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ABSTRACT

Depletion calculations for nuclear reactors model the dynamic coupling between

the material composition and neutron flux and help predict reactor performance and

safety characteristics. In order to be trusted as reliable predictive tools and inputs

to licensing and operational decisions, the simulations must include an accurate

and holistic quantification of errors and uncertainties in its outputs. Uncertainty

quantification is a formidable challenge in large, realistic reactor models because of

the large number of unknowns and myriad sources of uncertainty and error.

We present a framework for performing efficient uncertainty quantification in

depletion problems using an adjoint approach, with emphasis on high-fidelity calcu-

lations using advanced massively parallel computing architectures. This approach

calls for a solution to two systems of equations: (a) the forward, engineering system

that models the reactor, and (b) the adjoint system, which is mathematically related

to but different from the forward system. We use the solutions of these systems to

produce sensitivity and error estimates at a cost that does not grow rapidly with

the number of uncertain inputs. We present the framework in a general fashion and

apply it to both the source-driven and k-eigenvalue forms of the depletion equations.

We describe the implementation and verification of solvers for the forward and ad-

joint equations in the PDT code, and we test the algorithms on realistic reactor

analysis problems. We demonstrate a new approach for reducing the memory and

I/O demands on the host machine, which can be overwhelming for typical adjoint

algorithms. Our conclusion is that adjoint depletion calculations using full transport

solutions are not only computationally tractable, they are the most attractive option

for performing uncertainty quantification on high-fidelity reactor analysis problems.
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NOMENCLATURE

ANL Argonne National Laboratory

BOEC Beginning of equilibrium cycle

CDS Convergent-divergent shuffling

DAE Differential-algebraic equation

DFEM Discontinuous finite-element method (spatial discretization)

DG Discontinuous Galerkin (spatial discretization)

EOEC End of equilibrium cycle

FIMA Fissions per initial metal atom

FLOP Floating point operation

GPT Generalized perturbation theory

I/O Input/Output

ICS Inward-convergent shuffling

MOEC Middle of equilibrium cycle

MSA Method of successive approximations

NSC Nuclear science center

ODE Ordinary Differential Equation

OS Operator Splitting

PDT Parallel or Particle Deterministic Transport Code

PS&E Predictive science and engineering

QOI Quantity of interest

RK Runge-Kutta (time discretization)

UQ Uncertainty quantification

UQSA Uncertainty quantification and sensitivity analysis
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1. INTRODUCTION

In this work, we describe the development, implementation, and testing of a

framework for estimating error and uncertainty in nuclear reactor depletion calcu-

lations. The depletion process in a reactor involves the time-dependent production

and destruction of nuclides due to fission, absorption, decay, and other interactions

with the free neutron field. Likewise, changes in the nuclide populations cause the

shape and intensity of the neutron field to evolve over the life cycle of the reactor.

Therefore, a depletion calculation requires the simultaneous simulation of the nu-

clide density field, the neutron field, and the interactions between them. Solutions

to these calculations help predict key reactor quantities of interest (QOIs), such

as power shape and fuel burnup, and serve as inputs to operational and licensing

decisions.

Our framework leverages the mathematical approach known as the adjoint tech-

nique. Using this technique, we develop a secondary, or adjoint, system of equations

that are related (in a well-defined mathematical sense) to the primary, or forward,

depletion equations. As we will demonstrate, the solutions to the forward and adjoint

equations can be combined efficiently to produce estimates of the inherent error and

uncertainty in predicted QOIs. Obtaining the adjoint solution, however, poses unique

computational and algorithmic challenges, especially as the fidelity and complexity

of the target problem increase and as advanced computer architectures evolve.

This dissertation describes our framework, which we develop with a general ap-

proach in which it is straightforward to add models of coupled physical phenomena.

We apply the framework to develop the adjoint equations corresponding to both

the source-driven and k-eigenvalue forward depletion formulations. We implement
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our framework in the PDT code, a massively-parallel discrete ordinates (SN) linear

transport solver[1, 2]. The implementation is tested using a series of verification prob-

lems, including comparisons to analytic and benchmark solutions. We then apply

our framework to make QOI predictions (with uncertainty) in larger reactor analysis

calculations, and we demonstrate the efficiency of our techniques for executing the

forward, adjoint, and UQ calculations on parallel architectures.

The fundamental contribution of this work is the rigorous development, imple-

mentation, and testing of an adjoint depletion solver that solves the full neutron

transport equation and scales to large, relevant problems. We argue that the adjoint

approach is the only viable option for producing uncertainty and error estimates

in these large problems, and the novelty in our implementation is in its design for

managing the computational challenges associated with high-fidelity solutions on

advanced parallel computers.

In the remainder of this introduction, we describe our task in the context of the

predictive science and engineering (PS&E) discipline. We discuss the challenges in

solving predictive science equations, and we motivate the need for accurate, reli-

able estimates of error and uncertainty in their solutions. We then provide more

background on the advantages and challenges of the adjoint approach. Finally, we

highlight the main accomplishments of this research and preview the remaining sec-

tions of the dissertation.

1.1 The Challenge of Uncertainty Quantification in Predictive Science

Calculations

Predictive science and engineering is a young but rapidly evolving discipline. Its

goal is straightforward: to (a) develop a model, often a set of integral or differential

equations, that represent a physical process, (b) apply mathematical and computa-
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tional techniques to solve the model equations and predict outcomes, or quantities

of interest, and (c) produce reliable estimates of the errors and uncertainties in the

predictions. Although we focus on scientific models, such as climate change and

aircraft design, less obvious applications, such as retail forecasting, stock market

analysis, and communications design are increasingly influential in our everyday ac-

tivities. Decision-makers are relying more and more on PS&E to inform policy, and

this trend is increasing with the advancement of computing technology. For the case

of high-consequence decisions and policy, the scientific community has undertaken a

tremendous effort to make PS&E a reliable tool. This research is in support of that

effort.

Uncertainty quantification and sensitivity analysis (UQSA), the general topic

of this dissertation, is an important ingredient for the assessment of accuracy and

reliability in predictive science calculations[3]. We maintain a broad definition for un-

certainty quantification and sensitivity analysis: they are the tasks of (a) recognizing

the inherent sources of error in a computational model, and (b) developing rigorous

methods for estimating and reporting the manifestation of that error in predictions

derived from the model. We discuss several possible sources of error (or uncertainty)

in this dissertation, including the effects of the discretization of a continuous model,

the propagation of uncertainty in physical properties or other parameters, and the

sensitivity of a model to its initial conditions. The effects of these uncertainties will

be estimated numerically using the adjoint approach, a mathematical technique that

we claim is most effective for producing UQ information in complex computational

science calculations.

We also address the processes of verification and validation, which are important

parts of any UQSA effort. Verification assesses the accuracy by which the equations

that describe a model are solved: are we solving the model equations correctly? The
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implementation of a mathematical approach on a computer requires extensive verifi-

cation to flush out software-related errors (or “bugs”) and to determine the behavior

of the implementation in certain regimes. Validation assesses the relevance and/or

applicability of a model to the particular prediction of interest: are we solving the

correct equations? Validation requires comparison with measured data from previous

events or experiments, from which inferences about model error are drawn. It also

requires expert judgment to determine whether the model error inferred from pre-

vious measurements will be quantitatively similar to the model error for the system

and QOIs being predicted. This judgment must be based on an understanding of

the simplifying assumptions in the model as they relate to the physical phenomena

of the previous measured systems and QOIs compared to the predicted system and

QOIs.

An extensive UQSA effort, including verification and validation, provides the sub-

stantive, quantitative evidence by which a computational model that simulates real-

world physics may be justified as an input to high-consequence decisions. Further,

UQSA lends insight into the dynamic behavior of complex systems. Such insight is

not available through experimentation alone, especially as multi-scale, multi-physics,

and high-dimensional problems become the norm.

Conceptually, it may seem that a completed UQSA study is the final step before

a predictive model can be useful for a particular application. In practice, however,

UQSA is a continuous effort that often raises several questions for each one it answers.

For large, relevant problems, the modeler (developer of the model) and decision

maker (user of the model) must consider a large set of factors that may introduce

uncertainty and error into predictions, and they must make choices about how to

address these factors. These choices, which may be informed by expert judgement

and budget/regulatory constraints, impact the validity of the model and therefore
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must be evaluated and justified. It is precisely the evaluation of these choices that is

an intractable task in full; most often it must be carried out in pieces, which requires

further justification.

Recently, the National Academy of Sciences[3] identified a list of sources of error

and uncertainty in predictive science calculations. Here, we review this list as it

applies to this dissertation:

1. Model validity: The first step in a PS&E study is choosing an appropriate

mathematical model for the physics of interest. This choice is driven by the

QOI, available resources, and expert judgement. Model discrepancy, or error

due to inadequacy of the model itself, is almost always present in complex

science and engineering calculations. The reactor analysis community gener-

ally believes that error in our model (the neutron transport equation coupled

with the nuclide production and depletion equations) is small relative to the

requirements of our applications. Thus, in our work, we will not address the

validity of the fundamental model equations.

2. Numerical accuracy: This is the accuracy to which the discrete problem is

solved. This includes choice of algorithms and tolerances, as well as the detec-

tion and elimination of code bugs. As mentioned above, verification is the task

of assessing this form of uncertainty, and we devote a section of this dissertation

to this effort.

3. Non-linearity of the underlying physics: Non-linearity is defined by they type of

interaction between the unknowns in a problem. If this interaction is complex,

random, or incompletely understood, simplifying assumptions, linearization

techniques, and/or iterative techniques may be required to solve the problem.

These strategies introduce errors that will propagate to the predicted QOI. As
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we will see, the depletion equations are non-linear.

4. Multi-scale phenomena: Multi-scale problems are those in which the defining

characteristics of the different components of the solution evolve (e.g. in time)

at different rates. Resolution of the rapidly evolving components requires larger

computational costs. The modeler typically decides that features below some

threshold scale will not be resolved, introducing error. In our case, we will see

that some components of the nuclide field evolve much faster than the neutron

field.

5. Level of fidelity: We define fidelity as the accuracy to which the underlying

problem is transformed to a discrete system. For example, curved geometries

may be represented with straight lines, and the number of line segments used

determines the fidelity. Decisions about fidelity are typically driven by the

scales of the solution. We address a number of fidelity issues in space, time,

energy, and angle, and we develop an estimator for the error introduced by

discretization in time.

6. Uncertainty in inputs: Parameters that define the problem may be uncer-

tain. For example, material properties may be difficult to measure and ini-

tial/boundary conditions may be inexactly known. Both forms of uncertainty

are present in the depletion problems we treat in this dissertation.

The modeler and decision maker must address each of these challenges within

the context of the particular problem. They cannot all be addressed at once, and

some may only be partially tractable. Thus, the UQSA task will never be complete.

It is aided, however, by advancements in computing technology and the extensive

research momentum generated by the community in recent years. These tools, along
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with the open recognition and documentation of sources of error, work to elevate the

credibility of predictive science in policy and decision-making arenas.

The nuclear engineering field, specifically reactor design, is one such arena. Many

reactors in the current fleet of US light-water reactors are undergoing power uprate

and life extension applications. Both require certification that the systems in the

plant can perform above and beyond the original design specifications, which is

made possible by more accurate and reliable uncertainty estimates. Moreover, UQSA

stands to make a large impact on the design and licensing processes of advanced or

next generation reactor designs. Many such designs rely on complex physics to

improve economic viability and safety/security performance. Simulations of these

plants require high-fidelity models and predictions, along with equally well-resolved

uncertainty and sensitivity information.

The most important physical phenomena in a reactor analysis calculation are neu-

tron transport, nuclide production/destruction, heat transfer, fluid flow, and struc-

tural mechanics/material performance. These physical phenomena are coupled – each

affects the others. Simultaneous simulation of each phenomenon with high fidelity is

a formidable challenge and an active area of research. In this dissertation, we present

a general, multi-physics-enabled framework for producing UQSA information. For

numerical results and analysis, however, we will focus on the interaction between a

neutron field and a nuclide density (or composition) field. An accurate model of this

interaction will help a reactor analyst balance fuel and poison concentrations. More

importantly, the quantification of uncertainties and an understanding of the system’s

sensitivities helps the analyst choose appropriate margins and improves the basis for

high-consequence design decisions.

Another challenge in performing UQSA on high-fidelity problems is the sheer

amount of computing horsepower required to complete the calculations. Over sev-
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eral decades, the capacity of leading-class machines, often measured in floating point

operations per second, or FLOPS, has increased exponentially due in part to ma-

chine size (cpu count) and in part to technological advancements and chip design.

These capabilities have opened more resources for UQSA experiments by allowing

modelers to increase both the quantity and fidelity of their simulations. In other

words, increases in computing capacity have enabled the PS&E community to in-

clude uncertainty and error estimates in their calculations.

More recently, however, design barriers, such as limits on transistor density, and

practical limits, such as cost and power consumption of the new machines, have

threatened to flatten the exponential trend in computing capacity. In order to con-

tinue to increase FLOP rates, machine designs are forced to increase the cpu count;

to control the power requirement, however, new machines have much lower RAM

availability per cpu. Today, the FLOP rate goal that the community is targeting

is the Exascale, or 1018 FLOPs per second, while leading class machines operate

at around 1016 FLOPs per second. Research towards major hardware technological

advancements is underway to bridge this gap.

The trend of higher cpu counts but less available memory has an immediate effect

on software design[4, 5]. Traditional algorithms that are less memory-conscious will

not scale (or maybe even fit!) on the proposed Exascale architectures. Instead,

software designers must pay much closer attention to the memory footprint of their

codes. As we will see in the next section and throughout this dissertation, the adjoint

technique is traditionally very memory intensive. Towards our goal of thinking about

implementations on new and future architectures, we propose and demonstrate a

novel technique for reducing the memory footprint of the adjoint technique applied

to transport problems.

8



1.2 The Adjoint Approach for Generating Uncertainty and Error Information

This section provides an overview of the adjoint method, the mathematical tech-

nique that we use to generate UQSA information. We give the steps towards the

formulation of an adjoint problem, but more importantly, we justify our argument

that the adjoint technique is the most viable option for uncertainty and sensitivity

studies in large, complex problems.

They distinguishing feature of the adjoint approach is the formulation of a sec-

ondary problem, sometimes called the adjoint or dual problem, that is mathemati-

cally related to the primary, or forward problem. This adjoint problem is formulated

such that its solution can be combined, or cross-correlated, with the forward solu-

tion to produce the desired UQSA information. In later sections, we provide the full

details of this formulation in a general framework. Here, we provide a flavor for how

the adjoint solution is used and for the computational challenges in formulating and

solving the adjoint problem.

The adjoint technique is best illustrated with an example problem. Consider a

QOI, Q(x), which depends on the solution x to a particular problem. For example,

if the problem is to compute a temperature field, the QOI could be the average

temperature of that field. Express this forward problem as

Ax = b,

where A is the operator that we have chosen to describe our problem and b is the

source term (e.g., heat source) driving our solution. So, the steps to computing Q

would be to (a) invert operator A, which gives x, and (b) compute Q(x).

Now consider the same problem, but define p as a set of parameters that define

the system. For our example temperature problem, these could be material heat
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capacities or boundary temperatures. In this case, our forward problem is to find

Q(x, p), where

A(p)x = b(p).

Suppose that our UQSA task is to compute the variation, or sensitivity, of Q with

respect to perturbations in each parameter p:

dQ

dp
=
∂Q

∂p
+
∂Q

∂x

dx

dp
.

We cannot evaluate this derivative directly because x depends on p in an unknown

way. We could estimate dx
dp

with a finite difference approximation:

dx

dp
≈ x1 − x0

δp
,

where x0 is the unperturbed solution satisfying A(p0)x0 = b(p0), and x1 is the per-

turbed solution, A(p0 + δp)x1 = b(p0 + δp). Note that this strategy requires one

inversion of the operator A for each perturbation in p; moreover, the estimated sen-

sitivities are subject to a first-order error in δp, the magnitude of which may be

difficult to estimate.

The adjoint approach is an alternative to the finite difference approach. It defines

an adjoint operator A† and adjoint source b† that form the adjoint problem

A†(p)x† = b†(p).

The operator A† typically has the same flavor as the forward operator A and therefore

carries a similar cost to invert; the source term b† is derived from the form of the

QOI. The relationship of both operators to their counterpart in the forward problem
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depends on the characteristics of the problem and the mathematical techniques used

in the model. If we can invert A† to produce x†, then our QOI sensitivity can be

expressed as

dQ

dp
=
∂Q

∂p
− x†∂Ax

∂p
+ x†

∂b

∂p
.

We can evaluate each of these terms, as they are simply partial derivatives. This

expression requires both x and x†, so the computational cost is on the order of two

inversions of A.

Here is the crucial point: this sensitivity expression holds for every p in the

problem. Whereas the finite difference estimator required an extra inversion of A

for each p, the adjoint approach requires exactly one forward solve and one adjoint

solve, regardless of the size of p. To say it another way, the cost to produce our

desired UQ information using the adjoint approach is on the order of the cost of two

forward solves no matter the number of uncertain parameters.

In a nuclear engineering problem, for example, the parameter vector may contain

all cross sections for all materials, decay constants, fission yields, branching ratios,

initial conditions, etc. It is not difficult to imagine a parameter vector with tens of

thousands of entries. The same dimensionality is found in most physical problems of

importance. This is why the adjoint approach is attractive: it provides UQSA infor-

mation at a fixed computational cost. As we will see, the mathematics behind the

approach are not based on approximations or assumptions, as in the finite difference

approach, providing a rich network of research and theory. We will also show that

the adjoint solution provides a way to estimate error in addition to sensitivity, again

at a fixed cost. Thus, the adjoint technique is an attractive UQSA approach for our

problems of interest.

From a computational perspective, the adjoint approach carries a unique set of
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challenges, some of which may be illustrated in our example problem. First, the

adjoint problem typically carries the same complexities as the forward problem. For-

mulation of the adjoint operator A† may be challenging in a multi-physics environ-

ment, a task we facilitate in this dissertation using a very general approach. Also,

the adjoint operator may also be difficult to solve, requiring additional or more spe-

cialized numerical methods and software. This is certainly true in this dissertation,

as much additional software is required to form the operator Jacobians and partial

derivatives that appear in the adjoint and sensitivity equations.

The second and most formidable challenge in solving the adjoint equations is

a matter of logistics: the forward solution is required to form the operators and

source terms in the adjoint equation. We will see that A† is often a linearization

about Ax and therefore contains x in general. Similarly, b† may contain x. The

sensitivity equation certainly requires both x and x†. For small problems, making

the forward solution available during the adjoint solve is not a memory burden on

the host machine. For problems with millions of unknowns, perhaps at different

time steps, simply storing the forward solution in memory is not an option. Instead,

schemes are available for “checkpointing” and recomputing the forward solution as

necessary.

Schemes for managing access to the forward solution require considerable software

development (and the verification and testing that comes along with it). We devote

a significant amount of this dissertation to our implementation of these schemes. In

particular, we develop and demonstrate a family of schemes that take advantage of

a dimensionality reduction in the forward solution. This results in large efficiency

gains over traditional algorithms for large problems on large numbers of processors,

making the adjoint approach a feasible option for depletion problems using the full

transport equation.
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To summarize, the adjoint approach can provide sensitivity and error information

at a computational cost that does not scale according to the number of uncertain

dimensions. It is based on sound mathematical techniques and has been applied in

many fields for a number of years. Its implementation may require significant soft-

ware development and testing; hence the subject of this dissertation. For dedicated

UQSA studies on problems with many unknowns and many uncertain parameters,

however, we argue that this development cost is outweighed by the theoretical ad-

vantages and efficiency of the adjoint approach.

1.3 Main Contributions of this Research

We faced a number of theoretical and computational challenges through the

course of this research. Our solutions and strategies for attacking these challenges led

to a number of major accomplishments and contributions to the science community.

We highlight these accomplishments as follows:

• We overview a framework for deriving a system of adjoint equations corre-

sponding to a general system of forward, engineering equations. This abstract

formalism, which appears more frequently in mathematics communities than

in the nuclear engineering community, provides the form of the adjoint equa-

tions as well as expressions for estimating QOI sensitivity and numerical error

estimates.

• We apply our framework to the equations describing depletion in an operating

nuclear reactor and show that the resulting equations are identical to those

adjoint equations developed in earlier nuclear engineering literature.

• We focus on solving the forward and adjoint depletion equations using the fully

angular dependent transport equation, and doing so efficiently for high-fidelity
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problems on large processor counts. Transport-depletion solutions with adjoint

functionality are not widely reported in the literature to date because they pose

large computational challenges.

• We describe and implement a family of checkpointing schemes that can drasti-

cally reduce the memory and I/O load on the host machine. Our simple scaling

study shows that the new schemes do decrease memory and I/O costs with-

out increasing the overall time to solution significantly. Our conclusion is that

high-fidelity problems on memory-limited architectures must use some variant

of our checkpointing strategy to achieve efficient scaling performance.

• We apply our depletion-perturbation framework to a traveling wave bench-

mark problem and to simulations of the Nuclear Science Center reactor at

Texas A&M. Results indicate that the uncertainty quantification information

produced in these simulations is accurate and will be useful to ongoing research

efforts within the department.

1.4 A Preview of the Remaining Sections

In this section, we posed the depletion problem within the larger context of

predictive science and engineering. We discussed the need for detailed, rigorous un-

certainty quantification and sensitivity analysis in order to justify the validity of

computational results, and we described the formidable challenges facing a modeler

tasked with UQSA for large, realistic problems. We then introduced the adjoint tech-

nique, illustrated its efficiencies, and discussed the challenges in its implementation.

In Sec. 2, we cover a range mathematical and computational preliminaries that

will serve as the foundation to our adjoint formalism and its implementation in the

PDT code. Section 3 gives the adjoint formalism in full detail. We begin the section
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with a derivation of a completely general set of adjoint equations, and we show

exactly how the adjoint variable is used to produce both QOI sensitivity and error

estimates. We then apply the formalism to both the source-driven and k-eigenvalue

formulation of the depletion equations and give the specific adjoint equations for

each case.

In Sec. 4, we provide an overview of the implementation of the adjoint formalism

in the PDT code. This includes a description of the solvers and classes that perform

the adjoint time integration. This section is also where we introduce our new check-

pointing schemes, complete with memory footprint and computational cost analysis.

In Sec. 5, we describe and give examples from our verification strategy. Our ap-

proach is to verify in a hierarchical manner, wherein the building blocks are verified

independently first, and then combined in a series of increasingly complex problems.

Section 6 describes the application of our adjoint formalism to two larger, rel-

evant reactor analysis problems. The first is a benchmark problem simulating a

one-dimensional traveling wave reactor. We find that our results to the forward

problem are consistent with that of other codes, and we enhance the benchmark

problem by simulating a number of UQ studies using our adjoint capability. The

second problem is related to an effort to simulate the NSC-TRIGA reactor at Texas

A&M University. Here we use our adjoint capabilities to calibrate beginning-of-life

configurations. The last section of Sec. 6 describes a scaling study for testing the fam-

ily of checkpointing schemes as both problem size and processor count are increased.

Our efficient checkpointing schemes outperform the traditional schemes.

Finally, in Sec. 7, we provide concluding remarks and recommendations for further

research.
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2. PRELIMINARIES

This section covers theoretical foundations and computational techniques upon

which the remainder of the dissertation will build. In the first section, we introduce

the neutron transport and Bateman equations, which together compose the depletion

equations, and give both the source-driven and k-eigenvalue forms of the forward

depletion problem. In Sec. 2.2, we show that the depletion equations fall into the

general class of differential-algebraic equations.

In Sec. 2.3, we introduce the Runge-Kutta time discretization method, one of two

methods we use for marching the unknowns through time. This section describes

permutations of the Runge-Kutta schemes, including those that provide error es-

timates for uncertainty propagation. In Sec. 2.4, we give the form of the adjoint

transport and Bateman operators that we will employ throughout the dissertation.

We also give a more detailed example problem that motivates the use of the adjoint

approach.

Sections 2.5 and 2.6 review the relevant theoretical and computational work avail-

able in the literature. In the former, we discuss the issue of adjoint consistency for

both spatial and temporal discretization. We make a slight extension of the temporal

piece to account for our differential-algebraic system. In the latter, we review liter-

ature in from the nuclear engineering community in the fields of perturbation and

depletion perturbation theory. Although the community has a rich history in the

application of adjoint technology, advances in recent years have been less frequent,

and very few reports include high fidelity, full transport solutions.
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2.1 The Depletion Equations

The depletion equations describe the interaction of free neutrons with the nuclei

of the materials in a nuclear reactor. Free neutrons are those that are not bound to

a nucleus; each moves with a certain speed and direction among the nuclei around

them. Eventually, these neutrons either escape the reactor or interact with a nucleus

by either an absorption or scattering process. An absorption reaction may be accom-

panied by the emission of other particles from the nucleus and results in a change in

the number of protons (Z) and or neutrons (A) in the nucleus. A scattering reaction

does not result in change of A or Z, but may change the speed and direction of the

neutron. A depletion calculation keeps track of these interactions over some opera-

tional cycle and models the resulting changes in the free neutron concentration and

material densities in the reactor.

The neutron field is modeled by the transport equation, which we write in oper-

ator form as

1

v

∂ψ

∂t
+H(N, p, t)ψ = G(N, p, t)ψ + S(p, t). (2.1)

The angular neutron flux, ψ(r, E,Ω, t), is the speed, v(E), times the number of

neutrons at time t and spatial location r with energy E moving in direction Ω, per

unit of volume, energy, and solid angle. The operators H and G depend on N , the

list of unknown nuclide densities, and p, a set of parameters or inputs that define

or are required to solve the system. The term S(p) is included for completeness

and represents a prescribed volumetric neutron source, possibly varying in time,

space, energy, and angle. We have not included the contribution of delayed neutrons

because, during approximately steady state reactor operation, the delayed-neutron

source can be included in the fission term (Gψ) with negligible error.
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The operator H contains an advection term, a collision term, and a scattering

term, written as

H(N, p, t)ψ ≡Ω · ∇ψ(r, E,Ω, t) + Σt(N,E, t)ψ(r, E,Ω, t)

−
∫
dE ′

∫
dΩ′Σs(N,E

′ → E,Ω′ → Ω, t)ψ(r, E ′,Ω′, t).

Here, Σt and Σs are the (spatially varying) macroscopic total and scattering cross

sections, respectively, defined as

Σt(N,E, t) =
K∑
k=1

Nk(r, t)σt,k(E)

Σs(N,E
′ → E,Ω′ → Ω, t) =

K∑
k=1

Nk(r, t)σs,k(E
′ → E,Ω′ → Ω)

where K is the number of nuclides present at r and σk is the microscopic cross section

of nuclide k. The operator G is the fission source term, written as

G(N, p, t)ψ ≡ χ(N,E, t)

4π

∫
dE ′νΣf (N,E

′, t)

∫
dΩ′ψ(r, E ′,Ω′, t).

Here χ(E) is the energy spectrum of fission neutrons. In a mixture of materials, we

adopt a number density weighted approximation for χ, namely

χ(N,E, t) =

∑K
k=1 Nk(r, t)χk(E)∑K

k=1 Nk(r, t)
.

This approximation affords computational savings over the exact representation,

which is fission-production weighted. Finally, the term νΣf is the macroscopic fission

neutron production cross section, defined in terms of the local isotopic composition
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as

νΣf (N,E, t) =
K∑
k=1

Nk(r, t)νk(E)σf,k(E).

There are two important steady-state versions of Eq. (2.1). The source-driven

form is

H(N, p, t)ψ −G(N, p, t)ψ = S(p, t),

which may be appropriate for subcritical reactor or shielding calculations. The k-

eigenvalue form is

H(N, p, t)ψ = λ(t)G(N, p, t)ψ,

where λ =
1

keff

, and keff is the multiplication factor of the system. For reactor

calculations, this formulation must be accompanied by a power constraint to specify

the magnitude of the flux. This is the proper model for the simulation of the usual

approximately steady-state reactor operation.

The Bateman equations, which describe the growth, decay, and transmutation of

the nuclide densities are written simply as

dN

dt
= B(ψ, p, t)N (2.2)

where again N is the list of unknown nuclide densities, which vary as a function

of space, and B is an operator that describes mechanisms by which these densities

change (i.e. absorption, decay, etc.). In our model, there is a set of equations (2.2)

at each spatial point in the reactor. Each of these sets of equations are independent

because we do not model spatial migration of nuclides (as may happen with gaseous

fission products, for example). The Bateman operator at a given position depends

on the neutron flux and the parameter vector at that position. We treat the variable

N as a list of elements in the reactor, each of which varies as a function of space.
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Equations (2.1) and (2.2), the fully time-dependent nonlinear burnup equations,

have been the subject of extensive effort in theory and software development over the

last 50 years[6, 7, 8]. Because the neutron flux generally changes on time scales much

longer than the time scales of some nuclide densities (the system is stiff), nearly all

solution schemes employ some variant of the quasi-static approximation[9]. In this

approximation, the neutron flux is decomposed into a shape and amplitude function.

The shape function is obtained using a steady-state version of Eq. (2.1); here, we

employ the k-eigenvalue form of the equation, which is most relevant to reactor

design and analysis. The change in the flux amplitude in time over each cycle is

assumed to follow a particular functional dependence. Early work assumed that the

amplitude function was constant over each in a series of time steps[10, 11]. Later

work generalized this idea to allow for an amplitude function that is linear in time[12].

The quasi-static, k-eigenvalue form of the burnup equations is

dN

dt
= B(ψ, p)N (2.3)

H(N, p)ψ =
1

keff

G(N, p)ψ (2.4)

A(t)P (N, p, t)ψ − P(t) = 0, (2.5)

where Eq. (2.5) is a normalization of the flux magnitude to a prescribed power level

P . Unknown A is the normalization factor and the operator P is an integration of

the energy produced via fission (we ignore energy production via capture and other

reactions):

P (N, p, t) =

∫
dV

∫
dE

∫
dΩψ(r, E,Ω)

K∑
k=1

Nk(r, t)Ef,kσf,k(E),

where Ef,k is the energy per fission for nuclide k.
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Formally, Eqs. (2.3)–(2.5) constitute a system of differential-algebraic equations

(DAEs), as one subset of the unknowns (N) satisfies time-differential equations while

the others (ψ) satisfy a constraint that is algebraic in time. DAEs will be discussed

in more detail in the following section. The UQSA problem is to solve this system

for reactor quantities of interest (QOIs) and to provide some estimate for the error

in the QOIs as well as the sensitivity of the QOIs with respect to the individual

parameters in p.

The depletion equations, (2.3) and (2.4), are characterized by a high-dimensional

p. For example, in a modest calculation tracking 20 nuclides, 50 energy groups,

and 100 weighting spectra, the number of cross sections required as inputs to the

problem will number over one million! If our task is to compute the sensitivity of

a handful of QOIs with respect to a large number of parameters, we cannot rely on

finite-difference or brute-force sampling methods because of the prohibitively large

number of code runs that would be required to cover the high-dimensional space of

p.

This data dimensionality challenge motivates the use of adjoint-based methods,

which can provide sensitivity information at the cost of just a few forward solves per

QOI[13]. Further, the adjoint formalism provides expressions for propagating local

truncation error estimates into global QOI error estimates, which should be more

accurate and efficient than error-extrapolation methods. We provide an introduction

to adjoint methods in Sec. 2.4.1 and develop a general, multi-physics enabled adjoint

framework in Sec. 3.1.
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2.2 Differential-Algebraic Equations

We typically model the behavior of physical systems using differential equations.

Ordinary or partial differential equations are perhaps the most familiar formulation,

where a set of coupled equations, each of which contain a time derivative, describe

the trajectory of a solution vector given an initial condition. Many physical and

engineering systems, however, involve constraints on the solution that do not appear

in time-differential form. For example, consider the movement of point masses that

are constrained to a geometric surface. The equations of motion would describe the

movement of the masses; an algebraic constraint would confine the movement to the

surface.

Systems consisting of both differential and algebraic equations are called differential-

algebraic systems or systems of differential-algebraic equations (DAEs). We will en-

counter DAEs throughout this dissertation. The DAE system can be written most

generally as[14]

F (ẋ, x, t) = 0, x(t0) = x0,

where x is the solution and ẋ is its derivative with respect to time. We find it more

useful to discuss the DAE in terms of its differential and algebraic components, which

we denote with superscripts d and a, respectively. The expanded version is

F (ẋ, x, t) =

 F d(ẋ, x, t)

F a(ẋ, x, t)

 =

 ẋd − fd(ẋ, x, t)

fa(ẋ, x, t)

 = 0

x(t0) = x0.

(2.6)

Here we have assumed a semi-explicit form, where the algebraic constraints are sep-

arated explicitly from the differential equations. The differential variables, xd, are
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those whose time derivatives appear in the governing equations; the algebraic vari-

ables, xa, will vary in time, but their time derivatives do not appear explicitly as

terms in the governing equations. We will use this notation throughout the deriva-

tions in this research.

Similar to ODEs and PDEs, the community has developed a range of techniques

for integrating the DAE system in time. We will integrate the DAE system using half-

explicit Runge-Kutta methods, described in the following section. The solvability of

a system depends on its differentiation index, often defined as the number of times

that the algebraic constraint must be differentiated with respect to t in order to write

an explicit function for ẋa in terms of x and t. Index-1 systems involve fairly intuitive

solution techniques, while higher-order systems require more complex analysis. For

this dissertation, we will only be concerned with index-1 DAEs. In particular, the

index-1 property ensures that ∂Fa

∂xa
is invertible, and we will assume that ∂Fa

∂ẋ
= 0 and

∂F d

∂ẋd
= I.

Take the k-eigenvalue burnup equations, Eqs. (2.3) and (2.4), as an example.

Indeed ∂Fa

∂xa
is invertible, as we can solve the k-eigenvalue transport equation (with

normalization) uniquely for ψ, no time derivatives appear in the transport equation

(∂F
a

∂ẋ
= 0), and only the time derivative for density unknown i appears in Bateman

equation i, giving ∂F d

∂ẋd
= I.
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2.3 Runge-Kutta Time Discretization Methods

This section introduces the Runge-Kutta method, which is a family of time dis-

cretization procedures for solving the general initial value problem

 y′ = f(t, y), t ∈ [t0, tf ]

y(t0) = y0

(2.7)

for the unknown function y(·). These methods imitate a general Taylor series method

to achieve higher-order accuracy in the integration of problem (2.7) by using clever

combinations of the steady-state residual f(t, y) as opposed to the burdensome task

of successive differentiation of f(t, y)[15]. The general form of an s-stage Runge-

Kutta method over time step t ∈ [tn tn+1], tn+1 = tn + h, is

ytn+1 = ytn + h
s∑
i=1

bif(ti, yi) (2.8)

where

ti = tn + cih

yi = ytn + h
J∑
j=1

aijf(tj, yj), (2.9)
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and the coefficients bi, ci, and aij define the particular Runge-Kutta method. These

coefficients are often summarized in a Butcher tableau:

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 . . . ass

b1 b2 . . . bs

If the diagonal entries in the aij matrix are zero (or, equivalently, if J < i in Eq.

(2.9)), the method is called explicit because the computation of the stage vector, yi

depends only on stage vectors, yj, j < i. The simplest explicit Runge-Kutta method

is the familiar forward (explicit) Euler method. Its Butcher tableau is

0 0

1

which simply results in

y1 = ytn , → ytn+1 = ytn + hf(tn, y1).

A very common explicit Runge-Kutta method is the 4th order rule, RK4, with
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Butcher tableau

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6.

In the case that the steady state residual is a function of t only (i.e. problem (2.7) is

a simple integral), the RK4 method is equivalent to Simpson’s numerical integration

scheme.

Implicit Runge-Kutta methods (aii 6= 0) may offer improved stability at the cost

of a linear or possibly nonlinear solve for the stage vector yi at each stage. If the

function f is linear in y, that is f(t, y) = A(t)y, then the following linear system

must be solved at each stage:

[
I − aiihA(ti)

]
yi = ytn + h

i−1∑
j=1

aijf(tj, yj).

In the case that f(t, y) is nonlinear in y, each stage requires a Newton (or other

nonlinear) solve for the stage vector. This may drastically increase the required

number of function evaluations of f(·). Thus, the computational cost of evaluating

the steady state residual often limits the choice of implicit Runge-Kutta methods that

may be applied to expensive, nonlinear systems. The simplest implicit Runge-Kutta

method is the backward Euler method, with Butcher tableau

1 1

1
.
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Another familiar implicit Runge-Kutta method is the trapezoidal rule. Its Butcher

tableau is

0 0

1 1/2 1/2

1/2 1/2

,

which results in the equations

y1 = ytn

y2 − h
2
f(tn+1, y2) = ytn + h

2
f(tn, y1)

→ ytn+1 = yn +
h

2

(
f(tn, y1) + f(tn+1, y2)

)
.

Embedded Runge-Kutta methods offer an efficient scheme for estimating local

truncation error in the time integration by producing two estimates for the solution

at the end of the time step: ytn+1, which is of order accuracy p, and ŷtn+1, which

is of order (p + 1). The Butcher tableau for an embedded Runge-Kutta scheme is

written as

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 . . . ass

b1 b2 . . . bs

b̂1 b̂2 . . . b̂s

.

The key is that the lower precision estimate, y, is generated with the same set of ci

and aij coefficients that were used to compute ŷ, requiring no extra evaluations of

f(·). Only the stage weights, bi, are different.
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If the order p approximation is used to continue the integration, then the local

truncation error may be estimated to O(hp+2) accuracy by

etn+1 ≈ ytn+1 − ŷtn+1.

It is possible to use this estimate in an adaptive time scheme, as follows. Define a

tolerance for the error in component k of the solution as

τk ≡ Ak + max
[
y0,k, yk

]
·Rk

where Ak and Rk are the desired absolute and relative tolerances. We can then

compute some kind of integral error norm, possibly

||e|| =

√√√√ 1

N

N∑
k=1

(
ek
τk

)2

.

If we define an optimal time step size, hopt, as the time step for which ||e|| = 1

(in some sense, each component achieves its tolerance exactly), and write the error

behavior as ||e|| = C · hp+1, then a ratio of the current and optimal error leads to an

approximation for the optimal time step:

hopt = h

(
1

||e||

) 1
p+1

.

In practice, a safety factor may be applied to this equation in order to increase the

acceptance rate of new time steps and to prevent the time step size from changing

too rapidly. This procedure is repeated until the error is below the desired tolerance.

Once this occurs, the local truncation error etn+1 is retained for later use[16]. Alter-

natively, one can move forward with the integration using the order-(p+ 1) accurate
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solution. In this case, there is no estimate of the local truncation error, but the

difference y − ŷ may still be used for time step control.

We employ a slight modification of the explicit Runge-Kutta scheme to integrate

the DAE system, Eq. (2.6). These schemes are called half-explicit or half-implicit

Runge-Kutta schemes[17]. For example, a half-explicit scheme would integrate the

depletion equations, Eqs. (2.3) and (2.4), over time step t ∈ [tn−1, tn] as follows:

Nn = Nn−1 + h
s∑
i=1

biBiNi

Hiψi − λiGiψi = 0

Ni = Nn−1 + h
i−1∑
j=1

aijBjNj.

(2.10)

Here operator and unknown subscripts i and j indicate evaluation at time ti and tj,

respectively. These schemes are called half-explicit because the differential variables

are advanced using explicit time-stepping, but the algebraic constraint is satisfied at

each stage.

Alternatively, a half-implicit scheme would advance the depletion equations as

Nn = Nn−1 + h

s∑
i=1

biBiNi

Hiψi − λiGiψi = 0[
I − aiihBi−1

]
Ni = Nn−1 + h

i−1∑
j=1

aijBjNj.

(2.11)

Here, the differential variable is advanced implicitly, but the operator to be inverted

depends on the explicit algebraic variable. The half-explicit schemes maintain the

same order of accuracy for index-1 DAEs as they would for ODEs, while the half-
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implicit schemes may converge sub-optimally because the algebraic variable is lagged

one stage behind[18].

A modification of the first-order version of these schemes allows for Bateman sub-

cycling, or the advancement of the Bateman equations over each stage on a time-scale

shorter than h. Denote this time step as ĥ and assume n̂ = h

ĥ
is an integer. Then

the first-order, sub-cycled semi-explicit scheme is

Nn = Nn−1 + h
[
BN

]
Hnψn − λnGnψn = 0

Nk = Nk−1 + ĥBnNk−1, k = 1 . . . n̂, N0 = Nn[
BN

]
=

1

n̂

n̂∑
k=1

BnNk.

(2.12)

The corresponding first order sub-cycled semi-implicit scheme is

Nn = Nn−1 + h
[
BN

]
Hnψn − λnGnψn = 0[
I − ĥBn

]
Nk = Nk−1, k = 1 . . . n̂, N0 = Nn[

BN
]

=
1

n̂

n̂∑
k=1

BnNk.

(2.13)

These schemes provide the capability for shorter Bateman time steps. They are

also self-adjoint, per the conditions we will develop in the next section, so the same

scheme will be used to integrate the adjoint equations backwards in time. As for

accuracy, they are limited to first order; they can be interpreted as a midpoint rule

for the Bateman variables (the derivative is averaged over the time step), but remain

a first order rule for the flux variables. Higher order schemes with sub-cycling will

30



converge sub-optimally for this same reason. We do note, however, that in the limit

of a constant flux, these schemes will achieve second order convergence.

We find that the first order semi-implicit scheme with Bateman sub-cycling is

most appropriate for the depletion equations because some components of the Bate-

man solution (e.g. fission products or short-lived nuclides) tend to evolve on time

scales much shorter than the flux variable. State-of-the-art large scale power reac-

tor analysis problems may track 300-400 isotopes, many with very short half-lives,

requiring implicit schemes and/or flexibility for very short Bateman time steps. The

flux shape and magnitude, however, tends to change on much longer time-scales, es-

pecially during steady-state operation. Thus, we find the semi-implicit scheme with

Bateman sub-cycling to be the most attractive for the larger simulations.
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2.4 The Adjoint Bateman and Neutron Transport Operators

In this section we discuss the adjoint operators corresponding to forward oper-

ators that appear in the depletion equations. We first walk through an example

adjoint problem to illustrate the value in the approach. We then derive the adjoint

transport and fission operators and show that the adjoint transport equation can be

solved using the same machinery that solves the forward problem. We end with a

discussion of the adjoint Bateman operator, which we write in a particular form that

is consistent with the dimensionality of the transport and fission operators.

The transport operator, H −G, is a linear and real-valued function; therefore, it

has an adjoint operator, H†−G†, which is defined with respect to a particular inner

product over the space on which H − G operates. Similarly, the Bateman equation

is linear and therefore has a well defined adjoint operator. The inner product that

defines these adjoint operators will be an integral over independent variables, and we

will use bracket notation, 〈〉P , to denote integration over the variables P . Although

we do not treat nonlinear operators in detail in this dissertation, we do note that

there is no guarantee of existence of an operator that is adjoint to a forward, nonlinear

operator. The conditions under which one or more adjoint operators may exist is

described in more detail in Sec. 3.4.

2.4.1 An example problem to motivate the adjoint approach

We begin by re-writing the continuous neutron transport and fission operators:

Hψ −Gψ = Ω · ∇ψ (r, E,Ω) + Σt(r, E)ψ (r, E,Ω)

−
∫
dE ′

∫
dΩ′Σs(r, E

′ → E,Ω′ · Ω)ψ(r, E ′,Ω′)

− χ(E)

4π

∫
dE ′νΣf (r, E

′)

∫
dΩ′ψ(r, E ′,Ω′), (2.14)
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Unless otherwise noted, each integral is over the full range of its independent variable.

We may wish to invert this operator in order to solve for the neutron flux as a function

of angle, space, and energy resulting from a fixed source, S0 (r, E,Ω), in a subcritical

system. The problem to be solved is

 Hψ −Gψ = S0 r ∈ D

ψ = 0 on
{
r ∈ ∂D

∣∣∣ Ω · n̂ < 0
}
≡ Γ−.

. (2.15)

Suppose further that we wish to operate on the solution of this problem to compute

some quantity of interest (or QOI, or response, or metric) that is of particular interest

to our system. We’ll denote the QOI with R and assume that it may be written as

an integral of ψ times some function L over phase space

R =

∫
dr

∫
dE

∫
dΩL (r, E,Ω)ψ (r, E,Ω)

=
〈
Lψ
〉
E,D,Ω

. (2.16)

Note that the function L may be piece-wise defined to specify the QOI. For example,

if R is fast-group reaction rate in a sub volume of the detector (a fission chamber

response, possibly), the function L may be defined as

L =

 Σf (r, E) r in detector volume, E > ED

0 otherwise

Now consider the optimization problem of searching for the source configuration

(that is, distribution of S0), such that R is minimized or maximized. For each

realization of S0, problem 2.15 must be re-solved, potentially a costly (in terms of

computer time) undertaking. We will now show that the adjoint is particularly well
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suited for this kind of problem, as it requires just a single transport solve to solve

for all possible R resulting from any source configuration.

The adjoint equation will be derived using a variational-like approach[19] in

preparation for a more traditional variational derivation in a later section. We begin

by defining an inner product over all the independent variables or phase space (space,

energy, and angle)

〈
f, g
〉
E,D,Ω

≡
∫
D
dr

∫ ∞
0

dE

∫
4π

dΩf (r, E,Ω) g (r, E,Ω) .

Adjoint operators, H† and G† are defined such that they satisfy the following ex-

pression involving our inner product:

〈
ψ†, Hψ

〉
E,D,Ω

=
〈
ψ,H†ψ†

〉
E,D,Ω

, (2.17)〈
ψ†, Gψ

〉
E,D,Ω

=
〈
ψ,G†ψ†

〉
E,D,Ω

. (2.18)

These equations must hold for all functions ψ and ψ† that live in the correct space

for transport solutions in the given problem. Next we take the inner product of ψ†

with a re-arrangement of Eq. (2.15) to write

〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

= 0.

We subtract this quantity from the right hand side of our QOI equation and substi-
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tute Eqs. (2.17) and (2.18) as follows

R =
〈
Lψ
〉
E,D,Ω

−
〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

=
〈
Lψ
〉
E,D,Ω

−
〈
ψ†, Hψ

〉
E,D,Ω

+
〈
ψ†, Gψ

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

(2.19)

=
〈
Lψ
〉
E,D,Ω

−
〈
ψ,H†ψ†

〉
E,D,Ω

+
〈
ψ,G†ψ†

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

=
〈
ψ,L −H†ψ† +G†ψ†

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

. (2.20)

Equation (2.20) reveals that if H†ψ† −G†ψ† = L, then R =
〈
ψ†, S0

〉
E,D,Ω

. In other

words, with one inversion of the (yet-to-be-defined) adjoint operators to obtain the

adjoint flux, the QOI may be computed exactly for any source configuration with

just one integral over the phase space!

With a little more work, we can use the adjoint variable to derive UQ information.

Say we are interested in the sensitivity of R with respect to a list of parameters, p,

which, for example, may contain all the group-wise microscopic total, fission, and

scattering cross sections. Mathematically, we define sensitivity as a total derivative,

dR
dp

. We begin by applying this derivative (using the chain rule) to Eq. (2.19) and
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manipulating:

dR
dp

=
∂R
∂p

+
∂R
∂ψ

dψ

dp

=
∂

∂p

{〈
Lψ
〉
E,D,Ω

−
〈
ψ†, Hψ

〉
E,D,Ω

+
〈
ψ†, Gψ

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

}
+

∂

∂ψ

{〈
Lψ
〉
E,D,Ω

−
〈
ψ†, Hψ

〉
E,D,Ω

+
〈
ψ†, Gψ

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

}
dψ

dp

=
〈∂Lψ
∂p

〉
E,D,Ω

−
〈
ψ†,

∂
[
H −G

]
ψ

∂p

〉
E,D,Ω

+
〈
ψ†,

∂S0

∂p

〉
E,D,Ω

+
∂

∂ψ

{〈
Lψ
〉
E,D,Ω

−
〈
ψ,H†ψ†

〉
E,D,Ω

+
〈
ψ,G†ψ†

〉
E,D,Ω

+
〈
ψ†, S0

〉
E,D,Ω

}
dψ

dp

=
〈∂Lψ
∂p

〉
E,D,Ω

−
〈
ψ†,

∂
[
H −G

]
ψ

∂p

〉
E,D,Ω

+
〈
ψ†,

∂S0

∂p

〉
E,D,Ω

+
〈
L −H†ψ† +G†ψ†

〉
E,D,Ω

dψ

dp
.

