2009. “A spectral difference

method for viscous compressible flows with shocks”. AIAA Paper, 3785, p. 2009.

[35] Castonguay, P., Liang, C., and Jameson, A., 2010. “Simulation of transitional

flow over airfoils using the spectral difference method”. AIAA Paper, 4626,

p. 2010.

[36] Bassi, F., and Rebay, S., 1997. “High-order accurate discontinuous finite element

solution of the 2D Euler equations”. Journal of Computational Physics, 138(2),

pp. 251–285.

[37] Bassi, F., and Rebay, S., 1997. “A high-order accurate discontinuous finite

element method for the numerical solution of the compressible Navier–Stokes

equations”. Journal of Computational Physics, 131(2), pp. 267–279.

[38] Bassi, F., and Rebay, S., 2000. “GMRES discontinuous Galerkin solution of

the compressible Navier-Stokes equations”. In Discontinuous Galerkin Methods,

B. Cockburn, G. E. Karniadakis, and C.-W. Shu, eds. Springer, New York, NY,

pp. 197–208.

[39] Bassi, F., and Rebay, S., 2000. “A high order discontinuous Galerkin method

for compressible turbulent flows”. In Discontinuous Galerkin Methods, G. E.

Cockburn, Bernardo andKarniadakis and C.-W. Shu, eds. Springer, New York,

NY, pp. 77–88.

104

[40] Karniadakis, G. E., and Sherwin, S., 2005. Spectral/hp Element Methods for

Computational Fluid Dynamics. Oxford University Press, New York, NY.

[41] Oden, J. T., and Baumann, C. E., 2000. “A conservative DGM for convection-

diffusion and Navier-Stokes problems”. In Discontinuous Galerkin methods,

B. Cockburn, G. E. Karniadakis, and C.-W. Shu, eds. Springer, New York, NY,

pp. 179–196.

[42] Warburton, T., Lomtev, I., Du, Y., Sherwin, S., and Karniadakis, G., 1999.

“Galerkin and discontinuous Galerkin spectral/hp methods”. Computer Meth-

ods in Applied Mechanics and Engineering, 175(3), pp. 343–359.

[43] Kirby, R., Warburton, T., Lomtev, I., and Karniadakis, G., 2000. “A dis-

continuous Galerkin spectral/hp method on hybrid grids”. Applied Numerical

Mathematics, 33(1), pp. 393–405.

[44] Gassner, G. J., Lörcher, F., Munz, C.-D., and Hesthaven, J. S., 2009. “Polymor-

phic nodal elements and their application in discontinuous Galerkin methods”.

Journal of Computational Physics, 228(5), pp. 1573–1590.

[45] Hesthaven, J., and Warburton, T., 2008. Nodal Discontinuous Galerkin Meth-

ods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics.

Springer, New York, NY.

[46] Kopriva, D. A., 2006. “Metric identities and the discontinuous spectral ele-

ment method on curvilinear meshes”. Journal of Scientific Computing, 26(3),

pp. 301–327.

105

[47] Hindenlang, F., Gassner, G. J., Altmann, C., Beck, A., Staudenmaier, M.,

and Munz, C.-D., 2012. “Explicit discontinuous galerkin methods for unsteady

problems”. Computers & Fluids, 61, pp. 86–93.

[48] Sutherland, W., 1893. “LII. the viscosity of gases and molecular force”. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

36(223), pp. 507–531.

[49] Dussauge, J.-P., and Smits, A. J., 1996. Turbulent Shear Layers in Supersonic

Flow. AIP press, New York, NY.

[50] Deville, M. O., Fischer, P. F., and Mund, E. H., 2002. High-order methods for

incompressible fluid flow, Vol. 9. Cambridge University Press, New York, NY.

[51] Kopriva, D. A., 2009. Implementing Spectral Methods for Partial Differential

Equations. Springer, New York, NY.

[52] Canuto, C., Hussaini, Y., Quarteroni, A., and Zang, T., 2010. Spectral Methods:

Fundamentals in Single Domains. Scientific Computation. Springer, New York,

NY.

[53] Carlson, J.-R., 2011. Inflow/outflow boundary conditions with application to

FUN3D. Tech. Rep. NASA/TM-2011-217181, Langley Research Center, Hamp-

ton, Virginia, October.

[54] Lomtev, I., Quillen, C., and Karniadakis, G., 1998. “Spectral/hp methods for

viscous compressible flows on unstructured 2d meshes”. Journal of Computa-

tional Physics, 144(2), pp. 325–357.

106

[55] Bassi, F., and Rebay, S., 1997. “High-order accurate discontinuous finite element

solution of the 2D Euler equations”. Journal of Computational Physics, 138(2),

pp. 251 – 285.

