

Energy Management and Information System

McGill University – Utilities & Energy Management

International Conference for Enhanced Building Operation

Montréal, QC October 8-10, 2013

Presenter: Jerome Conraud, Eng., MASc, Energy Manager

outline

- Who we are
- Our challenges
- Our approach
- The EMIS project
- Lessons learned

who we are

- One of the oldest universities in Canada Established 1821
- Top 1 university in Canada, among top 20 universities in the world
- 21 faculties
 Medicine, Law, Music,
 Chemistry, Engineering,
 Physics, Biochemistry, etc.
- Old stock of buildings Average age: 50+ years

Research intensive
 12 Nobel Prize winners,
 \$1.1 billion endowment in 2012

who we are

- 36,000 students 11,000 faculty and staff
- Total gross area: 800,000 m² (8.5 million sq. ft.)
- Annual energy use: 1.4 million GJ (1.3 million MMBTU | 385 GWh-e)
- Annual energy cost: CAD \$18M (€ 14 million)
- 2 steam distribution networks
 500+ million lb steam / year
- 2 power distribution networks
 30MW peak demand
- 3 main chilled water distribution networks 12,000-ton capacity
- ±1,000 HVAC systems

our challenges

- Highly energy intensive university
- Utilities not metered at building level

- Numerous HVAC systems
- Systems controlled by other unit

our approach

\$30 million five-year investment program to improve energy performance

Improve infrastructure

energy audits, HVAC upgrades, heat recovery, etc.

Improve operations

processes and day-to-day operations, retro-commissioning

Hardware

- \$3.0 million investment
- 400+ meters installed electricity, steam, condensate, natural gas, hot water, chilled water
- 70+ buildings monitored
 50% of campus gross area
- 80% of energy use monitored
- 18 months
 to install, set up, and integrate
 meters to existing metering platform
- Procedures and tools developed to verify and validate installations, set-ups, and equipment

Credibility

Consistent process, standard set-ups, constant validation

Software

- Collect and organize data
- Plot energy demand in real time against external factors T_{out}, RH_{out}, wind speed and direction, net solar radiation
- Generate reports

 to follow trends in long-term energy use
- Train "typical curves" to benchmark buildings against themselves and detect anomalies
- Engage building occupants

"Humanware"

- Multidisciplinary team comprising energy managers, HVAC managers, control technicians, and ad-hoc guests
- Analyse anomalies and implement measures
 - Corrective (short term solutions)
 - Preventive (long term solutions)
- Coordinate operations

 energy generation and distribution
 vs energy demand on campus
- Review processes, inform decision makers

• Examples of anomalies: abnormal trend in energy use,

random spike in demand, unnecessary energy use during unoccupied hours, etc.

Examples of Measures

- Review HVAC schedules to realign occupants' needs and optimal operations
- Optimize ventilation and temperature set points
- Enthalpy control of fresh air
- Peak shaving steam generation and peak power

Building Hours		Other Hours																
Mon-Fri:	09:00-19:00	Mon-Fri:	-				•			-	_	~ .				TOV		
Saturday:	Closed	Saturday:	-			I١	/1	А	А	5:	5 (1E	IVI	15	TRY	RLD	1 G
Sunday:	Closed	Sunday:	-			•			-									_
				Office	Laboratory	Classrooms	Other	TEMPERATURE CONTROLS					LS	CURRENT HOURS				
	Ciamana	Type Floor/Room	FlooriBoom	Heat	Cool	ice	ato	0	her	MON-FRI SAT.		SUN.		MON-FRI	SATURDAY	SUNDAY		
	Siemens		Floor/Room				Ž	ms		Occ.	Unoc.	Oœ.	Unoc.	Oœ.	Unoc.	Start - End	Start - End	Start - End
		Supply	All Building	X	-					Α	ВС	ВС	ВС	ВС	ВС	0:00 - 24:00	0:00 - 24:00	0:00 - 24:00
		Supply	All Building	x	-					Α	ВС	ВС	ВС	ВС	ВС	0:00 - 24:00	0:00 - 24:00	0:00 - 24:00
		Exhaust	All	-	-					Α	ВС	ВС	ВС	ВС	ВС	0:00 - 24:00	0:00 - 24:00	0:00 - 24:00
		Exhaust	ALL	-	-		X			Α	ВС	ВС	ВС	ВС	ВС	0:00 - 24:00	0:00 - 24:00	0:00 - 24:00
		Ventilation	Mechanical Room	X	X				x	Α	ВС	ВС	ВС	ВС	ВС	TC	TC	TC
		Ventilation	Mechanical Room	-	-				X	Α	ВС	ВС	ВС	ВС	ВС	тс	тс	тс
		Supply	34, 35, 36, 37	X	X					Α	ВС	ВС	ВС	ВС	ВС	TC	TC	тс
		Ventilation	25B, 26	X	X					Α	ВС	ВС	ВС	ВС	ВС	тс	тс	тс

Optimization of the Ventilation Schedule Electricity Savings – McGill Bookstore

HVAC Schedule Optimization + Enthalpy Control + Steam Shutdown Steam Savings - McGill Bookstore

HVAC Schedule Optimization + Occupancy Detection Total Energy Savings - Bronfman Management Building

Fodder for Projects

- Student projects co-supervised / supported by Energy Management team
 - Behaviour change project in dorms and labs
 - Steam demand forecast model
 - Steam generation optimization algorithm

Quantifiable Results

 Review of HVAC schedules \$180k | 18,000 GJ for 18 buildings reviewed (of 40)

Other Benefits

- Enhanced cooperation and better understanding of each party's priorities
- Pro-active solution seeking and sharing of information
- Positive impact on other energy projects (e.g., ReCx)
- Increased awareness of Building Operations team

lessons learned

Limitations

- Level of granularity of metering
 More granularity would allow us to pinpoint problems more easily but digesting ±400 meters has proved very tedious
- Extensive monitoring means a lot of extra activities that aren't core business e.g., meter maintenance, annual verification of equipment, etc.

- Recurring cost
 to maintain new assets, pay for
 software fees, coordinating activities,
 etc.
- Hardware and software doesn't forgo the need for brain power

lessons learned

On the Roadmap

- Finish implementing revised HVAC schedules
- Address occupancy detection, ventilation and temperature set points through retrocommissioning
- Better predict steam and power demand
- Peak shaving and load shedding
- Continuous building optimization?

thank you

Jerome Conraud

Eng., MASc., CEM

Energy Manager Utilities & Energy Mgmt McGill University

jerome.conraud@mcgill.ca 514-398-5870

Take a peek at our energy dashboard!

mcgill.pulseenergy.ca

http://sheaf1.wpengine.netdna-cdn.com/wp-content/uploads/2012/03/Mcgill_ArtsBuilding_original.jpe