We now must consider the computability of each term. The operator Jacobians with

respect to p (e.g. ∂Lψ
∂p

) are straightforward, although sometimes cumbersome, to

compute using partial differentiation. The total derivative, dψ
dp

, on the other hand,

is the full Jacobian derivative of the “forward” solution vector ψ with respect to

each parameter. This is hopeless to know or compute, as it is at least as difficult

to compute as dR
dp

! This term can be eliminated, however, if the adjoint variable

satisfies H†ψ†−G†ψ† = L, the same adjoint equation as in the previous example. If

we can solve this equation for ψ†, we are left only to evaluate

dR
dp

=
〈∂Lψ
∂p

〉
E,D,Ω

−
〈
ψ†,

∂
[
H −G

]
ψ

∂p

〉
E,D,Ω

+
〈
ψ†,

∂S0

∂p

〉
E,D,Ω

(2.21)
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to compute a derivative with respect to each entry in p. Again, these terms may

be cumbersome to compute, but they are straightforward. It is imperative to note,

however, that the expression requires a solution to both the forward problem (ψ),

and the adjoint problem, (ψ†). In addition, it is important to note that one inner

product in the equation for dR
dp

involves both the forward and adjoint solution. Thus,

the cost to compute the full gradient of the QOI with respect to p is one forward

solve, one adjoint solve, and one evaluation of Eq. (2.21) per entry in p, and the

computation involves products of the forward and adjoint solutions.

Compare this cost to an approach based on finite-difference approximations to

dR
dp

. The most naive example requires a “base solve”, using an unperturbed p vector,

and another “perturbed solve” for each entry in p. Other sampling algorithms are

available, but all scale linearly (or worse) with the number of entries in p. This

property of the adjoint approach, along with other theory to be developed later, is

the basis of our claim that this approach is the most effective for producing UQSA

information in high-dimensional problems (that is, problems with a long list of p’s

and a high cost for evaluating the governing equations).

2.4.2 The form of the adjoint operators corresponding to the forward transport

equation

Using these benefits as motivation, we now derive the form of the continuous

adjoint operators, H† and G†, given the inner product defined as the integral over

all energy, space, and direction. The task will be to manipulate the expressions

ψ†Hψ and ψ†Gψ to move the adjoint flux to the right side of the operators. We first

examine the advection term in H. Writing the inner product in terms of the phase
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space integrals,

〈
ψ†Ω · ∇ψ

〉
E,D,Ω

=

∫
dE

∫
dΩ

∫
drψ†Ω · ∇ψ,

and using the following result from integration by parts,

∫
D
drψ†Ω · ∇ψ =

∫
D
dr∇ ·

(
ψ†Ωψ

)
−
∫
D
drψΩ · ∇ψ†

and an application of the divergence theorem,

∫
D
dr∇

(
ψ†Ωψ

)
=

∮
Γ

ψ†ψ
(

Ω · n̂
)
dA

we write

〈
ψ†Ω · ∇ψ

〉
E,D,Ω

= −
〈
ψΩ · ∇ψ†

〉
E,D,Ω

+
〈∮

Γ

ψ†ψ
(

Ω · n̂
)
dA
〉
E,Ω

.

If we expand the boundary term in the previous equation into incident and exiting

components

〈∮
Γ

ψ†ψ
(

Ω · n̂
)
dA
〉
E,Ω

=

∫
dE

∫
Ω·n̂<0

dΩ

∮
Γ

ψ†ψ
(

Ω · n̂
)
dA

+

∫
dE

∫
Ω·n̂>0

dΩ

∮
Γ

ψ†ψ
(

Ω · n̂
)
dA

and assume that the vacuum condition given in problem (2.15) holds, we can elimi-

nate the incident (Ω · n̂ < 0) contribution. If we also impose a zero-exiting condition

on the adjoint solution, that is

ψ† = 0 on r ∈ Γ+
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the boundary term is eliminated all-together. For the time being, we will maintain the

vacuum and zero-exiting conditions on the forward and adjoint solution, respectively.

The resulting analysis holds for other boundary conditions, but Eq. (2.17) must be

modified to include the boundary term. In summary, we showed that the adjoint to

the advection term has a minus sign (this is known as a skew adjoint operator).

The reaction term in H is clearly self-adjoint because
〈
ψ†,Σψ

〉
=
〈
ψ,Σψ†

〉
.

Moving to the scattering term, we write and manipulate our inner product:

〈
ψ† (r, E,Ω)

∫
dE ′

∫
dΩ′Σs(r, E

′ → E,Ω′ · Ω)ψ(r, E ′,Ω′)
〉
E,D,Ω

=

∫
dr

∫
dE

∫
dΩψ† (r, E,Ω)

∫
dE ′

∫
dΩ′Σs(r, E

′ → E,Ω′ · Ω)ψ(r, E ′,Ω′)

=

∫
dr

∫
dE

∫
dΩ

∫
dE ′

∫
dΩ′ψ(r, E ′,Ω′)Σs(r, E

′ → E,Ω′ · Ω)ψ† (r, E,Ω)

=

∫
dr

∫
dE

∫
dΩ

∫
dE ′

∫
dΩ′ψ(r, E,Ω)Σs(r, E → E ′,Ω · Ω′)ψ†

(
r, E ′,Ω′

)
=
〈
ψ (r, E,Ω)

∫
dE ′

∫
dΩ′Σs(r, E → E ′,Ω · Ω′)ψ†(r, E ′,Ω′)

〉
E,D,Ω

.

A very similar series of manipulations gives the adjoint operator corresponding to

the fission multiplication term in G, namely

〈
ψ† (r, E,Ω)χ(E)

∫
dE ′νΣf (r, E

′)

∫
dΩ′ψ(r, E ′,Ω′)

〉
E,D,Ω

=
〈
ψ (r, E,Ω) νΣf (r, E)

∫
dE ′χ(E ′)

∫
dΩ′ψ†(r, E ′,Ω′)

〉
E,D,Ω

.

We have now defined the form of each term in the adjoint operator H† − G† such
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that Eqs. (2.17) and (2.18) hold true:

H†ψ† −G†ψ† = −Ω · ∇ψ† (r, E,Ω) + Σt(r, E)ψ† (r, E,Ω)

−
∫
dE ′

∫
dΩ′Σs(r, E → E ′,Ω · Ω′)ψ†(r, E ′,Ω′)

− νΣf (r, E)

∫
dE ′χ(E ′)

∫
dΩ′ψ†(r, E ′,Ω′), (2.22)

There are a number of possible interpretations of this result. One that is partic-

ularly interesting is that the physics appear to occur backwards. For example, the

(−) sign in front of the transport term can be interpreted to mean that the neutrons

transport in the (−Ω) direction. Similarly, the scattering and fission source terms

contain integrals over final energies, as opposed to the initial energies[20], so that if

a physical problem has only downscattering (for example), the corresponding adjoint

problem has only upscattering.

2.4.3 Modification of the forward solver to solve for the adjoint flux

At first glance, it appears that the inversion of the operator in Eq. (2.22) may

require substantial modifications to the transport code used to invert the forward

problem. For example, the energy transfer operations must be transposed in order

to integrate over final energies. This is not particularly worrisome. The change of

sign in front of the transport term is more daunting, however, because it will directly

affect the spatial discretization schemes used in the code. In this section, we will

show that it is possible to avoid the latter complication by “tricking” the code into

solving for ψ†(−Ω).
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We begin by writing the SN version of the adjoint operators for direction k:

H†ψ†k =− Ωk · ∇ψ†(r, E,Ωk) + Σt(r, E)ψ†(r, E,Ωk)

−
[
S†ψ†(Ω)

]
(Ωk)−

[
F †ψ†(Ω)

]
(Ωk)

where
[
S†ψ(Ω)

]
(Ωk) and

[
F †ψ(Ω)

]
(Ωk) are the adjoint scattering and adjoint fission

source contributions to direction k, respectively. We now make a change of variable

by letting Ωm = −Ωk and ψ̃†(Ω) = ψ†(−Ω) and insert these changes into our adjoint

operator expression,

H†ψ†m = Ωm · ∇ψ̃†(r, E,Ωm) + Σt(r, E)ψ̃†(r, E,Ωm)

−
[
S†ψ†(Ω)

]
(−Ωm)−

[
F †ψ†(Ω)

]
(−Ωm). (2.23)

We now take a closer look at the source terms. We first show that
∫

4π
f(Ω)dΩ =∫

4π
f(−Ω)dΩ. The definition of an integral over all angles is

∫
4π

f(Ω)dΩ =

∫
2π

∫ 1

−1

f(ω, µ)dµdω

where µ is the polar cosine and ω is the azimuthal angle in the x− y plane. We now

denote Ω′ = −Ω, defined by

µ′ = −µ,

ω′ =

 ω + π 0 ≤ ω ≤ π

ω − π π ≤ ω ≤ 2π

which gives dµ′ = −dµ and dω′ = −dω. Now making the change of variable in the
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integration,

∫
4π

f(Ω)dΩ =

∫
2π

∫ 1

−1

f(ω, µ)dµdω

=

∫
2π

∫ −1

1

−f(ω′, µ′)dµ′dω′

=

∫
2π

∫ 1

−1

f(ω′, µ′)dµ′dω′

=

∫
4π

f(Ω′)dΩ′

Using this result and the assumption that the fission source is isotropic in angle, we

can write

[
F †ψ†(Ω)

]
(−Ωm) =

[
F †ψ̃†(Ω)

]
(Ωm).

We now turn to the scattering source. The typical technique in SN codes is to write

this source in terms of an expansion in the spherical harmonic functions, Y m
` (Ω).

The expansion is

[
S†ψ†(Ω)

]
(Ωm) =

∫ ∞
0

∞∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`(E → E ′)Y m

` (Ωm)

∫
4π

ψ†(Ω, E)Y m
` (Ω)dΩdE,

where σ` is the `th moment of the scattering cross section. Referring back to Eq.

(2.23), we wish to write the contribution of the scattering source to −Ωm. Mak-

ing this change, noting that Y m
` (−Ω) = (−1)`Y m

` (Ω), and again using the result
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∫
4π
f(Ω)dΩ =

∫
4π
f(−Ω)dΩ, our representation becomes

[
S†ψ†(Ω)

]
(−Ωm)

=

∫ ∞
0

∞∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`(E → E ′)(−1)`Y m

` (Ωm)∫
4π

ψ†(Ω, E)Y m
` (Ω)dΩdE

=

∫ ∞
0

∞∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`(E → E ′)(−1)`Y m

` (Ωm)∫
4π

ψ†(−Ω, E)Y m
` (Ω)(−1)`dΩdE

=

∫ ∞
0

∞∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`(E → E ′)Y m

` (Ωm)∫
4π

ψ†(−Ω, E)Y m
` (Ω)dΩdE

=
[
S†ψ̃†(Ω)

]
(Ωm)

In other words, the scattering source contribution to angle −Ωm computed using

ψ(Ω) is equal to the scattering source contribution to angle Ωm computed using

ψ(−Ω). This result is predicated on the assumption or that the scattering cross

section depends only on the cosine of the angle between the incident and exiting

directions.

Substituting these results back into Eq. (2.23), we write

H†ψ†m = Ωm · ∇ψ̃†(r, E,Ωm) + Σt(r, E)ψ̃†(r, E,Ωm)

−
[
S†ψ̃†(Ω)

]
(Ωm)−

[
F †ψ̃†(Ω)

]
(Ωm)

and note that, with the exception of the transpose of the energy transfer processes,

this operator is identical to the forward transport operator! The catch is that the
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solution, ψ̃†m, is actually the adjoint angular flux in the direction −Ωm, a distinction

which must be kept in mind by the modeler or user of the code. Nonetheless, the

same machinery used to invert Eq. (2.14) may be used to invert the adjoint operator,

saving time and effort in the development and verification process.

2.4.4 The adjoint Bateman operator

The adjoint Bateman operator is simple and straightforward to derive. We must

first recall that the nuclide densities are treated as a list of densities, per nuclide,

per cell; that is, we assume a constant density of each element in each spatial cell.

Keeping this in mind, we first introduce a new operator b which satisfies

〈
bN
〉
E,D,Ω

= BN.

This notation will allow us to work with respect to the same inner product as the

transport equation. The continuous form of b corresponding to the time-derivative

of unknown nuclide density Ni in spatial cell c is

(
bc(E,Ω, r)N

)
i

=

∑
j λj→iNjc − λiNic〈〉

E,D,Ω

+

∑
j Fcm

b

(
σj→i(E)ψ(E,Ω, r)Njc − δijσa,i(E)ψ(E,Ω, r)Nic

)
〈〉
Dc

(2.24)

where Fcm
b =1.0e-24 is the conversion from cm2 to b, and Dc is the domain of cell c.

If we apply
〈〉

E,D,Ω
to each term in this equation, we arrive at the familiar Bateman
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terms, which are angle and energy integrated and cell averaged:

∫ ∞
0

dE

∫
4π

dΩ

∫
D
dV


∑

j λj→iNjc − λiNic〈〉
E,D,Ω

 =
∑
j

λj→iNjc − λiNic

∫ ∞
0

dE

∫
4π

dΩ

∫
D
dV


∑

j Fcm
b

(
σj→i(E)ψ(E,Ω, r)Njc − δijσa,i(E)ψ(E,Ω, vr)Nic

)
〈〉
Dc


=
∑
j

Fcm
b

∫ ∞
0

dE

σj→i(E)
∫
D dV Njc

∫
4π
dΩψ(E,Ω, r)〈〉

Dc


−
∫ ∞

0

dE

σa,i(E)
∫
D dV Nic

∫
4π
dΩψ(E,Ω, r)〈〉

Dc


=
∑
j

Fcm
b Njc

∫ ∞
0

dE

σj→i(E)
∫
Dc dV

∫
4π
dΩψ(E,Ω, r)〈〉

Dc


−Nic

∫ ∞
0

dE

σa,i(E)
∫
Dc dV

∫
4π
dΩψ(E,Ω, r)〈〉

Dc


=
∑
j

Fcm
b Njc

∫ ∞
0

dEσj→i(E)

∫
4π

dΩψc(E,Ω)

−Nic

∫ ∞
0

dEσa,i(E)

∫
4π

dΩψc(E,Ω)

where ψc is a cell-averaged angular flux. The discrete version of Eq. (2.24) is

(
bcgqN

)
i

=

∑
j λj→iNjc − λiNic〈〉

E,D,Ω

+

∑
j Fcm

b

(
σg,j→iψegqNjc − δijσa,giψegqNic

)
〈〉
Dc

(2.25)

where ψegq is the angular flux defined on the cell elements.
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Because each term in BN =
〈
bN
〉
E,D,Ω

is angle and energy integrated and spa-

tially averaged over each cell, BN has no dependence in these variables. Therefore

〈
N †BN

〉
E,D,Ω

=
〈
NB†N †

〉
E,D,Ω

=
〈
NBTN †

〉
E,D,Ω

,

or, the adjoint operator of B with respect to our phase-space integration inner prod-

uct is just the transpose of B. In later sections, we will also find the following

relationship from integration by parts to be useful:

∫ tf

t0

{
N †

dN

dt
−
〈
N †BN

〉
E,D,Ω

}
dt

=
[
N †N

]tf
t=t0
−
∫ tf

t0

{
N
dN †

dt
+
〈
N †BN

〉
E,D,Ω

}
dt (2.26)
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2.5 Adjoint Consistency of Spatial and Temporal Discretizations

An important distinction may exist between the continuous adjoint of a particular

linear operator and the adjoint derived by first applying a discretization to the linear

operator and then taking the adjoint of the resulting set of discrete equations. The

former is called the continuous adjoint problem, and the latter is referred to as the

discrete adjoint problem. For obvious reasons, a combination of the operator and

the discretization scheme determine whether the continuous and discrete adjoint

problems are one in the same. If they are the same, the discretization is said to be

an adjoint-consistent discretization of the operator.

Adjoint-consistent discretizations inherit the smoothness properties of the con-

tinuous adjoint solution and have important implications for convergence rates. For

example, an adjoint-consistent linear discontinuous spatial discretization will ap-

proach the continuous adjoint solution at O(h3) while an inconsistent discretization

will converge at a suboptimal O(h2), where h is the characteristic mesh size. In

the following subsections, we show that the discontinuous Galerkin (DG) spatial dis-

cretization scheme is adjoint-consistent, and we review the conditions necessary for

adjoint consistency in a Runge-Kutta scheme.

2.5.1 Discontinuous Galerkin spatial discretization

In this subsection, we review a publication by Hartmann[21], which shows that

the linear DG method applied to the neutron transport equation is indeed an adjoint

consistent discretization. Consider the transport problem written as

 ∇ · Ωψ + σtψ = qtot (r, E,Ω) + S0 r ∈ D

ψ = ψB on r ∈ Γ−
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where again Γ− =
{
r ∈ ∂D

∣∣∣ Ω · n̂ < 0
}

, the scattering and fission sources have been

combined into a single source term (a representation consistent with a typical sweep

algorithm), and we have temporarily allowed for non-vacuum Dirichlet boundary

conditions. Now let D be subdivided into shape-regular mesh elements κ ∈ τh and let

Vh ⊂ V be the discrete space of linear functions on τh. The linear DG discretization

can then be written in terms of a bilinear operator B : V × V → R as follows: Find

ψh ∈ Vh such that

B(ψh, v) = L(v) ∀v ∈ V (2.27)

where L : V → R is a linear operator containing the source term and possibly

boundary forcing terms. Now consider the task of computing a response, written

previously as

R(ψ) =
〈∫
D
Lψ
〉
E,Ω

.

We have shown that this QOI leads to the adjoint problem

 H†ψ† = L r ∈ D

ψ† = 0 on r ∈ Γ+

The discretization Eq. (2.27) is said to be adjoint consistent if the continuous (exact)

adjoint, ψ† ∈ V satisfies

B(w,ψ†) = R(w) ∀w ∈ V. (2.28)

In what follows, we give the bilinear form of the DG discretization applied to the
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forward problem and show that this discretization is indeed adjoint consistent. We

adopt the following notation: let κi and κj be adjacent elements in τh sharing edge

∂κ with unit normal n̂ij pointing from κi to κj. Then, for the scalar valued function

g, let gk denote the value of g on ∂κ taken from the inside of element k, k = i, j.

The form of B(·, ·) is found by multiplying the transport operator by the test

function v, integrating over D, and applying integration by parts:

B(ψh, v) =

∫
D
∇ · (Ωψh)v +

∫
D
σtψhv

=

∫
D
−Ωψh · ∇v +

∫
D
σtψhv +

∑
κi∈τh

∫
∂κ−\Γ

(Ω · n̂ij)ψjhv
i

+
∑
κi∈τh

∫
∂κ+

(Ω · n̂ij)ψihvi. (2.29)

Note that we have applied the upwinding rule to the scheme on the inflow boundaries

of each element, and we have moved a boundary forcing term to the right-hand-side

such that

L(v) =

∫
D
qtotv +

∫
D
S0v −

∫
Γ−

(Ω · n̂)ψBv.

The first term in Eq. (2.29) may be broken into a sum of integrals over the elements,

as follows

∫
D
−Ωψh · ∇v =

∑
κi∈τh

∫
κi
−Ωψh · ∇v.

If we apply integration by parts to each of these local integrals (and do not apply
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upwinding), we have

∫
κi
−Ωψih · ∇v =

∫
κi
∇ · (Ωψh)v −

∫
κi
∇ · (Ωψhv)

=

∫
κi
∇ · (Ωψh)v −

∫
∂κ−

(Ω · n̂ij)ψihvi −
∫
∂κ+

(Ω · n̂ij)ψihvi

=

∫
κi
∇ · (Ωψh)v −

∫
∂κ−\Γ

(Ω · n̂ij)ψihvi

−
∫

Γ−

(Ω · n̂)ψhv −
∫
∂κ+

(Ω · n̂ij)ψihvi.

Substituting this result back into Eq. (2.29) we obtain

B(ψh, v) =

∫
D
∇ · (Ωψh)v +

∫
D
σtψhv −

∑
κi∈τh

∫
∂κ−\Γ

(Ω · n̂ij)[[ψ]]vi

−
∫

Γ−

(Ω · n̂)ψhv, (2.30)

where the notation [[g]] is used to denote the jump in the function g across ∂κ, gi−gj.

It is instructive at this point to show that this discretization is consistent with the

continuous transport equation. Rewrite the system B(ψh, v) = L(v) by combining

terms with like-integrals as

∫
D
RD(ψh)v +

∑
κi∈τh

∫
∂κ−\Γ

R−(ψh)v +

∫
Γ−

RB(ψh)v = 0,

where RD, R−, and RB are interior, interior edge, and boundary residuals, respec-

tively. For our transport equation, we have

RD = qtot + S0 −
(
∇ · (Ωψh) + σtψh

)
r ∈ D

R− = (Ω · n̂ij)[[ψh]] r ∈ ∂κ

RB = (Ω · n̂
(
ψh − ψB

)
r ∈ Γ−
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Each residual evaluated at ψh = ψ vanishes. In other words, the linear DG dis-

cretization is said to be consistent because Eq. (2.27) evaluated at the continuous

solution is satisfied, that is

B(ψ, v) = L(v) ∀v ∈ V.

We can now move towards the proof of adjoint consistency for the DG discretization

of the transport equation. We re-write the adjoint operator into sweep-algorithm

form

−∇ · (Ωψ†) + σtψ
† = L+ q̃†tot,

with boundary condition ψ†(r = Γ+) = 0. Note that we have gathered the adjoint

scattering and adjoint fission operators into a shorthand q̃†tot. The bilinear form of

the left hand side of this equation is equivalent to the first two terms in Eq. (2.29).

To incorporate the adjoint boundary conditions, we make the substitution

∑
κi∈τh

∫
∂κ−\Γ

(Ω · n̂ij)ψjhv
i = −

∑
κi∈τh

∫
∂κ+\Γ

(Ω · n̂ij)ψihvj,
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to write

B(ψ, vh) =

∫
D
−Ωψ · ∇vh +

∫
D
σtψvh −

∑
κi∈τh

∫
∂κ+\Γ

(Ω · n̂ij)ψivjh

+
∑
κi∈τh

∫
∂κ+

(Ω · n̂ij)ψivih

=

∫
D
−Ωψ · ∇vh +

∫
D
σtψvh +

∑
κi∈τh

∫
∂κ+\Γ

(Ω · n̂ij)ψ[[vh]]

+

∫
Γ+

(Ω · n̂)ψvh. (2.31)

Forming our interior, interior edge, and boundary residuals again, we find

R†D(vh) = L+ q̃†tot + Ω · ∇vh − σtvh r ∈ D

R− = (Ω · n̂ij)[[vh]] r ∈ ∂κ

RB = (Ω · n̂)vh r ∈ Γ+.

Again, each of these residuals vanishes when evaluated at the continuous (exact)

adjoint solution, vh = ψ†. Therefore, the continuous adjoint satisfies the bilinear

form

B(w,ψ†) = L(w) ∀w ∈ V

and the DG method for the neutron transport equation is adjoint-consistent.

2.5.2 Runge-Kutta time discretization

When we derived Eq. (2.26), we leveraged the continuous relationship

∫ tf

t0

N †
dN

dt
dt =

[
N †N

]tf
t0
−
∫ tf

t0

dN †

dt
Ndt
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to develop the adjoint Bateman equation. It is yet to be shown, however, that this

relationship holds after discretization in time. Specifically, in order for the discrete

versions of this relationship to hold, the scheme must preserve the corresponding

relationship over each time step t ∈ [tk, tk+1]

∫ tk+1

tk

N †
dN

dt
dt =

[
N †N

]tk+1

tk
−
∫ tk+1

tk

dN †

dt
Ndt.

Then a simple summation over k will telescope into the continuous relationship. In

this section, we derive the conditions under which a Runge-Kutta time discretization

scheme (covered in Sec. 2.3) will preserve this property.

To introduce some notation, we begin with a quick re-derivation of the continuous

adjoint equations for a general non-linear system of equations. Consider the task of

solving the system

x′ = f(t, x), t ∈ [t0, tf ]

x(t0) = x0

(2.32)

and computing the sensitivity of some quantity of interest, Q ≡ Q
(
x(tf )

)
, a func-

tional of the terminal solution, to a vector of parameters p. To derive an adjoint

equation, we introduce a multiplier x† for the state equations, integrate the prod-

uct over time, subtract the result from the QOI to form a Lagrangian, and apply

integration by parts:

L = Q = Q−
∫ tf

t0

x†
(
x′ − f(t, x)

)
dt

= Q−
[
x†x

]tf
t0

+

∫ tf

t0

(x†)′xdt+

∫ tf

t0

x†f(t, x)dt
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Now the derivative of the Lagrangian is

d

dp
L =

dQ

dp
=

[
∇xQ

dx

dp
+∇pQ− x†

dx

dp

]
tf

+ x†
dx

dp

∣∣∣∣
t0

+

∫ tf

t0

[
(x†)′ + x†∇xf(t, x)

]dx
dp
dt+

∫ tf

t0

x†∇pf(t, x)dt,

where∇x and∇p indicate partial derivatives. Now, if x† satisfies the following system

of equations,

(x†)′ = −x†∇xf(t, x), t ∈ [t0, tf ]

x†(tf ) = ∇xQ
(2.33)

then we have an adjoint-based expression for the full gradient (sensitivity) of Q w.r.t.

the parameter vector:

dQ

dp
= ∇pQ+ x†

dx

dp

∣∣∣∣
t0

+

∫ tf

t0

x†∇pf(t, x)dt.

We now move to an analysis of the discretized version of system 2.32 using a

general s-stage Runge-Kutta method. The analysis follows the work of Hager[22],

who was interested in similar properties for optimal control problems. The discrete

system in time step t ∈ [tk, tk+1] is

x′k =
s∑
i=1

bif
(
ti, yi

)
(2.34)

yi = xk + hk

s∑
j=1

aijf
(
tj, yj

)
(2.35)

x(t0) = x0

where the yi are stage vectors, hk is the time step (may be non-uniform), and x′k is
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the usual forward difference expression, x′k = xk+1−xk
hk

. We note that the stage vectors

are different in each time step, but we do not explicitly write this dependence.

We will assume that the discrete integration by parts rule holds, i.e.

N∑
k=1

x†kx
′
k =

[
x†x
]tN+1

t1
−

N∑
k=1

(x†k)
′xk,

and proceed by introducing multiplier x† for Eq. 2.34 and multiplier y† for a re-

arrangement of Eq. (2.35) written as

0 =
yj − xk
hk

−
s∑
i=1

ajif
(
ti, yi

)
≡ y′j −

s∑
i=1

ajif
(
ti, yi

)

The discrete Lagrangian is

L = Q−
N∑
k=1

{
x†k

[
x′k −

s∑
i=1

bif
(
ti, yi

)]
+

s∑
j=1

y†j

[
y′j −

s∑
i=1

ajif
(
ti, yi

)]}

= Q−
[
x†x
]tN+1

t1
+

N∑
k=1

{
(x†k)

′xk + x†k+1

s∑
i=1

bif
(
ti, yi

)
+

s∑
j=1

y†j

s∑
i=1

ajif
(
ti, yi

)
−

s∑
j=1

y†jy
′
j

}

We now take the full derivative by applying the following operator to L :

dL

dp
= ∇xL

dx

dp
+∇yL

dy

dp
+∇pL .
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The terms are

∇xL
dx

dp
=

[[
∇xQ− x†

]dx
dp

]
tN

+
N∑
k=1

{[
(x†k)

′ +
s∑
j=1

y†j
hk

]dx
dt

}

∇yL
dy

dp
=

N∑
k=1

{[
x†k+1

s∑
i=1

bi∇yf
(
ti, yi

)
−

s∑
j=1

y†j
hk

+
s∑
j=1

y†j

s∑
i=1

aji∇yf
(
ti, yi

)]dy
dp

}

∇pL =
N∑
k=1

{
x†k+1

s∑
i=1

bi∇pf
(
ti, yi

)
+

s∑
j=1

y†j

s∑
i=1

aji∇pf
(
ti, yi

)}

From these terms we extract the following adjoint equations:

(x†k)
′ = −

s∑
j=1

y†j
hk

or x†k − x
†
k+1 =

s∑
j=1

y†j , (2.36)

x†tN = ∇xQ(tN), (2.37)

y†i = hk

[
x†k+1bi +

s∑
j=1

y†jaji

]
∇yf

(
ti, yi

)
. (2.38)

We now require the (fairly weak) assumption that bj > 0, j = 1 . . . s, which is

true for most Runge-Kutta schemes. Given this, define a variable

Γi ≡ x†k+1 +
s∑
j=1

aji
bi
y†j

and rewrite Eq. (2.38) as

y†i = hkbiΓi∇yf
(
ti, yi

)
. (2.39)
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If we sum Eq. (2.39) over i and substitute from Eq. (2.36), we find

x†k = x†k+1 + hk
∑
i

biΓi∇yf
(
ti, yi

)
.

Similarly, if we multiply Eq. (2.39) by
aij
bj

, sum over i, and substitute our expression

for Γ, we write

s∑
i=1

aijy
†
i

bj
= Γj − x†k+1 = hk

s∑
i=1

aij
bj
biΓi∇yf

(
ti, yi

)

After some re-arrangement of these equations, we find an effective Runge-Kutta

scheme for the adjoint problem, Eq. (2.33)

x†k = x†k+1 + hk
∑
i

biΓi∇yf
(
ti, yi

)
(2.40)

Γi = x†k+1 + hk

s∑
j=1

aji
bi
bjΓj∇yf

(
tj, yj

)
(2.41)

x†tN = ∇xQ(tN) (2.42)

In other words, if the following Butcher tableau is used to define the forward

Runge-Kutta method

c a

b
,

then the true adjoint Runge-Kutta method is defined by

c ā

b̄
,
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where

b̄ = b

āij =
aji bj
bi

.
(2.43)

Further studies in the field of optimal control show that the adjoint Runge-Kutta

scheme maintains the same order of accuracy and linear stability properties of the

forward scheme[23, 24].

These authors also point out that some schemes are symmetric in the sense that

the forward and adjoint coefficients are the same. For example, consider solving the

forward and adjoint problems


dx
dt

= f(t, x)

x(t0) = x0

,


dx†

dt
= −x†∇xf(t, x) ≡ −H(t, x, x†)

x†(tf ) = x†f

using the RK4 scheme (see Eq. (E.3)). Using rules (2.43), we find

b =

[
1
6

1
3

1
3

1
6

]
aij =



0 0 0 0

1
2

0 0 0

0 1
2

0 0

0 0 1 0



b̄ =

[
1
6

1
3

1
3

1
6

]
āij =



0 1 0 0

0 0 1
2

0

0 0 0 1
2

0 0 0 0


If we explicitly write the expression to advance the forward solution over time step
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k, we find

xk+1 = xk + hk

[
1

6
f(t, x1) +

1

3
f(t, x2) +

1

3
f(t, x3) +

1

6
f(t, x4)

]

where

x1 = xk

x2 = xk +
1

2
hkf(t, x1)

x3 = xk +
1

2
hkf(t, x2)

x4 = xk + hkf(t, x3)

Similarly, the expression to advance the adjoint solution backward through time

step k is

x†k = x†k+1 + hk

[
1

6
H(t, x, x†1) +

1

3
H(t, x, x†2) +

1

3
H(t, x, x†3) +

1

6
H(t, x, x†4)

]

where

x†1 = x†k+1 + hkH(t, x, x†2)

x†2 = x†k+1 +
1

2
hkH(t, x, x†3)

x†3 = x†k+1 +
1

2
hkH(t, x, x†4)

x†4 = x†k+1

The symmetry is in that the progression across the time-step uses the same linear

combination of stage vectors and derivatives in each case. In other words, if the
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modeler applied the forward Runge-Kutta rule (b and aij) to this modified adjoint

problem for variable x̃†


dx̃†

dt
= H(t, x, x̃†)

x̃†(t0) = x†f

,

the following would be true: x†(t0) = x̃†(tf ). The explicit-Euler (Eq. (E.1)) and

modified-Euler (Eq. (E.2)) schemes also satisfy this symmetry property.
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2.6 Review of the Literature Leading to the Current State of the Art in Depletion

Perturbation Theory

In Sec. 2.4.1, we derived a sensitivity equation, Eq. (2.21), which provides the

gradient of a reactor QOI with respect to a list of parameters at the cost of a single

forward and single adjoint transport solve. This is a form of perturbation theory, and

the nuclear engineering literature is rich with the its development and application

to light water reactor analysis. The earliest cited work is often a technical report

from the Manhattan project[25]; perturbation theory in its current form, however,

began to appear in conference proceedings papers and nuclear engineering textbooks

around two decades later[26, 27, 28, 29]. Later, authors worked to formalize the

adjoint technique and analyze the mathematical properties of sensitivity theory[30,

31, 32, 33]. Work by these and many other authors showed that the formulation

of an adjoint transport equation yields valuable expression for reactor quantities of

interest as well as first-order-accurate expressions for the sensitivity of a QOI with

respect to cross sections or other parameters.

A number of reactor design codes, such as SCALE[34, 35] and CASMO-5[36],

encapsulate the formalism for computing both the QOI itself and its sensitivity with

respect to design parameters. Recent work has extended the sensitivity estimates

to higher-order accuracy [37] and has generalized the adjoint equations to include

feedback from other physics[38] using simple component-like coupling models.

Depletion perturbation theory extends the classic perturbation theory to in-

clude the dynamics of the Bateman equations. Pioneering work by Williams[39]

and Takeda/Umano[40] developed the equations that constitute a coupled forward

and adjoint depletion problem to produce sensitivity estimates for a select set of pa-

rameters. We will derive and discuss the adjoint depletion equations corresponding
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to both the source-driven and k-eigenvalue forward problems in full detail in later

sections. For now, we note that the adjoint equations form a DAE system and can

be written in a general way as

dN †

dt
= −B†N † + SN†(N,ψ, p, t)

H†ψ† − λG†ψ† = Sψ†(N,ψ
†, p, t).

Upon solving these equations, we are left with a sensitivity equation in the form of

dQOI

dp
=

∫ tf

t0

〈∂[QOI
]

∂p
+N †

∂
[
BN

]
∂p

+ ψ†
∂
[
Hψ −Gψ

]
∂p

〉
dt. (2.44)

The adjoint equations are very similar in structure to the forward equations. A major

challenge in solving them, however, is that the evaluation of the adjoint sources (SN†

and Sψ†) and the sensitivity equation require access to the solution of the forward

equations at each time step. Second, in the k-eigenvalue case the adjoint operator

(H†−λG†) is singular, which necessitates special techniques for the adjoint solution.

We will discuss the implications of these challenges and our algorithmic approaches

in the theory and implementation sections of this dissertation.

Although some of the early theory was developed for the general transport equa-

tion, most of the computational examples to date use the simpler diffusion approxi-

mation with a constant amplitude function across the depletion cycles. The nuclear

power industry successfully uses diffusion-based depletion perturbation theory to de-

velop specialized equations for fuel cycle and shuffling optimization. [41, 42, 43, 44,

45]. In 1988, Yang and Downar [46] developed the adjoint equations corresponding

to the burnup equations with the linear, but still diffusion-based, flux amplitude

approximation.
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Most reported present-day work still uses a diffusion approximation, however, and

does not discuss the algorithmic challenges of managing the demand for the forward

solution during the adjoint solve, a challenge that will only grow if the full angular-

dependent transport solution is required. Moreover, the authors that developed the

depletion perturbation theory do not mention its application for estimating global

error by propagating local truncation residuals; theory for doing so in other settings

is available from the fields of optimization and control[19, 47].
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3. THEORY

In this section we present the mathematical foundations of our approach to de-

pletion perturbation theory. Some of the work is extended or borrowed from other

fields and is applied to our nuclear engineering problem while other parts are, to the

best of our knowledge, original theory and work.

We begin with a detailed derivation of an adjoint framework corresponding to

the DAE system (2.6). We show that the adjoint variable can be used to propagate

local sensitivities and error estimates to total derivatives and global error estimates,

respectively. Borrowing from the fields of optimization and control, we maintain as

much generality in this derivation as possible. The result is a flexible framework that

facilitates the adjoint approach in a multi-physics modeling environment.

We then apply our framework to derive the specific adjoint equations correspond-

ing to the source-driven and k-eigenvalue depletion equations. We discuss our strat-

egy for integrating the adjoint and sensitivity equations, and we finish with examples

of the adjoint equations for three specific QOIs that appear in this dissertation as

well as for QOIs that do not immediately conform to our framework.
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3.1 A Variational Derivation of the Adjoint Equations Corresponding to

Parameter-Dependent DAE Systems

In this section, we derive the adjoint equations corresponding to the general,

parameter-dependent DAE system and the resulting adjoint-based expressions for

QOI sensitivity and error estimates. We recently published an article[48] containing

a similar analysis, which borrows from the work of Cao, Li, and Petzold[19, 49]. In

this report, we assumed a semi-discrete DAE system (that is, discretized in every

variable except time) and that the inner product defining the adjoint operators was

a vector dot product. This is a common assumption in the literature because it

provides linearized adjoint equations for the general non-linear system.

For this dissertation, however, our governing equations have a bi-linear property

which allows us to define the adjoint operators in terms of an integral inner product.

A central contribution of this work is a general approach for producing adjoint equa-

tions in a multi-physics modeling environment. Thus, in this section, we maintain a

general inner-product notation,
〈
f, g
〉

, to facilitate the modeler’s choice of available

inner products for the system of interest. Also, unless otherwise noted, the deriva-

tions that follow hold for continuous or discrete systems so long as the inner product

is appropriate.

For convenience, we re-produce system (2.6) in index-1 form and include the

explicit dependence on the parameter vector p:

F (ẋ, x, p, t) =

 F d(ẋ, x, p, t)

F a(ẋ, x, p, t)

 =

 ẋd − fd(x, p, t)

fa(x, p, t)

 = 0

xd(t0) = x0,

t ∈ [t0, tf ].

(3.1)
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Let us introduce notation that will carry through this section. Subscripts on opera-

tors indicate partial derivatives, i.e.:

Fp ≡
∂F

∂p
.

Subscripts on variables indicate full, functional derivatives, i.e.:

xp ≡
dx

dp
.

For operators, we will denote functional derivatives explicitly. For example, the ith

component of dF
dp

is defined as

dF

dp
≡ ∂F

∂p
+
∂F

∂N
Np +

∂F

∂ψ
ψp + · · · = lim

ε→0

{
F (p+ εei)− F (p)

ε

}
,

where ei is a vector of zeros except for a 1 in the ith component. Note that our form

of Eq. (3.1) has the property

Fẋ =

 F d
ẋd

F d
ẋa

F a
ẋd

F a
ẋa

 =

 I 0

0 0

 . (3.2)

Although it is not the most general formulation, this property holds for many engi-

neering systems and certainly for the depletion equations considered here.

Recall that our PS&E problem is to solve system (3.1) for x(t) and compute some

derived quantity of interest, Q. For now, we will assume that Q can be written as a

time-integrated functional of the depletion solution:

Q =

∫ tf

t0

〈
R(x, p, t)

〉
dt. (3.3)
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For much of this dissertation, we will investigate QOIs that depend only on the

depletion solution at t = tf . These QOIs are a special case of Eq. (3.3), and we

will discuss them below. The UQSA task is to compute estimates for the parametric

sensitivity of Q, dQ
dp

, as well as an estimate for the effect of different sources of error

on the prediction of Q, denoted ∆Q.

3.1.1 Adjoint-based QOI sensitivity estimates

In this subsection, we derive the adjoint equations corresponding to system (3.1)

and the adjoint-based expressions for computing dQ
dp

. We begin by forming a La-

grangian, or adjoined QOI

L =

∫ tf

t0

{〈
R(x, p, t)

〉
−
〈
λ, F

〉}
dt.

Note that if x satisfies F (x, p, t) = 0, then Q = L and dQ
dp

= dL
dp

. The variable λ plays

the role of a Lagrange multiplier and thus far is arbitrary; eventually we will place

constraints on λ that will define the adjoint system of equations.

Before moving forward, we must define notation related to the inherent difference

between the differential and algebraic parts of the system. First, λ naturally has dif-

ferential and algebraic components, λ = 〈λd, λa〉, that correspond to the differential

and algebraic components in x. Thus, the inner product
〈
λ, F

〉
may be more easily

understood as

〈
λ, F

〉
=
〈
λd, F d

〉
+
〈
λa, F a

〉
. (3.4)

Second, we give the chain rule in terms of the differential and algebraic components
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of x:

dR

dp
=
∂F

∂p
+
∂F

∂xd
xdp +

∂F

∂xa
xap. (3.5)

Application of this rule will determine the form of the differential and algebraic

adjoint equations below.

To form a sensitivity equation, we take the functional derivative of the Lagrangian

with respect to p. Using the chain rule, we find

dL
dp

=

∫ tf

t0

{〈
Rp

〉
+
〈
Rx

〉
xp −

∂

∂ẋ

〈
λ, F

〉
ẋp −

∂

∂x

〈
λ, F

〉
xp −

∂

∂p

〈
λ, F

〉}
dt.

We insert the following result from integration by parts,

∫ tf

t0

∂

∂ẋ

〈
λ, F

〉
ẋpdt =

[ ∂
∂ẋ

〈
λ, F

〉
xp

]tf
t0
−
∫ tf

t0

d

dt

[
∂

∂ẋ

〈
λ, F

〉]
xpdt,

and re-write the sensitivity equation as

dL
dp

= −
[
∂

∂ẋ

〈
λ, F

〉
xp

]tf
t=t0

+

∫ tf

t0

{〈
Rp

〉
+
〈
Rx

〉
xp +

d

dt

[
∂

∂ẋ

〈
λ, F

〉]
xp

− ∂

∂x

〈
λ, F

〉
xp −

∂

∂p

〈
λ, F

〉}
dt

=

[
∂

∂ẋ

〈
λ, F

〉
xp

]
t=t0

−
[
∂

∂ẋ

〈
λ, F

〉
xp

]
t=tf

+

∫ tf

t0

{〈
Rp

〉
− ∂

∂p

〈
λ, F

〉}
dt

+

∫ tf

t0

{[〈
Rx

〉
+
d

dt

[
∂

∂ẋ

〈
λ, F

〉]
− ∂

∂x

〈
λ, F

〉]
xp

}
dt (3.6)

By inspection, the only term in Eq. (3.6) that we cannot evaluate or derive

directly is xp. This term is the full sensitivity of the solution vector with respect to

all of the parameters for all time; if we knew this term, computing the sensitivity of

derived QOIs would be a straightforward application of the chain rule. The operator
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Jacobians, such as Rx, Rp, and Fp are straightforward (although often tedious) to

compute given x and/or p.

The adjoint equations turn out to be the conditions that we impose on λ such

that xp is eliminated from the right hand side of Eq. (3.6). To see this condition, we

re-write the integrand in the last term of Eq. (3.6) and manipulate using Eqs. (3.2),

(3.4), and (3.5):

[〈
Rx

〉
+
d

dt

[
∂

∂ẋ

〈
λ, F

〉]
− ∂

∂x

〈
λ, F

〉]
xp

=

[〈
Rxd

〉
+
d

dt

〈
λd
〉
− ∂

∂xd

[〈
λd, F d

〉
+
〈
λa, F a

〉]]
xdp

+

[〈
Rxa

〉
− ∂

∂xa

[〈
λd, F d

〉
+
〈
λa, F a

〉]]
xap.

From this we extract a differential and algebraic constraint, namely

〈dλd
dt

〉
=

∂

∂xd

[〈
λd, F d

〉
+
〈
λa, F a

〉]
−
〈
Rxd

〉
(3.7)

0 =
∂

∂xa

[〈
λd, F d

〉
+
〈
λa, F a

〉]
−
〈
Rxa

〉
, (3.8)

that λ must satisfy in order to eliminate xdp and xap, respectively, from Eq. (3.6). If

these constraints are satisfied, the sensitivity equation reduces to

dL
dp

=

[
∂

∂ẋ

〈
λ, F

〉
xp

]
t=t0

−
[
∂

∂ẋ

〈
λ, F

〉
xp

]
t=tf

+

∫ tf

t0

{〈
Rp

〉
− ∂

∂p

〈
λ, F

〉}
dt

=

[〈
λd
〉
xdp

]
t=t0

−
[〈
λd
〉
xdp

]
t=tf

+

∫ tf

t0

{〈
Rp

〉
− ∂

∂p

〈
λ, F

〉}
dt.

Note that xp now appears at only the beginning and terminal time.

The term xdp

∣∣∣
t=t0

is simply the sensitivity of the initial conditions of the differential

variables with respect to the parameters. This could have a wide range of meanings,
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depending on the application. For example, if the initial condition is set by another

code, xdp could be computed using a separate adjoint calculation within that code.

For our purposes, we will consider the initial conditions as parameters themselves,

meaning dxd

dx0
= 1, providing an avenue for computing sensitivities with respect to

initial conditions. In any case, we leave this term in the sensitivity equation and

assume it is known or can be computed.

On the other hand, the the value of xdp at t = tf is not known. We eliminate this

term by setting an appropriate condition, known as the terminal condition, for the

adjoint variable. The result is a system that must be solved backwards in time. The

appropriate condition here is simply

λd(tf ) = 0. (3.9)

The final adjoint initialization step is to compute λa(tf ) using Eq. (3.8). The adjoint

equations are solved backwards in time, and the forward and adjoint solutions are

cross-correlated using the sensitivity equation

dL
dp

=

[〈
λd
〉
xdp

]
t=t0

+

∫ tf

t0

{〈
Rp

〉
− ∂

∂p

〈
λ, F

〉}
dt (3.10)

=
dQ

dp
.

To review, the sensitivity equation, Eq. (3.10), is an expression for the first order

total derivative of a time-integrated QOI with respect to a list of parameters, p.