[56] Slater, J. W., 2008. Converging-diverging verification (CDV) nozzle, July.

http://www.grc.nasa.gov/WWW/wind/valid/cdv/cdv.html.

[57] Lomtev, I. L., 1999. “A discontinuous Galerkin method for the compressible

Navier-Stokes equations in stationary and moving 3D domains”. PhD thesis,

Brown University, Applied Mathematics.

[58] Tomboulides, A. G., and Orszag, S. A., 2000. “Numerical investigation of tran-

sitional and weak turbulent flow past a sphere”. Journal of Fluid Mechanics,

416(1), pp. 45–73.

[59] Jeong, J., and Hussain, F., 1995. “On the identification of a vortex”. Journal

of Fluid Mechanics, 285(69), pp. 69–94.

[60] Wu, J.-S., and Faeth, G., 1993. “Sphere wakes in still surroundings at interme-

diate Reynolds numbers”. AIAA Journal, 31(8), pp. 1448–1455.

[61] Chang, Y., 2000. “Reduced order methods for optimal control of turbulence”.

PhD thesis, Rice University, Mechanical Engineering and Materials Science.

[62] Han, J.-C., Dutta, S., and Ekkad, S., 2000. Gas Turbine Heat Transfer and

Cooling Technology. Taylor & Francis, Boca Raton, FL.

[63] Bogard, D., 2006. “Airfoil film cooling”. The Gas Turbine Handbook. NETL,

http://www.netl.doe.gov/technologies/coalpower/turbines/refshelf/handbook/4.2.2.1.pdf.

107

[64] Duggleby, A., Camp, J., and Laskowski, G., 2013. “Evaluation of massively-

parallel spectral element algorithm for LES of film-cooling”. ASME Paper

GT2013-94281.

[65] Liu, K., and Pletcher, R. H., 2005. “Large eddy simulation of discrete-hole film

cooling in a flat plate turbulent boundary layer”. AIAA Paper, 4944.

[66] Guo, T., Li, S., and Liu, J., 2007. “Large eddy simulation of film cooling”.

In Challenges of Power Engineering and Environment, K.-f. Cen, Y. Chi, and

J. Yan, eds. Springer, New York, NY, pp. 1419–1422.

[67] Gatski, T. B., and Bonnet, J.-P., 2013. Compressibility, Turbulence and High

Speed Flow. Academic Press, Amsterdam, The Netherlands.

[68] Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., 1991. “A dynamic

subgrid-scale eddy viscosity model”. Physics of Fluids A: Fluid Dynamics, 3,

p. 1760.

[69] Stolz, S., 2005. “High-pass filtered eddy-viscosity models for large-eddy sim-

ulations of compressible wall-bounded flows”. Journal of Fluids Engineering,

127(4), pp. 666–673.

[70] Duggleby, A., and Camp, J., 2011. “Massively-parallel computational fluid

dynamics with large eddy simulation in complex geometries”. ASME Paper

IMECE2011-62489.

[71] Urbin, G., and Knight, D., 2001. “Large-eddy simulation of a supersonic bound-

ary layer using an unstructured grid”. AIAA Journal, 39(7), pp. 1288–1295.

[72] Aga, V., 2009. “Experimental investigation of the influence of flow structure on

compound angled film cooling performance”. PhD thesis, ETH Switzerland.

108

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Numerical Analysis in the Design Cycle
	Computational Fluid Dynamics in the Design Cycle
	Nature of the Flow Equations and Turbulence
	Industrial CFD Use
	Massive-parallelism and CFD
	Towards Improving Design Cycle Analysis

	Keys for Effective High-Fidelity CFD
	Need for High Order
	Need for High Parallel Efficiency
	Need for Geometric Flexibility

	Extension to NEK5000
	Statement of Purpose

	Literature Review and Numerical Methods
	Literature Review
	Conservation of Mass, Momentum, and Energy
	Numerical Methodology
	Discontinuous Galerkin Spectral Element Method: Fundamentals
	Lagrange Interpolating Polynomials and Semi-Discrete Operators
	Transformation Metrics and Quadrature Rules
	A Word on Aliasing
	Performance Improvements using Tensor Products
	Time Advancement

	DGSEM: Euler Equations
	Numerical Fluxes

	DGSEM: Navier-Stokes
	Boundary Conditions
	Inviscid Boundary Conditions
	Viscous Boundary Conditions

	Implementation Details

	Validation Tests
	Euler Cases
	Subsonic Flow in Channel with Bump
	Subsonic Flow over a Cylinder
	Subsonic Flow through Converging-Diverging Nozzle

	Navier-Stokes Cases
	Manufactured Solution
	Viscous Cylinder
	Weakly Turbulent Sphere
	Turbulent Channel

	Film Cooling Simulation
	Background on Film Cooling
	Overview of Large Eddy Simulation
	Problem Setup
	Current Results

	Conclusions
	REFERENCES