The expression requires a solution to the general forward problem, Eq. (3.1), and

its corresponding adjoint problem, Eqs. (3.7)–(3.9). The advantage of the adjoint

approach is that exactly one forward and one adjoint calculation are required to

compute the full gradient, dQ
dp

, no matter the dimension of p.
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Many reactor analysis QOIs, such as nuclide inventories and system eigenvalues,

are mainly of interest at t = tf . Here we discuss a modification of the above formalism

to account for this special case. We write the terminal QOI, Qf , as

Qf =
〈
R(x, p, tf )

〉

The case of a terminal QOI is related to that of the integrated QOI by the following

expression:

dQf

dp
=

d

dtf

dQ

dp
. (3.11)

We begin with Eq. (3.6), but account for our terminal condition, λd(tf ) = 0:

dQ

dp
=

[〈
λd
〉
xdp

]
t=t0

+

∫ tf

t0

{〈
Rp

〉
− ∂

∂p

〈
λ, F

〉}
dt

+

∫ tf

t0

{[〈
Rx

〉
+
d

dt

[
∂

∂ẋ

〈
λ, F

〉]
− ∂

∂x

〈
λ, F

〉]
xp

}
dt.
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Applying rule (3.11) to this expression, we find

dQf

dp
=

d

dtf

[〈
λd
〉
xdp

]
t=t0

+

[〈
Rp

〉
− ∂

∂p

〈
λ, F

〉]
t=tf

+

[(〈
Rx

〉
+
d

dt

[
∂

∂ẋ

〈
λ, F

〉]
− ∂

∂x

〈
λ, F

〉)
xp

]
t=tf

−
∫ tf

t0

∂

∂tf

[
∂

∂p

〈
λ, F

〉]
dt

+

∫ tf

t0

{(
∂

∂tf

[
d

dt

[
∂

∂ẋ

〈
λ, F

〉]]
− ∂

∂tf

[
∂

∂x

〈
λ, F

〉])
xp

}
dt

=

[〈
λdf

〉
xdp

]
t=t0

+

[〈
Rp

〉
− ∂

∂p

〈
λa, F a

〉]
t=tf

+

[(〈
Rxd

〉
+
d

dt

〈
λd
〉
− ∂

∂xd

〈
λa, F a

〉)
xdp

]
t=tf

+

[(〈
Rxa

〉
− ∂

∂xa

〈
λa, F a

〉)
xap

]
t=tf

−
∫ tf

t0

∂

∂p

〈
λf , F

〉
dt

+

∫ tf

t0

{(
d

dt

[
∂

∂ẋ

〈
λf , F

〉]
− ∂

∂x

〈
λf , F

〉)
xp

}
dt. (3.12)

Here λf ≡ ∂λ
∂tf

, as λ depends on both t and tf . We take Eq. (3.12) term by term.

First, we extract adjoint equations from the last term in exactly the same manner as

before. First we expand the integrand of the last term into differential and algebraic

components

(
d

dt

[
∂

∂ẋ

〈
λf , F

〉]
− ∂

∂x

〈
λf , F

〉)
xp (3.13)

=

[
d

dt

〈
λdf

〉
− ∂

∂xd

[〈
λdf , F

d
〉

+
〈
λaf , F

a
〉]]

xdp

+

[
− ∂

∂xa

[〈
λdf , F

d
〉

+
〈
λaf , F

a
〉]]

xap,
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and extract the following adjoint equations

d

dt

〈
λdf

〉
=

∂

∂xd

[〈
λdf , F

d
〉

+
〈
λaf , F

a
〉]

(3.14)

∂

∂xa

[〈
λdf , F

d
〉

+
〈
λaf , F

a
〉]]

= 0. (3.15)

Note that these are exactly the homogeneous parts of Eqs. (3.7) and (3.8), but

that the adjoint variable carries a different mathematical interpretation. Next, the

variable λa(tf ) must satisfy

∂

∂xa

〈
λa, F a

〉
=
〈
Rxa

〉
(3.16)

to eliminate xap(tf ). The resulting value of λa(tf ) appears in the second term of Eq.

(3.12). The elimination of xpd(tf ) leads to the appropriate terminal condition for

λdf (tf ). Note that d
dt

〈
λd
〉

must satisfy

d

dt

〈
λd
〉

=
∂

∂xd

〈
λa, F a

〉
−
〈
Rxd

〉

in order to eliminate xdp(tf ) from (3.12). Next, write our terminal condition for〈
λd(tf )

〉
: 〈

λd(tf )
〉

= 0

and take the total derivative with respect to time:

[〈
λdf

〉
+
d

dt

〈
λd
〉]

t=tf
= 0.
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Then the terminal condition is simply

〈
λdf (tf )

〉
= − d

dt

〈
λd(tf )

〉
=
〈
Rxd

〉
− ∂

∂xd

〈
λa, F a

〉
. (3.17)

Then λaf (tf ) is initialized by solving Eq. (3.15) at t = tf . If λf satisfies Eqs. (3.14)–

(3.15) with this initialization, the sensitivity of Qf is given by

dQf

dp
=

[〈
λdf

〉
xdp

]
t=t0

+

[〈
Rp

〉
− ∂

∂p

〈
λa, F a

〉]
t=tf

−
∫ tf

t0

∂

∂p

〈
λf , F

〉
dt. (3.18)

To review the case of a terminal QOI, we solve for an adjoint variable (λf ) that

is related to a time-derivative of the adjoint variable (λ). The resulting adjoint

equations (Eqs. (3.14)–(3.15)) are the homogeneous version of those for an integrated

QOI (Eqs. (3.7)–(3.8)), allowing for the use of the same software machinery. The

terminal condition for λf is not trivially zero. Indeed, we will find that it requires

an extra inversion of the algebraic equations.

Lastly, the terminal QOI sensitivity equation (Eq. (3.18)) contains an extra term

involving λa evaluated at t = tf . Note that if Rxa = 0, or the QOI is not dependent

on the algebraic variables, then λa(tf ) = 0, the ∂
∂p

〈
λa, F a

〉
term disappears from the

sensitivity equation, and λdf (tf ) = Rxd .

3.1.2 Adjoint-based QOI error estimates

Another important result from our recent article[48] is an adjoint-based expression

for estimating the global error in a QOI due to repeated or systematic local truncation

errors. We showed that the same adjoint variable that is used to evaluate dQ
dp

can be

used to propagate the local truncation errors to a global error estimate. Of course,

to compute this estimate, the modeler must have a scheme for estimating these local

truncation errors. Embedded Runge-Kutta schemes, described in the article and in
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Sec. 2.3 of this dissertation, are one idea for estimating temporal discretization error.

Schemes for estimating other truncation errors are available but not discussed in this

work.

The error estimate extends the work of Cao and Petzold[47], which is related

to ODEs, to the more general case of DAEs. Also, whenever possible, we maintain

the general inner product notation to facilitate a range of choices for inner products

and adjoint operators. In this subsection, use the following notation for the exact

(continuous) system governing the unknowns:

F (ẋ, x, p, t) = 0, x(t0, p) = x0(p). (3.19)

We write the discrete system, or system that we actually are able to solve, as

F ( ˙̃x, x̃, p, t) = r1(t), x̃(t0, p) = x0(p) + r2, (3.20)

where r1(t) =

 rd1(t)

ra1(t)

 is a systematic, local perturbation resulting from a solution

to the discrete problem instead of the exact problem, and r2 is an error in the initial

condition. These local errors certainly manifest as errors in the time series of the

solution and therefore as predictive errors in any derived quantity of interest.

Here we consider the case of a terminal QOI. We quickly point out that this is

not restrictive, as any time-integrated QOI can be transformed into a terminal QOI.

To see this, consider the time-integrated QOI

Z =

∫ tf

t0

〈
R(x, p, t)

〉
dt.

Now consider a dummy variable z that satisfies dz
dt

= R(x, p, t). If we append z to the
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forward system of equations with initial condition z(t0) = 0 and integrate it along

with the forward system, we find Z = z(tf ). We could then apply the following

formalism, treating z(t) as an additional differential unknown.

The exact and approximate terminal QOIs are written as

Q =
〈
R(x(tf ), p, tf )

〉

Q̃ =
〈
R(x̃(tf ), p, tf )

〉
,

respectively. Thus, to O(||(x− x̃)2||) ≡ O(||e2||)-accuracy,

∆Q = Q− Q̃ =
〈
Rx, e(tf )

〉
=
〈
Rxd , e

d(tf )
〉

+
〈
Rxa , e

a(tf )
〉

(3.21)

Similarly, we linearize F (ẋ, x, p, t) about F ( ˙̃x, x̃, p, t),

F (ẋ, x, p, t) = F ( ˙̃x, x̃, p, t) + Fẋė+ Fxe+O(||e2||),

to write an O(||e2||)-accurate equation satisfied by the error:

Fẋė+ Fxe = −r1(t), e(t0, p) = r2, (3.22)

or  dė
dt

0

 = −

 F d
xd

F d
xa

F a
xd

F a
xa


 ed

ea

−
 rd1

ra1


ed(t0, p) = rd2

ea(t0, p) = ra2

(3.23)
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This system of equations has an inherent linearization, which is why previously

published analyses use the vector dot-product inner product to develop the error

estimate. We proceed with a more general inner product. For either case, the

analysis requires that F a
xa be invertible, or that ea can be solved for uniquely using

the algebraic part of Eq. (3.23):

ea =
[
F a
xa

]−1[− F a
xde

d − ra1
]
. (3.24)

All semi-explicit index-1 DAEs have this property. For example, in our depletion

equations, the flux variable (and normalization, if applicable) are uniquely deter-

mined by the density unknowns. Therefore, we proceed under the assumption that

we have this constraint available, and use it to substitute into Eq. (3.21) to form an

expression for ∆Q in terms of ed(tf ) only:

∆Q =
〈
l1, e

d(tf )
〉
−
〈
l2

〉
, (3.25)

l1 =
[
Rxd −Rxa

[
F a
xa

]−1
F a
xd

]
t=tf

l2 =
[
Rxa
[
F a
xa

]−1
ra1

]
t=tf

.

If we knew e(tf ), we would be able to compute this estimate. Solving for e(tf ) would

require integrating Eq. (3.22) along the trajectory of x̃, which is at least equally

expensive as integrating the governing equations and worse, would produce an error

on the same order as the error that we are trying to predict! We find, however,

with adjoint-differentiation techniques (see Appendix D) and the work by Cao &

Petzold[47], we can obtain an estimate for e(tf ) with the adjoint information we

have already committed to computing.

To that end, we perform an index reduction by substituting the linear expression
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for ea into the differential components of Eq. (3.23). The result is an ODE for ed:

ėd =
[
F d
xa

[
F a
xa

]−1
F a
xd − F

d
xd

]
ed + F d

xa

[
F a
xa

]−1
ra1 − rd1, (3.26)

ed(t0, p) = rd2.

We use a fundamental solution matrix, Φ, which satisfies

Φ̇ =
[
F d
xa

[
F a
xa

]−1
F a
xd − F

d
xd

]
Φ, Φ(t0) = I,

to represent the solution, e(tf ), according to the theory in Appendix D:

ed(tf ) =

∫ tf

t0

Φ(tf )Φ
−1(s)

[
F d
xa

[
F a
xa

]−1
ra1(s)− rd1(s)

]
ds+

[
Φrd2

]
t=tf

.

This allows us to write ∆Q in terms of Φ by substitution into Eq. (3.25):

∆Q =
〈
l1,

∫ tf

t0

Φ(tf )Φ
−1(s)

[
F d
xa

[
F a
xa

]−1
ra1(s)− rd1(s)

]
ds+

[
Φrd2

]
t=tf

〉
−
〈
l2

〉
=

∫ tf

t0

〈
l1,Φ(tf )Φ

−1(s)
[
F d
xa

[
F a
xa

]−1
ra1(s)− rd1(s)

]〉
ds

+
〈
l1,
[
Φrd2

]
t=tf

〉
−
〈
l2

〉
(3.27)

Now the trick is to relate l1 and Φ to the adjoint variable that we have already com-

mitted to computing for the sensitivity analysis. We find that this is best illustrated

using the specific case of the vector dot-product inner product because it provides

explicit relations that are simple to follow. After the analysis, we show that the result

would hold for the general inner product as well. In the case of the dot-product inner
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product, the homogeneous part of system (3.22) has an associated adjoint equation

Fẋλ̇e = F T
x λe, (3.28)

for adjoint variable λe. After expanding this, we find

 dλde
dt

0

 =

 (F d
xd

)T (
F a
xd

)T(
F d
xa

)T (
F a
xa

)T

 λde

λae

 , (3.29)

which gives a linear constraint for λae :

λae = −
[(
F a
xa)

T
]−1(

F d
xa

)T
λde. (3.30)

If we perform another index reduction, by substituting this linear constraint into the

differential equation for λde, we obtain the ODE

dλde
dt

= −
[
F d
xa

[
F a
xa

]−1
F a
xd − F

d
xd

]T
λde (3.31)

Consider solving this ODE backwards in time with terminal condition

λde(tf ) = lT1 (3.32)

Comparing this ODE to that for ed, Eq. (3.26), and using the result from Appendix

D, we find that the solution λde(t) can be related to Φ as follows:

(
λde
)T

(s) = lT1 Φ(tf )Φ
−1(s),

and
(
λde
)T

(0) = lT1 Φ(tf ). If we apply the dot-product inner product to Eq. (3.27)
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and substitute this result, we find

∆Q =

∫ tf

t0

lT1 Φ(tf )Φ
−1(s)

[
F d
xa

[
F a
xa

]−1
ra1(s)− rd1(s)

]
ds+ lT1 Φ(tf )r

d
2 − lT2

=

∫ tf

t0

[
λde(s)

]T[
F d
xa

[
F a
xa

]−1
ra1(s)− rd1(s)

]
ds+

[
λde(0)

]T
rd2 − lT2

=

∫ tf

t0

{
−
[
λde(s)

]T
rd1 +

[
λde(s)

]T
F d
xa

[
F a
xa

]−1
ra1(s)

}
ds+

[
λde(0)

]T
rd2 − lT2

=

∫ tf

t0

−
{[
λde(s)

]T
rd1(s) +

[
λae(s)

]T
ra1(s)

}
ds+

[
λde(0)

]T
rd2 − lT2 . (3.33)

Equation (3.33) gives the QOI error estimate in terms of the adjoint of the homo-

geneous error equation. We know or can compute all of the terms in this equation,

except for possibly λe. Here we show that λe is the same variable as λf , the adjoint

variable that we used to compute
dQf
dp

in Sec. 3.1.1. First, we revisit the equations

for λf using the dot-product inner product. The adjoint equations, Eqs. (3.14) and

(3.15), are

d

dt

(
λdf )

T =
∂

∂xd

[(
λdf
)T
F d +

(
λaf
)T
F a
]

0 =
∂

∂xa

[(
λdf
)T
F d +

(
λaf
)T
F a
]
.

Note that the transpose of these equations is identical to Eq. (3.29); in other words,

λe and λf satisfy the same differential-algebraic equations. To be identical, however,

they must also share the same terminal condition. To get an explicit expression for

λf (tf ), we must solve for λa in Eq. (3.16). Using the dot-product inner product, we

find

∂

∂xa

[(
λa
)T
F a
]

= Rxa
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and therefore, (
λa
)T

= Rxa
[
F a
xa

]−1
.

Substituting this expression into Eq. (3.17) we find the terminal condition for λdf in

the case of the dot-product inner product:

(
λdf
)T

= Rxd −
∂

∂xd

[
Rxa
[
F a
xa

]−1
F a
]

= Rxd −Rxa
[
F a
xa

]−1
F a
xd

Our terminal condition for λde was λde(tf ) = lT1 or

(
λde
)T

= l1 = Rxd −Rxa
[
F a
xa

]−1
F a
xd .

They are identical! The adjoint variables λe and λf are the same variables. This

means that the expressions for the sensitivity of the QOI and the error in the QOI

can be evaluated at the cost of a single adjoint solve.

Beginning with Eq. (3.28), we performed the analysis for the specific case of

the vector dot-product inner product. This allowed us to write the explicit form of

expressions (3.30), (3.31), and (3.33), which allowed for explicit substitutions that

made the analysis easy to follow. We argue that the analysis will hold regardless

of the inner product so long as the adjoint of the error equation, λe is equal to the

adjoint previously developed for terminal QOIs, λf . To see this, we revisit the error

equation. It was formulated by subtracting F ( ˙̃x, x̃, p, t) from

F (ẋ, x, p, t) = F ( ˙̃x, x̃, p, t) + Fẋė+ Fxe+O
(
||e2||

)
.
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If we multiply this by the adjoint variable, we find to O
(
||ee||

)
:

〈
λe, F (ẋ, x, p, t)

〉
−
〈
λe, F ( ˙̃x, x̃, p, t)

〉
=

∂

∂ẋ

〈
λe, F ( ˙̃x, x̃, p, t)

〉
ė+

∂

∂x

〈
λe, F ( ˙̃x, x̃, p, t)

〉
e.

If we integrate the right hand side t ∈ [t0, tf ], and apply integration by parts to the

first term, we find

∫ tf

t0

{
∂

∂ẋ

〈
λe, F ( ˙̃x, x̃, p, t)

〉
ė+

∂

∂x

〈
λe, F ( ˙̃x, x̃, p, t)

〉
e

}
dt

=

[
∂

∂ẋ

〈
λe, F ( ˙̃x, x̃, p, t)

〉
e

]tf
t=t0

+

∫ tf

t0

{
− d

dt

∂

∂ẋ

〈
λe, F ( ˙̃x, x̃, p, t)

〉
e

+
∂

∂x

〈
λe, F ( ˙̃x, x̃, p, t)

〉
e

}
dt.

Similar to before, we enforce the following adjoint equations in order to eliminate e

from the integrand:

d

dt

∂

∂ẋ

〈
λe, F ( ˙̃x, x̃, p, t)

〉
=

∂

∂x

〈
λe, F ( ˙̃x, x̃, p, t)

〉
.

These are identical to Eq. (3.13). The adjoint equations corresponding to the error

equation are the same as those corresponding to the governing equations no matter

the form of the inner product. Also, because we have assumed F a
xa is invertible, we

will have analogs of Eqs. (3.30), (3.31), and (3.33); we just cannot write them here

because their form will depend on the form of the inner product.

To review, we performed an analysis that provides an adjoint-based QOI error

estimate, namely

∆Q = −
∫ tf

t0

{〈
λ, r1

〉
dt+

〈
λd(t0), rd2

〉
−
〈
Rxa ,

[
F a
xa

]−1
ra1

〉
t=tf

. (3.34)
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Here, the adjoint variable λ is the same variable that was used to evaluate the

sensitivity equation, Eq. (3.18).

3.1.3 A discussion of the adjoint formalism

In this subsection, we discuss a few observations about the adjoint formalism that

we developed in the two preceding subsections. As a review, we derived equations

that are adjoint to a forward system of equations that governs some physical process.

We then showed that the solutions to these equations can be used to generate UQ

information about quantities of interest that are derived from the forward equations.

One such piece of information is the gradient of the QOI with respect to a list of

parameters (possibly uncertain or design variables) that are input to the system.

The second piece of information is an estimate of the global error in the predicted

QOI, which results from the accumulation of local truncation errors incurred as the

forward equations are being solved.

The first observation is that the adjoint equations are tightly coupled to the for-

ward equations. The adjoint equations (either Eqs. (3.7) and (3.8) or Eqs. (3.14) and

(3.15)) contain terms of the form dF
dx

, which are linearizations about the trajectory of

the forward solution. Therefore, in most cases, the forward solution will be required

to compute these terms. Similar terms in the sensitivity equations (either Eq. (3.10)

or Eq. (3.18)) and error equations (Eq. (3.34)) require access to both the forward

and adjoint solutions, simultaneously. The bottom line is that the forward solution

must be available in order to compute most terms in the adjoint equations and in

the sensitivity expressions.

The forward and adjoint equations cannot be solved simultaneously, however, be-

cause the terminal adjoint condition (λ(tf )) depends on the solution of the forward

equations at t = tf . Therefore, the procedure must be to solve the governing equa-
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tions forward in time, set the terminal adjoint conditions at t = tf , solve the adjoint

equations backwards in time (while maintaining access to the forward solution), and

somehow evaluate the sensitivity and error equations. This procedure poses chal-

lenging computational questions, many of which are addressed in this dissertation.

A second observation is that the adjoint variable plays the role of a weighting

factor in the time integrals of the sensitivity and error equations. Indeed, the global

sensitivity estimate takes the form of an adjoint-weighted integral of the local sen-

sitivities; likewise, the global error estimate takes the form of an adjoint-weighted

integral of the local truncation error estimates (plus some terms to account for initial

conditions and errors propagated through the QOI expression). For this reason, the

literature often refers the adjoint variable as an importance factor[27].

As an example application of this interpretation, consider the weighting of the

local truncation error estimates to form a global error estimate. Suppose that the

local truncation is constant in time, r1(t) = rc, but the magnitude of the adjoint

variable increases by a factor of K as it is integrated from t = tf to t = t0. This

means that the truncation error made early in the simulation contributes to the

global error with K times the importance. This will tell the modeler that the most

effective efforts in error reduction (such as refinement) are those applied at early time

steps.

A final observation is that our framework, or level of abstraction, is designed

to provide flexibility in a modeling environment where different codes, models, and

physics are being used to simulate the phenomenon of interest. The layer of ab-

straction provides a buffer between the modeler and the ground-level variational

derivation of the adjoint equations, saving time in a situation where the modeler

wants to exchange, add to, or otherwise modify the governing equations. He/she

should be able to specialize the framework for the system of interest using general
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adjoint equations that we have provided.

In the following three sections, we illustrate this benefit. In the first section, we

apply our framework to the case of the source-driven depletion equations. We derive

the corresponding adjoint equations for both a time-integrated and terminal QOI

by simply interpreting the general adjoint equations laid out in this section. Then,

in the second section, we repeat the derivation for the k-eigenvalue formulation of

the depletion equations. In both cases, the time and effort to obtain the adjoint

equations is much less than the full, from-scratch variational derivations provided

in the literature to date. As a point of comparison, we provide these derivations in

Appendix A. Both approaches yield the same equations. Finally, in the third section,

we illustrate how the k-eigenvalue formulation of the adjoint depletion equations can

be extended to include a forward and adjoint heat transfer equation.

Finally, our only assumption in this analysis was the index-1, semi-explicit for-

mulation of the governing equations, which is common in engineering systems. The

framework would also apply for systems of strictly differential equations (ODEs, for

example, which are index-0 DAEs). The literature[19] provides adjoint information

for other formulations of DAEs, but we find the index-1 form sufficient for the systems

investigated in this dissertation.

As a review, our observations of the adjoint formalism are

1. Terms in the adjoint equations are linearized about the trajectory of the forward

unknowns. Therefore, access to the forward equations is required while solving

the adjoint equations.

2. The adjoint variable plays the role of a weighting factor. The global QOI

sensitivity and error estimates turn out to be adjoint-weighted time integrals

of local sensitivities and errors, respectively. In some sense, the adjoint variable
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helps to propagate local estimates to global estimates.

3. The formalism we provide here remains as general as possible to facilitate

a multi-physics modeling environment. The layer of abstraction provides a

higher-level starting point for the modeler when changes to the physics model

are necessary.

4. The formalism will apply for our formulation of the adjoint equations, as well

as for most other reactor analysis systems of interest.
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3.2 The Application of our Framework to the Source-Driven Depletion Equations

In Sec. 3.1, we derived a framework that provides the form of the adjoint equations

corresponding to a general differential algebraic system. The framework also provides

expressions for evaluating QOI sensitivities and errors. The entire analysis is written

in terms of abstract variables and operators in order to facilitate the dynamics of a

multi-physics modeling environment. We believe the abstraction is a powerful tool.

Here, we illustrate its adaptability by specializing the framework for the case of the

source-driven depletion equations.

We begin by writing the source driven depletion equations:

dN

dt
−B(ψ, p)N = 0, (3.35)

H(N, p)ψ −G(N, p)ψ − S0 = 0, (3.36)

N(t = 0) = N0(p), t ∈ [t0, tf ]. (3.37)

The abstraction of these equations to the general form of Eq. (3.1) is straightforward:

xd ← N

xa ← ψ

λd ← N †

λa ← ψ†

F d ← dN

dt
−BN

F a ← Hψ −Gψ − S0

Note that all operators and the initial conditions are generally dependent on the
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vector of parameters, p. As in Eq. (3.3), we write our time-integrated QOI as

Q =

∫ tf

t0

〈
R(N,ψ, p, t)

〉
E,D,Ω

dt, (3.38)

except we define a specific inner product as the integration over volume, angle, and

energy: 〈〉
E,D,Ω

=

∫
dE

∫
dΩ

∫
dV.

Recall the adjoint transport operators that we developed in Sec. 2.4:

〈
ψ†, Hψ

〉
E,D,Ω

=
〈
ψ,H†ψ†

〉
E,D,Ω

, (3.39)〈
ψ†, Gψ

〉
E,D,Ω

=
〈
ψ,G†ψ†

〉
E,D,Ω

, (3.40)

Also in Sec. 2.4, we derived a form of the Bateman equation that was written in

terms of this same phase-space inner product, namely

dN

dt
−
〈
bN
〉
E,D,Ω

= 0

where 〈
bN
〉
E,D,Ω

= BN.

Recall that this formulation assumes that we use spatially cell-averaged nuclide den-

sities as the density unknown. The adjoint Bateman operator is

〈
N †, bN

〉
E,D,Ω

=
〈
N, b†N †

〉
E,D,Ω

. (3.41)

For the time-integrated QOI, we found adjoint equations (3.7) and (3.8), which
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we re-write here in terms of our inner product:

〈dN †
dt

〉
E,D,Ω

=
∂

∂N

[〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

]
−
〈 ∂R
∂N

〉
E,D,Ω

0 =
∂

∂ψ

[〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

]
−
〈∂R
∂ψ

〉
E,D,Ω

.

We immediately note that the form of these equations is odd because the Bateman

variables and operators are not dependent on angle and energy. To that end, define

a temporary variable

Ñ † =
〈
N †
〉
E,D,Ω

=
〈〉

E,Ω
N †Vc, (3.42)

where Vc is a cell volume over which N † has been averaged. Using this notation and

the following manipulations

∂

∂N

〈
N †,

dN

dt
−BN

〉
E,D,Ω

= −
〈
N †,

∂

∂N
BN

〉
E,D,Ω

= −B†Ñ †

∂

∂N

〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

=
〈
ψ†,

∂Hψ

∂N

〉
E,D,Ω

−
〈
ψ†,

∂Gψ

∂N

〉
E,D,Ω

∂

∂ψ

〈
N †,

dN

dt
−BN

〉
E,D,Ω

=
∂

∂ψ

[
Ñ †
(dN
dt
−BN

)]
= −Ñ †∂BN

∂ψ
= −

〈
Ñ †

∂bN

∂ψ

〉
E,D,Ω

∂

∂ψ

〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

=
∂

∂ψ

〈
ψ,H†ψ† −G†ψ†

〉
E,D,Ω

=
〈
H†ψ† −G†ψ†

〉
E,D,Ω
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we re-write the adjoint equations as

dÑ †

dt
= −B†Ñ † +

〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

0 =
〈
H†ψ† −G†ψ†

〉
E,D,Ω

−
〈
Ñ †

∂bN

∂ψ

〉
E,D,Ω

−
〈∂R
∂ψ

〉
E,D,Ω

.

These equations have a more intuitive connection to the forward equations. Moving

forward, we drop the Ñ † notation in favor of N †. Lastly, we note that all terms in

the second equation could be combined into a single inner product. The final source

driven adjoint equations for a time integrated QOI are

dN †

dt
= −B†N † +

〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

(3.43)

H†ψ† −G†ψ† = N †
∂bN

∂ψ
+
∂R

∂ψ
. (3.44)

By (3.9), our terminal condition for N † is

N †(tf ) = 0, (3.45)

and, by Eq. (3.44), ψ†(tf ) is determined by solving

H†ψ† −G†ψ† =
∂R

∂ψ

with all terms evaluated at t = tf . If this system is solved for N † and ψ†, then the
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sensitivity equation, Eq. (3.10), for our case becomes

dQ

dp
=

[
N †

dN

dp

]
t=t0

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †,

∂bN

∂p

〉
E,D,Ω

}
dt. (3.46)

In summary, for the source-driven forward problem Eqs. (3.35) – (3.37) with time-

integrated QOI of the form Eq. (3.38), the corresponding adjoint equations are Eqs.

(3.43) and (3.44) with terminal condition given by Eq. (3.45). Given solutions to

the forward and adjoint problem, the gradient of the QOI with respect to the list of

parameters p is given by Eq. (3.46).

For the case of a terminal solution QOI of the form

Qf =
〈
R(N,ψ, p, tf )

〉
E,D,Ω

, (3.47)

we found in Sec. 3.1.1 that the adjoint equations are simply the homogeneous part

of Eqs. (3.43) and (3.44). That is,

dN †

dt
=
〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−B†N † (3.48)

H†ψ† −G†ψ† = N †
∂bN

∂ψ
. (3.49)

We also found that the initialization of the adjoint variables is not as trivial in the

case of a terminal QOI. We first define an intermediate flux variable, ψ̂†, which

corresponds to λa in Eq. (3.16). We find that Eq. (3.16) corresponds to

d

dψ

〈
ψ̂†, Hψ −Gψ − S0

〉
E,D,Ω

=
〈
H†ψ̂† −G†ψ̂†

〉
E,D,Ω

=
〈∂R
∂ψ

〉
E,D,Ω
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or

H†ψ̂† −G†ψ̂† =
∂R

∂ψ
(3.50)

which must be solved for ψ̂† with all terms evaluated at t = tf . Then, by Eq. (3.17),

the adjoint density terminal condition is

N †(tf ) =
〈 ∂R
∂N

〉
E,D,Ω

−
〈 ∂

∂N

[
Hψ −Gψ

]
, ψ̂†
〉
E,D,Ω

. (3.51)

Given the solution to Eqs. (3.48) and (3.49), with terminal condition Eq. (3.51), we

find that Eq. (3.18), the sensitivity expression for Qf , translates to

dQf

dp
=
[〈∂R

∂p

〉
E,D,Ω

−
〈
ψ̂†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

]
t=tf

+
[
N †

dN

dp

]
t=t0

−
∫ tf

t0

{〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

−
〈
N †,

∂bN

∂p

〉
E,D,Ω

}
dt

(3.52)

In summary, if the depletion problem is source-driven, and the QOI is a functional

of the terminal forward solution only, the corresponding adjoint equations are Eqs.

(3.48) – (3.49) with terminal condition given by Eq. (3.51). The gradient of the QOI

is then given by (3.52). If the QOI depends on the flux, the terminal condition for

N † comes at a cost of one transport solve, given by Eq. (3.50). If the QOI does not

depend on the flux (e.g. a terminal nuclide density), then ψ̂ = 0, removing the cost

of this transport solve as well as the second term in Eq. (3.52).

We also have an adjoint-based estimate for the manifestation of local truncation

errors in the predicted, terminal QOI. This expression uses the same adjoint variable

as the sensitivity equation, Eq. (3.52), so we do not need to re-derive and compute a
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new adjoint solution. We are required, however, to compute local truncation errors,

for example due to discretization, during the forward solve. Denote these estimates

as rN(t) for the Bateman equations and rψ(t) for the transport equation. We might

also have an estimate for the error in the initial nuclide densities; denote this error

rN0 . Then Eq. (3.34) gives the global error estimate as

∆Qf = −
∫ tf

t0

{
N † · rN +

〈
ψ†, rψ

〉
E,D,Ω

}
dt

+N †(t0) · rN0 −
〈
rψ(tf ), ψ̂

†
〉
E,D,Ω

. (3.53)
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3.3 The Application of our Framework to the k-Eigenvalue Depletion Equations

In this section, we apply the framework described in Sec. 3.1 to derive the adjoint

equations corresponding to the k-eigenvalue formulation of the burnup equations.

In the previous section, we applied the framework to the source-driven depletion

formulation. Thus, this section works to illustrate the flexibility afforded by the

general framework’s abstraction. Instead of going back to the variational derivation

to derive the adjoint equations for the k-eigenvalue case, we are able to simply re-

translate the equations provided by the framework.

We begin the analysis by writing the k-eigenvalue analog to Eqs. (3.35) – (3.37)

but with the addition of a power constraint:

dN

dt
−B(ψ,A, p)N = 0, (3.54)

H(N, p)ψ − λG(N, p)ψ = 0, (3.55)

AP (N, p)ψ − P(t) = 0 (3.56)

N(t = 0) = N0(p), t ∈ [to, tf ]. (3.57)

Here, ψ satisfies the fundamental eigenmode of Eq. (3.55) with eigenvalue λ = 1
keff

,

and the parameter P(t) is the prescribed average power density
([

W
cm3

])
of the reactor,

which is a constraint on the system. The operator P is used to compute the average
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power density generated by fission,

Power Density = APψ ≡A
∫
dV

∫
dE

∫
dΩ

∑
j Nj(r)σf,j(E)Ef,jψ(r, E,Ω)

VR

=
A

VR

〈∑
j

Njσf,jEf,jψ
〉
E,D,Ω

≡ A

VR

〈
ΣEψ

〉
E,D,Ω

≡ A

VR
P̂

where Ef,j is the energy released in a fission event by nuclide j, VR is the reactor

volume, and the symbols ΣE and P̂ will be used as a short-hand for an energy-

production macroscopic cross section and un-normalized power, respectively. Finally,

the scalar normalization factor A is the value by which the eigenvector must be scaled

to satisfy the power constraint.

Before proceeding with the derivation of the adjoint equations, we must note a

subtle difference in the form of the Bateman operator. Because the magnitude of

the solution ψ to Eq. (3.55) is arbitrary, the operator B must be a function of the

normalization constant, A. We know, however, that the dependency will be bilinear

in A and ψ; that is, these variables will only appear as a product together. To

that end, define Ψ = Aψ, and note the following relationships that will serve as a

convenience in this section:

∂B

∂ψ
=
∂B

∂Ψ

∂Ψ

∂ψ
=
∂B

∂Ψ
A (3.58)

∂B

∂A
=
∂B

∂Ψ

∂Ψ

∂A
=
∂B

∂Ψ
ψ. (3.59)

Equations (3.54) – (3.57) form a DAE system where the algebraic constraint is

an eigenvalue equation accompanied by a normalization for the eigenvector. Thus,
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we can apply our framework given in Sec. 3.1. The abstraction of the governing

equations is as follows:

xd ← N

xa ←

 ψ/λ

A


λd ← N †

λa ←

 ψ†

A†


F d ← dN

dt
−BN

F a ←

 Hψ − λGψ

APψ − P(t)


Note that both ψ and λ are listed as algebraic variables, as they, as a set, form the

solution to the eigenvalue equation.

Proceeding as before, we first define a time-integrated QOI as

Q =

∫ tf

t0

〈
R(N,ψ,A, p, t)

〉
E,D,Ω

dt. (3.60)

Note that we write the QOI dependence on both ψ and A, although in most normal

cases they will appear together. We did not, however, write a dependence on λ,

because a time integral of the eigenvalue is generally not a useful QOI. Our initial
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translation of Eqs. (3.7) and (3.8) are

〈dN †
dt

〉
E,D,Ω

=
∂

∂N

〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
∂

∂N

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂N

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

(3.61)

0 =
∂

∂ψ

〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
∂

∂ψ

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂ψ

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

−
〈∂R
∂ψ

〉
E,D,Ω

(3.62)

0 =
∂

∂λ

〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
∂

∂λ

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂λ

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

−
〈∂R
∂λ

〉
E,D,Ω

(3.63)

0 =
∂

∂A

〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
∂

∂A

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂A

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

−
〈∂R
∂A

〉
E,D,Ω

(3.64)

We insert an equation for both ψ and λ because they are each members of the

algebraic variable vector and are each sensitive to perturbations in p. We perform

the same change of variable, given by Eq. (3.42). Also, because A† is a scalar, we

define

Ã† =
〈
A†
〉
E,D,Ω

= A†
〈〉

E,D,Ω

We again take these equations term by term. Starting with Eq. (3.61):

∂

∂N

〈
N †,

dN

dt
−BN

〉
E,D,Ω

= −
〈
N †,

∂

∂N
BN

〉
E,D,Ω

= −B†Ñ †

∂

∂N

〈
ψ†, Hψ − λGψ − S0

〉
E,D,Ω

=
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

∂

∂N

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

=
∂

∂N

[
Ã†
[ A
VR

〈
ΣEψ

〉
E,D,Ω

− P
]]

= Ã†
A

VR

∂
〈

ΣEψ
〉
E,D,Ω

∂N
=
〈
Ã†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω
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From this we find the adjoint Bateman equation

dÑ †

dt
= −B†Ñ † +

〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
Ã†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

.

Now for the terms in Eq. (3.62):

∂

∂ψ

〈
N †,

dN

dt
−BN

〉
E,D,Ω

= − ∂

∂ψ

[
Ñ †
(dN
dt
−BN

)]
= −Ñ †∂BN

∂ψ
= −

〈
Ñ †

∂bN

∂ψ

〉
E,D,Ω

∂

∂ψ

〈
ψ†, Hψ − λGψ − S0

〉
E,D,Ω

=
∂

∂ψ

〈
ψ,H†ψ† − λG†ψ†

〉
E,D,Ω

=
〈
H†ψ† − λG†ψ†

〉
E,D,Ω

∂

∂ψ

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

=
∂

∂ψ

[
Ã†
[ A
VR

〈
ΣEψ

〉
E,D,Ω

− P
]]

= Ã†
A

VR

〈
ΣE

〉
E,D,Ω

=
〈
Ã†
A

V
ΣE

〉
E,D,Ω

We note that all terms may be combined into a single inner product, and the resulting

adjoint transport equation is

H†ψ† − λG†ψ† = S†

with

S† =
∂R

∂ψ
+ Ñ †

∂bN

∂ψ
− Ã† A

VR
ΣE.

Per the definition of λ, the operator on the left hand side of the adjoint transport

equation, H† − λG†, is singular. This brings the solvability of this equation into

question, and we will address this below. For Eq. (3.63), we find that the only non-

zero homogeneous term is ∂
∂λ

〈
ψ†, λGψ

〉
E,D,Ω

. The partials with respect to all other
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transport and Bateman operators are zero. The integrated QOI Q =
∫ tf
t0

〈
λ
〉
E,D,Ω

dt

is generally not of any interest to reactor analysts, so we assume that ∂R
∂λ

= 0.

Therefore, the constraint we get out of this equation is

〈
ψ†, Gψ

〉
E,D,Ω

= 0,

which simply says that the adjoint flux must be orthogonal to the forward fission

source. More detail on the mathematical implications of this constraint are discussed

in Sec. 4.4. Finally, the non-zero terms in Eq. (3.64) are

∂

∂A

〈
N †,

dN

dt
−BN

〉
E,D,Ω

= − ∂

∂A

[
Ñ †
(dN
dt
−BN

)]
= −Ñ †∂BN

∂A
= −

〈
Ñ †

∂bN

∂A

〉
E,D,Ω

∂

∂A

〈
A†,

A

VR
P̂ − P

〉
E,D,Ω

= Ã†
P̂
VR
.

Leading to a simple expression for Ã†:

Ã† =
VR

P̂

[〈∂R
∂A

〉
E,D,Ω

+
〈
Ñ †

∂bN

∂A

〉
E,D,Ω

]

We again drop the Ñ † and Ã† notation for N † and A†, and find that our k-eigenvalue
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adjoint depletion equations are

dN †

dt
= −B†N † +

〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

(3.65)

H†ψ† − λG†ψ† =
∂R

∂ψ
+N †

∂bN

∂ψ
− A† A

VR
ΣE (3.66)〈

ψ†, Gψ
〉
E,D,Ω

= 0 (3.67)

A† =
VR

P̂

[〈∂R
∂A

〉
E,D,Ω

+
〈
N †

∂bN

∂A

〉
E,D,Ω

]
(3.68)

The terminal condition for the adjoint densities is again

N †(tf ) = 0, (3.69)

and the terminal values for ψ† and A† are computed with Eqs. (3.66) and (3.68), re-

spectively, subject to (3.67). Once this system is solved, the k-eigenvalue translation

of Eq. (3.10) gives the sensitivity of the QOI:

dQ

dp
=

[
N †

dN

dp

]
t=t0

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt. (3.70)

We now address the solvability of the adjoint transport equation. The Fredholm al-

ternative theorem[50] requires that for H†ψ†−λG†ψ† = S† to have a unique solution,

the following must be true:

〈
S†, ψ

〉
E,D,Ω

= 0, (3.71)
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where ψ is the solution to Hψ − λGψ = 0, the forward equation. To see the criteria

under which this condition holds, we expand Eq. (3.71) and use Eq. (3.58) as follows:

〈
S†, ψ

〉
E,D,Ω

=
〈∂R
∂ψ

, ψ
〉
E,D,Ω

+
〈
N †

∂bN

∂ψ
, ψ
〉
E,D,Ω

−
〈
A†

A

VR
ΣE, ψ

〉
E,D,Ω

=
〈∂R
∂ψ

, ψ
〉
E,D,Ω

+
〈
AN †

∂bN

∂Ψ
, ψ
〉
E,D,Ω

−
〈
A†

A

VR
ΣE, ψ

〉
E,D,Ω

. (3.72)

Next we multiply Eq. (3.68) by A, use Eq. (3.59), and manipulate to solve for〈
AN † ∂bN

∂Ψ
, ψ
〉
E,D,Ω

:

AA† =
VR
P

[〈
A
∂R

∂A

〉
E,D,Ω

+
〈
AN †

∂bN

∂A

〉
E,D,Ω

]
=

VR〈
ΣEψ

〉
E,D,Ω

[〈
A
∂R

∂A

〉
E,D,Ω

+
〈
AN †

∂bN

∂Ψ
ψ
〉
E,D,Ω

]

→
〈
AN †

∂bN

∂Ψ
ψ
〉
E,D,Ω

=
〈AA†ΣEψ

VR

〉
E,D,Ω

−
〈
A
∂R

∂A

〉
E,D,Ω

Substitution of this result into Eq. (3.72), we find that
〈
S†, ψ

〉
E,D,Ω

= 0 is satisfied

if our QOI satisfies

〈∂R
∂ψ

, ψ
〉
E,D,Ω

=
〈
A
∂R

∂A

〉
E,D,Ω

. (3.73)

This condition is met by any function R that is biliear in A and ψ or is a ratio of

bilinear functions of A and ψ. In other words, A and ψ should appear as a product.

Because virtually any practical QOI depends on the normalized flux, this condition

will nearly always be met. Nonetheless, it must be considered.

We next turn to the case of a terminal QOI. The QOI expression is

Qf =
〈
R(N,ψ,A, λ, p, tf )

〉
E,D,Ω

. (3.74)
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Here we include λ as an argument, as the QOI could be the end-of-life eigenvalue. As

before, the adjoint equations are simply the homogeneous parts of Eqs. (3.65)–(3.68),

namely

dN †

dt
= −B†N † +

〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

(3.75)

H†ψ† − λG†ψ† = N †
∂bN

∂ψ
− A† A

VR
ΣE (3.76)〈

ψ†, Gψ
〉
E,D,Ω

= 0 (3.77)

A† =
VR

P̂

〈
N †

∂bN

∂A

〉
E,D,Ω

(3.78)

We know from the previous analysis that the right hand side of Eq. (3.76) is or-

thogonal to ψ. Moving to the terminal condition, we first define two intermediate

quantities, ψ̂† and Â† that correspond to λa in Eq. (3.16). We then expand Eq.

(3.16) for each of our three algebraic variables, accounting for the fact that dR
dλ

may

be non-zero:

〈∂R
∂ψ

〉
E,D,Ω

=
∂

∂ψ

〈
ψ̂†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂ψ

[
Â†
(
A

VR
P̂ − P

)]
=
〈
H†ψ̂† − λG†ψ̂†

〉
E,D,Ω

+ Â†
A

VR

〈
ΣE

〉
E,D,Ω

(3.79)〈∂R
∂λ

〉
E,D,Ω

=
∂

∂λ

〈
ψ̂†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂λ

[
Â†
(
A

VR
P̂ − P

)]
= −

〈
ψ̂†, Gψ

〉
E,D,Ω

(3.80)〈∂R
∂A

〉
E,D,Ω

=
∂

∂A

〈
ψ̂†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂A

[
Â†
(
A

VR
P̂ − P

)]

=
Â†

VR

〈
ΣEψ

〉
E,D,Ω

(3.81)
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The first step is to write an expression for Â† using Eq. (3.81):

Â† =
VR

P̂

〈∂R
∂A

〉
E,D,Ω

. (3.82)

Using Eq. (3.82) to substitute for Â† in Eq. (3.79), we find the following transport

equation that must be solved for ψ̂†

H†ψ̂† − λG†ψ̂† =
∂R

∂ψ
−

〈
A∂R
∂A

〉
E,D,Ω〈

ΣEψ
〉
E,D,Ω

ΣE, (3.83)

subject to
〈
ψ̂†, Gψ

〉
E,D,Ω

= −
〈
∂R
∂λ

〉
E,D,Ω

. Again, for ψ̂† to be unique, we require

that

〈∂R
∂ψ
−

〈
A∂R
∂A

〉
E,D,Ω〈

ΣEψ
〉
E,D,Ω

ΣE, ψ
〉
E,D,Ω

= 0,

or that

〈∂R
∂ψ

, ψ
〉
E,D,Ω

=
〈
A
∂R

∂A

〉
E,D,Ω

,

which is the same constraint on the form of the QOI as before. Given solutions to

ψ̂† and Â†, our terminal condition for N †(tf ) is

N †(tf ) =
〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ̂†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

− Â†A
V

∂P̂
∂N

. (3.84)

If we solve Eqs. (3.75)–(3.78) for the adjoint variables, use Eqs. (3.79)–(3.81) to

compute ψ̂† and Â†, and specify the terminal condition for N † with Eq. (3.84), we

can use the following expression to compute the sensitivity of Qf with respect to the
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parameters:

dQf

dp
=

[
N †

dN

dp

]
t=t0

+

[〈∂R
∂p

〉
E,D,Ω

]
t=tf

−

[〈
ψ̂†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+ Â†
∂

∂p

[
A

VR
P̂ − P

]]
t=tf

+

∫ tf

t0

{〈
N †,

∂bN

∂p

〉
E,D,Ω

−
〈
ψ†,

∂Hψ

∂p

〉
E,D,Ω

+ λ
〈
ψ†,

∂Gψ

∂p

〉
E,D,Ω

− A† A
VR

∂P̂
∂p

+ A†
∂P(t)

∂p

}
dt. (3.85)

The adjoint-based global QOI error estimate is also available for the k-eigenvalue

case. Suppose we have estimated local truncation errors, rN , rψ, and rA during the

forward solve, as well as errors in the initial conditions of N , rN0 . Equation (3.34)

gives the global QOI error estimate as

∆Qf = −
∫ tf

t0

{
N † · rN +

〈
ψ†, rψ

〉
E,D,Ω

+ A†rA

}
dt

+N †(t0) · rN0 −
〈
rψ, ψ̂

†
〉
E,D,Ω

− rAÂ†. (3.86)
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3.4 Example of Extensibility: Addition of Heat Transfer Physics

In Sec. 3.1, we developed a framework for deriving adjoint equations in terms of

general forward operators, parameters, and unknowns. We claim that this derivation

affords flexibility and extensibility in a multiphysics modeling environment. In Secs.

3.2 and 3.3, we exercised the flexibility of the framework by applying our equations

to derive adjoint equations for the source-driven and k-eigenvalue forms of the de-

pletion equations, respectively. In this section, we illustrate the extensibility of the

framework by adding heat transfer physics to the k-eigenvalue form of the depletion

equations and deriving the form of the associated adjoint equations.

Suppose we model heat transfer using an energy balance equation with tem-

perature, T , as the fundamental unknown. We write the equation as an algebraic

constraint, namely

K(T )T = S(T ),

where operator K(T ) is an energy loss operator (e.g. conduction, convection) and

S(T ) is an energy production operator. This equation may be nonlinear in T if, for

example, the thermal conductivity of the material depends on the material tempera-

ture. In the context of nuclide depletion calculations, the operator K will depend on

the nuclide densities N , and the dominant energy source term will be fission, mak-

ing S depend on both N and ψ. Likewise, microscopic cross-sections will vary with

material temperature, and thus the Bateman and neutron transport operators will

have a T dependence. We note that the energy balance equation could be written

in time-differential form; we choose, however, to write it as an algebraic constraint

because its time-dependent behavior in quasi-steady state reactor operation is closely

related to that of the neutron flux. Finally, for simplicity in this example, we assume

fixed-temperature boundary conditions for the heat transfer equation.
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Appending the energy balance equation to Eqs. (3.54)–(3.57) and noting all de-

pendencies (except for t, which we omit for brevity, but it does exist for each opera-

tor), we write

dN

dt
−B(ψ,A, T, p)N = 0, (3.87)

H(N, T, p)ψ − λG(N, T, p)ψ = 0, (3.88)

AP (N, T, p)ψ − P(t) = 0 (3.89)

K(N, T, p)T − S(N,A, ψ, T, p) = 0 (3.90)

N(t = 0) = N0(p), t ∈ [to, tf ]. (3.91)

As in Sec. 3.3, we begin by writing the abstraction of these governing equations

in terms of our framework:

xd ← N

xa ←


ψ/λ

A

T


λd ← N †
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λa ←


ψ†

A†

T †


F d ← dN

dt
−BN

F a ←


Hψ − λGψ

APψ − P(t)

KT − S

 .

We write our time-dependent QOI that depends on temperature as

Q =

∫ tf

t0

〈
R(N,ψ,A, T, p, t)

〉
E,D,Ω

dt. (3.92)

The next step is to translate the general expressions Eqs. (3.7) and (3.8). We

performed this for the k-eigenvalue equations in Sec. 3.3, which resulted first in Eqs.

(3.61)–(3.64) and ultimately the k-eigenvalue depletion perturbation equations. We

begin by showing the terms that should be added to the right-hand side of these

equations.

First, in the adjoint Bateman equation, Eq. (3.61), we add the following term:

∂

∂N

〈
T †, KT − S

〉
E,D,Ω

=
〈
T †,

∂

∂N

[
KT − S

]〉
E,D,Ω

.

In Eq. (3.62), we add

∂

∂ψ

〈
T †, KT − S

〉
E,D,Ω

= −
〈
T †,

∂

∂ψ
S
〉
E,D,Ω

.

No change will result in Eq. (3.63) because ∂
∂λ

〈
T †, KT − S

〉
E,D,Ω

= 0. Finally, for
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Eq. (3.64), we would add

∂

∂A

〈
T †, KT − S

〉
E,D,Ω

= −
〈
T †,

∂

∂A
S
〉
E,D,Ω

.

The last step is to derive the form of the adjoint heat transfer equation. To do this,

we will need to define operators that are analogous to b for the Bateman operator.

Let these operators be 〈
k(T )T

〉
E,D,Ω

= K(T )T

and 〈
s
〉
E,D,Ω

= S.

Operators k and s will, of course, depend on the particular equation being employed

by the modeler, a level of detail we do not discuss in this dissertation. Suppose that

we can define an operator k† such that

〈
T †, k(T )T

〉
E,D,Ω

=
〈
k†(T )T †, T

〉
E,D,Ω

and 〈
k†(T )T

〉
E,D,Ω

= K†(T )T.

If the operator K does indeed depend on T , the operator k†(T ) is not guaranteed

to exist in general. The literature indicates that under certain smoothness and

locality assumptions, this function does exist (in fact, multiple such operators may

exist)[51, 30, 31]. We could also revert to the formulation by Cao and Petzold[19],

which employs a linearization about a discretized set of forward equations and the

vector dot product inner product to form the adjoint equations. Moving forward, we

assume that K† does exist and satisfies the above expression.
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The translation of Eq. (3.8) for the heat transfer equation is

0 =
∂

∂T

〈
N †,

dN

dt
−BN

〉
E,D,Ω

+
∂

∂T

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

+
∂

∂T

〈
A†, APψ − P

〉
E,D,Ω

+
∂

∂T

〈
T †, kT − s

〉
E,D,Ω

−
〈∂R
∂T

〉
E,D,Ω

.

We perform similar term-by-term manipulations as those given for the adjoint trans-

port equation in Sec. 3.3:

∂

∂T

〈
N †,

dN

dt
−BN

〉
E,D,Ω

= − ∂

∂T

[
N †
(dN
dt
−BN

)]
= −N †∂BN

∂T

∂

∂T

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

=
〈
ψ†,

∂

∂T

[
Hψ − λGψ

]〉
E,D,Ω

∂

∂T

〈
A†, APψ − P

〉
E,D,Ω

=
〈
A†,

∂

∂T
APψ

〉
E,D,Ω

∂

∂T

〈
T †, kT − s

〉
E,D,Ω

=
∂

∂T

〈
T †, kT

〉
E,D,Ω

− ∂

∂T

〈
T †, s

〉
E,D,Ω

=
〈
k†T †

〉
E,D,Ω

−
〈
T †,

∂s

∂T

〉
E,D,Ω

The resulting adjoint heat transfer equation would have the following form:

K†T † = T †
∂S

∂T
+
〈∂R
∂T

〉
E,D,Ω

−
〈
A†,

∂

∂T
APψ

〉
E,D,Ω

−
〈
ψ†,

∂

∂T

[
Hψ − λGψ

]〉
E,D,Ω

+N †
∂BN

∂T
.

This completes our derivation of the adjoint depletion equations with heat transfer,
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which are

dN †

dt
= −B†N † +

〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
T †,

∂

∂N

[
KT − S

]〉
E,D,Ω

+
〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

H†ψ† − λG†ψ† =
∂R

∂ψ
+N †

∂bN

∂ψ
− A† A

VR
ΣE + T †

∂S

∂ψ〈
ψ†, Gψ

〉
E,D,Ω

= 0

A† =
VR

P̂

[〈∂R
∂A

〉
E,D,Ω

+
〈
N †

∂bN

∂A

〉
E,D,Ω

+
〈
T †,

∂S

∂A

〉
E,D,Ω

]
K†T † = T †

∂S

∂T
+
〈∂R
∂T

〉
E,D,Ω

−
〈
A†,

∂

∂T
APψ

〉
E,D,Ω

−
〈
ψ†,

∂

∂T

[
Hψ − λGψ

]〉
E,D,Ω

+N †
∂BN

∂T

N †(tf ) = 0.

The corresponding sensitivity equation will have an additional term to account for

the temperature dependence. Adding this term to Eq. (3.70), we write

dQ

dp
=

[
N †

dN

dp

]
t=t0

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†
∂P(t)

∂p

−
〈
T †,

∂

∂p

[
KT − S

]〉
E,D,Ω

}
dt

This derivation is not an exact prescription, as this will depend on the particular

form of the energy balance expression. Instead, the main takeaway is that the frame-

work is readily extensible to include new physics and their coupling to the existing

physics. For the modeler, it is only a matter of applying the provided abstraction to

the particular forward equations.
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3.5 Technique for Integrating the Sensitivity Equation

In the previous two sections, we derived sensitivity expressions (that is, Eqs.

(3.46), (3.52), (3.70), and (3.85)) that require a time-integral of a cross-correlation

of the forward and adjoint solutions. Here we describe our technique for evaluating

these expressions.

Our strategy is to integrate the sensitivity equation along with the adjoint equa-

tions during the backwards time march. This approach offers two major advantages:

1. The sensitivity equation can be integrated using the built-in Runge-Kutta

framework, resulting in an order of accuracy that is the same as the integration

of the forward and adjoint equations.

2. The forward and adjoint solutions are already available during the adjoint solve.

An alternative approach is to store the forward and adjoint equations (or specific

terms in the sensitivity equations) at quadrature points during the adjoint solve

and then evaluate the time integral in a post-processing step. This could require a

large amount of storage (or file I/O) and requires the extra work of interpolating the

solutions to the quadrature points; further, it is likely to be less accurate than our

technique.

Formally, we treat the integration as a series of appended dummy variables to

the adjoint system. Consider a representative sensitivity equation, written for a

particular parameter p:

dQ

dp
= S

(p)
T −

∫ tf

t0

F (p)(t)dt

where S
(p)
T represents terms in the sensitivity equation that are evaluated at either t =

t0 or t = tf , and F (p)(t) represents the cross-correlation terms. For each parameter
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p, we append a variable z(p)(t) that satisfies

dz(p)

dt
= F (p)(t)

z(p)(tf ) = S
(p)
T .

It is straightforward to show that the solution to this ODE at t = t0 is indeed dQ
dp

;

that is

dQ

dp
= z(p)(t0).

The ODE for z is integrated backwards in time using the same rule for integrating

the adjoint equations.
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3.6 Adjoint Equations for Three Particular QOIs and Non-Conforming QOIs

In the following three subsections, we discuss three QOIs that will be used

throughout the remainder of this dissertation. They are a terminal nuclide inventory,

a terminal total reaction rate, and the terminal reactivity. We conclude the section

with a brief discussion of other possible QOI formulations and how these could be

handled with the framework.

3.6.1 The terminal inventory QOI

The terminal inventory QOI is simply a count of the amount of a particular

nuclide remaining in the reactor (or a sub-volume of the reactor) at t = tf . We

choose to express this QOI in units of [mol]. Let the function δ(r) be defined as

δ(r) =

 0 r not in QOI sub-volume

1 r in QOI sub-volume
.

Therefore, the functional R appearing in either Eq. (3.47) or Eq. (3.74) has the

form

R = δ(r)
1〈〉
E,Ω

Nk

NA

,

where Nk is the nuclide density of the component of interest, and NA is Avogadro’s

number. After integration over phase space, this QOI will have units of [mol].

From the standpoint of the formalism that we have developed, this QOI is

straightforward to apply. In the source-driven case, the solution ψ̂† to Eq. (3.50), is

zero. Thus, by Eq. (3.51), the adjoint terminal condition in those spatial cells where

Nk is being inventoried is

N †k(tf ) =
〈 ∂R
∂Nk

〉
E,D,Ω

= δ(r)
Vc
NA

,
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where Vc is the cell volume. Not for all other nuclides, N †j (tf ) = 0, j 6= k. The

sensitivity equation, Eq. (3.52), is

dQf

dp
=
[
N †

dN

dp

]
t=t0
−
∫ tf

t0

{〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

−
〈
N †,

∂bN

∂p

〉
E,D,Ω

}
.

The terminal condition for this QOI in the k-eigenvalue case is a bit more com-

plicated. First, by Eq. (3.82), we have that Â† = 0 because ∂R
∂A

= 0. Thus, the

transport equation for the terminal condition vector ψ̂† is

H†ψ̂† − λG†ψ̂† = 0,

which is satisfied by both the zero vector and the fundamental mode adjoint flux.

We also found that the solution to this equation must satisfy
〈
ψ̂†, Gψ

〉
E,D,Ω

=

−
〈
∂R
∂λ

〉
E,D,Ω

= 0. A later analysis will show that the forward and adjoint fluxes

are not orthogonal in this sense; therefore, ψ̂† = 0 for this QOI. By Eq. (3.84), the

terminal condition for N †k is the same as above (and zero for all other nuclides). The

sensitivity equation, Eq. (3.85) is then

dQf

dp
=
[
N †

dN

dp

]
t=t0
−
∫ tf

t0

{〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

−
〈
N †,

∂bN

∂p

〉
E,D,Ω

+ A†
A

VR

∂

∂p

〈
ψΣE

〉
E,D,Ω

− A†∂P(t)

∂p

}

3.6.2 The terminal reaction rate QOI

The terminal reaction rate QOI is defined as the total reaction rate with a par-

ticular nuclide in a defined sub-volume of the reactor at t = tf . It has units of
[

1
sec

]
.

Let Nk be the density of the particular nuclide and σ be its total microscopic cross
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section. The functional R appearing in the source driven case, Eq. (3.47), is

R = δ(r)ψσNk.

Then, the adjoint transport equation to be solved for ψ̂† at t = tf is

H†ψ† −G†ψ† =
∂R

∂ψ
= δ(r)σNk.

It is interesting to note that this is exactly the adjoint transport equation that is

required for performing steady-state adjoint transport calculations[20]. Given ψ̂†,

the source-driven terminal condition, Eq. (3.51), is

N †k(tf ) =
〈
δ(r)ψσ

〉
E,D,Ω

−
〈
ψ̂†,

∂

∂Nk

[
Hψ −Gψ

]〉
E,D,Ω

for the nuclide in which the reaction is occurring and just

N †j (tf ) = −
〈
ψ̂†,

∂

∂Nj

[
Hψ −Gψ

]〉
E,D,Ω

for all other nuclides, j 6= k. Note: the adjoint terminal condition is non-zero,

even for those nuclides that do not contribute directly to the QOI. Finally, the term

containing ∂R
∂p

in the sensitivity equation, Eq. (3.52), is non-zero if p represents σ. In

this case,
〈
∂R
∂σ

〉
E,D,Ω

=
〈
δ(r)ψNk

〉
E,D,Ω

.

The k-eigenvalue case for this QOI is as follows. First, the functional R must also

carry the normalization constant A:

R = Aδ(r)ψσNk.

115



By Eq. (3.82),

Â† =
VR〈

ψΣE

〉
E,D,Ω

〈∂R
∂A

〉
E,D,Ω

=
VR〈

ψΣE

〉
E,D,Ω

〈
ψσNk

〉
E,D,Ω

.

We use this to substitute into Eq. (3.83) to form the adjoint transport equation for

ψ̂†:

H†ψ̂† − λG†ψ̂† =
∂R

∂ψ
− Â† A

VR
ΣE

= AσNk −

〈
AψσNk

〉
E,D,Ω〈

ψΣE

〉
E,D,Ω

ΣE

We’ve noted that a unique solution to this expression requires that the right hand

side be orthogonal to ψ(tf ). To see that this condition holds, write

〈
ψ,AσNk −

〈
AψσNk

〉
E,D,Ω〈

ψΣE

〉
E,D,Ω

ΣE

〉
E,D,Ω

=
〈
AψσNk

〉
E,D,Ω

−
〈〈AψσNk

〉
E,D,Ω〈

ψΣE

〉
E,D,Ω

ΣE, ψ
〉
E,D,Ω

=
〈
AψσNk

〉
E,D,Ω

−

〈
AψσNk

〉
E,D,Ω〈

ψΣE

〉
E,D,Ω

〈
ΣE, ψ

〉
E,D,Ω

= 0

The variables ψ̂† and Â† feed into the terminal condition expression, Eq. (3.84), and

ultimately the sensitivity equation. Again, we note that the term ∂R
∂p

is non-zero if

σ is a member of p.
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3.6.3 The terminal reactivity QOI

The last QOI is the reactivity, ρ = keff−1
keff

, at t = tf . This QOI is only valid for

k-eigenvalue problems. The functional R is trivial:

R =
1〈〉
E,D,Ω

keff − 1

keff

.

Therefore, ∂R
∂A

= 0, and by Eq. (3.82), Â† = 0. Similarly, ∂R
∂ψ

= 0, resulting in the

adjoint transport equation for ψ̂†:

H†ψ̂† − λG†ψ̂† = 0

subject to

〈
ψ̂†, Gψ

〉
E,D,Ω

= −
〈∂R
∂λ

〉
E,D,Ω

= −
〈 ∂R
∂keff

∂keff

∂λ

〉
E,D,Ω

= 1.

This constraint is simply a normalization on ψ̂†. From here forward, let ψ̂† be the

adjoint fundamental eigenfunction that satisfies this normalization. That is, let v†

be the fundamental adjoint eigenfunction with arbitrary magnitude, and set

ψ̂† =
v†〈

v†, Gψ
〉
E,D,Ω

.

The adjoint terminal condition is then

N †(tf ) = −
〈
ψ̂†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

,
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where all terms on the right-hand-side are evaluated at t = tf . Again we see an inter-

esting analog to a steady-state adjoint problem. This terminal condition is equivalent

to the expression that gives the sensitivity of a steady-state QOI to the nuclide den-

sities, N [20]. Finally, the sensitivity equation for the depletion perturbation problem

with terminal reactivity QOI is

dQ

dp
=
[
N †

dN

dp

]
t=t0
−

[〈
ψ̂†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

]
t=tf

+

∫ tf

t0

{〈
N †,

∂bN

∂p

〉
E,D,Ω

−
〈
ψ†,

∂Hψ

∂p

〉
E,D,Ω

+ λ
〈
ψ†,

∂Gψ

∂p

〉
E,D,Ω

− A† A
VR

∂

∂p

〈
ψΣE

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt.

3.6.4 Non-conforming QOIs

Our framework assumed that the QOI may be written as either a time-integrated

phase space integral over the forward solution or as a phase space integral of the

forward solution evaluated only at the end of the simulation. Other interesting QOI

formulations certainly exist. Here, we consider the case of a ratio of phase space

integrals and the case of a QOI that is taken to be the maximum of some quantity,

such as a peak fission rate.

First, consider a QOI of the form

Q =

∫ 〈
R1(x, p, t)

〉
〈
R2(x, p, t)

〉dt,
as opposed to the form of Eq. (3.3). This could, for example, be a time-integrated

total neutron production rate divided by a total neutron absorption rate in a particu-

lar material in a particular region of the reactor. We could still apply our framework
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directly to a QOI of this form. We would just need to carry the proper differentiation

through the steps that lead to the adjoint equations. On a related note, recall that

the Fredholm alternative theorem is automatically satisfied if the form of the QOI

satisfies Eq. (3.73). It is straightforward to show that if R1 and R2 are each bilinear

in A and ψ, then the Fredholm alternative is also satisfied. Thus, as long as the QOI

ratio is bounded, this particular form of the QOI does not present any challenges to

our framework.

Second, consider a QOI that may be important for design optimization or safety

considerations:

Q = max
Vi∈V

∫ 〈
R(x, p, t)

〉
Vi
dt.

For example, this could be the maximum pin-wise fission rate in the reactor. To

apply the framework in this case, we envision an intermediate step. First, we would

solve for the forward solution as usual. The extra step is then to search the phase

space for the maximum (in essence, compute the QOI), which then implicitly defines

a function Ri that is to be integrated to compute that QOI (it will be a step function

that is non-zero only where the maximum occurs). Then, we would proceed with

the adjoint calculation using Ri as the QOI functional, which would ultimately give

us the sensitivity and/or error estimates for that particular maximum. If such a

strategy was taken in an optimization loop, the intermediate step would be required

to find the maximum and adjust Ri at each iteration.

119



4. STRATEGIES AND IMPLEMENTATION FOR MASSIVELY PARALLEL

ARCHITECTURES

In this section, we describe the solvers that are implemented in the PDT code

for the source-driven and k-eigenvalue formulations of the depletion perturbation

equations. We begin the section with an overview of the PDT code and a broad de-

scription of the depletion solvers, adjoint transport solver, and the adjoint depletion

solver. These descriptions are meant to be high-level and are supplemented by the

detailed descriptions in Appendix B.

The second part of the section describes the family of checkpointing algorithms

that we have developed, implemented, and tested in PDT. Three of these algorithms

take advantage of the dimensionality reduction that occurs in the source iteration

procedure, and the result is a decreased memory and I/O load on the host machine.

We analyze the schemes in terms of their FLOP costs, memory costs, and I/O costs.

Our hypothesis that the new schemes will improve time to solution for large problems

on large processor counts will be tested in a later section.
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4.1 Description of the PDT Software: A Massively Parallel Discrete Ordinates

Transport Solver

In this section we give a broad overview of PDT, a software project designed to

solve large scale discrete ordinates transport problems. The project is a collabora-

tion of graduate students, research staff members, and faculty members of the nu-

clear engineering, computer science, and mathematics departments at Texas A&M

University. The code is written in the C++ programming language and includes

solvers for neutronics, radiative transfer, and charged-particle transport problems.

The computational strategy is focused on the efficient solution of large scale problems

at massively parallel levels of computing. Recently published results[1] illustrate a

provably optimal solution strategy and leading-edge scaling results on O
(
100, 000

)
cores.

For this dissertation, we are focused on the family of neutronics solvers in PDT.

A neutronics problem is defined by the user via an input file. This file specifies the

type of neutronics problem to be solved, discretization schemes, iterative algorithm,

and the materials and geometry that compose the problem domain. Based on these

settings, the main PDT driver file chooses the proper path through the code to

compute and report the desired solution.

The first step is always to process the problem materials and geometry; this

includes reading in material cross sections and densities, dividing the domain into

spatial cells, and composing the homogeneous material mixtures that exist in each

cell. In PDT, individual nuclides are referred to as components, and a mixture

of components in a spatial cell is referred to as a material. The macroscopic cross

sections of a material, which appear in the neutron transport equation, are a function

of the microscopic cross sections, σ, and densities, N , of the material’s components.
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For example, the macroscopic cross section for interaction k and group g is

Σk,g =
I∑
i=1

Niσi,k,g,

where I is the number of components in the material.

Next the software chooses the appropriate solver for the particular problem. The

solvers are written in a hierarchical design, beginning with the simple steady-state

solver called NeutronicsSolver. A brief description of the solver hierarchy, roughly in

order of increasing complexity, is as follows:

1. NeutronicsSolver: Solve the steady-state, fixed-source transport equation

Ĥψ = S0.

For k-eigenvalue problems (described next), Ĥ = H and S0 is the latest update

for the fission source. For time-dependent or true steady-state problems, Ĥ =

H−G and S0 is a prescribed, fixed neutron source. All other solvers derive from

NeutronicsSolver and ultimately use repetitive calls to this solver to complete

a calculation.

2. KSolver: Solve the k-eigenvalue formulation of the transport equation,

Hψ − 1

keff

Gψ = 0,

using the power iteration method. The power iteration method iterates on the

fission source to compute the fundamental mode eigenvalue/eigenvector solu-

tion to this equation. Each iterate on the fission source requires a fixed-source

transport solve. KSolver outputs the fundamental eigenvalue, keff, and funda-
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mental mode flux solution, ψ, normalized by a user-defined power constraint.

3. SSAdjointSolver: Solve a steady-state adjoint transport problem of the form

H†ψ† −G†ψ† = S†.

The form of S† will depend on the particular quantity of interest. This solver,

which includes a wrapper around NeutronicsSolver for solving the forward prob-

lem, will be described in more detail in Sec. 4.3.

4. BPSolver: Solve either the source-driven or k-eigenvalue form of the depletion

equations. An operator-splitting implicit scheme and general Runge-Kutta

half-implicit or half-explicit schemes are available. Both schemes are ultimately

wrappers around NeutronicsSolver or KSolver. This solver will be described in

more detail in Sec. 4.2.

5. MSASolver: Use the method of successive approximations to solve the adjoint,

non-homogeneous, k-eigenvalue transport equation (e.g. (3.66)) subject to the

orthogonality constraint Eq. (3.67). The solver requires that a solution to the

homogeneous k-eigenvalue adjoint problem be available. This solver will be

described in more detail in Sec. 4.4.

6. DplAdjointSolver: Solve the depletion perturbation equations. This solver

is the main contribution of this dissertation. In includes a wrapper around

BPSolver for solving and checkpointing the forward solution, as well as for

formulating and solving the adjoint equations. This solver will be described in

more detail in Sec. 4.5.

The core functionality of the neutronics solvers is the fixed-source transport solve.
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As the list indicates, all of the derived solvers ultimately iteratively solve fixed-source

transport problems (either inverting a forward or adjoint operator). Although we do

not address it in this dissertation, we note that PDT also contains a family of solvers

for the time-dependent neutron transport equation as well as solvers for thermal

radiative transfer, electron transport, and gamma transport.

PDT employs an iterative algorithm known as source iteration to converge to

a fixed-source transport solution. It also offers Kyrolv methods such as GMRES,

Conjugate Gradient (CG), and BiCG-STAB. This dissertation does not require an

in-depth description of these algorithms (see refs. [52, 53] for such detail), but a

broad description will provide useful background for the subsequent sections.

Each iteration of the power iteration algorithm requires a “sweep” along each of

the discrete ordinates, or angular directions, being treated in the problem. For a

particular angle, a sweep begins at the inflow problem boundary, where the incident

angular flux is specified by a boundary condition. For each cell on this boundary, the

exiting angular flux is computed, which serves as a boundary condition for the cell’s

“downstream” neighbors. Each sweep for each angle ultimately progresses from the

upstream problem boundary to the downstream problem boundary.

The exact formulation of the exiting flux for a particular angle in a particular cell

depends on the spatial discretization method. PDT offers a variety of discontinuous

finite-element methods (DFEMs), which can handle arbitrary cell shapes, as well as

weighted-diamond methods, which are restricted to orthogonal grids. There is long-

characteristics implementation as well for arbitrary grids, but in its current form it

requires significantly longer run times than the DFEMs. No matter the discretiza-

tion scheme, however, the source iteration procedure uses the previous iterate’s flux

solution to form the current iterate’s source terms. In other words, the angular flux is

computed by inverting the streaming plus collision terms in the transport equation,
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using the previous iterate to compute the scattering and fission source terms. The

iterative procedure is summarized as

Ω · ∇ψ` + Σtψ
` = SS(ψ`−1) + SF (ψ`−1) + S0,

where ` is an iteration index and SS and SF represent the scattering and fission

sources, respectively. This scheme is repeated until some measure of the difference

from one iteration to the next is within a user-defined tolerance.

Source iteration has a simple physical interpretation. If the initial guess for the

flux solution is ψ0 = 0, then the first source iteration, ψ1, is the uncollided flux, or

all neutrons that have been directly emitted by the fixed source S0, or have flowed

in from the problem boundary but have not yet collided with a nucleus. The second

iterate, ψ2, is the once-collided flux, or neutrons that have undergone one scattering

or fission event. The third iterate is the twice-collided flux, and so on. Because

all uncollided neutrons must ultimately die by absorption or leakage from the prob-

lem, this procedure is guaranteed to converge (so long as the system is subcritical).

The convergence rate may be arbitrarily slow, however, for a problem where neu-

trons undergo many scattering and/or fission interactions before they disappear via

absorption or leakage.

Kyrlov methods usually converge faster than source iteration with little additional

cost per iteration. They choose the `-th iteration to be the “best” member, in some

defined sense, of a vector space known as a Krylov subspace. The main point here

is that they rely on sweeps, just as source iteration does, and simply manipulate the

sweep inputs and outputs to achieve their ends.

In summary, the family of neutronics solvers in PDT ultimately require the re-

peated solution of the fixed-source transport equation. PDT employs the source
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iteration technique with global, boundary-to-boundary sweeps and optional Krylov

acceleration to converge to a solution within a specified tolerance. After a fixed

source solve, each spatial cell contains angular and/or scalar flux solutions, which

are used by the various solvers to update the particular problem (e.g. update com-

ponent densities) and formulate subsequent fixed-source problems. In the following

sections, we describe how the depletion, adjoint, and depletion perturbation solvers

interact with PDT’s fixed-source solver.

4.2 Description of the Depletion Solver in PDT

In this section, we describe the implementation of two algorithms for solving ei-

ther the fixed-source or k-eigenvalue form of the depletion equations in PDT. This

description is supplemented by detailed documentation in Appendix B. Recall from

Sec. 2.1 that our model is an independent set of Bateman equations at each spatial

point (that is, we don’t account for migration of nuclides). We also make the basic

assumption that the microscopic cross sections are not functions of the nuclide num-

ber densities. This assumption neglects changes in spatial self-shielding that occur

as the nuclide inventories change.

This first depletion algorithm, which we will call the operator splitting (OS)

algorithm, uses a linear approximation for the flux magnitude over “flux time steps”

and solves the Bateman equation over shorter “density time steps.” Thus, the OS

algorithm has an implicit component. The second algorithm, which we will call the

Runge-Kutta (RK) algorithms, solves the depletion equations according to a general

Runge-Kutta time integration rule.

4.2.1 The operator splitting solution technique

This technique solves the quasi-static version of the depletion equations by as-

suming a linear shape of the flux magnitude over a series of time steps. Pseudocode
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for advancement over a time step ∆tφ = tn+1 − tn is given in Fig. 4.1. The scheme

begins with a guess that the cell-averaged scalar flux in each group is constant over

the time step. Using this guess, the densities are integrated over the time step to

solve for the end-of-time-step densities. Then, a new guess for φn+1 is computed

using these densities. If the relative change in the guess for Nn+1 and/or φn+1 is

small enough, the procedure is finished and we move on to the next time step.

Figure 4.1: Pseudocode for the operator splitting depletion algorithm

We consider some of these steps in more detail. In step 3, the Bateman solutions

are integrated from tn to tn+1 using the latest guess for the slope of flux magnitude

over that time step. The time step for this integration, ∆tN , may be smaller than

∆tφ, which is advantageous for three reasons:

1. The nuclide densities tend to change on time scales much shorter than the flux

solution, especially for those nuclides with short half lives;

2. The Bateman solution is much cheaper to obtain than the global flux solution

because it is a simple ODE; and
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3. The integration of the Bateman equation within a cell is totally independent

of that in other cells, so each processor is free to deplete its nuclides in a

completely parallel fashion.

We choose to use a general, implicit Runge-Kutta scheme to integrate the Bateman

equation within each cell. This requires one linear solve of size I per Runge-Kutta

stage, where I is the number of nuclides in the cell. We use a direct LU decomposition

solver for these systems. Even for problems with ratio
∆tφ
∆tN

= O(100), we find that

the time spent on these linear systems is negligibly small compared to the time spent

computing φ. The advantage of the implicit solver is for resolving rapidly changing

component densities with relatively large time steps.

In step 5, the latest 2 guesses for φn+1 and Nn+1 are compared to determine

whether the iterative scheme has converged or not. This is a point-wise convergence

test, meaning that we are testing the relative change in these quantities at each

point where they are defined in the problem. The user specifies whether to check φ,

N , or both, as well as their respective tolerances, in the input file. The user also

specifies the maximum number of iterations to perform over a given ∆tφ. These

options allow for flexibility in the scheme. For example, the scheme can be made

completely explicit by setting maxIter=1, which would correspond to a piece-wise

constant guess for the flux magnitude. Similarly, if maxIter=2, the scheme could be

interpreted as a predictor-corrector technique, where one flux update is allowed per

time step.

The main advantages of this algorithm are first, that implicit flux information is

used to integrate the Bateman equation, and second, that the Bateman equations

can be integrated at a time resolution that is not limited by the frequency of the

transport solves. Overall, these advantages help reduce time step limitations im-
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posed by initial burn-ins and/or short lived components, allowing for more efficient

simulation of realistic reactor operational cycles. For example, clever choices of ∆tφ,

∆tN , tolerances, and iteration limits early in a reactor cycle will help resolve shorter

time-scale physics. After the reactor has reached a more quasi-equilibrium state,

these settings can be relaxed to decrease time to solution.

4.2.2 The Runge-Kutta solution technique

This time marching technique employs a general-order, half-explicit or half-implicit

Runge-Kutta scheme to integrate the depletion equations over a series of time steps

of length ∆t. The half-explicit and half-implicit schemes were outlined in Sec. 2.3

by Eqs. (2.10) and (2.11), respectively.

For both schemes, either the stage vector, Ni, or the Bateman derivative, BiNi,

must be stored for each stage in order to compute subsequent stage vectors, including

the final stage vector Nn+1. We choose to store BiNi so that we do not have to

recompute B and therefore do not have to store s flux stage vectors at each time

step. Pseudocode for advancing the densities from tn to tn+1 is given in Fig. 4.2.
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Figure 4.2: Pseudocode for the Runge-Kutta depletion algorithm

This algorithm has the advantage of flexibility in choosing the Runge-Kutta

scheme. Higher order schemes may be used when necessary to improve stability

and/or accuracy in the solution. Perhaps more importantly, the sub-cycled half-

explicit (Eq. (2.12)) and half-implicit (Eq. (2.13)) schemes allow for short Bateman

time-steps relative to the overall depletion time steps, alleviating time step limita-

tions. These sub-cycled schemes are limited to first order accuracy. Lastly, embedded

Runge-Kutta schemes may be used to generate an order p + 1 accurate solution in

addition to the order p solution, allowing for an end-of-time-step error calculation.

As described in Sec. 2.5.2, the adjoint of the Runge-Kutta scheme is well defined,

allowing for a fairly straightforward adaptation of the forward solver to solve the

adjoint problem. We choose to only use self-adjoint Runge-Kutta schemes. Most of

the well-known schemes are self-adjoint (explicit and implicit Euler, modified Euler,

RK4), and these are most straightforward to implement.
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4.3 Description of the Adjoint Transport Solver in PDT

Here we describe the steady-state adjoint transport solver in PDT. The pur-

pose of this solver is to produce an adjoint flux solution, ψ†(r, E,Ωn) in addition

to a forward flux solution, ψ(r, E,Ω), and cross-correlate them to produce sensitiv-

ity information about a particular quantity of interest. We introduced an example

problem of this type in Sec. 2.4.1. Recall that we defined a QOI,

Q =
〈
R(ψ, p)

〉
E,D,Ω

,

derived from the solution ψ to the forward problem

Hψ −Gψ = S0

with vacuum boundary condition. We then showed that the sensitivity of this QOI

with respect to each parameter p can be computed as

dQ

dp
=
〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

,

where ψ† satisfies the adjoint equation

H†ψ† −G†ψ† = S†,

where S† ≡ ∂R
∂ψ

.

To write this solver, we first needed to implement a solver for the adjoint transport

equation given a right-hand-side. In Sec. 2.4.3, we showed that the forward solver can

be “tricked” into solving for ψ†(r, E,−Ωn), the adjoint angular flux in the direction

opposite of Ωn, with a single modification: a transpose of the scattering and fission
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source terms. This is a convenient result because we are not required to re-write (and

therefore re-test and re-verify) an adjoint transport solver; we need only to transpose

the energy transfer terms when we are in adjoint mode.

To accomplish this, we added three members to the code. First, we implemented

classes that compute the transpose of the scattering and fission source matrices; these

are simple adaptations of the existing source classes in the code. Second, we added a

flag adjoint mode, which tells the code whether or not to use the transposed versions

of the source operators. This flag is manipulated as required by the solvers depending

on which stage (forward or adjoint) the problem is in. Finally, the quadrature sets

were modified such that each angle knows the index of its corresponding opposite.

This way, anytime we are integrating over angle (e.g. to compute an inner product),

the correct adjoint flux can be accessed quickly.

We implemented a family of classes that provide QOI information to the solver. A

given QOI class can compute the actual quantity of interest, provide S† prior to the

adjoint solve, and compute
〈
∂R
∂p

〉
E,D,Ω

. The QOI also handles the cross-correlation

and, as we will describe in the next section, performs the time integration of the

sensitivity equation in depletion perturbation problems.

Pseudocode for the steady-state adjoint transport solver is given in Fig. 4.3. Steps

1 and 2 are fairly straightforward. The forward flux is computed using Neutronic-

sSolver or KSolver, and the user-requested QOI is calculated and reported to an

output file. In step 3, we write the solution to memory; that is, each spatial ele-

ment stores a copy the converged forward angular flux vector. This will be used to

compute dQ
dp

in step 6.
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Figure 4.3: Pseudocode for the steady-state adjoint solver

In step 4, the adjoint source S† is computed and stored on each spatial element.

Note that S† is related to the functional R but is not integrated over phase space.

For example, if the QOI is the total reaction rate with nuclide k over the whole

domain, the QOI expression is

Q =
〈
σt,kψNk

〉
E,D,Ω

.

Therefore

S† = σt,kNk.

In step 5, the adjoint mode flag is turned on. In a fixed-source calculation, the Neu-

tronicsSolver class iterates (with transposed scattering and fission energy transfer

terms) until ψ† is converged. In a steady-state k-eigenvalue calculation, the MSA-

Solver performs the method of successive approximation (see below), which includes

a wrapper around NeutronicsSolver, and maintains the proper orthogonality rela-

tionships. For both cases, the result is a converged ψ†.

Finally, in step 6, the QOI class computes
〈
∂R
∂p

〉
E,D,Ω

and the correct expression

for dQ
dp

for each p specified by the user. These terms are described in detail in

Appendix B; as a brief example, however, consider the sensitivity equation for our
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reaction rate QOI and the parameter σt,g for nuclide k:

dQ

dσt,g,k
=
〈
ψgNk

〉
D,Ω
−
〈
ψ†g, ψgNk

〉
D,Ω

.

Note that special care must be taken to use the correct ψ†g with regard to angle in

the second inner product.

4.4 Description of the Method of Successive Approximations Implementation in

PDT

Here we describe our implementation of the method of successive approximations

(MSA) in PDT. This solver is used to converge a solution to an equation of the form

H†ψ† − λG†ψ† = S† (4.1)

subject to the orthogonality constraints

〈
ψ, S†

〉
E,D,Ω

= 0 (4.2)〈
ψ†, Gψ

〉
E,D,Ω

= 0. (4.3)

Equations and constraints of this form appear in the adjoint equations corresponding

to the k-eigenvalue formulation of the forward depletion equations. We formulated

our MSA scheme based on a technical report by Oblow[54]. We depart from his

analysis, however, to show an improved convergence result, which is discussed in the

following paragraphs.

We begin with some analysis that lends mathematical insight into the orthogonal-
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ity conditions. Consider the forward and adjoint homogeneous eigenvalue equations:

Hv − λGv = 0

H†v† − ηG†v† = 0,

which have eigenvalue/eigenvector solutions
{
λi, vi

}∞
i=0

and
{
ηi, v

†
i

}∞
i=0

, respectively.

Let the index i be ordered such that λ0, the fundamental mode, is the smallest

eigenvalue in magnitude. By this definition, v0 ≡ ψ. We first claim and prove that

v and v† are biorthogonal, meaning

〈
vi, H

†v†j

〉
E,D,Ω

=
〈
vi, ηjG

†v†j

〉
E,D,Ω

=

 0 i 6= j

αi i = j
.

First, we write the following inner products

〈
v†j , Hvi

〉
E,D,Ω

−
〈
v†j , λiGvi

〉
E,D,Ω

= 0〈
vi, H

†v†j

〉
E,D,Ω

−
〈
vi, ηjG

†v†j

〉
E,D,Ω

= 0,

and subtract the second line from the first to write

〈
v†j , Hvi

〉
E,D,Ω

−
〈
vi, H

†v†j

〉
E,D,Ω

−
〈
v†j , λiGvi

〉
E,D,Ω

+
〈
vi, ηjG

†v†j

〉
E,D,Ω

= 0.

Applying our inner product rules for operators H and G, we eventually find

(
ηj − λi

)〈
v†j , Gvi

〉
E,D,Ω

= 0. (4.4)

If i 6= j, the first term is non-zero, requiring that the second term be zero and proving
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part of the claim. To see the case for i = j, re-write the eigenvalue equations as

1

λi
vi =

(
H−1G

)
vi (4.5)

1

ηj
v†j =

[
H†
]−1

G†v†j (4.6)

Similar manipulations lead to the equality

λi

〈
v†j , vi

〉
E,D,Ω

− ηj
〈
vi, v

†
j

〉
E,D,Ω

=
(
λi − ηj

)〈
vi, v

†
j

〉
E,D,Ω

= 0. (4.7)

The analysis begins by expanding ψ†, the solution to the inhomogenous eigen-

value problem (the adjoint flux that we ultimately wish to compute) in terms of the

homogeneous adjoint eigenvectors and the action of the adjoint transport operator

on S†:

ψ† =
[
H†
]−1

S† +
∞∑
i=0

biv
†
i .

This form differs from that of Oblow, and an explanation of this form is given below.

Note that the operator H†−λ0G
† maps v†0, as well as any scaling of that vector, b0v

†
0,

to zero. Therefore, in order for ψ† to be unique, this mode (the fundamental mode)

must not be present in ψ†. In other words, we must enforce b0 = 0. It turns out

that a combination of the Fredholm alternative condition, Eq. (4.2), and the fission

orthogonality condition, Eq. (4.3), works to filter out the fundamental mode. To see

136



this, we begin with a trivial expression which leads to the Fredholm condition:

0 =
〈
ψ†, 0

〉
E,D,Ω

=
〈
ψ†, Hψ − λ0Gψ

〉
E,D,Ω

=
〈
H†ψ† − λ0G

†ψ†, ψ
〉
E,D,Ω

=
〈
S†, ψ

〉
E,D,Ω

If we now incorporate the fission orthogonality condition and substitute our expan-

sion for ψ†, we find

0 =
〈
ψ†, Hψ

〉
E,D,Ω

− λ0

〈
ψ†, Gψ

〉
E,D,Ω

=
〈
ψ†, Hψ

〉
E,D,Ω

=
〈[
H†
]−1

S†, Hψ
〉
E,D,Ω

+
〈 ∞∑
j=0

bjv
†
j , Hψ

〉
E,D,Ω

=
〈
H†
[
H†
]−1

S†, ψ
〉
E,D,Ω

+ b0

〈
v†0, Hv0

〉
E,D,Ω

=
〈
S†, ψ

〉
E,D,Ω

+ b0α0

= b0α0

which requires that b0 = 0. Again, the orthogonality conditions filter fundamental

mode contamination out of ψ†, allowing for a unique solution.

The convergence analysis also requires an expansion related to the adjoint source.

Again, our analysis differs from that of Oblow, who proposed S† =
∑∞

j=0 ajλjG
†v†j .

We find that G†v† may not form a basis in general. For example, S† for a time-

137



dependent QOI is (see Eq. (3.66))

S† =
∂R

∂ψ
+ Ñ †

∂bN

∂ψ
− Ã† A

VR
ΣE,

where R is the functional being phase-space integrated to form the QOI. If R is

non-zero in a region with no fission (e.g. absorption in a control rod), then it cannot

be represented by G†v†, which is zero by definition in a non-fissioning region. Thus,

G†v† is not a suitable basis in general.

Instead, we propose an expansion of the form

[
H†
]−1

G†
[
H†
]−1

S† =
∞∑
j=0

ajv
†
j .

This can be manipulated to write

G†
[
H†
]−1

S† =
∞∑
j=0

ajH
†v†j

=
∞∑
j=0

ajλjG
†v†j ,

and thereby has some similarity to the Oblow expansion. It does not, however, have

the obvious contradiction related to a projection to zero in non-fissioning regions.

We do not offer a formal proof that this expansion holds in general. We do note,

however, that the operator G†
[
H†
]−1

is compact (it is an integration over space,

angle, and energy) and is therefore more likely to be well-behaved in terms of the

basis. We proceed under the assumption that the expansion holds.

We first use a series of manipulations and the biorthogonality properties of the

eigenmodes to write a relationship between the aj’s and the bj’s. We first operate
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on the adjoint flux equation with
[
H†
]−1

G†
[
H†
]−1

from the left as follows:

0 = H†ψ† − λ0G
†ψ† − S†

=
[
H†
]−1

G†ψ† − λ0

[
H†
]−1

G†
[
H†
]−1

G†ψ† −
[
H†
]−1

G†
[
H†
]−1

G†S†.

We next take the inner product of this operator with an arbitrary forward mode, vi,

and manipulate using our expansion for ψ†:

0 =
〈
vi,

∞∑
j=0

bj
[
H†
]−1

G†v†j +
[
H†
]−1

G†
[
H†
]−1

S† − λ0

∞∑
j=0

bj
[
H†
]−1

G†
[
H†
]−1

G†v†j

− λ0

[
H†
]−1

G†
[
H†
]−1

G†
[
H†
]−1

S† −
[
H†
]−1

G†
[
H†
]−1

S†
〉
E,D,Ω

=
〈
vi,

∞∑
j=0

bj
1

λj
v†j − λ0

∞∑
j=0

bj
1

λ2
j

v†j − λ0

∞∑
j=0

aj
[
H†
]−1

G†v†j

〉
E,D,Ω

=
〈
vi,

∞∑
j=0

bj
1

λj
v†j − λ0

∞∑
j=0

bj
1

λ2
j

v†j − λ0

∞∑
j=0

aj
1

λj
v†j

〉
E,D,Ω

=
〈
vi,
[ bi
λi
− λ0bi

λ2
i

− λ0ai
λi

]
v†i

〉
E,D,Ω

In order for this to hold, we must have

bi

[
1

λi
− λ0

λ2
i

]
=
λ0

λi
ai,

or after some manipulation,

bi = λ0

[
1

1− λ0

λi

]
ai.

The converse of this expression implies that if b0 = 0, then a0 = 0, indicating that

the expansion for S† must also not contain any fundamental mode contamination.

The effects of this contamination and our strategy for filtering it out of the solution
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are described below.

We now analyze the convergence rate of the MSA scheme and show that it does

indeed converge to the solution (ψ†) to Eq. (4.1) in the limit of infinite iterations.

The scheme is similar to the power iteration method in that the (adjoint) fission

source is iteratively updated until convergence. The value of λ0, however, is fixed:

it is the eigenvalue computed during the forward solve. So, MSA is not formally a

filtering scheme; instead, we are simply creeping up on the solution. The iterative

scheme is summarized as follows:

H†ψ†,` = λ0G
†ψ†,`−1 + S†.

The solution is considered to be converged when the relative, point-wise and group-

wise change in the adjoint scalar flux is below a user-defined tolerance:

∣∣∣φ†,(`)g (r)− φ†,(`−1)
g (r)

∣∣∣
φ
†,(`)
g (r)

< εtol.

The rate of convergence turns out to be governed by the dominance ratio, R = λ0

λ1
,

of the system, much like power iteration. To see this, we write out the first few

iterations using an initial guess of zero. The first iteration produces

ψ†,(1) =
[
H†
]−1

S†

The second iteration produces

ψ†,(2) =
[
H†
]−1

λ0G
†[H†]−1

S† +
[
H†
]−1

S†

= λ0

∞∑
j=0

ajv
†
j +

[
H†
]−1

S†
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The third iteration produces

ψ†,(3) =
[
H†
]−1
[
λ0G

†ψ†,(2) + S†
]

=
[
H†
]−1
[
λ0G

†[λ0

∞∑
j=0

ajv
†
j +

[
H†
]−1

S†
]

+ S†
]

=
[
H†
]−1
[
λ0

∞∑
j=0

aj
λ0

λj
λjG

†v†j + λ0G
†[H†]−1

S† + S†
]

=
[
H†
]−1[

λ0

∞∑
j=0

aj
λ0

λj
H†v†j + λ0G

†[H†]−1
S† + S†

]
= λ0

∞∑
j=0

aj
λ0

λj
v†j + λ0

∞∑
j=0

ajv
†
j +

[
H†
]−1

S†

Similar steps lead to an expression for the fourth iterate:

ψ†,(4) = λ0

∞∑
j=0

aj

(
λ0

λj

)2

v†j + λ0

∞∑
j=0

aj
λ0

λj
v†j + λ0

∞∑
j=0

ajv
†
j +

[
H†
]−1

S†.

The general expression for the N th iterate is

ψ†,(N) =
[
H†
]−1

S† + λ0

∞∑
j=0

ajv
†
j

N−2∑
n=0

(λ0

λj

)n
. (4.8)

This expression reveals the importance of eliminating the fundamental mode con-

tamination. To see this, we re-write it as

ψ†,(N) =
[
H†
]−1

S† + λ0

N−2∑
n=0

a0v
†
0 + λ0

∞∑
j=1

ajv
†
j

N−2∑
n=0

(λ0

λj

)n
.

If we allow a0 6= 0, then a non-convergent term appears in the summation. Even

if
∣∣∣∣a0v

†
0

∣∣∣∣ is arbitrarily small, this term will grow linearly with iteration count and

may prevent convergence.
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Assuming the fundamental mode contamination is controlled, the exact adjoint

flux solution, ψ†, is reached in the limit of infinite iterations. Using Eq. (4.8), we

apply the limit and find

ψ† = lim
N→∞

ψ†,(N) =
[
H†
]−1

S† +
∞∑
j=1

ajλ0v
†
i

1− λ0

λj

(4.9)

=
[
H†
]−1

S† +
∞∑
j=1

bjv
†
j .

Thus, the MSA scheme does converge to the correct solution. From Eq. (4.9), we find

that the rate at which the error is reduced from one iteration to the next is limited by

R = λ0

λ1
, the dominance ratio, or the ratio between the smallest and second-smallest

(in magnitude) eigenvalues. Therefore, the computational cost to converge the MSA

scheme to a particular tolerance is on the order of the cost to converge the forward

power iteration for ψ.

Now we turn to our strategy for controlling the fundamental mode contamination.

The initial guess, ψ†,(0) = 0 does not contain any fundamental mode. During the

iteration process, it is possible that round-off effects or other errors will cause the

fundamental mode to creep in. Therefore, after each fixed-source solve during the

MSA process (but before the convergence check), we perform an orthogonalization

step via the filter

ψ†,(`) ← ψ†,(`) −

〈
ψ†,(`), Gψ

〉
E,D,Ω〈

v†0, Gψ
〉
E,D,Ω

v†0.
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We note that this filter is equivalent to

ψ†,(`) ← ψ†,(`) −

〈
ψ†,(`), v†0

〉
E,D,Ω〈

v†0, v
†
0

〉
E,D,Ω

v†0

because of the biorthogonality condition. The former resembles the orthogonality

condition that we seek:
〈
ψ†, Gψ

〉
E,D,Ω

= 0 and may afford some computational

savings because Gψ is isotropic; the latter may have a more intuitive feel for the

reader.

Finally, we note that an orthogonalization of S† can be performed by applying

the following filter:

S† ← S† −

〈
S†, ψ

〉
E,D,Ω〈

ψ,G†v†0

〉
E,D,Ω

G†v†0.

In theory, this calculation is not necessary because S† is analytically orthogonal to ψ

due to the form of our QOIs. In practice, however, it may be necessary to eliminate

fundamental mode contamination from round off effects or other small errors in the

system unknowns. The orthogonalization may be completed prior to the MSA solve

and does not need to be repeated at each iteration.

As a review, Fig. 4.4 gives the pseudocode for the MSA solver. The initial guess

for ψ† is either zero for the first MSA solve or the previous, converged ψ†. The ho-

mogeneous adjoint solution is computed before entering the MSA solve using regular

power iteration. We compute, orthogonalize, and store S†, whose form depends on

the particular QOI. We then enter the MSA iterations, which either terminate after

a maximum number of iterations or after the convergence criteria is met.
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Figure 4.4: Pseudocode for the MSA solver

4.5 Description of the Depletion-Perturbation Solver in PDT

In this section, we give an overview of the primary computational workhorse of

this dissertation: the depletion perturbation solver, or DplAdjointSolver. This solver

begins by computing a forward depletion solution (that is, N(t) and ψ(t)). Using

schemes that we describe below, this solution is either stored or checkpointed so

that it can be made available during the subsequent adjoint solve. Next an adjoint

time integration is launched using an appropriate terminal condition, and the proper

form of the sensitivity and/or error equation is integrated to compute the desired

UQ information.

The solver can be described in terms of two major efforts. First is a time marching

scheme to integrate the adjoint variables backwards in time from their terminal

condition at t = tf to the starting point of the simulation, t = t0. The terminal

condition is inherently tied to the particular QOI and may require an intermediate

adjoint transport solve (see Eq. (3.84) for an example). From this condition, the

adjoint equations are traced backwards over the same time steps taken by the forward

solver. As described in Sec. 2.5.2, the rule for integrating the adjoint equations over

the time step t ∈ [tn, tn−1] is the adjoint rule of the forward Runge-Kutta scheme.
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We also integrate the sensitivity equation (e.g. Eq. (3.85)) during the adjoint

solve. This is computationally advantageous because evaluation of the cross-correlation

terms at a given stage requires access to the full adjoint and forward solution, both

of which are available during the adjoint solve. The alternative would be to check-

point and recompute these solutions at quadrature points after the adjoint solve is

complete. Our scheme, as described in Sec. 3.5, integrates the sensitivity equation

with the same Runge-Kutta scheme (and therefore same order of accuracy) as the

adjoint equations.

Pseudocode for the procedure of integrating the adjoint equations and sensitivity

expression over a single time step is given in Fig. 4.5.

Figure 4.5: Pseudocode for integrating the adjoint equations

For example, assume we are using a self-adjoint Runge-Kutta scheme such that
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b† = b and a† = a. Further, assume that our sensitivity equation has the form

dQ

dp
=

∫ tf

t0

〈
ψ†,

∂

∂p

[
Hψ
]〉

E,D,Ω
dt.

Then the adjoint k-eigenvalue depletion equations (those corresponding to forward

problem Eqs. (3.54) – (3.57)) and the sensitivity equation are advanced backwards

in time from tn to tn−1 according to the rule

N †n−1 = N †n −∆t
s∑
i=1

bi

(
dN †

dt

)
i

dQ

dp
+= ∆t

s∑
i=1

biCi

H†i ψ
†
i − λiG

†
iψ
†
i = S†i〈

ψ†i , Giψi

〉
E,D,Ω

= 0

Ci =
〈
ψ†i ,

∂

∂p

[
Hiψi

]〉
E,D,Ω

N †i = N †n −∆t
i−1∑
j=1

aij

(
dN †

dt

)
j

.

Here, operators operator subscript i indicates that the operator may contain terms

from both the forward and adjoint solutions evaluated at stage i. Again, this is

a key computational challenge associated with the adjoint technique: how can we

manage the time series of a large forward solution such that pieces of it are available

as required during the adjoint solve?

This question is related to the second major effort of this solver: providing ac-

cess to, or checkpointing, the forward solution (N and ψ) in order to compute the

operators and source terms that appear in the adjoint and sensitivity equations. In

the following section, we outline and analyze in detail a family of checkpointing al-
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gorithms. Here, we introduce a basic checkpointing algorithm and describe some of

the algorithmic trade-offs that must be considered in an application.

Our overarching goal in designing a checkpointing algorithm is to minimize time

to solution. We divide the time to solution into computational time, or time spent

computing the forward and adjoint depletion solution, and time spent writing and

reading checkpointing files to and from disk.

For the depletion perturbation problem, we find that greater than 95% of the

clock time is spent performing fixed-source transport iterations (computing the flux

solution). Therefore, we use the number of transport solves (either forward or adjoint,

fixed-source or k-eigenvalue) as the primary computational cost of any scheme. The

variation of this cost from scheme-to-scheme will be in the number of times that

the forward solution must be re-computed. This variation is due to the available

RAM footprint for storing these re-computes as well as to exactly what is stored to

represent the forward solution. A secondary cost will be the number of “recovery

sweeps”, which we will define in the subsequent section.

For disk cost, we tabulate the total number of bytes (or floating point unknowns)

that must be written to and read from files on disk. Again, the variability in this

cost will depend on the number of time steps between checkpoints and the amount

of information that is written to disk in order to represent the full solution.

An illustration of a general checkpointing algorithm is presented in Figure 4.6.

The time domain is broken into re-compute segments. For our depletion problems,

the segments consist of some number of depletion cycles, and the number of cycles in a

segment depends on the amount of memory available for storing the forward solution

within a segment. First, the forward problem is solved to completion. During this

solve, a snapshot of the depletion solution is written to disk at the beginning and end

of each re-compute segment. As the figure indicates and we describe later in the text,
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some savings can be afforded by treating the last re-compute segment differently.

During the adjoint solve, the code switches between re-compute mode and adjoint

mode. For each re-compute segment (except for the last), the solver must first use

the printed-to-file snapshots at the beginning of the segment to re-compute and store

the forward solution at each time-node within that segment. Then the solver enters

adjoint mode and uses the available forward solution information to form and solve

the adjoint equations.

Figure 4.6: Illustration of a general checkpointing scheme

We already see some of the trade-offs that must be considered in the design of

a checkpointing algorithm. The re-compute ratio is the percentage of the forward

solution that must be re-computed during the adjoint solve. For a scheme with a

relatively large number of short re-compute segments, the re-compute ratio is smaller

because more of the forward solution can be read from file; such a scheme also has

a smaller memory footprint, but incurs a larger file I/O cost. A scheme with fewer,

longer re-compute chunks will have a higher re-compute ratio and RAM footprint, but

will spend less time in I/O mode. The characteristics of the machine will determine

an optimal re-compute ratio for a given problem.
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4.6 Schemes for Checkpointing the Forward Solution

In this section, we motivate and describe a family of checkpointing algorithms and

their implementation in the PDT code. The checkpointing algorithms are designed

to efficiently provide access to the correct snapshot of the forward solution during the

integration of the adjoint and sensitivity equations. The novelty in the new schemes

is reduced I/O load on the machine by taking advantage of the spherical harmonics

representation of the transport source.

We first motivate the need for efficient checkpointing schemes by describing the

memory footprint of an example high-fidelity reactor-analysis problem on a state-of-

the-art architecture. In the second subsection, we present a new option to consider

for checkpointing: in addition to choosing the checkpointing frequency, we describe

a choice of what to checkpoint in order to represent the forward solution. For the

transport solution, we show that a lower dimensional representation is available. In

the remaining subsections, we describe our checkpointing algorithms and analyze

their cost in terms of transport solves, sweep counts, memory footprint, and I/O

load.

4.6.1 Motivation for efficient checkpointing: An example problem

It is not difficult to imagine a problem where the full time-series of the forward

solution will not fit on the RAM of the host machine. Consider a high-fidelity

reactor simulation on the Sequoia Blue Gene system at Lawrence Livermore National

Laboratory. This machine has about 100,000 nodes, each with 16 CPUs and 16GB

of shared RAM, an example of the future architectures with increasing core counts

and decreasing RAM capacity per cpu.

First, suppose that the geometry, cross sections, and the remainder of the problem

definition take half of the available RAM per node. Further, suppose we domain
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decompose such that each node has 1000 spatial cells, each with 4 spatial elements

(using linear finite elements). If we are using 200 energy groups and 500 angles

(which are moderately high fidelity by today’s standards), then a snapshot of the

angular flux using double-precision costs 3.2GB of RAM per node. At this point we

could only afford to store a few such flux snapshots, and we haven’t even considered

the memory footprint of the adjoint problem and forward/adjoint densities!

Clearly, simply storing the entire time-series of the forward solution is not an

option for realistic problems. Instead, it is common practice to checkpoint, or write

snap-shots of the forward solution to file during the forward solution. Then, as

necessary during the adjoint solution, these checkpoints are read back into RAM,

and the required “chunk” of the forward solution is re-computed and used to solve

the corresponding chunk of the adjoint solution; then it is thrown away. Even yet,

repetitively reading and writing chunks of data 3.2GB at a time on thousands of nodes

is a costly I/O task and will limit the efficiency of high-fidelity adjoint calculations.

4.6.2 Checkpointing source moments as a representation of the angular flux

One contribution of this dissertation is an idea that decreases the memory foot-

print and I/O load of a single checkpoint at the cost of extra floating point operations

(FLOPs). This is exactly the sort of tradeoff we need for efficient use of the advanced

architectures that appear to be in our future. Our scheme takes advantage of the

spherical-harmonic representation of the angular dependence of the scattering source.

The inscatter source in the transport equation is

SS(r, E,Ω) =

∫
dE ′

∫
dΩ′Σs

(
r, E ′ → E,Ω′ → Ω

)
ψ(r, E ′,Ω′).
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It is common practice to represent this source in terms of a truncated expansion in

spherical harmonic functions, Y , with coefficients C, as follows

SS(r, E,Ω) =

∫
dE ′

K∑
k=0

CkΣs(E
′ → E)Yk(Ω)

∫
dΩ′Yk(Ω

′)ψ(r, E ′,Ω′).

The advantage of this representation is that the number of moments required to

sufficiently capture the source anisotropy is typically much less than the number of

discrete ordinates being modeled. Thus, only K + 1 scalar flux moments,

φk =

∫
dΩ′Ykψ(r, E ′,Ω′),

must be stored per spatial element, per group, per sweep, as opposed to the full

angular flux vector, in order to form the scattering source.

Along the same vein, we realize that the angular flux vector can be re-created with

a single sweep if all of the total source moments are available. Thus, if a checkpoint

only writes to disk the total source moments, then the cost we pay to recreate the

angular flux at a later time is that to read back in the total source moments and

perform one sweep. In other words, we incur modest extra computational cost in

order to reduce the data throughput to and from disk.

This tradeoff is aligned with the hardware tradeoffs that are enabling machines

to perform at increasingly higher FLOP rates. The trend is that FLOPs are becom-

ing cheaper, but memory availability (per processor) and file I/O bandwidth (per

processor) are decreasing[4, 5]. This does not bode well for classic checkpointing

algorithms, as their performance improves with increased memory availability and

I/O bandwidth. By taking advantage of this lower dimensional representation of the

source, we are more likely to scale well on advanced architectures.
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4.6.3 Computational analysis of five checkpointing schemes

In this subsection, we present an analysis of five checkpointing schemes. Three of

these schemes will read, write, and/or store only the converged source moments to

represent the forward flux solution. Of course, these schemes will incur a “recovery

sweep” cost, or the cost of a sweep that is used to re-create a flux solution from the

stored source moments. In addition to this cost, we also count the total number of

transport solves and the data throughput to and from disk.

The analysis is presented for the source-driven case because each transport solve

is a single fixed-source solve, which is easier to follow. We will comment on the

k-eigenvalue case near the end of the section. We consider a multi-cycle depletion

problem. Each cycle consists of several time steps, and each time-step may contain

multiple stages. We use the following notation to model the cost of each scheme:

• N : The total number of depletion cycles to be run in the forward problem;

• K: The number of depletion cycles per re-compute segment;

• T : The number of time-steps per cycle;

• S: The number of stages per time-step;

• Mψ: The memory footprint of a single copy of the angular flux vector;

• MS: The memory footprint of a single copy of the converged source moments.

For simplicity in this analysis, we will assume that the ratio NR = N/K, the num-

ber of recompute segments, is an integer. The number of stages per time-step is

important because a fixed-source solve is required at each stage. We focus on the

checkpointing and re-computation of the neutron flux because it is the more expen-
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sive in terms of memory load and computation time; the reader must note, however,

that storage and re-computation of the Bateman solution is also required.

To represent the schemes, we use illustrations similar to Fig. 4.6 except that we

use symbols to denote the work required at each stage. Figure 4.7 will serve as a

legend for these illustrations.

Figure 4.7: Legend of symbols for checkpointing scheme cost analysis

To help introduce our notation, we first describe two schemes that store the entire

forward solution during the forward solve, thereby eliminating the need for file I/O

and re-compute mode during the adjoint solve. These schemes are illustrated in Fig.

4.8.
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(a) STOR ALL Scheme

(b) STOR MOM Scheme

Figure 4.8: Illustration of the STOR ALL and STOR MOM schemes.

Figure 4.9(a) represents a scheme where the entire angular flux vector is stored

at each stage of each time step of each cycle during the forward solve. During the

adjoint solve, no work is required to re-compute the forward solution. The number of

forward and adjoint fixed-source solves is S ·T ·N +1 each. There are no re-compute

fixed source solves. The RAM footprint is Mψ +Mψ

(
S · T ·N + 1

)
. The first Mψ is

allocated to store ψ† after it is calculated at each time step; the remaining S ·T ·N ·+1

Mψ allocations are for storing all copies of ψ. We call this scheme STOR ALL.

To implement this scheme, we simply pre-compute the number of snapshots of
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ψ that we will be required to store, and we allocate the necessary space for this

storage on each spatial element. Then, after each forward fixed-source solve, we

simply save the current ψ in the allocated space, where it stays until the end of the

entire calculation.

Figure 4.9(b) illustrates a scheme where only the converged source moments are

stored at each stage of each time step of each cycle during the forward solve. As a

result, a single forward sweep is required at each stage during adjoint mode before

the adjoint fixed source solve. Again, the cost of the forward and adjoint solves is

S · T ·N + 1 fixed-source solves each. The re-compute cost is S · T ·N sweeps, as no

sweep is required to re-compute ψ(tf ). We call this scheme STOR MOM.

The RAM footprint of the STOR MOM scheme is 2Mψ +MS

(
S ·T ·N + 1

)
. The

two Mψ allocations come from the requirement to keep a single copy of ψ (after a

recovery sweep) and ψ† at each time step. The S ·T ·N allocations of MS vectors are

required to store the forward source moments. The last MS vector allocation is used

to store the adjoint source moments during a forward recovery sweep. This allows

the adjoint calculation to pick up where it left off after the previous fixed source

solve, hopefully reducing the number of adjoint source iterations.

The implementation of STOR MOM is similar to STOR ALL in that we pre-

compute the number of source moments snapshots that each element must store

and allocate that space. The converged source moments are simply copied into the

allocated space after each forward fixed source solve. During the adjoint solve, when

the forward flux is needed, the adjoint source moments are moved out of the active

source vector, the proper forward source moments are moved into the active source

vector, a sweep is performed, ψ is saved, and the adjoint source moments are moved

back in as the initial guess for the next adjoint fixed-source solve.

Conceptually these checkpointing schemes are very straightforward. The STOR ALL
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scheme, however, is simply not an option for large reactor simulations. Alternatively,

the STOR MOM scheme may be an option for some medium-size simulations. Its

RAM footprint depends on K, the degree of anisotropy being modeled, and the

number of time-steps in the simulation.

The depletion perturbation problems that we are targeting will certainly require

some interaction with the disk to manage access to the forward solution. First we

present two schemes that are analogs to STOR ALL and STOR MOM. They are

CKPT ALL and CKPT MOM, illustrated in Fig. 4.9.

On the time axes in Fig. 4.9, we highlight the re-compute segment consisting of

S · T ·K + 1 stages between tn−K and tn. Note that this is not the last re-compute

segment. We will address our treatment of this segment below. During the forward

solve of the CKPT ALL scheme, the full angular flux vector is written to binary file

at the beginning/end of each recompute segment. Then, during adjoint mode, when

the solver reaches tn, ψ(tn−K) and ψ(tn) are read from file and stored to RAM. The

solver then enters recompute mode and performs S · T ·K − 1 forward fixed-source

solves, saving ψ to RAM after each solve. Once the forward solution is recomputed

to tn, the solver enters adjoint mode and solves for ψ† and N † backwards to tn−K .

Because the full angular flux vector is sitting in RAM, no further recompute cost is

incurred during the adjoint solve.
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(a) CKPT ALL Scheme

(b) CKPT MOM Scheme

Figure 4.9: Illustration of the CKPT ALL and CKPT MOM schemes.

The CKPT MOM scheme has two major differences from the CKPT ALL scheme.

First, while in forward mode, the converged source moments are written to file at

the beginning and end of each recompute segment. Compared to writing ψ, this

may be a substantial decrease in the I/O load. Second, during the recompute mode,
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the source moments are saved to RAM instead of the full angular flux; this is a

substantial decrease in RAM footprint. The price we pay for the decreased I/O load

and RAM footprint is an extra forward sweep at each stage during the adjoint solve.

We can predict the number of fixed source solves and single sweeps required to

complete the CKPT ALL and CKPT MOM schemes. First, there are again S ·T ·N+

1 of the forward and adjoint fixed source solves, each. This cost should not change

as the recompute strategy is changed. The number of recompute fixed source solves

depends on NR, which is the total number of recompute segments. The forward

and recompute modes are combined during the terminal K cycles of the forward

problem; in other words, these cycles do not have to be recomputed because the

necessary information is saved during the forward mode. The beginning and end of

segment fluxes are read from file for each of the remaining NR − 1 segments. We

find that the total number of recompute fixed source solves for the CKPT ALL and

CKPT MOM schemes is (NR − 1)(S · T ·K − 1).

There are some subtleties not illustrated in the figure that must be considered

when predicting the number of single sweeps. The CKPT ALL scheme does not

require any single sweeps because the full ψ is always stored. For the CKPT MOM

scheme, all stages require at least one sweep to reconstruct ψ during adjoint mode

except for ψ(tf ). This is S ·T ·N single sweeps. Single sweeps are also required during

each of the NR−1 recompute segments. One kicks off the recompute; another comes

at the end, where ψ is recovered with a single sweep instead of using a fixed-source

solve. We find that the scheme requires a total of S ·T ·N +2(NR−1) single forward

sweeps. As in the CKPT MOM scheme, we also require NR single adjoint sweeps to

restore the adjoint state after a recompute segment.

The RAM footprint of these schemes is fairly straightforward to compute. The

number of forward snapshots saved during a recompute segment is S · T ·K + 1. We
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also allocate space for a transition vector to store the adjoint state during recompute

mode, and vice-versa. The RAM footprint for CKPT ALL is therefore Mψ +Mψ

(
S ·

T ·K+ 2
)
. Again, for the CKPT MOM vector, we must allocate space for one full ψ

snapshot to store the forward flux after the single recomputes. Therefore, its RAM

footprint is 2Mψ +MS

(
S · T ·K + 2

)
.

Lastly, we introduce a scheme whose RAM footprint (for the flux solution) does

not grow with S, T , or K. The scheme mimics the CKPT MOM scheme, but does

not save the source moments to RAM during the recompute mode. Instead, when

ψ is needed during the adjoint solve, we re-solve a fixed source problem using an

interpolated guess for the initial source moments; we call this scheme INTP MOM,

and it is illustrated in Fig. 4.10.

Figure 4.10: Illustration of the INPT MOM checkpointing scheme

Like the others, this scheme requires the minimum S · T · N + 1 initial forward

and adjoint fixed source solves, each. The recompute mode is the same as that

for the CKPT MOM scheme except that the converged source moments are not
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stored to RAM; instead, only the forward densities are stored to RAM during the

recompute. Then, during the adjoint solve, a single forward sweep is required to

reconstruct ψ(tn−K). The remaining ψ vectors inside the recompute segment are

solved using another full fixed source solve. The initial guess for the source moments

is interpolated linearly from tn−K and tn. This applies to the last recompute segment

as well, which must be re-created during the adjoint solve. Therefore, the number of

fixed source solves is 2(NR−1)(S ·T ·K−1)+(S ·T ·K−1) = (2NR−1)(S ·T ·K−1).

The number of single forward sweeps is 3(NR−1)+1. Two sweeps are required per

recompute segment; that totals 2(NR − 1). One sweep is required per adjoint mode

to construct ψ(tn−K). So the total number of forward sweeps is 2(NR − 1) + NR =

3(NR−1)+1. As in the CKPT MOM scheme, NR single adjoint sweeps are required

to restore the adjoint state after a forward recompute segment.

The total computational cost of this scheme is close to twice the cost of CKPT MOM,

but it has a substantially smaller RAM footprint. The allocation for flux storage is

2Mψ + 3MS, independent of the number of time-steps per cycle and the number

of cycles per checkpoint. Of course, the allocation for storing the forward densities

does grow with these factors, but the number of density unknowns is typically much,

much smaller than the number of flux or moment unknowns. This means that the

RAM allocation for checkpointing may be able to handle many, many more cycles,

potentially reducing the I/O load to a very small number of disk accesses. For ad-

vanced architectures where not all nodes have direct access to the file system, this

could avoid substantial network bandwidth costs.

The final cost consideration for these schemes is the data throughput to and from

disk. The CKPT ALL scheme reads/writes Mψ data per file, while the CKPT MOM

and INTP MOM schemes read/write MS data per file. Although its not explicitly

necessary to write a file at t = tf , we do write the file because we sometimes run
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in “adjoint-only mode,” where the forward solution is already in files and therefore

is not computed. Thus, the total data throughput to disk is
(
NR + 1

)
Mψ for the

CKPT ALL scheme and
(
NR+1

)
MS for the CKPT MOM and INTP MOM schemes.

The same throughput cost is incurred from disk.

Note that these throughputs are per core; that is, each core writes its own snap-

shot files. This brings forth many questions about the proper way to handle parallel

I/O on massively parallel machines. Much of this discussion will fall outside the

scope of this work; however, we have implemented options for creating multiple di-

rectories and file names for this I/O load in PDT. These options, along with all other

details of the depletion, adjoint, and checkpointing implementations, are documented

in Appendix B.

In summary, we have developed and analyzed the computational and I/O cost

of a family of checkpointing algorithms, and we have implemented the schemes in

PDT. Three of the schemes leverage a novel idea for reducing I/O load by only

checkpointing the converged source moments in the transport equation, as opposed

to checkpointing the entire angular flux vector. These schemes do incur extra FLOP

costs; we hypothesize, however, that this tradeoff will reduce overall time to solution

for large, parallel problems. We will perform computational experiments to verify

this hypothesis in later sections of this dissertation.

Table 4.1 summarizes the fixed source cost of each scheme, and Table 4.2 sum-

marizes the single sweep cost, RAM footprint, and total data-to-disk throughput of

each scheme.

161



Table 4.1: Number of forward, adjoint, and recompute fixed source solves for each
checkpointing scheme

Scheme Forward Fixed Adjoint Fixed Recompute Fixed

Source Solves Source Solves Source Solves

STOR ALL S · T ·N + 1 S · T ·N + 1 0

STOR MOM S · T ·N + 1 S · T ·N + 1 0

CKPT ALL S · T ·N + 1 S · T ·N + 1 (NR − 1)(S · T ·K − 1)

CKPT MOM S · T ·N + 1 S · T ·N + 1 (NR − 1)(S · T ·K − 1)

INTP MOM S · T ·N + 1 S · T ·N + 1 (2NR − 1)(S · T ·K − 1)

Table 4.2: Single sweep cost and RAM footprint of the checkpointing schemes

Scheme Forward Adjoint RAM

Single Sweeps Single Sweeps Footprint

STOR ALL 0 0 Mψ +Mψ(S · T ·N + 1)

STOR MOM S · T ·N 0 2Mψ +MS(S · T ·N)

CKPT ALL 0 0 Mψ +Mψ(S · T ·K + 2)

CKPT MOM S · T ·N + 2(NR − 1) NR 2Mψ +MS(S · T ·K + 2)

INTP MOM 3(NR − 1) + 1 NR 2Mψ + 3MS

The preceding cost analysis of the checkpointing schemes was performed for the

case of the source-driven depletion equations. The case of the k-eigenvalue formu-

lation is more costly in terms of computation and memory load. First, instead of

S · T · N + 1 fixed source solves for the forward and adjoint modes, we require
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S · T · N + 1 power iteration solves and MSA solves, respectively, for the forward

and adjoint modes. The homogeneous adjoint k-eigenvalue equation must also be

solved before each MSASolve – or S · T ·N + 1 times – in order to orthogonalize ψ†

to the forward fission source. This orthogonalization also requires that each scheme

allocate one extra Mψ vector to store the adjoint fundamental mode flux. The num-

ber of forward and adjoint recovery sweeps remains unchanged, as does the data

throughput.
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5. VERIFICATION AND TEST PROBLEMS

In this section, we design, implement, and discuss a suite of verification problems.

Per the findings of a recent National Academy of Sciences report[3], we design our

verification suite around the hierarchical nature of the depletion perturbation prob-

lem. In other words, we decompose the code into testable components: the depletion

solver, the adjoint transport solver, and finally the depletion perturbation solver.

Our tests take one of two forms. First, when possible, we compare numerical

PDT solutions to analytic solutions. Analytic transport solutions are only avail-

able in simple limits, such as in an infinite medium, which we use in several of the

problems that follow. Analytic solutions to more interesting and realistic problems,

however, are difficult or impossible to develop. Therefore, the second set of verifi-

cation problems rely on the demonstration of expected rates of convergence or on

comparison with solutions to other codes.

In the first section, we test the depletion solver with two problems. First, we

compare the PDT solution to an analytic solution in an infinite medium, two group

problem. In the second problem, we simulate the Plutonium-239 production chain

in a 33 group, infinite medium problem, and compare our solution to a solution

generated by the Matlab ODE solver suite. In the second section, we document

two problems designed to test the steady-state adjoint transport solver. The first

is an infinite medium problem with analytic solution, and the second is a detector

response problem where we test the convergence rates of the computed derivatives.

In the last two sections, we test the depletion perturbation solver. In the first,

we perform a detailed walk-through of an infinite medium, k-eigenvalue depletion

perturbation problem, comparing expected and computed numerical results. We then

164



compare these computed results with analytic QOI sensitivity and error calculations,

and show that the schemes are producing the expected rates of convergence. In

the final section, we verify that the computed parameter derivatives predict QOI

perturbations at the expected order of accuracy for a source-driven problem.

As a result of verification exercise described in this section, we have an increased

level of confidence that the implementation of the Bateman solver, adjoint transport

solver, and depletion perturbation solver in PDT are solving their respective equa-

tions correctly. Moreover, the hierarchical approach gives insight into the individual

behaviors of the components, and allowed us to more efficiently chase, find, and

squash bugs in the code.
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5.1 Verification Problems Targeting the Depletion Solver

In this section, we describe verification problems designed to test the depletion

solver in PDT. We first test the depletion solver in the limit of an infinite medium.

We then compare a PDT depletion solution to a reference solution generated in

Matlab for a simulation of the Plutonium-239 production chain.

5.1.1 A single component, infinite medium depletion verification problem in

k-eigenvalue form

We develop an analytic solution to a k-eigenvalue depletion problem with a single

component and two energy groups. The component has cross sections

σt,1 = σR,1 + σs,1→1 + σs,1→2

σt,2 = σγ,2 + σf,2 + σs,2→1 + σs,2→2

= σR,2 + σs,2→1 + σs,2→2

decay constant λ, energy per fission Ef , neutrons per fission ν, and fission spectrum

χ1 and χ2. The variable σR is the sum of all interactions that result in the destruction

of the nuclide. The infinite medium operates at a constant power density of P0. The

governing depletion equations in an infinite medium are

dN

dt
= −4πANFcm

b [σR,1ψ1 + σR,2ψ2]− λN

σt,1Nψ1 −N
(
ψ1σs,1→1 + ψ2σs,2→1

)
− 1

keff

χ1νNσf,2ψ2 = 0

σt,2Nψ2 −N
(
ψ1σs,1→2 + ψ2σs,2→2

)
− 1

keff

χ2νNσf,2ψ2 = 0

P0 − A4πNEfσf,2ψ2 = 0

N(0) = N0, t ∈ [0, T ].
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After some manipulation of the transport equations, we find the following funda-

mental mode (more detail is provided in Sec. 5.3):

ψ1

ψ2

=
1
keff
χ1νσf,2 + σs,2→1

σt,1 − σs,1→1

1

keff

=

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

νσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)] .

Substituting this expression and the power constraint into the Bateman equation,

we find

dN

dt
= −P0Fcm

b

Efσf,2

[
σR,1

1
keff
χ1νσf,2 + σs,2→1

σt,1 − σs,1→1

+ σR,2

]
− λN

≡ −κ− λN. (5.1)

Equation (5.1) has analytic solution

N(t) = −κ
λ

+
(
N0 +

κ

λ

)
exp (−λN). (5.2)

Finally, suppose that our QOI is the mol density
([

mol
cm3

])
of the component at t = T ,

computed as

Q =
N(T )

NA

where NA is Avogadro’s number in units of
[

atom−cm2

b−mol

]
. We devised a series of

numerical test problems to verify that the solution given by the depletion solver

approaches this analytic QOI at the rate expected from the particular Runge-Kutta

scheme in use. We tested the explicit Euler, implicit Euler, modified Euler, and

Runge-Kutta 4 schemes (see Appendix E). The problem parameters are defined in

Table 5.1.
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Table 5.1: Parameters for infinite medium, 2 group k-eigenvalue depletion verification
problem

Parameter Value

# Cells 1

Cell Volume, V (2.0× 3.0× 2.0) · 107 = 1.2e+22 cm3

Spatial Discretization PWLD (8 Elements)

Simulation Time, T 6 weeks = 56 days

Initial Density, N0 5.0
[

atom
b−cm

]
σs,1→1, σs,1→2, σs,2→1, σs,2→2 0.6, 0.2, 0.05, 1.4 [b]

σt,1, σt,2, σf,2 2.0, 5.3, 3.38 [b]

χ1, χ2, ν 0.85, 0.15, 2.23

Ef , P0 206.0 MeV, 60.0 W/cm3

t1/2 half-life 5 weeks = 35 days

Fixed-source solver tolerance 1.0e-07

Eigenvalue, eigenvector tolerance 1.0e-07, 1.0e-06

We solved this problem using each of the four time stepping schemes with time-

steps equal to 1, 2, 4, and 8 days. For the explicit and implicit Euler schemes, we ran

with both 1 and 10 Bateman sub-cycles per time step. After each run, we compared

the numerical QOI to the analytic QOI, and compiled the results to compute the

convergence rate of each scheme.

The results are given in Fig. 5.1. The figure shows that the explicit Euler and

implicit Euler schemes are converging at a first order rate, as expected. Moreover,

we find that the schemes are more accurate when more Bateman sub-cycles are used

(in this case by about an order of magnitude). The modified Euler and Runge-
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Kutta 4 schemes appear to achieve their expected convergence rates of 2.0, and 4.0,

respectively.

Another observation is that the schemes with higher convergence rates are more

accurate, even when normalized per solution to the eigenvalue equations. For ex-

ample, the explicit and modified Euler schemes require 1 and 2 k-solves per time

step, respectively. Therefore, the explicit Euler scheme performs the same number

of k-solves with the time step of 1.0 days as the modified Euler scheme performs with

a time step of 2.0 days. The 2.0 day modified Euler result, however, is two orders

of magnitude more accurate than the 1.0 day explicit Euler result, at least for this

problem. This might suggest that a more accurate method with longer time steps is

preferable than a lower accuracy method with more time steps.
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Figure 5.1: Convergence rates of the Runge-Kutta schemes for infinite medium prob-
lem. The explicit Euler, implicit Euler, modified Euler, and Runge-Kutta 4 schemes
are converging at the expected rates of 1.0, 1.0, 2.0, and 4.0. Note: the number
next to the explicit and implicit Euler schemes indicates the number of Bateman
sub-cycles.

5.1.2 A 33 group model of the 239Pu production chain in an infinite medium

In this problem, we simulate the production of Plutonium-239 in an infinite

medium using the 33-group ANL cross sections (see App. F.2). We track 6 nu-

clides: Uranium-235, Uranium-238, Neptunium-239, Plutonium-239, MU-35, and

MU-38 (lumped fission products). The depletion chain is as follows:

• 235U
(n,f)−→ MU-35

• 238U
(n,f)−→ MU-38

• 238U
(n,γ)−→ 239Np
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• 239Np
t1/2≈2.36d
−→ 239Pu

Note that the true Plutonium-239 production chain includes the following reaction

chain:

238U
(n,γ)−→ 239U

t1/2≈23min
−→ 239Np

t1/2≈2.36d
−→ 239Pu.

The half-life of Uranium-239, however, is short enough to assume that it immediately

decays into Neptunium-239. We therefore do not include Uranium-239, which allows

us to take longer time steps. The initial densities and other problem parameters are

given in Table 5.2.

Table 5.2: Problem definition for the 33-group Plutonium-239 production test prob-
lem

Parameter Value

# Cells 1

Cell Volume, V (2.0× 3.0× 2.0) · 107 = 1.2e+22 cm3

Spatial Discretization PWLD (8 Elements)

Simulation Time, T 16 days

Initial Densities: 235U, 238U, 239Np 0.4, 0.3, 0.0
[

atom
b−cm

]
Initial Densities: 239Pu, MU-35, MU-38 0.0, 3.6, 3.9

[
atom
b−cm

]
Initial Eigenvalue, keff(t0) 0.63

Fixed Source, Sg 1.8e15
[

n
cm3−s−MeV

]
Fixed-source solver tolerance 1.0e-07

The problem was solved using three different explicit Runge-Kutta methods: the

explicit Euler method, with time steps of 0.5, 1.0, 2.0, and 4.0 days; the modified
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Euler method, with time steps of 0.5, 1.0, 2.0, and 4.0 days, and the Runge-Kutta 4

method, with time steps of 2.0, 4.0, 8.0, and 16.0 days. The QOIs from the problem

were simply the number densities for each of the six nuclides at the end of the

simulation.

We then generated a reference solution using the ODE solver suite in Matlab[55].

This tool uses embedded Runge-Kutta schemes to perform dynamic error control and

stability analysis to solve a user-defined set of ODEs to within user-defined absolute

and relative tolerances. The dynamic equations must be of the form

y′ = f(t, y),

where y is a vector of unknowns and the function f(t, y) returns a vector of time

derivative of those unknowns. Specifically, our equations are

dNi

dt
= B(N, φ), i = 1 . . . 6

dφg
dt

= Dφ− Sg, g = 1 . . . 33

where D is a diffusion matrix with entries

Dkj = δkj
∑
i

Niσt,i,k −
∑
i

Niσi,s,j→k − χk
∑
i

Niνi,jσf,i,j.

Here χ is the density weighted spectrum used in PDT

χk =

∑
iNiχi,k∑
iNi

, Ni > 0.

The diffusion approximation is valid here because it is an infinite medium; thus

the PDT transport solution should be equivalent to the Matlab diffusion solution.
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Finally, for the initial flux conditions, φ0, we simply solve a steady-state diffusion

problem

D0φ0 = S

where D0 = D(N0).

The Matlab solution was integrated with absolute and relative tolerances of

1.0e − 3 and 1.0e − 12, respectively. The resulting nuclide densities, which we will

call the reference solution, were found to be in close agreement with the PDT results.

Table 5.3 compares the reference solution, least accurate PDT solution (explicit Eu-

ler with time step 4.0 days), and most accurate PDT solution (RK4 with time step

2.0 days).

Table 5.3: Reference and PDT terminal densities for the 33g 239Pu production prob-
lem (all densities in units of

[
atom
b−cm

]
)

Nuclide
Reference Explicit Euler Runge-Kutta 4

Density 4.0 days 2.0 days

235U 3.60665e-01 3.59907e-01 3.60665e-01

238U 2.96605e-01 2.96575e-01 2.96605e-01

239Np 5.84058e-04 5.87053e-04 5.84013e-04

239Pu 2.15729e-03 2.21340e-03 2.15733e-03

MU-35 3.58154e+00 3.58190e+00 3.58154e+00

MU-38 3.83109e+00 3.83065e+00 3.83109e+00

Figures 5.2, 5.3, and 5.4 show the relative error between the reference and PDT

solutions as a function of time step for the explicit Euler, modified Euler, and Runge-
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Kutta 4 schemes, respectively. Note that there are 6 lines in each plot; the relative

errors for Uranium-238 and MU-38 are nearly identical in each case. Again, we see

that the schemes approach the reference solution at a rate of (∆t), (∆t2), and (∆t4),

as predicted by theory.

These results provide further confidence that (a) the Runge-Kutta schemes are

implemented correctly, and (b) the process of matching nuclide parent/child pairs

for reaction and decays in PDT is consistent with the hand-coded parent/child pairs

that generated the reference solution.
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Figure 5.2: Convergence rate of the explicit Euler scheme (to the Matlab reference
solution). The scheme appears to achieve the expected first order rate. Note: there
are 6 lines drawn; 2 are overlaid.

174



0.5 1 2 4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time Step, ∆ t (d)

R
e

la
ti
v
e

 D
if
fe

re
n

c
e

 i
n

 D
e

n
s
it
y

 

 

O(∆ t)
2

Figure 5.3: Convergence rate of the modified Euler scheme (to the Matlab reference
solution). The scheme appears to achieve the expected second order rate. Note:
there are 6 lines drawn; 2 are overlaid
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Figure 5.4: Convergence rate of the Runge-Kutta 4 scheme (to the Matlab reference
solution). The scheme appears to achieve the expected fourth order rate. Note:
there are 6 lines drawn; 2 are overlaid
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5.2 Verification Problems Targeting the Steady-State Adjoint Transport Solver

In this section we describe verification problems that are designed to test the

adjoint transport solver in PDT. They are steady-state problems (no depletion), and

we seek to verify that the sensitivity estimates produced with the adjoint formalism

are accurate and converging at the proper rate.

5.2.1 Infinite medium problem with analytic sensitivities

In the limit of an infinite medium, we can compute analytic sensitivities of a QOI

and compare those to the numerical sensitivities produced by PDT. In an infinite

medium, the diffusion equation with no leakage becomes valid. We model an infinite

medium in PDT using a really big single cell problem.

The problem has two components, cmp1 and cmpD, with densities 0.8 and 2.1[
atom
b−sec

]
, respectively, with cross sections given in Table 5.4.

Table 5.4: Synthetic cross sections for cmp1 and cmpD used in the steady-state,
infinite medium verification problem

Cross Section [b] cmp1 cmpD

σt,1 2.3 4.0

σt,2 1.4 1.0

σs,1→1 0.35 0.5

σs,1→2 0.52 0.33

σs,2→1 0.29 0.18

σs,2→2 0.15 0.5
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The diffusion equations for group 1 and group 2 are

Σt,1φ1 = Σs,1→1φ1 + Σs,2→1φ2 + S1

Σt,2φ2 = Σs,1→2φ1 + Σs,2→2φ2 + S2

where

Σt,g = NDσt,D,g +N1σt,1,g

Σs,g→g′ = NDσs,D,g→g′ +N1σs,1,g→g′

and S1=4200 and S2=1500
[

n
cm3−sec−MeV

]
are isotropic, fixed neutron sources. The

analytic solutions to these equations are

φ1 =
S2Σs,2→1 + S1

(
Σt,2 − Σs,2→2

)
Σt,2Σt,1 + Σs,2→2Σs,1→1 − Σt,2Σs,1→1 − Σs,2→2Σt,1 − Σs,1→2Σs,2→1

φ2 =
Σt,1φ1 − Σs,1→1φ1 − S1

Σs,2→1

.

Now we define our QOI as the total interaction rate with cmpD in the infinite medium

(in the case of PDT, we must include a volume integral). The discrete relation for

our QOI is

R = NDV
∑
g

σt,D,g
∑
q

ψq,gwq = NDV
∑
g

σt,D,gφg

and we wish to use the adjoint to compute
dR
dσj

for each σj in the problem. Analytic
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derivatives are straightforward to compute:

dR
dσj

= NDV
[
φ1
∂σt,D,1
∂σj

+ σt,D,1
∂φ1

∂σj
+ φ1

∂σt,D,2
∂σj

+ σt,D,2

(∂φ2

∂φ1

∂φ1

∂σj
+
∂φ2

∂σj

)]

Table 5.5 gives the numerical sensitivity, analytic sensitivity, and relative differ-

ence between them. We find that the numerical sensitivities are accurate to the order

of the iterative solver tolerances.

Table 5.5: The first derivative adjoint estimates from PDT agree with the analytic
derivatives to roughly the iterative solver tolerance.

Cross Section Adjoint Derivative Analytic Derivative Relative Difference

cmp1 σt,1 -3.851984e+27 -3.851984e+27 -3.365596e-08

cmp1 σt,2 -8.886579e+27 -8.886579e+27 -3.887295e-08

cmpD σt,1 -1.013732e+27 -1.013732e+27 -3.219049e-07

cmpD σt,2 -6.112938e+27 -6.112939e+27 -1.366759e-07

cmp1 σs,1→1 3.851984e+27 3.851984e+27 -3.365596e-08

cmp1 σs,2→1 7.288560e+27 7.288561e+27 -3.628653e-08

cmp1 σs,1→2 4.696532e+27 4.696532e+27 -3.603594e-08

cmp1 σs,2→2 8.886579e+27 8.886579e+27 -3.887295e-08

cmpD σs,1→1 1.011146e+28 1.011146e+28 -3.369304e-08

cmpD σs,2→1 1.913247e+28 1.913247e+28 -3.605133e-08

cmpD σs,1→2 1.232840e+28 1.232840e+28 -3.616775e-08

cmpD σs,2→2 2.332727e+28 2.332727e+28 -3.882472e-08
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5.2.2 Source-driven, 33g detector response problem

In this problem, we use the adjoint formalism to produce parameter sensitivity

estimates for a detector-response QOI and test those sensitivities against those gen-

erated via brute-force finite difference. The problem geometry is pictured in Fig. 5.5.

The problem consists of a 3×3×3 cell matrix. The inner-most cell contains detector

material, and the outside 8 cells contain filler material. The detector material is a

homogeneous mixture of Uranium-235 and MU-35 with number densities 1.3 and 2.0[
atom
b−cm

]
, respectively. The filler material is a homogeneous mixture of Uranium-238,

MU-35, and MU-38 with number densities 0.5, 1.0, and 1.0
[

atom
b−cm

]
, respectively. See

Appendix F.2 for details on these materials.

Figure 5.5: Geometry of the 33 group steady-state adjoint verification problem.
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The 33-group problem has a fixed source of 4.2e+09
[

n
cm3−s−MeV

]
in each group.

The k-eigenvalue of the system is around 0.86. We define a QOI as the total inter-

action rate in the detector volume, VD,

Q =

∫
dVD

∫
dE

∫
dΩN235(r)σt,235(E)ψ(r, E,Ω),

which simulates a detector response. We will compute this QOI for the unperturbed

cross sections, and we will use the adjoint formalism to compute its sensitivity with

respect to the following group-wise data for each component: σt, σs, σf , and ν.

Our task in this verification problem is to test that these parameter sensitivities

are indeed first order accurate with respect to the parameter perturbation. We test

this by perturbing a single cross section, σ̃ = σ0 + ∆σ and re-running the forward

problem to compute a perturbed QOI, Q̃. The perturbed QOI can be related to the

nominal QOI as follows:

Q̃ = Q+ ∆σ
dQ

dσ
+O

(
∆σ
)2

.

Therefore, if the derivative dQ
dσ

is correct, the error made in predicting the ∆Q = Q̃−Q

by extrapolating the derivative should decrease proportional to the square of the

parameter perturbation.

We ran a single adjoint solve to produce the full gradient of the QOI with respect

to all of the parameters. Then, for each parameter, we ran 4 different perturbed

problems with ∆σ = (0.001, 0.002, 0.004, and0.008) to compute 4 different values of

∆Q. For the scattering cross section, we only perturbed σs,g′→g, g = 1 . . . 33, g ≤

g′ ≤ g + 3 in order to cut down on the number of required runs.

Figures 5.6, 5.7, 5.8, and 5.9 show the error in predicting ∆Q as a function of
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the perturbation in σt, σs, σf , and ν, respectively. Note that perturbed runs that

resulted in a predicted and actual ∆Q less than the solver tolerance are not shown.

Also, for obvious reasons, we only perturbed the fission data in Uranium-235 and

Uranium-238.

Except for some noise where ∆Q was on the order of the solver tolerance, all

convergence rates appear to be achieving second order; that is, when ∆σ is halved,

the error in predicting ∆Q is cut by a factor of 4. This rate agrees with our expec-

tations, indicating that the adjoint transport solver implemented in PDT is solving

the adjoint equations correctly.
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Figure 5.6: Convergence rates for dQ
dσt

in the 33 group steady-state adjoint transport
problem. The error in predicting ∆Q as a function of the perturbation in ∆σt
decreases as the square of the parameter perturbation.
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Figure 5.7: Convergence rates for dQ
dσs

in the 33 group steady-state adjoint transport
problem. The error in predicting ∆Q as a function of the perturbation in ∆σs
decreases as the square of the parameter perturbation.
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Figure 5.8: Convergence rates for dQ
dσf

in the 33 group steady-state adjoint transport

problem. The error in predicting ∆Q as a function of the perturbation in ∆σf
decreases as the square of the parameter perturbation.
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Figure 5.9: Convergence rates for dQ
dν

in the 33 group steady-state adjoint trans-
port problem. The error in predicting ∆Q as a function of the perturbation in ∆ν
decreases as the square of the parameter perturbation.
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5.3 A Two-Group, Infinite Medium k-Eigenvalue Problem Targeting the Full

Depletion Perturbation Solver

This verification problem seeks to test our implementation of the depletion per-

turbation solver, which includes both the depletion and adjoint transport solvers that

were addressed above. The purpose of this problem is two-fold. We first perform a

walk-through of the discrete solution to a simple problem and demonstrate its Jaco-

bian calculations, orthogonality properties, and sensitivity results. We then develop

analytic, continuous solutions to the depletion problem and demonstrate convergence

properties of the forward and adjoint integration as well as the adjoint-based error

estimate.

5.3.1 A walk-through of the solution procedure

Here we develop analytic expressions for the discrete solution to an infinite

medium k-eigenvalue verification problem and compare those expressions to numer-

ical results from our implementation in PDT. This is a two group problem with a

single component. The cross sections of the component are

σt,1 = σR,1 + σs,1→1 + σs,1→2

σt,2 = σγ,2 + σf,2 + σs,2→1 + σs,2→2

= σR,2 + σs,2→1 + σs,2→2

The component emits Ef MeV per fission and ν neutrons per fission, with fraction

χ1 into group 1 and χ2 into group 2. Finally, the infinite medium operates at a
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constant power density P0. The governing equations, Eqs. (3.54) – (3.57), are

dN

dt
−
〈
bN
〉
E,D,Ω

= 0

Ω · ∇ψ(E,Ω) + σt(E)Nψ(E,Ω)− 1

4π

∫
dE ′σs,E′→EN

∫
dΩ′ψ(E ′,Ω′)

− λχ(E)

4π

∫
dE ′

∫
dΩ′νNσf (E

′)ψ(E ′,Ω′) = 0

P0 −
A

V

〈
EfNσfψ

〉
E,D,Ω

= 0

N(0) = N0, t ∈ [0, T ].

After accounting for the infinite medium geometry and two-group cross sections,

our equations reduce to

dN

dt
−
〈
− ANσRψFcm

b

V

〉
E,D,Ω

=
dN

dt
+ 4πANFcm

b [σR,1ψ1 + σR,2ψ2] = 0 (5.3)

σt,1Nψ1 −N
(
ψ1σs,1→1 + ψ2σs,2→1

)
− λχ1νNσf,2ψ2 = 0 (5.4)

σt,2Nψ2 −N
(
ψ1σs,1→2 + ψ2σs,2→2

)
− λχ2νNσf,2ψ2 = 0 (5.5)

P0 − A4πNEfσf,2ψ2 = 0 (5.6)

N(0) = N0, t ∈ [0, T ], (5.7)

where we have assumed due to the infinite medium that ψgq = ψg and φg = 4πψg.

Equations (5.4) and (5.5) give the following eigenfunctions, respectively:

ψ1 =
λχ1νσf,2 + σs,2→1

σt,1 − σs,1→1

ψ2 (5.8)

ψ1 =
λχ2νσf,2 + σs,2→2 − σt,2

σs,1→2

ψ2 (5.9)

Eigenfunction (5.8) is strictly positive, so it must be the fundamental mode. If we
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substitute Eq. (5.8) for ψ1 in Eq. (5.5) we find the fundamental eigenvalue

λ0 =

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

νσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)]
If we substitute Eq. (5.9) for ψ1 into Eq. (5.5) we find

λ1 =

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
+ σs,1→2σs,2→1

νσf,2

[
χ2

(
σt,1 − σs,1→1

)
− χ1σs,1→2

]
Finally from the power constraint we have

A =
P0

4πNEfσf,2ψ2

. (5.10)

Let’s define an arbitrary value ψ2,0 as the initial un-normalized value of the group-2

angular flux. Substituting our expression for λ0 into Eq. (5.8) we find

ψ1,0 =
λ0χ1νσf,2 + σs,2→1

σt,1 − σs,1→1

ψ2,0

=
1

σt,1 − σs,1→1

(σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

νσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)] χ1νσf,2 + σs,2→1

ψ2,0

=
1

σt,1 − σs,1→1

[
χ1

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− χ1σs,1→2σs,2→1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

) + σs,2→1

]
ψ2,0

=
1

σt,1 − σs,1→1

χ1

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
+ χ2

(
σt,1 − σs,1→1

)
σs,2→1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)
ψ2,0

=
χ1

(
σt,2 − σs,2→2

)
+ χ2σs,2→1

χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

ψ2,0

Note that this eigenfunction can also be expressed in terms of the removal cross
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sections:

ψ1,0 =
χ1

(
σt,2 − σs,2→2

)
+ χ2σs,2→1

χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

ψ2,0

=
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

ψ2,0

Then our initial state is

N(0) = N0

ψ1(0) =
χ1

(
σt,2 − σs,2→2

)
+ χ2σs,2→1

χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

ψ2,0

ψ2(0) = ψ2,0

A(0) =
P0

4πN0Efσf,2ψ2,0

Now consider advancing the densities to t = T with a single time-step using the

explicit Euler method. The terminal density value is

N(T ) = N0 + T
〈
bN(0)

〉
E,D,Ω

= N0 − T4πA(0)N0Fcm
b [σR,1ψ1(0) + σR,2ψ2(0)]

= N0 − T
4πN0P0Fcm

b

4πN0Efσf,2ψ2,0

[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

σR,1 + σR,2

]
ψ2,0

= N0 −
TP0Fcm

b

Efσf,2

[
χ1σR,1σR,2 + σR,1σs,2→1 + χ2σR.1σR,2 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
= N0 −

TP0Fcm
b

Efσf,2

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
(5.11)

≡ NT ,

which can be verified to have units of
[

atom
cm−b

]
. If we again assume an arbitrary value
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ψ2,T for ψ2(T ), then the terminal forward state is

N(T ) = NT

ψ1(T ) =
χ1

(
σt,2 − σs,2→2

)
+ χ2σs,2→1

χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

ψ2,T

ψ2(T ) = ψ2,T

A(T ) =
P0

4πNTEfσf,2ψ2,T

It is instructive to consider two different QOIs: one that does not depend on the

flux, and one that does. We’ll consider the former in detail, then return to the latter.

Define the first QOI, Q, as the number of mols of the component present at t = T

in the (really big) medium. Keeping inline with our formalism, we express the QOI

as written in Eq. (3.74)

Q =

∫
N(T )

NA

dV =
〈
R(N)

〉
E,D,Ω

=
〈 1〈〉

E,Ω

N(T )

NA

〉
E,D,Ω

=
V N(T )

NA

where again NA is Avogadro’s number in units of
[

atom
mol

cm2

b

]
. Suppose we are in-

terested in computing the derivative of this QOI with respect to each total cross

section, each scattering cross section, the number of neutrons per fission, the fission

cross section in group 2, and the initial condition N0. Using Eq. (5.11), we find the
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derivatives of the discrete equations are as follows:

dQ

dσt,1
= −V TP0Fcm

b

Efσf,2NA

[
σR,2σs,1→2χ1 + σs,1→2σs,2→1

[χ2σR,1 + σs,1→2]2

]
(5.12)

dQ

dσt,2
= −V TP0Fcm

b

Efσf,2NA

[
σR,1 + σs,1→2

χ2σR,1 + σs,1→2

]
(5.13)

dQ

dσs,1→1

= −V TP0Fcm
b

Efσf,2NA

[
χ2σR,1 (χ1σR,2 + σs,2→1)

[χ2σR,1 + σs,1→2]2

]
(5.14)

dQ

dσs,1→2

=
V TP0Fcm

b

Efσf,2NA

[
χ1σR,1 (χ1σR,2 + σs,2→1)

[χ2σR,1 + σs,1→2]2

]
(5.15)

dQ

dσs,2→1

= −V TP0Fcm
b

Efσf,2NA

[
χ2σR,1

χ2σR,1 + σs,1→2

]
(5.16)

dQ

dσs,2→2

=
V TP0Fcm

b

Efσf,2NA

[
χ1σR,1

χ2σR,1 + σs,1→2

]
(5.17)

dQ

dν
= 0 (5.18)

dQ

dσf,2
=
V TP0Fcm

b

Efσ2
f,2NA

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
(5.19)

dQ

dN0

=
V

NA

(5.20)

Our task is to develop closed-form expressions for these derivatives using our

adjoint methodology. We begin by noting that Â† = 0 and ψ̂† = 0 by Eqs. (3.82)

and (3.83), respectively. Thus, using Eq. (3.84), the terminal condition for the adjoint

density is

N †(T ) =
〈 ∂R
∂N

〉
E,D,Ω

=
V

NA

which has units of
[

b−cm−mol
atom

]
. Now via Eq. (3.78), we can compute the terminal
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value of the adjoint power normalization constant, A†(T ):

A†(T )

〈
ΣEψ

〉
E,D,Ω

V
=
〈
N †

∂bN

∂A
(T )
〉
E,D,Ω

If we break this down term-by-term, we get

〈
ΣEψ

〉
E,D,Ω

=

∫
dV

∫
dE

∫
dΩNEfσfψ = 4πV NEfσf,2ψ2,

which has units of
[

MeV
s

]
, and

〈
N †

∂bN

∂A
(T )
〉
E,D,Ω

=
〈 V

NA

∂

∂A

[
− ANσRψFcm

b

V

]
t=T

〉
E,D,Ω

= −
〈 V

NA

NTσRψ(T )Fcm
b

V

〉
E,D,Ω

= −4πV NTFcm
b

NA

[
σR,1ψ1,T + σR,2ψ2,T

]
= −4πV NTFcm

b ψ2,T

NA

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]

which has units of
[

mol
s

]
. Solving for A†(T ), we find

A†(T ) = − V Fcm
b

NAσf,2Ef

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]

with units of
[

mol−cm3

MeV

]
. We now turn to the adjoint transport equation to compute

ψ†1(T ) and ψ†2(T ). From Eq. (3.76), the applicable adjoint transport equation is

H†ψ† − λG†ψ† = N †
∂bN

∂ψ
− A† A

VR
ΣE ≡ S†. (5.21)

We know the left-hand side of this equation is singular. We show this explicitly by
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writing the g = 1 adjoint transport equation, which gives an expression for ψ†2 in

terms of ψ†1:

σt,1Nψ
†
1 −N

(
ψ†1σs,1→1 + ψ†2σs,1→2

)
− λνσf,1N

(
ψ†1χ2 + ψ†2χ2

)
= S†1[

σt,1N − σs,1→1N
]
ψ†1 +

[
− σs,1→2N

]
ψ†2 = S†1

→ ψ†2 =
σt,1 − σs,1→1

σs,1→2

ψ†1 −
S†1

σs,1→2N
(5.22)

We next write the g = 2 adjoint transport equation

σt,2Nψ
†
2 −N

(
ψ†1σs,2→1 + ψ†2σs,2→2

)
− λνσf,2N

(
ψ†1χ1 + ψ†2χ2

)
= S†2,[

− σs,2→1N − λνσf,2Nχ1

]
ψ†1 +

[
σt,2N − σs,2→2N − λνσf,2Nχ2

]
ψ†2 = S†2,

and substitute Eq. (5.22) for ψ†2:

[
− σs,2→1N − λνσf,2Nχ1

]
ψ†1

+
[
σt,2N − σs,2→2N − λνσf,2Nχ2

][σt,1 − σs,1→1

σs,1→2

ψ†1 −
S†1

σs,1→2N

]
= S†2,[

σs,1→2

(
− σs,2→1N − λνσf,2Nχ1

)
+
(
σt,2N − σs,2→2N − λνσf,2Nχ2

)(
σt,1 − σs,1→1

)]
ψ†1

= S†2σs,1→2 + S†1

[
σt,2N − σs,2→2N − λνσf,2Nχ2

]
.

Through a series of straightforward manipulations and a substitution of the expres-
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sion for λ0, we find that the coefficient that multiplies ψ†1 is zero:

σs,1→2

(
− σs,2→1N − λνσf,2Nχ1

)
+
(
σt,2N − σs,2→2N − λνσf,2Nχ2

)(
σt,1 − σs,1→1

)
=N

[
σt,1σt,2 − σt,1σs,2→2 − σt,2σs,1→1 + σs,1→1σs,2→2 − σs,2→1σs,1→2

− λνσf,2
(
σs,1→2χ1 + σt,1χ2 − σs,1→1χ2

)]
=N

[
σt,1σt,2 − σt,1σs,2→2 − σt,2σs,1→1 + σs,1→1σs,2→2 − σs,2→1σs,1→2

−
[(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

]]
=0.

Indeed the left hand side of Eq. (5.21) is singular. The Fredholm alternative theorem[50]

states that a unique solution ψ†(t) exists if and only if

〈
ψ(t), S†(t)

〉
E,D,Ω

= 0.

In Sec. 3.3, we showed that this is satisfied if the QOI satisfies Eq. (3.73); for the

terminal QOI, this condition is always met, so we should find a unique solution. To

verify that the orthogonality condition is met, we expand each of the terms in S†:

N †(T )
∂bN

∂ψg
(T ) =

V

NA

∂

∂ψ

[
− AT

V
NTσR,gψgF

cm
b

]
= − P0σR,gF

cm
b

4πNAEfσf,2ψ2,T

A†T
AT
V

ΣE,g = − V Fcm
b P0NTσf,gEf

NAσf,2Ef4πNTEfσf,2ψ2,TV

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
= − Fcm

b P0σf,g
4πNAEfσ2

f,2ψ2,T

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
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The orthogonality condition requires that S†1,Tψ1,T + S†2,Tψ2,T = 0. We find:

S†1,Tψ1,T = − P0σR,1Fcm
b

4πEfσf,2NAψ2,T

[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

]
ψ2,T

= − P0σR,1Fcm
b (χ1σR,2 + σs,2→1)

4πEfσf,2NA (χ2σR,1 + σs,1→2)

S†2,Tψ2,T =

[
− P0σR,2Fcm

b

4πEfσf,2ψ2,TNA

+
Fcm

b P0σf,2
4πEfσ2

f,2ψ2,TNA

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]]
ψ2,T

=
−P0σR,2Fcm

b (χ2σR,1 + σs,1→2)

4πEfσf,2NA

(
χ2σR,1 + σs,1→2

)
+
P0Fcm

b (σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2)

4πEfσf,2NA

(
χ2σR,1 + σs,1→2

)
Summing the numerators of these two expressions, we find

− P0σR,1Fcm
b

(
χ1σR,2 + σs,2→1

)
− P0σR,2Fcm

b (χ2σR,1 + σs,1→2)

+ P0Fcm
b (σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2)

= P0Fcm
b

[
σR,1σR,2

(
− χ1 − χ2 + 1

)
− σR,1σs,2→1 + σR,1σs,2→1

− σR,2σs,1→2 + σR,2σs,1→2

]
= 0

Thus, the orthogonality condition is met and we should be able to solve uniquely for

ψ†(T ). We first rewrite Eq. (5.22) with the form of S†2:

ψ†2 =
σt,1 − σs,1→1

σs,1→2

ψ†1 −
1

Nσs,1→2

[
− V

NA

AσR,1NFcm
b

V

]
=
σt,1 − σs,1→1

σs,1→2

ψ†1 +
AσR,1Fcm

b

σs,1→2NA

. (5.23)
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We use the orthogonality condition, Eq. (3.77), as the additional equation to solve

for the adjoint fluxes:

0 =
〈
ψ†Gψ

〉
E,D,Ω

=
〈
ψ†1,T

χ1

4π
NTν4π

[
σf,1ψ1,T + σf,2ψ2,T

]
+ ψ†2,T

χ2

4π
NTν4π

[
σf,1ψ1,T + σf,2ψ2,T

]〉
E,D,Ω

→ ψ†2 = −χ1

χ2

ψ†1. (5.24)

Combining Eqs. (5.23) and (5.24) yields:

ψ†1 = − χ2AσR,1Fcm
b

NA

(
χ2σR,1 + σs,1→2

)
ψ†2 =

χ1AσR,1Fcm
b

NA

(
χ2σR,1 + σs,1→2

)
Here we used Eq. (3.77) to directly solve for the adjoint fluxes; in practice, how-

ever, we will use a method of successive approximation (MSA) to creep up on the

solution to the adjoint transport equation while maintaining the orthogonality to the

forward fission source. To sweep out any fundamental mode contamination, we will

use

ψ† = ψ†` −

〈
ψ†` , Gψ

〉
E,D,Ω〈

ψ†H , Gψ
〉
E,D,Ω

ψ†H

where ψ†` is the `th itheration in a the MSA solution procedure, and ψ†H is the solution

to the homogeneous adjoint k-eigenvalue problem,

H†ψ†H − λG
†ψ†H = 0.

Here we quickly write the form of the solution ψ†H . The homogeneous eigenvalue
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problem equations are

σt,1Nψ
†
H,1 −N

(
ψ†H,1σs,1→1 + ψ†H,2σs,1→2

)
− λ†νσf,1N

(
ψ†H,1χ1 + ψ†H,2χ2

)
= 0

σt,2Nψ
†
H,2 −N

(
ψ†H,1σs,2→1 + ψ†H,2σs,2→2

)
− λ†νσf,2N

(
ψ†H,1χ1 + ψ†H,2χ2

)
= 0.

Here λ† is the fundamental adjoint mode eigenvalue, which we have shown before

and will show below is equal to the fundamental forward mode eigenvalue. The two

eigenfunctions are

ψ†H,1 =
σs,1→2

σt,1 − σs,1→1

ψ†H,2

ψ†H,1 =
σt,2 − σs,2→2 − λ†νσf,2χ2

σs,2→1 + λ†νσf,2χ1

ψ†H,2,

the first of which does not change sign and is therefore the fundamental mode.

Substituting this expression into the g = 2 homogeneous adjoint transport equation,

we derive an expression for the fundamental adjoint eigenvalue, λ†0:

[
− σs,2→1 − λ†0νσf,2χ1

]
ψ†H,1 +

[
σt,2 − σs,2→2 − λ†0νσf,2χ2

]
ψ†H,2 = 0[

− σs,2→1 − λ†0νσf,2χ1

] σs,1→2

σt,1 − σs,1→1

ψ†H,2 +
[
σt,2 − σs,2→2 − λ†0νσf,2χ2

]
ψ†H,2 = 0

νσf,2

[ −χ1σs,1→2

σt,1 − σs,1→1

− χ2

]
λ†0 = −(σt,2 − σs,2→2) +

σs,1→2σs,2→1

σt,1 − σs,1→1

→ λ†0 =

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

νσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)]
= λ0.

The fundamental adjoint mode eigenvalue is indeed equal to the fundamental forward

mode eigenvalue. The procedure in practice would be to solve the homogeneous

197



eigenvalue problem at each time stage, then perform the MSA solve, periodically

sweeping out ψ†H .

We have the terms necessary to integrate the sensitivity equation over the single

time step in order to compute the derivatives given in Eqs. (5.12) through (5.19).

The explicit Euler rule to integrate Eq. (3.85) backwards in time is

∫ tf

t0

f(t)dt = Tf(T )

For dQ
dσt,g

, the form of Eq. (3.85) is

∫ tf

t0

{
−
〈
ψ†
∂Hψ

∂σt,g

〉
E,D,Ω

+
〈
N †

∂bN

∂σt,g

〉
E,D,Ω

}
dt
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We evaluate these terms at t = T ; the g = 1 terms, in detail, are

〈
ψ†
∂Hψ

∂σt,1
(T )
〉
E,D,Ω

= 4πψ†1,TNTψ1,T

= 4πV

[
ATχ2σR,1Fcm

b

NA (χ2σR,1 + σs,1→2)

]
NT

[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

]
= −4πV NT

[
P0

4πNTEfσf,2ψ2,T

] [
χ2σR,1Fcm

b

NA (χ2σR,1 + σs,1→2)

]
[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

]
= −V P0χ2σR,1Fcm

b (χ2σR,2 + σs,2→1)

EFσf,2NA [χ2σR,1 + σs,1→2]2〈
N †

∂bN

∂σt,1
(T )
〉
E,D,Ω

=
〈
− V

NA

ATNTψ1,TFcm
b

V

〉
E,D,Ω

= −4πV ATNTψ1,TFcm
b

NA

= −
[

4πV Fcm
b

NA

] [
P0

4πNTEfσf,2ψ2,T

] [
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

]
NTψ2,T

= −V P0χ2σR,1Fcm
b (χ1σR,2 + σs,2→1)

NAEfσf,2 (χ2σR,1 + σs,1→2)

= −V P0Fcm
b (χ1σR,2 + σs,2→1) (χ2σR,1 + σs,1→2)

NAEfσf,2 [χ2σR,1 + σs,1→2]2

Using our integration rule, these terms combine to form the analytic derivative given

in Eq. (5.12):

dQ

dσt,1
= −TV P0Fcm

b

EfNAσf,2

[
χ1σR,2σs,1→2 + σs,1→2σs,2→1

[χ2σR,1 + σs,1→2]2

]

After similar substitutions, the g = 2 terms are

〈
ψ†
∂Hψ

∂σt,2
(T )
〉
E,D,Ω

=
V Fcm

b P0 (χ2σR,1 + σs,1→2)

NAEfσf,2 (χ2σR,1 + σs,1→2)〈
N †

∂bN

∂σt,2
(T )
〉
E,D,Ω

= − TV P0Fcm
b (σR,1 + σs,1→2)

NAEfσf,2 (χ2σR,1 + σs,1→2)
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These terms combine to form the expected result given in Eq. (5.13):

dQ

dσt,2
= − TV P0Fcm

b (σR,1 + σs,1→2)

EfNAσf,2 (χ2σR,1 + σs,1→2)

Now for the scattering cross sections. The form of the sensitivity equation is as

follows:

dQ

dσs,g′→g
=

∫ tf

t0

−
〈
ψ†

∂Hψ

∂σs,g′→g

〉
E,D,Ω

dt

=

∫ tf

t0

−4πV ψ†g(−Nψg′)dt

=

∫ tf

t0

4πV Nψ†gψg′dt

For example, consider the case of g′ = g = 1 using our explicit Euler integration rule:

dQ

dσs,1→1

=

∫ tf

t0

4πV Nψ†1ψ1dt

≡ 4πTV NTψ
†
1,Tψ1,T

= 4πTV

[
− ATχ2σR,1Fcm

b

NA (χ2σR,1 + σs,1→2)

]
NT

[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

]
ψ2,T

= −4πTV NTψ2,T

[
P0

4πNTEfσf,2ψ2,T

][
χ2σR,1Fcm

b (χ1σR,2 + σs,2→1)

NA (χ2σR,1 + σs,1→2)2

]

= −P0Fcm
b TV

Efσf,2NA

[
χ2σR,1 (χ1σR,2 + σs,2→1)

[χ2σR,1 + σs,1→2]2

]

which is equivalent to Eq. (5.14). Similar manipulations and integrations lead to

Eqs. (5.15) through (5.17). Next we consider the form of Eq. (3.85) for computing

dQ
dν

. This parameter appears only in the fission operator; the sensitivity equation is

therefore

dQ

dν
=

∫ tf

t0

λ
〈
ψ†
∂Gψ

∂ν

〉
E,D,Ω

dt.
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The fission source for group g is Gψ = χgNνσf,2ψ2; therefore

〈
ψ†
∂Gψ

∂ν

〉
E,D,Ω

= 4πV
[
ψ†1χ1Nσf,2ψ2 + ψ†2χ2Nσf,2ψ2

]
= 4πV Nσf,2ψ2

[
ψ†1χ1 + ψ†2χ2

]
= 0,

which gives our expected result, Eq. (5.18). Now consider the form of Eq. (3.85) for

dQ
dσf,2

:

dQ

dσf,2
=

∫ tf

t0

{
λ
〈
ψ†
∂Gψ

∂σf,2

〉
E,D,Ω

−
〈
A†
A

V

∂ΣEψ

∂σf,2

〉
E,D,Ω

}
dt

Using ψ†2 = −χ1

χ2
ψ†1 we have

λ
〈
ψ†
∂Gψ

∂σf,2

〉
E,D,Ω

= 4πV λ
[
ψ†1,Tχ1NTνψ2,T + ψ†2,Tχ2NTνψ2,T

]
= 4πV λ

[
ψ†1,Tχ1NTνψ2,T − ψ†1,T

χ1

χ2

χ2NTνψ2,T

]
= 0.

For the second term, we find

〈
A†T

AT
V

∂ΣEψ(T )

∂σf,2

〉
E,D,Ω

= A†T
AT
V

〈∂ΣE,gψ

∂σf,2

〉
E,D,Ω

= A†T
AT
V

4πV Efψ2,TNT

= −4πFcm
b V ψ2,TEf

NAV Efσf,2

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
[

P0

4πEfNTσf,2ψ2,T

]
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After cancellation and integration, this reduces to Eq. (5.19):

dQ

dσf,2
=
TV P0Fcm

b

EfNAσ2
f,2

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]

To compute the sensitivity of our QOI with respect to the initial condition, we

must integrate the adjoint equations from t = T to t = 0 to compute N †(0). First

we solve the adjoint Bateman equation, which from Eq. (3.75) is

dN †

dt
=
〈
ψ†
∂Hψ

∂N
− λψ†∂Gψ

∂N
− b†N † + A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

.

Our integration rule is

N †0 = N †T − Tf(T )

where f(T ) is the right-hand side of the adjoint Bateman equation. Let’s look term-
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by-term. First (all terms evaluated at t = T ),

〈
ψ†
∂Hψ

∂N

〉
E,D,Ω

= 4πV
[
ψ†1 (σt,1ψ1 − σs,1→1ψ1 − σs,2→1ψ2)

+ ψ†2 (σt,2ψ2 − σs,1→2ψ1 − σs,2→2ψ2)
]

= 4πV ψ†1

[
σt,1ψ1 − σs,1→1ψ2 − σs,2→1ψ2

− χ1

χ2

(σt,2ψ2 − σs,1→2ψ1 − σs,2→2ψ2)
]

= 4πV ψ†1

[χ2(σt,1 − σs,1→1) + χ1σs,1→2

χ2

ψ1

+
−χ1(σt,2 − σs,2→2)− χ2σs,2→1

χ2

ψ2

]
=

4πV ψ†1ψ2

χ2

[
− χ1(σt,2 − σs,2→2)− χ2σs,2→1

+ (χ2(σt,1 − σs,1→1) + χ1σs,1→2)
χ1(σt,2 − σs,2→2) + χ2σs,2→1

χ2(σt,1 − σs,1→1) + χ1σs,1→2

]
= 0.

The fission term also evaluates to zero:

〈
λψ†

∂Gψ

∂N

〉
E,D,Ω

= 4πV λ
[
ψ†1χ1νσf,2ψ2 + ψ†2χ2νσf,2ψ2

]
= 4πV λνσf,2ψ2

[
ψ†1χ1 + ψ†2χ2

]
= 0.
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This leaves (again all terms evaluated at t = T )

dN †

dt
(T ) =

〈[
− b†N † + A†

A

VR

∂ΣEψ

∂N

]〉
E,D,Ω

=
〈Aσt,gψgFcm

b N †

VR
+ A†

A

VR
Efσf,gψg

〉
E,D,Ω

= 4πV A

[
Fcm

b

NA

[ψ1σR,1 + ψ2σR,2] +
A†

V
Efσf,2ψ2

]
= 4πV A

[
Fcm

b

NA

[
χ1σR,2 + σs,2→1

χ2σR,1 + σs,1→2

σR,1 + σR,2

]
ψ2

− Fcm
b V

NAEfσf,2

[
σR,1σR,2 + σR,1σs,2→1 + σR,2σs,1→2

χ2σR,1 + σs,1→2

]
Efσf,2ψ2

V

]

= 0.

Thus, the adjoint densities are constant in time: N †0 = N †T =
V

NA

. It follows, then,

that A†0 = A†T and ψ†g,0 = ψ†g,T .

The final step is to use Eq. (3.85) to compute the sensitivity of the QOI with re-

spect to the initial condition. The parameterN0 only appears in the term
[
N † dN

dp

]
t=t0

.

At t = t0, dN
dN0

= 1, thus

dQ

dN0

= N †0 =
V

NA

,

which agrees with the analytic result.

This problem was run in PDT to verify that the numerical results agree with

the predictions made above. The value of the material and geometry parameters are

given in Table 5.6.
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Table 5.6: Parameters for infinite medium, 2 group k-eigenvalue adjoint verification
problem

Parameter Value

# Cells 1

Cell Volume, V (2.0× 3.0× 2.0) · 107 = 1.2e+22 cm3

Spatial Discretization PWLD (8 Elements)

Element Volume, Ve 1.5e+21 cm3

Simulation Time, T 5.0e+06s ≈ 8.25 weeks

Runge-Kutta Scheme Explicit Euler

Initial Density, N0 5.0
[

atom
b−cm

]
σs,1→1, σs,1→2, σs,2→1, σs,2→2 0.6, 0.2, 0.05, 1.4 [b]

σt,1, σt,2, σf,2 2.0, 5.3, 3.38 [b]

χ1, χ2, ν 0.85, 0.15, 2.23

Ef , P0 206.0 MeV, 60.0 W/cm3

Fixed-source solver tolerance 1.0e-07

Eigenvalue, eigenvector tolerance 1.0e-07, 1.0e-06

Table 5.7 gives a list of intermediate quantities for this problem, their expected

numerical value, the numerical value computed in PDT, and the relative difference

between the two results.
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Table 5.7: Comparison of expected and calculated numerical results for the infinite
medium, 2 group k-eigenvalue adjoint depletion verification problem (ε =machine
precision).

Description Exected PDT Relative

Value Value Difference
ψ1,0

ψ2,0

8.74342105e+00 8.74342091e+00 1.61e-08

A(0) 6.69384179e+11 6.69384153e+11 3.95e-08

keff(0) 5.25543486e-01 5.25543481e-01 9.36e-09

NT 4.99996143e+00 4.99996143e+00 ε
ψ1,T

ψ2,T

8.74342105e+00 8.74342091e+00 1.65e-08

A(T ) 6.69389343e+11 6.69389317e+11 3.94e-08

keff(T ) 5.25543486e-01 5.25543482e-01 8.90e-09

Q = QOI 9.96315667e+22 9.96315667e+22 ε

N †T 1.99264671e+22 1.99264671e+22 ε

A†T -2.56182192e+09 -2.56182191e+09 -1.56e-09

S†1,T -6.66923090e-12 -6.66923084e-12 8.72e-09

S†2,T 5.83118939e-11 5.83118932e-11 1.09e-08

ψ†1,T -5.26522291e-13 -5.26522254e-13 -6.86e-08

ψ†2,T 2.98362631e-12 2.98362615e-12 5.42e-08

N †0 1.99264671e+22 1.99264671e+22 ε

A†0 -2.56182192e+09 -2.56182191e+09 -1.45e-09

ψ†1,0 -5.26522291e-13 -5.26522284e-13 -7.78e-06

ψ†2,0 2.98362631e-12 2.98362626e-12 7.77e-06

Finally, Table 5.8 gives the expected and computed values of the parameter

derivatives, and the relative difference between them.
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Table 5.8: Comparison of expected and calculated numerical derivatives for the infi-
nite medium, 2 group k-eigenvalue adjoint depletion verification problem(ε =machine
precision).

Description Exected PDT Relative

Value Value Difference
dQ
dσt,1

-2.46595461E+17 -2.46593749E+17 -6.94e-06
dQ
dσt,2

-1.97424808E+17 -1.97425917E+17 -5.62E-06
dQ

dσs,1→1
-2.21935915E+17 -2.21937625E+17 -7.71E-06

dQ
dσs,1→2

1.25763685E+18 1.25764654E+18 7.71E-06
dQ

dσs,2→1
-2.53831896E+16 -2.53833853E+16 -7.71E-06

dQ
dσs,2→2

1.43838075E+17 1.43839183E+17 7.71E-06
dQ
dν

0.0 3.54422653e+01 ε
dQ
dσf,2

2.27380643E+17 2.27380643E+17 1.74E-09
dQ
dN0

1.99264671E+22 1.99264671E+22 ε

This verification problem demonstrates that the code is producing a discrete

solution that matches, to the order of the solver tolerances, by-hand discrete solutions

for a k-eigenvalue, infinite medium, 2-group problem. A similar step-by-step walk

through for a simple source-driven problem is described in Sec. C.1.

We now walk through a similar analysis for a flux dependent QOI: the total reac-

tion rate in the very large medium. The flux dependent QOI requires one additional

fixed-source solve, which we outline here. Using the form of Eq. (3.74), our QOI is

Q =
〈
R(tf )

〉
E,D,Ω

=
〈
AψσtN

〉
E,D,Ω

= 4πV A(T )NT

[
ψ1(T )σt,1 + ψ2(T )σt,2

]
=

V P0

Efσf,2

[
γσt,1 + σt,2

]
,
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where

γ =
ψ1

ψ2

=
χ1

(
σt,2 − σs,2→2

)
+ χ2σs,2→1

χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

.

As above, we will verify that the adjoint formalism produces the following subset of

analytic derivatives of the discrete QOI:

dQ

dσt,1
=
V P0γ

Efσf,2

[
1− χ2σt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)] (5.25)

dQ

dσs,1→1

=
V P0σt,1γχ2

Efσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)] (5.26)

dQ

dσf,2
= − V P0

Efσ2
f,2

[
γσt,1 + σt,2

]
. (5.27)

To figure the terminal adjoint density, we first evaluate Â† using Eq. (3.82):

Â† =
V

P̂

〈∂R
∂A

〉
E,D,Ω

=
V〈

ΣEψ
〉
E,D,Ω

〈∂R
∂A

〉
E,D,Ω

=
V

4πV NTσf,2Efψ2,T

4πV NT

[
σt,1γψ2,t + σt,2ψ2,T

]
=
V
[
γσt,1 + σt,2

]
Efσf,2

Turning to ψ̂†, we write the group 1 version of Eq. (3.83):

σt,1NT ψ̂
†
1 − σs,1→1NT ψ̂

†
1 − σs,1→2NT ψ̂

†
2 =

∂R

∂ψ
= ATσt,1NT . (5.28)

Using Eq. (3.80), we again have ψ̂†1 = −χ2

χ1
ψ̂†2. Substitution of this expression into
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Eq. (5.28), we find the following values for ψ̂†:

ψ̂†1 =
χ2ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)
ψ̂†2 = − χ1ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

) .
We now have the information necessary to evaluate Eq. (3.84) for the terminal adjoint

densities. The expression is

N †(T ) =
〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ̂†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

− Â†A(T )

V

∂P̂
∂N

.

The first term is

∂R

∂N
= 4πV AT

[
γσt,1ψ2,T + σt,2ψ2,T

]
=
V P0

[
γσt,1 + σt,2

]
NEfσf,2

.

The third term is

Â†
AT
V

∂

∂N

〈
ΣEψ

〉
E,D,Ω

=
V
[
γσt,1 + σt,2

]
Efσf,2

AT
V

∂

∂N

[
4πV NTEfσf,2ψ2,T

]
=
V P0

[
γσt,1 + σt,2

]
NEfσf,2

.
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Thus

N †(T ) = −
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

= −4πV

[
χ1ATσt,1

χ2σs,1→2 + χ2

(
σt,1 − σs,1→1

)((
σt,1 − σs,1→1

)
ψ1,T −

(
σs,2→1 + λχ1νσf,2

)
ψ2,T

)
− χ1ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)(
− σs,1→2ψ1,T +

(
σt,2 − σs,2→2 − λχ1νσf,2

)
ψ2,T

)]
= − 4πV ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)[χ2

(
σt,1 − σs,1→1

)
γψ2,T − χ2σs,2→1ψ2,T

+ χ1σs,1→2γψ2,T −
(
σt,2 − χ1σs,2→2

)
ψ2,T

]
= − V P0σt,1

NTEfσf,2
[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)](
γ
[
χ2

(
σt,1 − σs,1→1

)
+ χ1σs,1→2

]
−
[
χ2σs,2→1 + χ1

(
σt,2 − σs,2→2

)])
= 0

The terminal adjoint densities are zero. It follows from Eqs. (3.78) and (3.76) that

A†(T ) = 0 and ψ†(T ) = 0, respectively. Thus, the only non-zero terms in the

integration of the sensitivity equation, Eq. (3.85), are

dQ

dp
=
[
N †

dN

dt

]
t=t0

+
[〈∂R

∂p

〉
E,D,Ω

]
t=tf

−
[〈
ψ̂†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+ Â†
∂

∂p

[A
V
P̂ − P

]]
t=tf

. (5.29)
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The form of Eq. (5.29) for σt,g is

dQ

dσt,g
=
〈 ∂R

∂σt,g

〉
E,D,Ω

−
〈
ψ̂†,

∂

∂σt,g

[
Hψ − λGψ

]〉
E,D,Ω

= 4πV ATNTψg,T − 4πV ψ̂†gψg,TNT

For σt,1, we find this leads to an expression identical to Eq. (5.25):

dQ

dσt,1
= 4πV ATNTψ1,T − 4πV ψ̂†1ψ1,TNT

=
V P0γ

Efσf,2
− 4πV

χ2ATσt,1γψ2,TNT

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)
=
V P0γ

Efσf,2
− V χ2σt,1P0γ

Efσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)]
=
V P0γ

Efσf,2

[
[1− χ2σt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)]

For σs,g→g′ , Eq. (5.29) reduces to

dQ

dσs,g→g′
= −

〈
ψ̂†
†
,

∂

∂σs,g→g′

[
Hψ − λGψ

]〉
E,D,Ω

For σs,1→1, we find an expression equal to the expected result, Eq. (5.26)

dQ

dσs,1→1

= −4πV
[
ψ̂†1

(
−NTψ1,T

)]
= 4πV

χ2ATσt,1γψ2,TNT

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)
=

V P0σt,1γχ2

Efσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)]
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The final example is for dQ
dσf,2

. The non-zero terms in Eq. (5.29) are

dQ

dσf,2
=
〈
ψ̂†,

∂

∂σf,2

[
λGψ

]〉
E,D,Ω

− Â† ∂

∂σf,2

[A
V
P̂ − P0

]

For the first term we find

〈
ψ̂†,

∂

∂σf,2

[
λGψ

]〉
E,D,Ω

= 4πV

[
χ2ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)χ1λνNTψ2,T

− χ1ATσt,1

χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)χ2λνNTψ2,T

]
= 0.

For the second term we find

Â†
∂

∂σf,2

[A
V
P̂ − P0

]
=
V
[
γσt,1 + σt,2

]
Efσf,2

A

V
4πV NTψ2,TEf

=
V P0

[
γσt,1 + σt,2

]
Efσ2

f,2

Applying the negative sign, we get a derivative that matches the expected result

given by Eq. (5.27). The problem described by Table 5.6 was run again with the

reaction rate QOI. Again, we obtained numerical results that were within solver

tolerance of the expected results.

5.3.2 Convergence rates of the sensitivity and error estimates

Here we use an analytic solution to a slightly-modified forward problem to show

convergence rates of the sensitivity and error estimates made by PDT. The modifi-

cation is the addition of decay dynamics to the Bateman equation. The version of
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Eqs. (5.3) – (5.7) we use here are

dN

dt
= −4πANFcm

b [σR,1ψ1 + σR,2ψ2]− λN (5.30)

σt,1Nψ1 −N
(
ψ1σs,1→1 + ψ2σs,2→1

)
− λ0χ1νNσf,2ψ2 = 0

σt,2Nψ2 −N
(
ψ1σs,1→2 + ψ2σs,2→2

)
− λ0χ2νNσf,2ψ2 = 0

P0 − A4πNEfσf,2ψ2 = 0

N(0) = N0, t ∈ [0, tf ],

where λ is the decay constant of the component. We find the same fundamental

eigenvector as in Eq. (5.8):

ψ1

ψ2

=
λ0χ1νσf,2 + σs,2→1

σt,1 − σs,1→1

with eigenvalue

λ0 =

(
σt,1 − σs,1→1

)(
σt,2 − σs,2→2

)
− σs,1→2σs,2→1

νσf,2

[
χ1σs,1→2 + χ2

(
σt,1 − σs,1→1

)] .

After substitution of these expressions and Eq. (5.10) back into Eq. (5.30), we find

the following simple ODE governing the component density:

dN

dt
= −P0Fcm

b

Efσf,2

[
σR,1

λ0χ1νσf,2 + σs,2→1

σt,1 − σs,1→1

+ σR,2

]
− λN

≡ −κ− λN. (5.31)
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This ODE has analytic solution

N(t) =
(
N0 +

κ

λ

)
exp (−λt)− κ

λ

= N0 exp (−λt)− κ

λ

[
1− exp (−λt)

]
,

yielding an analytic expressions for our nuclide inventory QOI, which we will use for

the remainder of this analysis:

Q(tf ) =
V

NA

(
N0 +

κ

λ

)
exp (−λtf )−

κV

λNA

(5.32)

=
V N0

NA

exp (−λtf )−
κV

λNA

[
1− exp (−λtf )

]
(5.33)

Now consider solving Eq. (5.31) over a series of time steps of width T using the

explicit Euler rule. The scheme would proceed as follows:

N1 = N0 − T (κ+ λN0)

= (1− λT )N0 − κT

N2 = N1 − T (κ+ λN1)

= (1− λT )N1 − κT

= (1− λT )2N0 − κT (1− λT )− κT

N3 = N2 − T (κ+ λN2)

= (1− λT )3N0 − κT (1− λT )2 − κT (1− λT )− κT

. . .

Nj = (1− λT )jN0 − κT
j−1∑
i=0

(1− λT )i,
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where Nj = N(t = jT ). The numerical QOI is

Qj =
V

NA

[
(1− λT )jN0 − κT

j−1∑
i=0

(1− λT )i

]
. (5.34)

To confirm the order of accuracy of the scheme, we expand Eq. (5.32) about small

tf and find

Q(tf ) =
V

NA

[
N0 − tf (N0λ+ κ) +

1

2
t2f
(
N0λ

2 + κλ
)

+O
(
t3f
)]
. (5.35)

Similarly we expand Eq. (5.34) about small T and find

Qj(T ) =
V

NA

[
N0 − jT (N0λ+ κ)

+
1

2

(
N0λ

2j(j − 1)T 2 + κλT 2

j−1∑
i=0

i

)
+O

(
T 3
)]
. (5.36)

By inspection of Eqs. (5.35) and (5.36), we see that the local truncation error is

proportional to T 2, a familiar result for the explicit Euler scheme. The global trun-

cation error loses an order of accuracy, however, because of the O
(

1
T

)
number of

time steps required to solve the problem. After a similar analysis for the modified

Euler Runge-Kutta scheme, we find that the error in the discrete QOI approxima-

tion is proportional to T 3, or that the modified Euler scheme is globally second order

accurate, as expected.

This analysis, in combination with the preceding analysis that produced the dis-

crete derivative expressions(5.12) – (5.20), lends the conclusion that the Runge-Kutta

schemes should produce QOI derivative estimates that converge globally at the rate

consistent with the scheme. From section 2.5.2, we know this convergence rate will

be suboptimal if (a) the adjoint of the forward Runge-Kutta scheme is not used to
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integrate the adjoint equations, or (b) if the scheme is not implemented correctly.

To test these convergence rates, the problem defined by Table 5.6 was run again

in PDT with the addition of a 20 day component half life. The explicit Euler, implicit

Euler, modified Euler, and Runge-Kutta 4 schemes were used to integrate the equa-

tions in time for a total simulation time of 32 days. We applied the adjoint formalist

to compute the total derivative of the QOI with respect to the total, scattering,

and group-2 fission cross sections, as well as the decay constant and initial compo-

nent density. These numerical derivatives were compared to analytic derivatives to

determine the convergence rate of the schemes.

Figure 5.10 shows the error convergence rates. Each subfigure corresponds to a

different Runge-Kutta scheme and shows 11 error convergence lines. The 11 lines

are: the error in the QOI itself and the error in predicting the sensitivity of the

QOI with respect to 2 total cross sections, 4 scattering cross sections, 2 fission cross

sections, the initial component density, and the component decay constant. For this

simple problem, many of the errors are equal, and thus their lines are overlaid.

We observe that the implicit and explicit Euler schemes are converging at the

predicted first order rate. For some of the parameters, we see that sub-cycling the

Bateman equation improves the predictions. We also observe that the modified Euler

and RK4 schemes are converging at their expected second and fourth order rates,

respectively. These results are evidence that the adjoint of the Runge-Kutta schemes

is being applied correctly to integrate the adjoint variables. Experience showed that

slight mis-indexing (at the sub-time step level) resulted in suboptimal convergence

rates; thus, these tests helped to flush out indexing bugs, as is the purpose of verifica-

tion exercises. These results also indicate that the correct “snapshot” of the forward

solution is being used at each adjoint time step to form the sources in the adjoint

equations.
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(a) Explicit Euler, 1 Bateman sub-cycle
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(b) Explicit Euler, 10 Bateman sub-cycles
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(c) Implicit Euler, 1 Bateman sub-cycle

0.5 1 2 4
10

−3

10
−2

10
−1

10
0

Time Step, ∆ t (d)

R
e

la
ti
v
e

 E
rr

o
r

 

 

Order (∆ t)
1

(d) Implicit Euler, 10 Bateman sub-cycles
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Figure 5.10: Convergence of sensitivity estimates for different Runge Kutta schemes
and Bateman sub-cycle levels 217



Next we address the accuracy and convergence rate of the adjoint base error

estimate for this problem. We will exercise the formalism described in Sec. 3.1.2

using the Heun-Euler embedded Runge-Kutta scheme (see (E.4)), which calls for a

first-order scheme solution estimate using the explicit Euler scheme and a second-

order solution estimate using the modified Euler scheme.

We begin by analyzing the error made in one time step due to discretization in

time. The analytic QOI after one time step T is

Q(T ) =
V

NA

[(κ
λ

+N0

)
exp (−λT )− κ

λ

]
,

which to O (T 4) expands to

Q(T ) =
V

NA

[
N0 − (N0λ+ κ)T +

1

2

(
N0λ

2 + κλ
)
T 2 − 1

6

(
N0λ

3 + κλ2
)
T 3

]
+O

(
T 4
)
.

The QOI predicted by the explicit Euler rule is

Q(1) =
V

NA

[N0 − κT − λN0T ] ,

where we use the notation superscript-(p) to indicate a pth order estimate. We

maintain our definition of error as ∆Q(p) = Q − Q(p), and find that the true error
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made by this scheme is

∆Qtrue,local = Q(T )−Q(1)(T )

=
V

NA

[(κ
λ

+N0

)
exp (−λT )− κ

λ

]
− V

NA

[N0 − κT − λN0T ]

=
V

NA

[
N0 − (N0λ+ κ)T +

1

2

(
Noλ

2 + κλ
)
T 2 − 1

6

(
N0λ

3 + κλ2
)
T 3

]
− V

NA

[
N0 − κT − λN0T

]
+O

(
T 4
)

=
V

2NA

[(
N0λ

2 + κλ
)
T 2 − 1

3

(
N0λ

3 + κλ2
)
T 3
]

+O
(
T 4
)
. (5.37)

We’ll now apply our formalism to compute an adjoint-based estimate of the time

discretization error after a single time step. Inherent in this estimate is an assumption

that the algebraic equations are solved exactly; this assumption is valid in this case,

because the Bateman equation does not depend on the flux solution. Thus, the only

discretization error in the Bateman solution is that due to the time stepping scheme.

Under this assumption, Eq. (3.86) reduces to

∆Qpredicted,local = −
∫ T

0

N †(s)rd1(s)ds (5.38)

where rd1(s) is an estimate of the differential residual, defined by Eq. (3.20). The

embedded Runge-Kutta scheme gives information about the integrand of Eq. (5.38)

at t = T only; therefore, we choose to integrate this equation using a fully explicit

scheme that is consistent with our integration of the adjoint and sensitivity equations:

∆Qpredicted,local ≈ −TN †(T )rd1(T ).
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To compute this residual, we write the exact Bateman equation,

dN

dt
+ κ+ λN = 0,

and the discrete equation that we solve, which leaves some residual relative to the

exact equation:

dN (1)

dt
+ κ+ λN (1) = rd1.

Subtracting the first expression gives us an expression for rd1:

rd1 =
dN (1)

dt
− dN

dt
+ κ+ λN (1) − κ− λN

=
N (1) −N0

T
− N −N0

T
+ λ
(
N (1) −N

)
=
[ 1

T
+ λ
][
N (1) −N

]
. (5.39)

As we do not know the exact solution, N , our strategy is to use a higher-order

estimate, N (2), generated by the modified Euler rule, in its place. The second order

solution at t = T is

N (2) = N0 − T
[
κ+ λN0 −

1

2
λT (N0λ+ κ)

]
.

Substituting this expression into Eq. (5.39), we have an estimate for the differential
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residual at t = T :

rd1(T ) =
[ 1

T
+ λ
][
N (1) −N (2)

]
=
[ 1

T
+ λ
][
N0 − κT − λN0T −

(
N0 − κT − λN0T +

1

2
λT 2(N0λ+ κ)

)]
= −1

2
λT
[
1 + λT

][
N0λ+ κ

]
= −1

2

[
N0λ

2T + λκT +N0λ
3T 2 + κλ2T 2

]
. (5.40)

Using our explicit integration rule, our predicted QOI error estimate is

∆Qpredicted,local = T
V

NA

1

2

[
N0λ

2T + λκT +N0λ
3T 2 + κλ2T 2

]
=

V

2NA

[(
N0λ

2 + λκ
)
T 2 +

(
N0λ

3 + κλ2
)
T 3
]

(5.41)

Comparing Eqs. (5.37) and (5.41), we see that local truncation error in the prediction

of the QOI error is proportional to T 3! Therefore, we would expect the error in the

global QOI error estimate to be proportional to T 2; that is

εQ ≡ ∆Qtrue −∆Qpredicted ∝ T 2

This is a surprising result considering that we are using only a first order method to

integrate the governing equations.

Also of note is the convergence rate of the relative error in predicting the global

QOI error; that is

εQ,rel ≡
∆Qtrue −∆Qpredicted

∆Qtrue

.

For this problem, the preceding analysis tells us that εQ,rel ∝ T , indicating that the

estimate of the QOI error converges more rapidly than the QOI error itself.
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This is important. If the ratio did not decrease as T decreases, the QOI error

estimate would not be as effective because the error in the estimate would have the

same order of magnitude as the quantity it is trying to describe. The fact that

the ratio decreases with T would allow the modeler to perform simple extrapola-

tion calculations to determine the effect of decreasing the step size to improve QOI

accuracy.

We test these predicted convergence rates by solving the same single compo-

nent, infinite medium problem as above with the Heun-Euler embedded Runge-Kutta

scheme. We simulated 32 days using 0.125, 0.5, 1, 2, 4, 8, and 16 day time steps.

After each run, we compiled the true QOI error (using the analytic QOI expression)

and the adjoint-based QOI error prediction. The convergence of εQ and εQ,rel are

shown in Figs. 5.11 and 5.12, respectively. Note that we achieve the exact rates of

convergence as predicted by the above analysis.
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Figure 5.11: The absolute prediction of the error in our QOI due to time discretiza-
tion is converging to the true error at the expected rate of O

(
T 2
)
.

223



0.125 0.25 0.5 1 2 4 8 16
10

−3

10
−2

10
−1

10
0

Time Step, T (d)

R
e

la
ti
v
e

 E
rr

o
r,

 ε
Q

,r
e
l

 

 

Order T

Heun−Euler (1,2) Rule

Figure 5.12: The ratio of the accuracy in the QOI error estimate to the accuracy in
the QOI itself is decreasing at the expected rate of O

(
T
)
.

This is a powerful verification problem. It demonstrates that

1. the forward k-eigenvalue depletion problem is being solved at the correct order

of accuracy;

2. the required orthogonality properties, namely

〈
S†, ψ

〉
E,D,Ω

=
〈
ψ†, Gψ

〉
E,D,Ω

= 0

of the forward and adjoint operators hold;

3. the adjoint formalism leads to the exact discrete derivatives of two different

QOIs with respect to a range of parameters;
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4. PDT is correctly computing these derivatives;

5. the derivative estimates converge to the analytic derivatives at an optimal rate

with respect to time (that is, at the rate of the Runge-Kutta method);

6. PDT is achieving these optimal rates;

7. the adjoint formalism provides an accurate estimate of global QOI time dis-

cretization error; and

8. PDT is computing these error estimates correctly, and they are converging at

the optimal rates.

This verification problem led to the elimination of a number of software bugs,

many related to orthogonality conditions and indexing related to maintaining ad-

joint consistency. Verification problems for the source-driven case are enumerated in

Appendices C.1 and C.2. The first is a walk-through of a very simple pure absorber

problem. The second is very similar to the problem discussed here. The combina-

tion of these problems provides confidence that the depletion perturbation solver is

solving the equations correctly; however, this problem did not test the more complex

Bateman dynamics or the effects of spatial variation in the neutron flux on the nu-

clide densities. The problem described in the following section attempts to address

these effects.
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5.4 Two Source-Driven Test Problems for Verifying the Accuracy of the

Parameter Derivatives

These verification problems are similar to the problem described in Sec. 5.2.2

in that we wish to test the accuracy of the computed parameter sensitivities by

comparing to brute force finite difference perturbations. As described before, the

sensitivity equation (Eq. (3.52) in the case of the source-driven depletion equations)

produces an estimate of the gradient,
dQ

dp

∣∣∣∣
p=p0

≡ ∇pQ0, in the differential neighbor-

hood about the modeler-defined parameter vector, p0. If computed correctly, this

gradient should capture the first order sensitivity of the QOI with respect to pertur-

bations in p0. Consider the QOI, Q̃ ≡ Q(p̃) resulting from a perturbed parameter

vector, p̃ = p0 +δp, written as a Taylor series expansion about the unperturbed QOI:

Q̃ = Q0 + δp · ∇pQ0 +O
∣∣∣∣∣∣δp2

∣∣∣∣∣∣.
Define δQ ≡ Q̃ − Q0, the QOI perturbation. By rearrangement of the previous

expression, we see that the error in a prediction of δQ made by dotting δp with our

gradient, ∇pQ0, should decrease as the square of the norm of the perturbation:

εδQ ≡ δQ− δp · ∇pQ0 = O
∣∣∣∣∣∣δp2

∣∣∣∣∣∣.
We designed a family of problems to verify this order of accuracy for the deple-

tion perturbation case, and two are presented in this section. Both problems are

source driven with two groups and four components. We use the depletion chain and

unperturbed cross sections are given in Appendix F.1.

The first problem is a homogeneous, 3D brick of dimensions 30.0cm×30.0cm×10.0cm

discretized into a matrix of 8×8×8 spatial cells allocated among 8 processors. The
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initial densities
[

atom
b−cm

]
for U-235, U-238, U-239, and Fe-56 are 1.0, 5.33, 1.8, and

1.0 respectively. We use S8 level-symmetric quadrature in angle. In time, we use

the modified Euler Runge-Kutta scheme (see Appendix E) to march through 8 time

steps of 5.0e+05 seconds each, and the CHECKPOINT MOMENTS scheme is used

to perform the adjoint cross-correlation. A fixed isotropic neutron source of 4.20e+12

and 1.20e+12
[

n
cm3−sec−MeV

]
in groups 1 and 2 is constant throughout the domain.

Finally, the QOI is defined as the number of moles of Fe-56 present in the entire

problem at the end of the simulation.

The second problem geometry is pictured in Fig. 5.5 and is discretized into a

matrix of 6×6×6 spatial cells on one processor. The filler and detector material

initial densities are given in Table 5.9. Here we use S2 level-symmetric quadrature

in angle. We march through time using the modified Euler scheme with 40 cycles of

5.0e+05 seconds each. The CHECKPOINT MOMENTS scheme is used to perform

the adjoint cross-correlation. The fixed neutron source is 4.20e+14 and 1.20e+14[
n

cm3−sec−MeV

]
in groups 1 and 2, respectively, throughout the domain. Here, the

QOI is the total interaction rate with U-235 in the detector volume at t = tf .

Table 5.9: Initial densities for the detector response depletion perturbation verifica-
tion problem

Component Filler Detector

U-235 0.0 1.0

U-238 1.8 0.0

U-239 0.0 0.0

Fe-56 1.0 3.0
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For each problem, step one of the verification task is to compute ∇pQ0 about the

unperturbed cross sections given in Appendix F.1. We then perturb the following

one-at-a-time perturbations to p0:

p̃ij = p0 + ∆jei,

where ei = 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉 and ∆ =
[
.001, .002, .004, .008

]
. In other words,

we perturb each cross section 4 times, and for each perturbation of each cross section,

we compute Q̃ij. We then make the prediction

Q̃ij,pred = ∆jei · ∇pQ0

and compute the error

εδQ,ij = Q̃ij − Q̃ij,pred.

This error should increase by a factor of 4.0 as the perturbation, ∆j is doubled.

Figure 5.13 shows the convergence of εδQ,ij as a function of the perturbation in the

total, fission, nu-bar, and scattering cross sections in the nuclide inventory problem.

Figure 5.14 gives the same set of plots for the detector response problem. We give a

∆2 line on each set of axes for reference. The results show that the implementation

achieves the predicted second order convergence rate for these two problems.

These problems help to verify that the depletion and adjoint depletion solvers

are interacting properly for a problem with more complex geometry and Bateman

dynamics than in previous test problems. These problems include fission, decay,

(n,2n) and (n,γ) reactions, a relatively large number of unknowns, a higher burnup

of the nuclides, and the additional degree of difficulty involved with using multiple

processors. The results are strongly second order, providing further confidence that
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the parameter derivatives are being computed correctly.
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Figure 5.13: The error in predicting δQ, where Q is the terminal nuclide density,
decreases as the square of the parameter perturbation.
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Figure 5.14: The error in predicting δQ, where Q is a model of a detector response,
decreases as the square of the parameter perturbation.
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6. APPLICATION AND SCALING PROBLEMS

In this section, we present the application of our depletion and adjoint capability

to two reactor problems that are of interest to ongoing research by the department

and its collaborators. The first is a traveling wave reactor benchmark problem,

originally proposed by staff members at TerraPower, LLC. The task is to model a

one-dimensional reactor over a series of operational cycles until an equilibrium cycle

is reached. We report our results and enhance the benchmark problem by applying

a series of UQ studies. The second reactor problem involves the simulation of the

Nuclear Science Center (NSC) TRIGA research reactor at Texas A&M University.

We are interested in modeling the power history of the reactor and in calibrating

uncertain cross sections and other parameters using experimentally measured quan-

tities. In this dissertation, we provide an example NSC depletion calculation and

show how the adjoint information can be used to calibrate poison concentrations.

The last section of this section describes a scaling study designed to test the

performance of the checkpointing algorithms that were described in Sec. 4.6. We scale

a source-driven problem in two measures: the total number of processors and the total

number of unknowns per processor. Our conclusion is that the schemes that read,

write, and store only the converged transport source moments are computationally

advantageous compared to the traditional checkpointing algorithms.
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6.1 A One-Dimensional Traveling Wave Reactor Benchmark Problem with

Depletion and Uncertainty Quantification

This section describes our approach to and solution of a benchmark problem sim-

ulating a one-dimensional traveling wave reactor design. Robert C. Petroski studied

the problem in detail in his 2011 dissertation from MIT[56]; months later, with co-

authors from TerraPower, LLC, he proposed the simulation as a benchmark problem

to the reactor physics community[57].

In the following subsections, we give a complete definition of the benchmark

problem and summarize available results from Petroski et. al. We then describe our

approach to the forward problem and its solution using the PDT code. In the last

subsection, we apply our adjoint formalism to the benchmark problem to perform a

number of simulated UQ studies.

6.1.1 Problem description and reference results

The breed & burn reactor core is modeled as an infinite slab with 100 inseparable,

homogenized assemblies of width 5cm. A constant, average power density of 48

W/cm3 is specified, and the reactor is run over a series of 450 day depletion cycles.

Between depletion cycles, a shuffling scheme is applied such that two fresh, or “feed”,

assemblies are inserted at each end of the slab and a particular burnt assembly

is removed from the interior of the slab. The material composition of the feed

assemblies, which corresponds to a roughly 0.3% w/o enriched fuel mixture, is given

in Table 6.1.
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Table 6.1: Composition of feed material for traveling wave reactor benchmark

Nuclide Density
[

atom
b−cm

]
Uranium-235 7.30e-05

Uranium-238 2.40e-02

Sodium-23 6.52e-03

Iron-56 1.68e-02

After some number of shuffle sequences, the reactor will enter an equilibrium

state where each cycle does not differ from the cycle before it. The benchmark task

is to reach this equilibrium state for two different shuffling sequences and to report

a number of equilibrium cycle reactor performance characteristics. The two shuf-

fling sequences are referred to as inward-convergent shuffling (ICS) and convergent-

divergent shuffling (CDS) and are illustrated in Fig. 6.1.
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Figure 6.1: Shuffling schemes for the traveling wave reactor problem: note the shuf-
fling is symmetric about the reactor mid-plane.

Reference results are drawn from both the Petroski dissertation and the bench-

mark specification. The authors indicate they used a modified version of MCNPX to

for their results. Figure 6.2 is taken from the benchmark specification [57] and shows

the “uncontrolled eigenvalue”, keff, over the equilibrium cycle for each shuffling strat-

egy. Values for the beginning of equilibrium cycle (BOEC), middle of equilibrium

cycle (MOEC), and end of equilibrium cycle (EOEC) eigenvalues are tabulated in

the dissertation[56] and are reproduced in Table 6.2.
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Figure 6.2: Reference k-eigenvalue solutions for the TWR problem.

Petroski also provides BOEC and EOEC curves for burn-up, power density, and

total scalar flux. The benchmark solution requires more detailed, tabular data de-

scribing the equilibrium cycle, including isotopic edits. We will report this data and

compare to available reference solutions in the following subsection.

Table 6.2: Tabulated reference equilibrium cycle eigenvalues for the traveling wave
benchmark problem (given as ± 0.001)

Parameter ICS CDS

BOEC keff 1.021 1.016

MOEC keff 1.042 1.039

EOEC keff 1.059 1.058

∆keff 0.038 0.042
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6.1.2 Approach and solution using the PDT code

We apply the forward depletion solver in PDT to compute solutions to the bench-

mark problem. As described in Sec. 2.1, we express the time dependence of the for-

ward problem in quasi-static form, meaning that the Bateman equation is written in

time-differential form while the transport solution is solved for a steady-state flux at

certain time intervals. We use both the operator splitting technique (see Sec. 4.2.1)

and the Runge-Kutta scheme (see Sec. 4.2.2) to solve the quasi-static equations, and

we found that the schemes produced consistent results.

For nuclear data, we use a subset of 33 nuclides from the data described in

Appendix F.2. These are 33-group, fast spectrum cross sections provided by staff

members at Argonne National Laboratory using the MC2 deterministic spectrum

code. The scattering data contains 4 Legendre moments per nuclide; it also includes

energy-per-fission data, but not half-life data, which we gathered directly from ENDF

databases.

Of the 33 nuclides we track, 18 compose the actinide chain, which is illustrated

by Fig. 6.3. A crucial part of this chain is the Plutonium-239 production process,

which occurs via neutron capture in Uranium-238 to produce Uranium-239, followed

by beta decay to Neptunium-239 and a second beta decay to Plutonium-239. The

half-life of Uranium-239 is just less than 24 minutes. To avoid numerical instabilities

that may be caused by this short time scale, we assume than a capture reaction in

Uranium-238 produces Neptunium-239 directly, as indicated by the illustration.
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Figure 6.3: Actinide chain for the traveling wave reactor benchmark problem. Grey
boxes indicate unstable isotopes; red lines indicate decay parent/child pairs; black
lines indicate reaction parent/daughter pairs.

Thirteen of the remaining nuclides are lumped fission products, each of which

corresponds to a particular fissionable nuclide. We neglect fission products for 242Cm

and 243Cm and do not have fission product data for 237U, 238Np and 239Np. One

fission product is produced per fission in the corresponding parent nuclide. The

lumped fission products do not decay.

The remaining two nuclides are Sodium-23 and Iron-56. We treat the sodium as

a filtered coolant, so its concentration is not allowed to change during the simulation;

the iron nuclides are removed via absorption, but we do not model any products of
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this reaction.

For each shuffling scheme, we solved the problem to equilibrium state using a

variety of initial nuclide compositions. In this section, we show the approach to

equilibrium from a near-equilibrium state. Specifics of our solution strategy are

given in Table 6.3. Note that PDT does not support 1D geometries; therefore we

model this problem using 100 2D spatial cells of dimension 1.0e+07cm×5.0cm.

Table 6.3: Specification of problem and solver settings for equilibrium cycle bench-
mark solution using PDT. Note: all tolerances are relative, and flux tolerances specify
max point-wise, group-wise change in scalar flux.

Parameter Setting

Runge-Kutta scheme Implicit Euler

Depletion time step 45 days

Bateman sub-cycle length 12 hours

Fixed-source solver Source iteration

Fixed-source iterative tolerance 1.0e-04

Eigenvalue/vector solver Power iteration

Eigenvalue tolerance 1.0e-04

Eigenvector tolerance 1.0e-03

Spatial method PWLD

Angular quadrature S8

Scattering Moments 4 (P3)

We find that increased resolution of each assembly in space does not affect the so-

lution, a result also observed by Petroski. We also find that the solution is insensitive
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to quadrature order and scattering order so long as some anisotropy is allowed (we

explore this in further detail below). The implicit Euler scheme for time marching

solves the Bateman equation implicitly, but it uses an explicit flux solution. The

Bateman equations are also sub-cycled between flux solutions. Because the flux so-

lution changes very little over the equilibrium cycle, we find that this is an effective

time stepping scheme.

Figure 6.4 shows keff during the approach to equilibrium for each shuffling scheme

as well as a snapshot of the eigenvalue over a few equilibrium cycles of each scheme.

The plots give the PDT result in solid line and the reference BOEC, MOEC, and

EOEC keff values from Table 6.2 in dashed lines. It is interesting to compare Figs.

6.4(a) and 6.4(b). The initial density profiles from which these jobs were launched

were identical. The ICS scheme has a fairly smooth slope to equilibrium, while the

CDS scheme has a nonlinear path.
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Figure 6.4: Approach to equilibrium and repeated equilibrium cycles for both the
inward convergent and convergent divergent shuffling schemes

Table 6.4 appends the PDT results to Table 6.2 for tabular comparison. Figure

6.5 compares the equilibrium cycle PDT solution to the reference solution in the

format of Fig. 6.2.
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Table 6.4: Comparison of tabulated equilibrium cycle eigenvalues for the traveling
wave benchmark problem (± 0.001)

Parameter
Reference PDT Reference PDT

ICS ICS CDS CDS

BOEC keff 1.021 1.031 1.016 1.027

MOEC keff 1.042 1.052 1.039 1.050

EOEC keff 1.059 1.070 1.058 1.069

∆keff 0.038 0.039 0.042 0.042

We find that our eigenvalue results over-predict the reference results by about

1.0%. The trends in the PDT curves (e.g. concavity, relative difference between

schemes) are highly consistent with the reference curves. Because we found that

further refinement in space and angle did not affect the PDT solutions, we believe

the shift in our predictions is likely due to different treatment of cross sections,

nuclide compositions, and energy group structure. We do not know which nuclides

and data libraries produced the reference solutions; we only know that the reference

solution authors used a version of the MCNPX code.
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Figure 6.5: Comparison of reference and PDT uncontrolled eigenvalue solutions over
a single equilibrium cycle. Note that the reference curves are interpolated between
the available data at BOEC, MOEC, and EOEC.

The benchmark specification requests a large amount of equilibrium cycle data

in addition to what has been shown thus far. First, the authors request a set of

three BOEC, MOEC, and EOEC global neutronics parameters for each shuffling

scheme, which we report in Table 6.5. The global neutronics parameters are the

eigenvalue keff, global average number of neutrons per fission ν̄, and global average

energy released per fission, Q̄. The latter two parameters are defined as:

ν̄ =

〈
ψνΣf

〉
E,D,Ω〈

ψΣf

〉
E,D,Ω

Q̄ =

〈
EfψΣf

〉
E,D,Ω〈

ψΣf

〉
E,D,Ω
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Table 6.5: Global neutronics parameters computed with PDT for the TWR bench-
mark problem (± 0.001)

Inward-Convergent Convergent-Divergent

Parameter BOEC MOEC EOEC BOEC MOEC EOEC

keff 1.031 1.052 1.070 1.027 1.050 1.069

ν̄ 2.897 2.899 2.901 2.896 2.898 2.900

Q̄ (MeV) 198.6 198.6 198.6 198.6 198.6 198.6

In addition to the global neutronics parameters, the benchmark requests cell-

wise powers, absorption and fission edits, and isotopic concentrations. Table 6.6

reports these data for a select set of assemblies (numbered from the center of the

slab outward) and the ICS scheme. FIMA, or fissions per initial metal atom, is a

burnup metric and is defined as the total number of fissions in a cell divided by the

initial number of heavy metal atoms. The last column is the ratio of total neutron

absorption to total neutron production via fission in the cell.
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Table 6.6: Benchmark results for select assemblies in the traveling wave reactor
problem

Cell
EOEC Power EOEC Rel. EOEC

Ratio: Tot Abs
Tot. Prod

Dens. (W/cc) Fiss. Rate FIMA (%)

1 4.234e+02 1.000e+00 12.18 0.783

2 4.036e+02 9.533e-01 10.03 0.7899

3 3.669e+02 8.668e-01 7.99 0.806

4 3.170e+02 7.490e-01 6.12 0.835

5 2.595e+02 6.133e-01 4.51 0.879

6 2.011e+02 4.754e-01 3.20 0.945

7 1.476e+02 3.490e-01 2.18 1.039

8 1.029e+02 2.433e-01 1.43 1.172

9 6.842e+01 1.618e-01 0.90 1.355

10 4.363e+01 1.032e-01 0.56 1.606

The electronic version of this dissertation provides the data in Table 6.6 for all

cells as well as more detailed isotopic data. For some such data, we are able to com-

pare the PDT results to the reference results. Figure 6.6 compares the PDT equi-

librium cycle spatial profiles for burnup, energy-integrated flux, and power density

to those given for the reference solution in Petroski’s dissertation[56]. The reference

solution is only given for the ICS scheme and is only available in graphical format,

making direct number-to-number comparisons unavailable.

A possible conclusion from these plots is that the PDT solution is burning in or

retaining less fissionable material than the reference solution. If we assume that the

energy per fission data for the heavy atoms in each problem are equal, then PDT is
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requiring more fissions per initial atom to produce the same amount of energy over

the lifetime of a particular assembly. If the energy per fission is the same, then this

means that PDT has, on average, less available fissionable material.

The current PDT model truncates the actinide chain. For example, a capture

reaction in 242Pu, 243Am, or 243Cm results in a loss of the nucleus and no production

of the “A+” child. Similarly, (n,2n) reactions may result in the loss of a nucleus

but no “A” child. If we tracked more actinides in a future iteration, we would likely

see more agreement in the burnup, flux, and power density profiles because more

fissionable material would be available for energy production.

We also looked at the BOEC and EOEC nuclide density profiles in the slab

and compared their characteristics for each shuffling scheme. Fig. 6.7 gives these

profiles for 235U and Fig. 6.8 gives the profiles for the nuclides involved in the 239Pu

production chain.
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Figure 6.6: Comparison of PDT and reference profiles of burnup, flux, and power
density in the equilibrium cycle.
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We also looked at the BOEC and EOEC nuclide density profiles in the slab

and compared their characteristics for each shuffling scheme. Fig. 6.7 gives these

profiles for 235U and Fig. 6.8 gives the profiles for the nuclides involved in the 239Pu

production chain.
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Figure 6.7: BOEC and EOEC density profiles for 235U
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(d) 239Np – CDS
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Figure 6.8: BOEC and EOEC density profiles nuclides in the 239Pu production chain.
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Finally, we tested the sensitivity of our results to quadrature order and number

of Legendre moments used to represent the scattering source. Figure 6.9 compares

the uncontrolled equilibrium-cycle ICS eigenvalue for 5 different cases: P0-S4, P1-S4,

P1-S2, P2-S4, and P3-S8. We find that the eigenvalue is not sensitive to the degree of

anisotropy modeled as long as some anisotropy is accounted for (i.e. P1 is enough).

Also, among the anisotropic cases, the eigenvalue is insensitive to the quadrature

order.
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Figure 6.9: Comparison of equilibrium-cycle uncontrolled eigenvalue for 5 different
angular and anisotropy models
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6.1.3 An equilibrium-cycle uncertainty quantification study

We applied our adjoint capabilities to the benchmark problem in order to learn

more about the parameters that are driving the equilibrium cycle behavior. We

performed a series of tests, each targeting a different UQ-related question. The first

test targets the 239Pu production and utilization in the equilibrium cycle, which is

important because our analysis shows that nearly 75% of fissions in the reactor at

the EOEC are occurring in this isotope. We concentrate on the ICS shuffling scheme

and define a QOI as the total reaction rate in 239Pu at EOEC in the two cells that

are to be ejected, or

Q =

∫ 255cm

245cm

dx

∫
dE

∫
dΩσt,239(E)N239(x)ψ(x,E,Ω).

This QOI captures both the Plutonium concentration and neutron flux at the center

of the slab just before a shuffle occurs. Using our PDT simulation, we find the

nominal value of this QOI is

Qnominal = 7.658e+ 21.

A first task is to determine which microscopic cross sections are most important in

driving the QOI. We do this by running a single adjoint calculation over the nominal

ICS equilibrium cycle. This gives us the sensitivity of our QOI with respect to all

cross sections and other select nuclear data that we provide to the code. If we make

the simple assumptions that all cross sections are independent and known to within

a particular percent, then we can rank the importance of the cross sections using the
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following sensitivity measure[39, 46]:

Sp = p
dQ

dp
.

This measure indicates that important parameters are those with a combination of

large influence on the QOI and a large uncertainty (which we have assumed is propor-

tional to p). We certainly note that the assumption that cross sections are indepen-

dent is completely inadequate for a realistic uncertainty study; instead, correlation

matrices must be considered in order to simulate physically viable perturbations in

a nuclide’s cross sections. We simply use this metric as an example for the simulated

UQ study that follows.

We chose to focus on the total and fission cross sections of 235U, 238U, and 239Pu

for this particular test. We considered the (n, γ) cross section for 238U as well, but

our analysis found that its importance factor was about an order of magnitude lower

than the 238U fission cross section. Figure 6.10 shows the importance, normalized by

Qnominal, of the total and fission cross-section parameters to this particular QOI as a

function of group number.
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Figure 6.10: Normalized parameter sensitivity measure for the 239Pu reaction rate
QOI. Note: diamond markers indicate positive sensitivities, and circle markers indi-
cate negative sensitivities.

An immediate observation from Fig. 6.10 is that the maximum sensitivity occurs

in the higher-energy groups, which coincides with the fast flux spectrum in this

traveling wave reactor. The total cross section in 238U seems to have the largest

potential to drive variation in the QOI, but the fission cross section is only important

at the highest neutron energy levels. The 235U cross sections are not as important

throughout the energy spectrum, and the Plutonium cross sections are mostly in

between.

To simulate a UQ study, we used this plot to identify 18 cross sections, 6 for

each nuclide, as parameters of interest. They are listed in Table 6.7. We assumed

that each cross section may vary within a uniform distribution with range ±3%

about its nominal value. We sampled this 18 dimensional space using a 180 point

Latin-hypercube design, which is a scheme used for random stratified sampling[58].
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Table 6.7: Parameters chosen for 239Pu reaction-rate UQ study

Uranium-235 Uranium-238 Plutonium-239

Cross section Group Cross section Group Cross section Group

Total 9 Total 4 Total 9

Total 10 Total 10 Total 10

Total 11 Total 15 Total 15

Fission 10 Fission 3 Fission 8

Fission 11 Fission 4 Fission 9

Fission 14 Fission 5 Fission 10

For each of the 180 sampled points, we ran a single equilibrium-cycle simula-

tion using perturbed values for the 18 parameters. We then used the adjoint-based

derivatives to compute an estimate for the perturbed QOI as follows:

Qpred = Qnominal +
18∑
i=1

δpi
dQ

dpi
.

Figure 6.11 compares the predicted QOI to the actual QOI for each of the 180 runs.

Perfect predictions would like on the dashed diagonal line. The average predictive

error (∼4.6e+19) is less than 1% of the QOI value for these 180 runs, which we find

encouraging given that the predictions are simply linear extrapolations about the

nominal equilibrium cycle.
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Figure 6.11: Predicted vs actual QOI for the traveling wave reactor UQ study

We also applied our error estimation technique to this simulation. Using the

Heun-Euler embedded Runge-Kutta scheme, we estimated a residual due to time-

discretization at each time-step during the forward simulation. We showed in Sec.

3.1.2 that integration of these residuals against the adjoint variable results in a global

time-discretization error estimate.

Using a 5 day time-step and a solver tolerance of 0.001%, our analysis predicts

a global absolute time-discretization error in this QOI of 1.8e+17 or a relative error

of 0.0023%. We compared this to a Richardson extrapolation estimate[16], which
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requires a second forward simulation using 2.5 day time-steps. This error estimate

was 1.8e+18, or a relative error of 0.0145%, which is about 6 times larger than

our adjoint-based estimate. Both estimates are small, which we expected given the

quasi-equilibrium nature of the simulation.

The difference between the estimates is less than one order of magnitude. In the

context of error estimation, this is is a very small difference, as the purpose of an

error estimator is usually to give the modeler an idea of how many digits to trust

in an answer. For this problem, the estimators are telling us that the error due to

time discretization is on the order of the solver tolerance, or that time-discretization

is not a driving source of error.

Perhaps more important for this dissertation, however, is the cost of this error

estimate. Let N be the number of k-eigenvalue power iterations required to solve

the forward problem using 5 day time steps. The total cost of the adjoint simulation

is 3N + 1, where N come from the forward solve, 2N come from the adjoint solve

(a homogeneous and inhomogeneous solve at each time step), and 1 comes from the

terminal condition calculation. The total cost of the Richardson estimate is 3N − 1,

where N come from the initial 5-day time step run, and 2N−1 come from the 2.5-day

time step run. Thus, to leading order, the error estimate costs 3N transport solves

via both methods. The adjoint method, however, comes with the full gradient of the

QOI with respect to all the parameters in the problem, information which is totally

absent from the Richardson extrapolation.

This simulated UQ study illustrates the wealth of information that one adjoint

solve can bring to a modeler. We provided a measure for identifying important

parameters for the particular QOI and used this measure to reduce the stochastic

dimension down to a manageable size. We then performed sampling in this reduced

dimension and showed that adjoint-based predictions of perturbed QOIs agreed with

255



brute force QOI perturbations to within 1%. This would allow a modeler to pro-

duce QOI distributions based on input sensitivities without sampling the forward

simulator. Finally, we produced an estimate for global error due to time discretiza-

tion, which to leading order requires the same computational cost as a Richardson

extrapolation and agreed with Richardson to within an order of magnitude.

6.1.4 A multi-cycle uncertainty quantification study

We also used our adjoint capability to characterize the effects of perturbations

after several cycle/shuffling sequences. Suppose a proliferation-related QOI is the

amount of 235U that is ejected from the reactor as a result of shuffling after each

equilibrium cycle. For the nominal reactor configuration, we compute that this QOI

is about 399kg. Compare this to the 2850kg inserted per shuffle via the 0.3 w/o

enrichment fuel mixture.

Suppose that we wish to compute the sensitivity of this QOI with respect to the

enrichment of the feed fuel mixture. This could help a designer determine the appro-

priate decrease in the enrichment level to reduce the ejected material inventory below

a target value. We use a series of adjoint calculations to compute this sensitivity,

described as follows.

The initial adjoint calculation is similar to the other adjoint calculations reported

in this dissertation. The QOI is defined as the inventory of 235U in the two center

assemblies (those that are ejected in the ICS scheme). The terminal adjoint nuclide

densities are computed using this definition (see Sec. 3.6.1), and the adjoint equa-

tions are integrated to BOEC using the forward equilibrium cycle solution as the

reference forward solution. The result of this adjoint calculation is all of the usual

QOI sensitivities. In particular, the BOEC 235U and 238U adjoint densities in the

outer-most assemblies give the sensitivity of the QOI with respect to the initial feed
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concentration of these nuclides after a single cycle.

We are interested, however, in the effect of changing the feed concentration over

several cycles. To achieve this, we must perform an adjoint shuffle, which is simply

the reverse of the forward shuffle, and repeat the adjoint calculation. In other words,

the adjoint densities of the second adjoint calculation are initialized via the reverse

shuffling of the assemblies. The adjoint densities in the newly introduced assemblies,

which are the inner-most assemblies for the ICS scheme, are initialized to zero.

These adjoint variables are then integrated back to BOEC, again linearized about

the forward equilibrium cycle solution. Now, the adjoint densities for 235U and 238U

correspond to the effect of perturbing the nuclide densities and running two cycles.

Using this pattern, the cumulative effect of perturbing the feed concentration is

computed as

dQOI

dN235

=

#cycles∑
c=1

N †235,c,BOEC ,

where N †235,c is the adjoint density corresponding to 235U in the discarded assemblies

after the adjoint shuffle. A similar expression exists for 238U.

If this procedure is carried out over C cycles, the total cumulative effect of per-

turbing the feed concentration can be estimated. We note that as more and more

cycles are computed, the validity of linearizing about the nominal equilibrium cycle

solution decreases because the perturbed solution is moving further and further from

the nominal equilibrium solution. We tested this capability by perturbing the initial

feed concentration to 0.25 w/o enrichment. Figure 6.12 shows the predicted and

actual perturbation in the 235U inventory resulting from the perturbation in the 235U

and 238U feed concentrations.
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Figure 6.12: Predicted vs actual QOI perturbation for the multi-cycle traveling wave
reactor sensitivity test

We observe that it takes about 35 cycles for the perturbed densities to reach the

active part of the reactor and impose an appreciable effect on the QOI. The adjoint-

based prediction is over-predicting the jump in the QOI, but only by about 10%.

The curves stop at 49 cycles. This is because the 50th cycle is when the perturbed

density actually reaches the QOI region, representing a relatively large jump (about

300kg) in the QOI. This jump was predicted to within 20% accuracy.

Sensitivity with respect to other parameters can also be estimated in the multi-

cycle setting. In this case, the sensitivity with respect to a parameter (e.g. a cross

section) is simply the integration of the sensitivity equation over each cycle, or the

sum of the sensitivities of each cycle. This provides a straightforward method for
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propagating input uncertainties to the multi-cycle QOI. Again, the advantage of the

adjoint approach is that these uncertainties can be propagated for any number of

parameters without the need to perturb and re-run a large number of forward runs.
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6.2 Steady-State and Depletion Simulations of the Nuclear Science Center

Research Reactor

This section describes a series of scoping calculations for simulating the research

reactor and Texas A&M’s Nuclear Science Center. Long term goals include begin-

ning of life (BOL) calculations, where we will predict critical rod heights and other

reactor characteristics, as well as depletion calculations, where we will use the op-

erational history to deplete the core to its present-day isotopic composition. Once

a satisfactory model of the reactor core is available, we plan to simulate research

experiments and make predictions about future experimental outcomes. We are also

interested in the calibration of a Zirconium-Hydride scattering cross-section model,

a task which should make heavy use of the sensitivity information produced by the

adjoint formalism.

At the time of this dissertation, many of the capabilities and data required for

these simulations are under development or just coming online. These include non-

orthogonal “reactor” grids, machinery for producing self-shielded cross sections using

the Dragon code[59], and the acquisition of reactor power history and other oper-

ational data. Therefore, the purpose of the efforts described in this section is to

demonstrate and apply the depletion and adjoint capabilities on NSC-like problems

in order to facilitate the larger-scale calculations in the future.

6.2.1 NSC beginning-of-life sensitivity calculations

The first task in developing the NSC model is to accurately simulate the BOL

configuration. The isotopic composition of the fresh fuel is known to within manu-

facturing tolerance, and the initial critical core geometry is available in operational

records. Comparison of PDT results to the available operational data will allow us to

characterize the effects of our discretization choices and nuclear data on the accuracy
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of our predictions.

As an example, one important BOL prediction is the critical control rod height.

Once a 3D model of the NSC core is available, this will be determined by iteratively

adjusting the control rod height until keff is unity (within some predictive tolerance).

Although a manual criticality search is straightforward for this case, it may be more

efficient to use the adjoint formalism to produce derivatives and Newton’s method to

compute the next guess for the critical rod height. This can be achieved by treating

the poison and fuel nuclide densities as parameters to which the criticality QOI is

sensitive.

To simulate this process, we developed a 3 by 3 pin NSC model using PDT’s

reactor grids. The grid and material layout are pictured in Fig. 6.13. Material

1, the red material, is representative of the BOL fuel composition. Material 2,

shown in green in the figure, is regular water (H2O) with dissolved Boron-10, a

neutron poison. The composition of the fuel and coolant materials are given in

Tables 6.8 and 6.9 respectively. We used PDT’s power iteration solver to find that

the reactivity, ρ = keff−1
keff

, of this system with no dissolved Boron is -1.8063. We ran

with angular quadratures of S2 and S12, and the relative, point-wise eigenvalue and

scalar eigenvector tolerances were 1.0e-05.
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Figure 6.13: Grid and material layout for 9-pin BOL calculation.
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Table 6.8: BOL NSC fuel isotopic composition (density units:
[

atom
b−cm

]
)

Nuclide Density Nuclide Density

234U 7.11545e-06 96Zr 8.99461e-04

235U 1.08295e-03 12C 1.77837e-03

236U 6.23970e-06 174Hf 3.1224e-09

238U 4.30106e-03 176Hf 1.00341e-07

166Er 7.67971e-05 177Hf 3.58614e-07

167Er 5.27339e-05 178Hf 5.26125e-07

90Zr 1.65276e-02 179Hf 2.62687e-07

91Zr 3.60427e-03 180Hf 6.76521e-07

92Zr 5.50920e-03 1H 4.89201e-02

94Zr 5.58308e-03

Table 6.9: BOL NSC coolant isotopic composition (density units:
[

atom
b−cm

]
)

Nuclide Density

1H 6.6691e-02

16O 3.3346e-02

10B variable

Suppose our task is to find the boron concentration, NB, such that the reactivity

is -4.0865±1.0e-04. We happen to know that this reactivity occurs at a concentration

of 4.0e-04
[

atom
b−cm

]
. Suppose further that our initial guess is 1.0e-04

[
atom
b−cm

]
. After a

single iteration, we would find that the reactivity is -2.6459, indicating that we need
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to increase the 10B concentration. To compute an estimate for the correct increase,

we could either (a) iteratively guess-and-check, or (b) compute dρ
dp

, where p is the

dissolved boron nuclide density, and use Newton’s method to compute the update.

The latter option requires an adjoint calculation, but should provide the quadratic

convergence to the target density.

We pursue the adjoint option. As described in Sec. 3.6, the required adjoint

calculation for this QOI is simply the steady-state, homogeneous adjoint k-eigenvalue

problem. Upon solving the forward k-eigenvalue problem

Hψ − 1

keff

Gψ = 0,

and the adjoint k-eigenvalue problem

H†ψ† − 1

keff

G†ψ†,

the sensitivity with respect to NB is

dρ

dNB

= −
〈
ψ†,

∂

∂NB

[
Hψ
]〉

E,D,Ω
.

This calculation gives a gradient with respect to the Boron-10 concentration in

each spatial cell containing coolant. Because we model a dissolved absorber, we

assume that its concentration is the same in each water cell, and thus the total

derivative of the QOI with respect to a change in the absorber concentration is the

sum of the derivatives in each of these cells.

The problem was run twice: once with S2 discretization in angle and once with

S12 discretization in angle. Figure 6.14 shows the spatial variation of the gradient

with respect NB in the S2 case, and Fig. 6.15 gives the gradient for the S12 case.
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Figure 6.14: Spatial variation of gradient of BOL reactivity with respect to 10B
concentration (S2).
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Figure 6.15: Spatial variation of gradient of BOL reactivity with respect to 10B
concentration (S12).

The strongest sensitivity occurs on the diagonal transport paths between the

center and corner assemblies. This result is consistent with the thermal flux shape,

which peaks in these areas (see Fig. 6.16), because 10B is a thermal absorber. At

first glance, it appears that the S2 case is exhibiting ray effects because of the coarse

angular discretization. These characteristics persist, however, in the S12 case.
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Figure 6.16: Spatial variation of thermal flux at initial 10B concentration (S12).

We use a simple Newton’s method to compute the next estimate of the target

Boron density. Define f = ρ(NB)−ρT , where ρT is the target reactivity. The iterative

procedure is simply

N `+1
B = N `

B −
f

f ′

∣∣∣
N`
B

,

where f ′ = df
dNB

= dρ
dNB

. Table 6.10 summarizes the procedure for each case. Both

tests required 4 iterations (or 7 k-eigenvalue solves, 4 forward and 3 adjoint) to find

the target poison concentration.
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Table 6.10: Summary of Newton iterations towards target Boron density for NSC
BOL problem

Iterate, ` Case N `
B ρ(N `

B)
(
ρ(N `

B)− ρT
)
/ρT N `+1

B −N `
B

1 S2 1.00e-04 -2.6459 -3.5e-01 2.0693e-04

S12 1.00e-04 -2.6297 -3.6e-01 2.1043e-04

2 S2 3.0693e-04 -3.7397 -8.5e-02 8.5029e-05

S12 3.1043e-04 -3.6989 -9.5e-02 1.0207e-04

3 S2 3.9196e-04 -4.0589 -6.8e-03 7.9965e-06

S12 4.1250e-04 -4.0473 -9.6e-03 1.2757e-05

4 S2 3.9995e-04 -4.0863 -4.9e-05 n/a

S12 4.2526e-04 -4.0861 -9.8e-05 n/a

This example illustrates an application of the adjoint-based gradient calculations

for calibrating BOL poison concentrations. The calibration required 7 k-eigenvalue

calculations to achieve the desired criticality level within 1.0e-04. It is possible but

unlikely that a purely forward, guess-and-check k-search would achieve this result

using the same or less k-eigenvalue solves. Moreover, the Newton’s method formalism

allows for the process to be carried out automatically, using scripts, eliminating the

need to manually update the guesses and launch the jobs.

The real BOL calibration task will involve control rod heights instead of soluble

poison concentrations. The NSC control rods are “fuel followed”, meaning that a

fuel pin follows the control rod up though the core as it is withdrawn. Therefore, the

spatial cells through which the rod is moving will need to contain both the control

rod materials and the fuel materials, and the material density updates will need to

be constrained by what we actually know about the fuel. Nonetheless, a procedure
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similar to that outlined in this subsection should be adopted and will likely result in

less time and effort in finding the BOL critical rod heights.

6.2.2 NSC depletion calculations

In this section we report results from an example depletion calculation using a 5

by 5 pin-cell model of the NSC core. Each of the 25 pins is modeled as fuel, and the

space between the fuel pins is modeled as pure water. Table 6.11 gives the nuclides

present in the fuel material and their respective initial densities (note: this list in-

cludes all nuclides in Table 6.8, plus nuclides that whose densities will grow as a part

of the depletion process).

Table 6.11: Initial fuel material composition for NSC depletion calculation (density
units:

[
atom
b−cm

]
)

Nuclide Density Nuclide Density Nuclide Density

234U 7.11545e-06 241Pu 0.0 92Zr 5.50920e-03

235U 1.08295e-03 241Pu 0.0 94Zr 5.58308e-03

236U 6.23970e-06 241Am 0.0 96Zr 8.99461e-04

237U 0.0 242Am 0.0 12C 1.77837e-03

238U 4.30106e-03 243Am 0.0 174Hf 3.1224e-09

237Np 0.0 135Xe 0.0 176Hf 1.00341e-07

238Np 0.0 149Sm 0.0 177Hf 3.58614e-07

239Np 0.0 166Er 7.67971e-05 178Hf 5.26125e-07

238Pu 0.0 167Er 5.27339e-05 179Hf 2.62687e-07

239Pu 0.0 90Zr 1.65276e-02 180Hf 6.76521e-07

240Pu 0.0 91Zr 3.60427e-03 1H 4.89201e-02
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The actinide chain is exactly the same as that for the traveling wave reactor

benchmark (see Fig. 6.3) except that the chain is truncated after Americium. Instead

of lumped fission products, we model just two fission products explicitly: Xenon-135

and Samarium-149. All cross sections were produced using the DRAGON code, and

half-lives, fission yields, and energy per fission data were obtained from a combination

of ENDF-VII data and the data used for the traveling wave reactor benchmark.

The problem is a k-eigenvalue problem. The flux is normalized at a per-pin power

level of 6.5 kW, which roughly corresponds to a 62-pin NSC core operating at 400kW.

The simulation is one year. The time stepping scheme is implicit Euler with 5-day

broad time steps and 0.25 day Bateman sub-cycles.

Figure 6.17 shows the eigenvalue of the system over the first year of operation.

We see a very clear initial drop in the eigenvalue, which we attribute to the burn-in

of the Xenon and Samarium fission products. This begs the question of whether a

5-day time step (with quarter-day Bateman sub-cycles) is adequate at the beginning

of the simulation. We address this below.
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Figure 6.17: Eigenvalue over first year of NSC depletion calculation

Figure 6.18 illustrates the two-dimensional distribution of the power density at

the beginning of the calculation. As might be expected, the center pin is producing

most of the power, and the highest power density is concentrated on the edges of the

center pin that are closest to the larger volumes of coolant (on the “corners” of the

pin cell). This is where the thermal flux magnitude is largest as well. Figure 6.19

shows the power density profile across the center pin at both t = 0 and t = 1 year.

The profile changes slightly in the direction of a flatter profile.
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Figure 6.18: Power density profile at beginning of NSC depletion calculation (units:
Watts/cc)
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Figure 6.19: Comparison of NSC power density across center pin at t=0 (green,
solid) and t=1 year (blue, dashed)

Figure 6.20 gives the Uranium-235 concentration over the center pin cell. We

see that approximately 4-5% of the initial nuclide concentration is burned out in

the center pin over the course of one year. In accordance with the power density

profile, the largest depletion occurs at the edge of the pin, which is the reason that

the power profile tends to flatten out. The jagged nature of the curves is a result of

the averaging of the nuclide densities in each spatial cel.
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Figure 6.20: Uranium-235 number density over 1 year of NSC depletion. Line-
out taken across center pin cell. Legend: t=0(red), t=0.25y(green), t=0.5y(blue),
t=0.75y(black), t=1y(cyan)

Figure 6.21 gives the Plutonium-239 concentration at 5 different time-steps during

the simulation. The data for each line is taken by sampling a line at y = 0 with

endpoints at x = −2∗xPitch and x = 2∗xPitch. In this simulation, 239Pu is formed

after an (n,2n) reaction in 238U, which we model as producing 239Np directly, and

the subsequent decay of 239Np. We note that profile of the burn-in of the plutonium

roughly follows the expected profile of the neutron flux (and therefore (n,2n) reaction

rate). We expect that after longer depletion times, a large portion of the fissions

will occur in 239Pu. From this plot, it is not clear whether we are approaching an

equilibrium or maximum 239Pu concentration.
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Figure 6.21: Plutonium-239 number density over 1 year of NSC depletion. Line-
out taken from (x,y) points (-2,0) to (2,0) in units of x-pitch. Legend: t=0(red),
t=0.25y(green), t=0.5y(blue), t=0.75y(black), t=1y(cyan).

Figure 6.22 gives the Samarium-149 concentration over the first year of depletion.

The line-outs are taken from the same data as those in Fig. 6.21. Although we have

not reached an equilibrium or maximum 149Sm concentration, we appear to be close

to one. An interesting feature of these profiles is that at early times, the maximum

149Sm concentration within a pin is near the edges, where the fission rate is largest.

After some time, however, the Samarium in these regions starts to burn off faster

than the Samarium in the center of the pin, and the profile eventually flattens out.
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Figure 6.22: Samarium-149 number density over 1 year of NSC depletion. Line-
out taken from (x,y) points (-2,0) to (2,0) in units of x-pitch. Legend: t=0(red),
t=0.25y(green), t=0.5y(blue), t=0.75y(black), t=1y(cyan).

Finally, Fig. 6.23 shows the concentration of 135Xe after 5 days of depletion. This

profile does not change by more than 1% over the rest of the year of depletion; in

other words, this is the computed equilibrium concentration. Although they have

similar fission yields, 135Xe reaches an equilibrium concentration faster than 149Sm

because of its short half-life.
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Figure 6.23: Xenon-135 steady-state concentration after 1 year of NSC depletion

A natural question is whether or not we have resolved the initial burn-in of

Xenon well enough to predict the equilibrium concentration accurately. Although

we are using 6 hour Bateman sub-cycles (the half life of Xenon is 9.2 hours), we are

only updating the flux profile every 5 days. If the change in Xenon concentration

that we see here affects the flux distribution and magnitude (it certainly affects the

eigenvalue!), then we may be under-resolving the initial burn-in.

To test our resolution, the first 5 days of the simulation were re-run using 1 hour

Bateman sub-cycles and half-day flux updates. Figure 6.24 compares the computed

Xenon concentration at t = 5 days using the long and short time steps. The difference

between the predictions is very small. Likewise, Fig. 6.25 compares the eigenvalue
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of the system over the first 5 days using the two different time steps. The 5-day

time-step model predicts keff(5d)=0.9367 while the half-day time step model predicts

keff(5d)=0.9365, a relative difference of 2.1e-04, smaller than the eigenvalue tolerance

of these runs.

Figure 6.24: Comparison of 135Xe concentration at 5 days using half-day and 5-
day time steps. Line-out taken from (x,y) points (-2,0) to (2,0) in units of x-pitch.
Legend: half-day(pink, dashed), 5-day(black, solid)
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Figure 6.25: Comparison of keff at 5 days using half-day and 5-day time steps.

This problem demonstrates that the PDT depletion machinery developed as a

part of this dissertation may be readily applied to the NSC simulations. We computed

reasonable results using a moderate number of nuclides and one year of depletion

time in less than 12 hours on a single cpu. The implicit nature of the time stepping

scheme in combination with the ability to sub-cycle the Bateman solution allows

for efficient times to solution. More detailed, 3D models of the NSC core will be

available soon. Given appropriate choices for nuclides to track, power levels, and

rod positions, the PDT depletion solver should be a valuable tool in recreating the

operating history of the NSC. In the next subsection, we demonstrate how the adjoint

capability may be used to further calibrate and reduce uncertainties in the model.
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6.2.3 NSC depletion-perturbation calculations

After a suitable depletion model is reached, we may wish to use the depletion-

perturbation methods outlined in this dissertation to compute the sensitivity of the

QOIs with respect to initial densities, nuclide cross sections, and other parameters in

the calculation. In this subsection, we describe an example depletion-perturbation

problem and compare the computed sensitivities with those obtained by a brute-force

sampling/finite difference method.

The example problem is has a 2 by 2 pin layout. The fuel material has nominal

initial densities given in Table 6.8; the moderator material has 1H and 16O densities

as listed in Table 6.9 with the addition of 10B with density 1.0e-5
[

atom
b−cm

]
. The power

level was held constant at 9kW, and the system was depleted for 36 time-steps of 5

days each using 1/4 day Bateman sub-cycles and the implicit Euler time stepping

scheme. The QOI was the terminal reactivity, ρ(tf ) =
keff(tf )−1

keff(tf )
.

The sensitivity of this QOI was computed with respect to a wide range of param-

eters. One parameter was the initial density of each nuclide present in the fuel and

water. Figure 6.26 shows how the trajectory of keff changes due to a 5% increase in

each of 7 nuclides in the problem. As expected, the reactivity is most sensitive to

the primary fuel and moderator densities. The true and adjoint-predicted changes

in the reactivity as due to these perturbations and the relative difference between

them are presented in Table 6.12.
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Figure 6.26: Sensitivity of final reactivity with respect to nuclide initial density.
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Table 6.12: Finite difference and adjoint-based estimates for reactivity jumps due to
5% initial condition perturbations

Parameter True Jump Predicted Jump Relative Diff

235U 5.107e-02 5.341e-02 4.5%

238U 1.463e-02 1.217e-03 -16.8%

90Zr 4.361e-03 4.383e-03 0.5%

1H - fuel 6.100e-02 6.383e-02 4.6%

1H - mod. 4.765e-02 5.004e-02 5.0%

16O 3.425e-03 3.452e-03 0.8%

We also computed the sensitivity of this QOI with respect to a wide range of

cross sections. If we make a simple assumption that all cross sections are known to

within a certain percentage, then sensitivity the measure

S = p
dρ

dp

can be used to rank all parameters in terms of their importance in predicting the

QOI. We found for this problem that the cross sections for 235U and 1H consistently

had the highest sensitivity measures, and a subset of these parameters are ranked

according to the absolute value of this metric in Table 6.13. The (n,2n) cross section

for 238U and the fission and neutrons-per-fission data for 239Pu also had notably

high values of S and would likely play a more important role in longer depletion

calculations. These results agree with intuition. It is the fission and slowing-down

phenomena that determine reactivity in a thermal spectrum reactor; also, as initial

235U material burns away and 239Pu material is generated, the relative amount of
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fission in the plutonium nuclides increases.

Table 6.13: Relative sensitivity of nuclear data in NSC simulation

Component Parameter Sensitivity Measure, S

1H σs,2→2 6.01

1H σt,2 -5.96

1H σt,1 -5.84

1H σs,1→1 5.82

235U ν2 1.89

235U σf,2 1.85

235U σt,2 -1.45

1H σs,1→2 1.18

This application problem served two purposes. First, we demonstrated that the

depletion perturbation machinery works on the NSC problem and generates results

that agree with direct finite difference parameter perturbations. The second pur-

pose was to give an idea for applying the computed sensitivities to determine which

dimensions in the stochastic space are most responsible for variation in the output.

These are dimensions that may require further investigation, such as more dense

sampling, in a UQ study. Future depletion perturbation simulations of the NSC core

can use this investigation as a starting point.
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6.3 Checkpointing Scheme Scaling Study

In this section, we describe a study of the performance of five checkpointing

schemes as both the number of processors and the number of unknowns per processor

are increased towards the levels required for high-fidelity reactor analysis calculations.

We described the five schemes in Sec. 4.6, including the three new schemes that

checkpoint and store only converged source moments. We also presented models

for the computational cost and RAM footprint of each scheme. Here, we test our

performance models and compare the time to solution and scalability of the schemes

for a particular source-driven depletion perturbation problem.

6.3.1 Description of the source-driven test problem

We test the schemes using a source-driven depletion perturbation problem in

order to compare the experimental results to the performance models in Sec. 4.6,

which were written for the source-driven case. The test problem has 3D brick-

cell geometry with total x, y, and z dimensions of 30.0cm. 30.0cm, and 10.0cm,

respectively. The material is a homogenous mixture of the seven nuclides listed

along with their initial number densities in Table 6.14. The depletion physics are

meant to emulate 239Pu production, where we again assume that an (n,γ) reaction in

238U produces 239Np directly. The problem is run for 6 time-steps of approximately

14 hours using the explicit-Euler Runge-Kutta scheme. There are 11 energy groups,

and the fixed isotropic source has intensity 1.8e+12
[

n
cm3−sec

]
in each group. We use

S4 level-symmetric quadrature to discretize the angular variable (24 total discrete

ordinates).
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Table 6.14: BOL nuclide list and densities for checkpointing scheme scaling problem
(density units:

[
atom
b−cm

]
)

Nuclide Density

235U 6.5e-03

238U 1.6e-01

239Np 1.5e-01

239Pu 3.0e-02

MU-35 3.6e+00

MU-38 2.9e+00

MPu39 2.9e+00

The 11-group cross sections for the scaling problem were collapsed from the 33-

group cross sections produced by Argonne National Laboratory for the traveling wave

reactor benchmark problem. To collapse the 33-group data, we used the EOEC flux

spectrum taken from the center cell of the traveling wave reactor problem. Using

the 11-group cross sections and the initial densities given in Table 6.14, we find that

10cm is approximately 800 mean-free-paths in the fastest group and 1500 mean-free-

paths in the slowest group and that the optical thickness in the other groups varies

between these depths. The BOL k-eigenvalue of the system is approximately 0.86.

We consider only isotropic scattering.

We perform weak scaling by increasing the number of spatial cells owned by

each processor in a particular problem. We consider each combination of three pro-

cessor counts and three problem sizes. The three processor counts are 1024 (1k),

2048 (2k), and 4096 (4k). The three problem sizes result in approximately 200,000

(200k), 400,000 (400k) and 800,000 (800k) angular flux unknowns per processor. The
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break-down of the 9 different problems is given in Table 6.15 in terms of number of

processors (P ) and number of cells in x, y, and z (Nx, Ny, Nz), total number of an-

gular flux unknowns per cpu, Nψ/cpu, total number of unknowns per cpu, Ntot/cpu,

and the RAM footprints of a single copy of the angular flux, Mψ, and single copy of

the source moments, MS, per processor.

Table 6.15: Variation in unknowns per processor for scaling study. Note: each
problem has 7 nuclide densities per cell, 8 spatial unknowns per cell, 24 angles, and
11 energy groups.

Problem P Nx Ny Nz Nψ/cpu Ntot/cpu Mψ (MB) MS (MB)

1 1024 32 64 48 202,752 203,424 1.62 0.068

2 1024 64 64 48 405,504 406,848 3.24 0.135

3 1024 64 64 96 811,008 813,696 6.48 0.270

4 2048 64 64 48 202,752 203,424 1.62 0.068

5 2048 64 64 96 405,504 406,848 3.24 0.135

6 2048 64 128 96 811,008 813,696 6.48 0.270

7 4096 64 64 96 202,752 203,424 1.62 0.068

8 4096 64 128 96 405,504 406,848 3.24 0.135

9 4096 128 128 96 811,008 813,696 6.48 0.270

We ran 11 repetitions of each of the nine problems, where each repetition used

a different checkpointing scheme. The 11 schemes were STOR ALL, STOR MOM,

CKPT ALL K, CKPT MOM K, and INTP MOM K, with K=2, 3, and 4. With 6

total time steps, the K=2, 3, and 4 schemes will write a total of 4, 3, and 3 checkpoint

files, respectively. The K=2 schemes will write a file at t = t0, then after time steps

286



2, 4, and 6. The K=3 schemes will write a file at t = t0 and after time steps 3 and

6. The K=4 scheme will write a file at t = t0 and after time step 2. In this case, the

last four time-steps will be stored during forward-mode, which is the most optimal

configuration in terms of minimizing re-compute costs.

Although we are not particularly interested in the solution to these problems, we

do ensure that the schemes produce consistent results. For each problem, we com-

pute the sensitivity of a total inventory QOI with respect to all the microscopic total

cross sections in the problem. The sensitivities for the STOR ALL, STOR MOM,

CKPT ALL, and CKPT MOM schemes always agree to machine precision. The rel-

ative difference between these schemes and the INTP MOM schemes is not machine

precision because of the interpolated initial guess for the source moments during

adjoint mode; instead, the sensitivities for the STOR ALL scheme and INTP MOM

scheme always agree to at least solver tolerance.

6.3.2 Scaling results

The 11 repetitions of each problem were run on the vulcan machine at Lawrence

Livermore National Laboratory. This machine has 16 cpus/node and 16GB of

RAM/node (1 GB/cpu). The parallelism was always such that 16 MPI processes

were launched per node. We allowed PDT’s auto aggregation and partitioning al-

gorithm to choose the partitioning parameters to optimize time to solution for each

problem. Machine queue limitations at the time of this study limited run-times to

12 hours; as a result, some of the 800k runs did not complete. We are still able to

make conclusions about the schemes without these results.

Figure 6.27 shows the observed memory footprint for each of the 11 schemes and

the 400k problem size (the plot is the same for each cpu count). Each footprint

is in agreement with the corresponding prediction given in Table 4.2 (plus a small
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allocation for the densities). The parameters S and T for this problem are each 1,

and the parameter N is 6. For example, the STOR ALL scheme requires a total of

seven allocations for ψ and one allocation for ψ†, or 8×3.24=25.92MB. Likewise, the

STOR MOM scheme requires one allocation for ψ, one for ψ†, and seven allocations

for the source moments; that is 2×3.24+7×0.135=7.4MB. The CKPT ALL 2 scheme

requires a total of 5 allocations of size ψ, yielding the allocation of 16.3MB of storage.

The other schemes also agree with the predictions.
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Figure 6.27: Scheme memory footprint for the 400k unk/cpu problem.

We draw several broad conclusions from Fig. 6.27. First, the STOR ALL scheme
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is useful only as an academic exercise. Real problems will requires hundreds of time

steps with more unknowns per cpu and thus will quickly exceed the machine’s RAM

capacity. The STOR MOM scheme is viable to a degree. As implemented, it will al-

ways incur the 2Mψ cost, but if that fits and the degree of anisotropy is fairly low, the

source moments may fit in RAM for smaller or modest-sized problems. The relative

difference between the RAM footprints of the STOR ALL and STOR MOM schemes

will grow linearly with N for a given problem. In other words, if our test problem had

more time steps, the STOR MOM scheme would look even more attractive compared

to the STOR ALL scheme in terms of memory footprint.

Other conclusions are related to the growth of the memory footprint as K grows.

The memory footprints of the CKPT ALL and CKPT MOM schemes grow linearly

with K, but the slope of that growth is Mψ for the CKPT ALL scheme while only MS

for the CKPT MOM scheme. For a uniform quadrature set (that is, same number of

angles in each energy group), the ratio Mψ : MS is equal to the ratio of the number

of discrete ordinates to the number of angular moments. For this problem, that ratio

is 24, yielding the much faster growth rate for the CKPT ALL scheme. For other

problems, the ratio may not be as high, but will always be greater than 1. The

INPT MOM scheme, on the other hand, does grow linearly with K, but only with

a slope equal to the memory footprint of the Bateman solution, which is typically

much smaller than the flux solution. That growth is barely detectable in the figure.

Next we verify that the number of fixed-source solves required for the forward,

adjoint, and recompute modes is as prescribed by Table 4.1. Figure 6.28 shows the

fixed-source solve count for each mode for the 200k/2k problem (the count is the

same for every problem size on every processor count). Recall that the analysis in

Sec. 4.6 assumed that NR = N/K is an integer, which is not the case in this problem

for K = 4. The analysis does hold, however, for K = 2 (NR = 3) and K = 3
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(NR = 2).
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Figure 6.28: Fixed-source solve count for the checkpoint scheme scaling study

First, each scheme requires exactly seven forward mode and adjoint mode fixed-

source solves, as predicted. The computational work varies from scheme to scheme

only in the recompute cost. The STOR ALL and STOR MOM schemes requires

zero recompute fixed-source solves. As predicted by Table 4.1, the CKPT ALL and

CKPT MOM schemes require two recompute fixed-source solves for K = 2 and

K = 3. For K = 2, the fluxes that are recomputed are the end-of-first and end-of-

third time step fluxes. The K = 3, the recomputed fluxes are located at the end of

the first and second time steps. For K = 4, only the end-of-first flux is recomputed.

A file is written after the second time step, and the end-of-third, fourth, and fifth
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time step fluxes are stored during forward mode.

The recompute fixed-source solve counts for the INTP MOM schemes are also as

predicted by the analysis. For example, the five recompute solves for INTP MOM 2

are (in sequential order) end-of-fifth time step (interpolated), end-of-third time step,

end-of-third time step (interpolated), end of first time step, end of first time step

(interpolated).

We are interested to compare the time to solution for the CKPT ALL 2 and

CKPT ALL 3 schemes (and likewise the CKPT MOM 2 and CKPT MOM 3 schemes).

These schemes have different memory footprints but the same total number of recom-

pute fixed-source solves (they just occur at different time steps). Time to solution

will be discussed below.

Figures 6.29 and 6.30 show the total number of sweeps and sweeps per fixed-source

solve for each mode and each scheme for the 400k/2k problem. First, we note that

the total number of sweeps (and therefore total number of sweeps per fixed-source

solve) in forward and adjoint modes is the same for each scheme. This is in some

ways a strong verification result because it indicates that each of the checkpointing

schemes is delivering the same information to the adjoint fixed-source solver. If, for

example, differences in the schemes resulted in a slightly different adjoint transport

source, it is possible that the total number of sweeps to converge the flux solution

would differ. We do not see evidence of this kind of bug here.
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Figure 6.29: Sweep count for the checkpoint scheme scaling study
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Figure 6.30: Sweeps per fixed-source solve for the checkpoint scheme scaling study

Another verification note is that the CKPT ALL and CKPT MOM schemes are

performing the exact same number of sweeps to recompute the forward solution.

They should be: the only difference between these schemes is the data that is written

to and from file and is stored in RAM; their methods to kick-off a recompute segment

are identical. The variation in the number of sweeps per solve as K changes can be

explained by the contiguity of the time-steps which are re-computed. For K = 3, the

end-of-first and end-of-second time steps are recomputed sequentially, so the initial

guess for the end-of-second flux is well informed. For K = 2, the end-of-first and

end-of-third fluxes are recomputed, but not sequentially and without any carryover

of the initial guess. For K = 4, only the end-of-first flux is recomputed, and it is not

clear why it requires less sweeps to converge.

A final important note is that the INTP MOM schemes on average requires fewer
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sweeps per recompute fixed-source solve. This is encouraging because it indicates

that our scheme for interpolating the source moments to form an initial guess for

the total source is saving some computational effort. Although the absolute number

of sweeps is on the order of twice as much, each fixed-source solve is slightly less

expensive.

Figure 6.31 shows the number of forward-mode and adjoint-mode single recovery

sweeps required by each scheme to solve the problem. The schemes that store or

checkpoint the full ψ solution do not require any single sweeps. The STOR MOM

scheme is straightforward to understand: a single forward-mode recovery sweep is re-

quired at each time step (except the last) to reproduce and store ψ. The CKPT MOM

and INTP MOM schemes follow the predictions made by Table 4.1. For example, in

the CKPT MOM 2 scheme, 6 total forward sweeps are required during adjoint mode

to recompute ψ at the particular time step. The other 4 sweeps are required dur-

ing recompute mode to kick off and complete two of the recompute segments. The

INTP MOM schemes generally require less single sweeps because they do not store

the source moments except for at the beginning and end of a recompute segment.

Finally, as a reminder, the single adjoint sweeps are used to kick off adjoint mode

after a recompute segment.
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Figure 6.31: Recovery sweep count for the checkpoint scheme scaling study

We now turn to time to solution and scaling results. Some of the schemes for

the 800k problem size did not complete because their run times exceeded the queue

limitation on our host machine. The STOR ALL and STOR MOM schemes finished

for all problem sizes and all processor counts; only a small number of the 800k

problems with file checkpointing completed. The runs that did complete, however,

provide us with enough information to characterize the relative performance of the

schemes.

Figure 6.32 shows the time required to solve the 400k problem using 4k processors

for each of the 11 repetitions. The relative difference between the different schemes

for this problem size and processor count is representative of all 9 problems. The

relative differences between the solution times correspond very closely to the relative
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differences between the sweep counts (computational work) shown in Fig. 6.29. The

STOR ALL and STOR MOM schemes require the least amount of work and have

the shortest run times. The INTP MOM schemes require the most re-calculation

work and therefore take the longest to complete.
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Figure 6.32: Time to solution for the checkpoint scheme scaling study (400k un-
knowns per processor, 4k processors)

There is one discrepancy in these timing results. The CKPT ALL 2cy scheme re-

quires somewhat longer time to solution than the computational work would suggest.

We expect it to take roughly the same amount of time as the CKPT ALL 3cy scheme,

similar to the comparison between the CKPT MOM 2cy and CKPT MOM 3cy schemes.
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This discrepancy appeared for all 9 problem configurations. Results to date indicate

that the extra time for this scheme is spent in the calculation of
〈
ψ†, ∂

∂N

[
Hψ −

Gψ
]〉

E,D,Ω
in the adjoint Bateman equation. We are working to confirm this and

understand why the calculation is slower for this scheme.

Although work to diagnose the reason for this discrepancy is ongoing, its presence

does not prevent us from drawing conclusions about the performance of the check-

pointing schemes. We claim that the STOR MOM, CKPT MOM, and INTP MOM

schemes are favorable alternatives to the STOR ALL and CKPT ALL schemes. For

this problem, the number of recovery sweeps is small compared to the total number

of sweeps required to solve the problem; the memory footprint reduction, however,

is significant for the new schemes. Therefore, the computation-for-memory tradeoff

is certainly favorable. The MOM schemes will scale to larger problem sizes before

running out of memory, and the extra work they incur does not result in significantly

longer times to solution.

Next we look at the weak scaling performance of the different schemes. Docu-

mented PDT scaling results[1, 2] show efficiencies of greater than 90% when scaling

from 8 to 256,000 processors using a test problem with about 2.5e+06 unknowns

per processor. We wish to make sure that our weak scaling results are on par with

this level of performance. Figure 6.33 shows weak scaling results using the 400k

problem for the STOR MOM and CKPT MOM schemes. The schemes scale nearly

identically for this problem and achieve greater than 90% weak scaling efficiency at

4000 processors compared to 1000 processors. We expect that this efficiency would

increase to known PDT performance given a test problem with more unknowns per

processor.
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(400k unknowns per cpu)

Figure 6.34 shows the parallel efficiency for the CKPT ALL and CKPT MOM

schemes for the same 400k problem. The efficiencies for these schemes fall between

88% and 90% when moving from 1000 to 4000 processors (with the exception of

CKPT ALL 2, the results for which we believe to be inconsistent). These slightly

lower efficiencies are likely a result of the file I/O required for these schemes, and we

believe the algorithm for performing this I/O can be improved in future work. The

results within a scheme are consistent: CKPT ALL 4 is slightly more efficient than

CKPT ALL 3, and CKPT MOM 4 is slightly more efficient than CKPT MOM 3.

This further suggests that I/O is causing the inefficiency because the CKPT ALL 4
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and CKPT MOM 4 schemes write one less checkpoint file each than the CKPT ALL 3

and CKPT MOM 3 schemes. Finally (except again for the CKPT ALL 2 scheme),

the MOM schemes are slightly more efficient than the ALL schemes at 4000 proces-

sors, possibly because the MOM schemes read and write less from and to disk at

each file I/O step.
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Figure 6.34: Weak scaling results for the CKPT ALL and CKPT MOM schemes
(400k unknowns per cpu)

We are also interested to see how the time to solution is affected as we increase the

number of unknowns but keep the number of processors the same. In the limit of a

large number of unknowns, we would expect the performance of the STOR ALL and
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CKPT ALL schemes to rapidly deteriorate because the forward solution allocations

would swamp the memory capacity of the machine. We were unable to approach this

limit in this study, unfortunately, but we give our preliminary results below.

Figure 6.35 shows the time to solution on 2k processors as the problem size is

increased (only for those schemes that completed the 800k problem in the allotted

time). In this efficiency measure, the schemes are indistinguishable. We do note that

PDT becomes more efficient as the number of unknowns increases. This behavior,

which is predictable using PDT’s performance models, is related to decreased idle

time of the processors because they have more work to do between communications

with other processors. The increase in efficiency increases for problem sizes approach-

ing the usual PDT scaling problem, which has about twice as many unknowns as the

largest problem size shown here.
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Figure 6.35: Scaling the unknown count for the checkpoint scheme scaling study (2k
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The overall takeaway from the scaling study is that the new schemes that store,

read, and write only the converged source moments achieve the same (or slightly

better) time to solution for this problem but have a significantly lower RAM footprint

on the machine. From this, we are confident that the schemes will prove advantageous

for larger problems where the STOR ALL and CKPT ALL schemes will have too

large of a memory footprint. Further ideas to minimize the memory footprint are

discussed in the following section. Checkpointing schemes that follow this strategy

will facilitate high-fidelity problems on advanced, memory-limited architectures.
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7. SUMMARY AND CONCLUSIONS

This section provides a summary of the research findings and contributions of the

dissertation. It concludes with closing remarks and suggestions for future research.

7.1 Summary

This dissertation presents the development, application, and implementation of

a framework for computing UQSA information using an adjoint approach. We de-

veloped the framework in a mathematically rigorous and general manner in order to

facilitate a multi-physics modeling environment. We then applied the framework to

both the source-driven and k-eigenvalue forms of the depletion equations. The result

of this application is a set of adjoint equations which, when solved for a particular

problem and quantity of interest, lead to sensitivity and error estimates. Finally, we

implemented the framework in the PDT code. We documented a number of verifi-

cation problems, which are designed in a hierarchical fashion, as well as results from

two relevant application problems and one scaling study.

In the following paragraphs, we highlight the major accomplishments of each

of these efforts. First, in Sec. 3, we present a variational derivation of the adjoint

equations corresponding to a parameter-dependent system of forward differential-

algebraic equations. In the spirit of the optimization and control communities, this

derivation maintains a very general notation and mathematical rigor. We differ,

however, in that we do not make any assumptions about the form of the parameter

dependence or the form of the inner product defining the adjoint operators. Ulti-

mately, this allows for adjoint equations in terms of the familiar adjoint transport

operator, which has a rich history of application in the nuclear engineering commu-

nity.
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The derivation of the adjoint equations is carried out in a variational manner.

From this, we see that the adjoint equations can be interpreted as a set of conditions

on a Lagrange multiplier that make first-order variations of the QOI insensitive to

first-order perturbations in the system unknowns. The sensitivity equation, which

gives the first-order QOI variation in terms of the forward and adjoint solutions,

has the form of an adjoint-weighted time-integral of local sensitivities. Likewise, the

error equation is an adjoint-weighted time-integral of local truncation errors. Thus,

the adjoint variable is often interpreted as a weighting factor.

We apply our general framework to both the source-driven and k-eigenvalue for-

mulations of the depletion equations. The source-driven version is simpler to follow

and understand, but the k-eigenvalue equations are most appropriate for application

to reactor problems. Common to both versions is the need to have access to the for-

ward solution during the adjoint solve. Because we are interested in time-dependent

problems, this poses a formidable computational challenge for large problems be-

cause machine memory limitations prohibit the storage of the full time-series of the

forward solution. This prompts the introduction of checkpointing schemes, which

write snapshots of the forward solution to files during an initial forward solve, then

recompute the forward solution in smaller intervals for use during the adjoint solve.

The implementation of solvers for both the forward and adjoint depletion equa-

tions is a major contribution of this dissertation. The solvers build on the capabilities

of the PDT code, which has demonstrated efficient scaling performance to hundreds

of thousands of processors. The hierarchy of solvers is described in Sec. 4 and docu-

mented in detail in Appendix B.

The most notable contribution of the implementation is the development and

testing of a new family of checkpointing schemes that reduce the memory and I/O

cost of managing the angular flux solution. The new schemes store, read from file, and
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write to file converged source moments instead of the flux vector. The dimensionality

of the source moments is often smaller than that of the flux vector by a factor of

O(10) or more, thus saving on the total amount of data that must be stored or

written to file. The trade-off for this reduction is an increase in the FLOP cost:

we must perform single transport sweeps to recover the flux vector from the source

moments whenever it is needed. Our argument is that FLOPs are becoming cheaper

and memory is becoming more expensive, relatively. If the reduction in memory cost

is larger than the increased FLOP cost, these schemes will reduce time to solution.

We present and analyze the costs of these schemes in Sec. 4.6.

Section 5 documents a number of verification problems used to test our PDT

implementation. The verification tests are designed in a hierarchical fashion, mean-

ing that we first test the depletion solver, then the transport-only adjoint solver,

and then the depletion perturbation solver. This approach was efficient for finding

and eliminating code bugs. Some verification problems used analytic reference solu-

tions while others compared adjoint sensitivities to finite difference estimates. While

analytic solutions are preferable, they are often impossible to develop for the fully

non-linear depletion equations.

We began the verification process with depletion-only problems. One problem

uses an infinite medium solution to test convergence rates of the Runge-Kutta time

discretization schemes. In a second problem, we compare the depletion solution of a

33-group, brick reactor problem to results generated by the Matlab ODE suite. The

second set of problems test the transport-only adjoint solver, or the steady-state

adjoint solver. Again, problem one compares adjoint-based sensitivities to analytic

sensitivities for a simple problem, and problem two compares adjoint-based parame-

ter derivatives to those estimated by brute-force parameter perturbations and finite

difference. Finally, the last and main verification problem tests the depletion pertur-
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bation solver for a k-eigenvalue problem in an infinite medium. We show a number of

results, including convergence towards analytic solutions for both sensitivity and er-

ror estimates, as well as agreement with expected numerical results via a step-by-step

walkthrough of the solution procedure.

Although we would never claim that the code is bug-free, the rigorous verification

procedure that we document provided the means to explore the behaviors of all of

the new solvers and facilitated the development of a standard set of test-problems

that must pass before additions or changes to the code can be admitted.

Finally, in Sec. 6, we describe the application of our UQSA methodology to larger

reactor problems that are relevant to ongoing research efforts. First, we attack a

depletion benchmark problem modeling a traveling-wave reactor. We use a 33-group

model with 18 actinides and 13 lumped fission products. Our solution is similar

to the only available, published benchmark solution, and we are confident that the

difference between the solution is related to the number of nuclides tracked and

the nuclear data source (multigroup cross sections) used. In addition to the specified

benchmark solutions, we provide results from simulated UQ studies where we use the

adjoint capability to identify driving uncertain inputs, characterize their effect on key

quantities of interest, and estimate the error in the QOI due to time discretization.

The second application problem is related to depletion and calibration of a model

of the Nuclear Science Center reactor on the campus of Texas A&M. We are interested

in developing a model for the reactor over its operational lifetime since refueling

in 2006. This requires depletion of the fresh fuel at fairly high fidelity and the

calibration of cross-section and temperature dependence models for the Zirconium-

Hydride moderator in the fuel. Many of these capabilities are under development or

just coming online; therefore, we provide an example 1-year depletion solution that

makes physical sense, as well as a framework that simulates the calibration of poison
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concentrations to match BOL conditions.

The last major section of the dissertation describes a scaling study for charac-

terizing the performance of our new checkpointing algorithms. We scale in terms of

number of processors and in terms of the number of unknowns per processor. Our

conclusion is that the new schemes that read, write, and store only the converged

transport source moments are computationally advantageous compared to classic

checkpointing schemes. We project that these schemes will allow for high-fidelity

transport solutions on memory-limited architectures.

7.2 Conclusions

Depletion perturbation with full transport solutions is a tractable problem on ad-

vanced computers for realistic, reactor analysis calculations. In this dissertation, we

showed that the adjoint equations corresponding to source-driven and k-eigenvalue

equations can be derived using a general, mathematical framework, and that the

adjoint solutions provide both sensitivity and error estimates for reactor QOIs. We

also showed that the cost of producing and managing access to fully angular depen-

dent flux solutions can be managed using a combination of efficient transport solvers

and careful schemes for representing the angular flux in memory and in files. We

demonstrated our capability on large core counts, showing promising scaling results,

as well as for relevant reactor analysis calculations. Thus, we believe that core-level,

high-fidelity calculations with adjoint capability are achievable with the PDT code.

Moving forward, we are aware of the challenges that oppose the implementation of

the adjoint approach in scientific software. First, we note that the adjoint technique

is code-intrusive, meaning that significant source-code access and manipulation is

required to both manage the forward solution and propagate (compute) the adjoint

solution. Thus, for existing and established system or legacy codes that do not have
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this flexibility, implementation of this adjoint technique may be impossible. Another

challenge in the case of multiphysics simulations is that the number of functional

derivatives (Jacobians) that must be computed and supplied to the adjoint solver

can grow rapidly with the number of physical phenomena being modeled. It is

possible that advances in automatic differentiation technology[13, 60] will ease the

burden of computing these derivatives, a subject that we may consider in the future.

On the other hand, the addition of new physics likely introduces a large number of

new parameters to which the forward QOIs may be sensitive, further justifying the

effort to implement the adjoint technique.

We see a number of avenues for future research. Further characterization of

the checkpointing schemes, including performance modeling on particular machines

and fine-tuning the file I/O procedures, is an open area of research. In the current

implementation, each processor reads and writes its own files to disk. Reduction

schemes, such as a reduction to O
√
P cores that read/write information to disk

may be appropriate depending on the size of P and the host architecture. Also, a

performance model to predict the optimal checkpointing frequency would be useful,

as the characterizations made in this dissertation were mostly heuristic. Such a

performance model will depend on the number of unknowns per processor and the

available memory for checkpointing the solution.

We also see possibilities to modify and extend the checkpointing schemes to fur-

ther reduce their memory footprint. The schemes described in this dissertation re-

quire at least two allocations for the full angular flux vector: one for the forward

solution and one for the adjoint solution. For some problems on some machines,

even this amount of memory may not be available in RAM. One option to reduce

this footprint is to read, write, and store only single precision copies of the flux.

This will reduce the footprint by a factor of two at the cost of some loss of accuracy.
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This source of error, however, will only become significant if the iterative and solver

tolerances are on the order of 10−7, which is not always required for reactor analysis

calculations.

Another possible extension of the checkpointing schemes is to reduce the memory

footprint by performing group-by-group sweeps. In other words, instead of sweeping

the domain to recover all groups in the angular flux solution, we could perform

the sweep for only a single group or subset of groups, store those entries in the

angular flux vector, use them to compute the terms that we need, and then repeat

for the next subset of groups. This is a viable strategy because the forward angular

flux solution most often appears in energy-integrated or angle-integrated form in

the adjoint equations; therefore, each sweep for a group subset would just act to

accumulate these integrals. In PDT, this could be implemented by simply reducing

the number of group calculations in the inner loop for a given cell and direction.

There is also room for future research in the adjoint-based error estimation. We

outlined our procedure for producing time-discretization error estimates, showed

super-optimal convergence of this estimate for a simple problem, and showed that

our estimate agreed with a Richardson extrapolation error estimate at minimal ex-

tra cost. We did not address error in the other phase space variables. For example,

error in the choice of quadrature order and number of energy groups is likely more

dominant than time-discretization. Ongoing work at Texas A&M involves local error

estimators for these variables; these estimates should be integrated with the adjoint

framework to produce global error estimates for time-dependent problems.

The implementation described here only dealt with terminal QOIs, or QOIs that

were dependent only on the forward solution at t = tf . Our analysis details the

steps necessary to handle time-integrated QOIs, and these will likely be needed

for the NSC depletion calculations in the near future. Implementation of these
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QOIs should be straightforward in the classes and methods we developed in PDT.

Thermal feedback modeling will also be important for characterization of the NSC

reactor during transient operations. PDT does not currently handle temperature

dependence of nuclear cross sections; if this capability is added, careful work will be

required to properly implement the adjoint of this feedback for sensitivity studies.

Finally, the behavior of the framework as a whole should continue to be char-

acterized. This dissertation covered only a small subset of the possible applications

of the adjoint capability; it is well known, however, that each adjoint problem will

behave differently and may have stiffness and stability issues that are not apparent

during the forward calculation. The modeler must have an understanding of the dy-

namics involved with the adjoint equations in order to ensure that the depletion and

depletion perturbation functionality is applied correctly in new or different research

domains.
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APPENDIX A

A VARIATIONAL DERIVATION OF THE ADJOINT DEPLETION

EQUATIONS CORRESPONDING TO THE SOURCE DRIVEN AND

K-EIGENVALUE BURNUP EQUATIONS

This appendix presents a formal derivation of the source-driven and k-eigenvalue

depletion perturbation equations using a variational approach. In Sec. 3.1.1, we

performed a similar derivation using general operators and a general inner product.

The resulting framework was then applied to the two forward cases to form the

corresponding adjoint equations. Here, we begin with the specific form of the for-

ward equations and derive, from scratch, the appropriate adjoint equations. These

equations are identical to those developed in Secs. 3.2 and 3.3.

A.1 The Source-Driven Case

The source-driven forward problem is

dN

dt
−B(ψ, p)N = 0, (A.1)

H(N, p)ψ −G(N, p)ψ − S0 = 0, (A.2)

N(t = 0) = N0(p), t ∈ [t0, tf ], (A.3)

where B, H, and G are the Bateman, transport, and fission operators defined in Sec.

2.1. We explicitly emphasize the dependence of these operators on a set of input or

numerical parameters, p, to which our QOI may be sensitive. For example, p may

consist of all microscopic cross sections required to specify the problem.

In Sec. 2.4, we presented the form of adjoint operators that satisfy the following
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equations

〈
ψ†Hψ

〉
E,D,Ω

=
〈
ψH†ψ†

〉
E,D,Ω

, (A.4)〈
ψ†Gψ

〉
E,D,Ω

=
〈
ψG†ψ†

〉
E,D,Ω

, (A.5)〈
N †bN

〉
E,D,Ω

=
〈
Nb†N †

〉
E,D,Ω

. (A.6)

Recall that the inner product
〈〉

E,D,Ω
is an integration over phase space, or angle,

energy, and volume.

To begin, we assume that our QOI is a time-integrated functional R of the de-

pletion solution, namely

Q =

∫ tf

t0

〈
R(N,ψ, p, t)

〉
E,D,Ω

dt. (A.7)

We derive the adjoint equations as follows. We first take the inner product of

each of our governing equations multiplied by its corresponding adjoint vector and

write

N †
(dN
dt
−
〈
bN
〉
E,D,Ω

)
= 0〈

ψ†, Hψ −Gψ − S0

〉
E,D,Ω

= 0

We then subtract (adjoin) each of these terms from Eq. (A.7) to form a La-

grangian, L:

L =

∫ tf

t0

〈
R(N,ψ, p, t)

〉
E,D,Ω

dt−
∫ tf

t0

〈
ψ†, Hψ −Gψ − S0

〉
E,D,Ω

dt

−
∫ tf

t0

N †
(dN
dt
−
〈
bN
〉
E,D,Ω

)
dt. (A.8)
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Note that if N and ψ satisfy the forward equations, then L = Q and dL
dp

= dQ
dp

. We

apply the chain rule to take the full derivative
dL
dp

of the Lagrangian with respect to

the vector of parameters. In the following expression, we have applied Eqs. (A.4),

(A.5), and (A.6) strategically.

dL
dp

=

∫ tf

t0

( ∂

∂ψ

〈
R
〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

〈
R
〉
E,D,Ω

dN

dp

)
dt+

∫ tf

t0

( ∂
∂p

〈
R
〉
E,D,Ω

)
dt

−
∫ tf

t0

( ∂

∂ψ

〈
ψ,H†ψ†

〉
E,D,Ω

dψ

dp

)
dt−

∫ tf

t0

( ∂

∂N

〈
ψ†, Hψ

〉
E,D,Ω

dN

dp

)
dt

−
∫ tf

t0

( ∂
∂p

〈
ψ†, Hψ

〉
E,D,Ω

)
dt

+

∫ tf

t0

( ∂

∂ψ

〈
ψ,G†ψ†

〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

〈
ψ†, Gψ

〉
E,D,Ω

dN

dp

)
dt

+

∫ tf

t0

( ∂
∂p

〈
ψ†, Gψ

〉
E,D,Ω

)
dt

+

∫ tf

t0

( ∂
∂p

〈
ψ†, S0

〉
E,D,Ω

)
dt

+

∫ tf

t0

( ∂

∂ψ

[
N
dN †

dt

]
dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

[
N
dN †

dt

]
dN

dp

)
dt+

∫ tf

t0

( ∂
∂p

[
N
dN †

dt

])
dt

+

∫ tf

t0

( ∂

∂ψ

〈
N †bN

〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

〈
Nb†N †

〉
E,D,Ω

dN

dp

)
dt

+

∫ tf

t0

( ∂
∂p

〈
N †bN

〉
E,D,Ω

)
dt

−
[
∂

∂N

[
N †N

]dN
dp

]tf
t0

. (A.9)

Many of the terms in Eq. (A.9) are known or can be derived, including many

of the partial derivatives. However, the full solution Jacobians
dψ

dp
and

dN

dp
that

appear in nearly every term are incomputable (in fact, if we knew these, we would

have straightforward expressions for
dQ

dp
and we’d be done). The adjoint equations

pop out via the strategy to eliminate these terms by setting their coefficients to zero.

We can re-write Eq. (A.9) by combining those terms that multiply the full solution
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Jacobians and applying partial derivatives wherever possible:

dL
dp

=

∫ tf

t0

([〈∂R
∂ψ

〉
E,D,Ω

−
〈
H†ψ†

〉
E,D,Ω

+
〈
G†ψ†

〉
E,D,Ω

+
〈
N †

∂bN

∂ψ

〉
E,D,Ω

]dψ
dp

)
dt

+

∫ tf

t0

([〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂Hψ

∂N

〉
E,D,Ω

+
〈
ψ†,

∂Gψ

∂N

〉
E,D,Ω

+
dN †

dt
+
〈
b†N †

〉
E,D,Ω

]dN
dp

)
dt

+

∫ tf

t0

(〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂Hψ

∂p

〉
E,D,Ω

+
〈
ψ†,

∂Gψ

∂p

〉
E,D,Ω

+
〈
ψ†,

∂S0

∂p

〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

)
dt

−
[
N †

dN

dp

]
t=tf

+

[
N †

dN

dp

]
t=t0

(A.10)

Now note that if these equations are satisfied,

H†ψ† −G†ψ† =
∂R

∂ψ
+N †

∂bN

∂ψ

dN †

dt
=
〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−B†N † −
〈 ∂R
∂N

〉
E,D,Ω

then Eq. (A.10) reduces to

dL
dp

=

[
N †

dN

dp

]
t=t0

−
[
N †

dN

dp

]
t=tf

+

∫ tf

t0

(〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

)
dt (A.11)

We have now eliminated the full solution Jacobians from the integral terms; we have

yet to eliminate dN
dp

at t = t0 and t = tf . For the t = tf case, we simply impose a
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terminal condition on the adjoint system, namely

N †(tf ) = 0.

The implication of this terminal condition is that the adjoint equations must be

solved backwards in time. The term dN
dp

at t = t0 requires that we know the full

gradient of the initial condition with respect to the list of parameters. As mentioned

before, we assume that this information is either known (via some explicit function)

or given (maybe by another code). A third option is that the parameters are the

initial conditions themselves, giving dN
dP

= 1 and providing an avenue for computing

the sensitivity of the QOI with respect to the initial densities. No matter the case,

we leave this term in the sensitivity equation and assume it is computable.

Under these conditions, Eq. (A.11) becomes

dL
dp

=

[
N †

dN

dp

]
t=t0

+

∫ tf

t0

(〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

)
dt

=
dQ

dp

In summary, for the case of a time-integrated QOI, we found adjoint equations

H†ψ† −G†ψ† =
∂L
∂ψ

+N †
∂bN

∂ψ
(A.12)

dN †

dt
=
〈
ψ†
∂Hψ

∂N
− ψ†∂Gψ

∂N
− b†N † − ∂L

∂N

〉
E,D,Ω

(A.13)
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with terminal condition for the adjoint densities

N †(tf ) = 0. (A.14)

If N † and ψ† satisfy this system, then the gradient of the time integrated QOI w.r.t.

the parameter vector is

dQ

dp
=

[
N †

dN

dp

]
t=t0

+

∫ tf

t0

(〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

)
dt (A.15)

Note: Eqs. (A.12)–(A.15) are identical to Eqs. (3.43)–(3.46).

We now consider the case of a terminal QOI, or a QOI that depends only on the

solution at t = tf :

Qf =
〈
R
(
N(tf ), ψ(tf ), p, tf

)〉
E,D,Ω

. (A.16)

The derivation begins by noting that

dQf

dp
=

d

dtf

dQ

dp
.

Also, recall the following rule of calculus:

d

dtf

∫ tf

t0

f(t, tf )dt = f(tf , tf ) +

∫ tf

t0

df

dtf
dt,
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which we apply to Eq. (A.10):

dLf
dp

=

[[〈∂R
∂ψ

〉
E,D,Ω

−
〈
H†ψ† −G†ψ†

〉
E,D,Ω

+
〈
N †

∂bN

∂ψ

〉
E,D,Ω

]
dψ

dp

]
t=tf

+

[[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

+
dN †

dt
+
〈
b†N †

〉
E,D,Ω

]
dN

dp

]
t=tf

+

[〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

]
t=tf

+

[
N †f

dN

dp

]
t=t0

+

∫ tf

t0

([
−
〈
H†ψ†f −G

†ψ†f

〉
E,D,Ω

+
〈
N †f

∂bN

∂ψ

〉
E,D,Ω

]
dψ

dp

)
dt

+

∫ tf

t0

[[
−
〈
ψ†f ,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

+
dN †f
dt

+
〈
b†N †f

〉
E,D,Ω

]
∂N

∂t

]
dt

+

∫ tf

t0

(
−
〈
ψ†f ,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

+
〈
N †f

∂bN

∂p

〉
E,D,Ω

)
dt

(A.17)

Here N †f and ψ†f are ∂N†

∂tf
and ∂ψ†

∂tf
respectively, as they are functions of both t and tf .

The adjoint equations are extracted from Eq. (A.17) in order to eliminate dN
dp

and

dψ
dp

from the integral terms. They are

dN †f
dt

= −B†N †f +
〈
ψ†f ,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

H†ψ†f −G
†ψ†f = N †f

∂bN

∂ψ
.

We use the terminal condition for N †f to eliminate the terms dψ
dp

and dN
dp

that appear
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at t = tf . First, recall that our terminal condition for N † is

N †(tf ) = 0.

Taking the full derivative with respect to time, we find

N †f (tf ) +
dN †

dt

∣∣∣(tf ) = 0.

To eliminate dN
dp

∣∣∣
t=tf

from Eq. (A.17), we need

dN †

dt

∣∣∣
t=tf

=

[〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

−B†N †
]
t=tf

=

[〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

]
t=tf

.

Therefore, the terminal condition for N †f is

N †f (tf ) =

[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

]
t=tf

.

Now we just need to define ψ†(tf ), which appears in the above equation. It is set to

eliminate dψ
dp

∣∣∣
t=tf

from Eq. (A.17). That is, it must satisfy

H†ψ† −G†ψ† =
∂R

∂ψ
,

where we have again accounted for N †(tf ) = 0. To review, we have found that in the

case of a terminal QOI, the adjoint variable is really a partial derivative with respect

324



to the terminal time of the previous adjoint variable. The adjoint equations are

dN †f
dt

= −B†N †f +
〈
ψ†f ,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

(A.18)

H†ψ†f −G
†ψ†f = N †f

∂bN

∂ψ
. (A.19)

with terminal condition

N †f (tf ) =

[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ −Gψ

]〉
E,D,Ω

]
t=tf

(A.20)

where ψ† satisfies

H†ψ† −G†ψ† =
∂R

∂ψ
. (A.21)

If the adjoint system is satisfied by N †f and ψ†f , the sensitivity of the terminal QOI

(Eq. (A.17)) reduces to

dQf

dp
=

[〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

]
t=tf

+

[
N †f

dN

dp

]
t=t0

+

∫ tf

t0

(〈
N †f

∂bN

∂p

〉
E,D,Ω

−
〈
ψ†f ,

∂

∂p

[
Hψ −Gψ − S0

]〉
E,D,Ω

)
dt.

(A.22)

Note that Eqs. (A.18)–(A.22) are identical to (3.48)–(3.52), which were developed as

a specialization of our abstract adjoint framework.
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A.2 The k-Eigenvalue Case

We now derive the analogous adjoint equations for the k-eigenvalue case. The

k-eigenvalue problem formulation is:

dN

dt
−B(ψ,A, p)N = 0, (A.23)

H(N, p)ψ − λG(N, p)ψ = 0, (A.24)

AP (N, p)ψ − P(t) = 0 (A.25)

N(t = 0) = N0(p), t ∈ [to, tf ]. (A.26)

Here, ψ satisfies the fundamental eigenmode of Eq. (A.24) with eigenvalue λ = 1
keff

,

and the parameter P(t) is the prescribed power density
([

MeV
s−cm3

])
of the reactor. The

operator P is used to compute the average power density generated by fission,

Power Density = APψ ≡A
∫
dV

∫
dE

∫
dΩ

∑
j Nj(r)σf,j(E)Ef,jψ(r, E,Ω)

VR

=
A

VR

〈∑
j

Njσf,jEf,jψ
〉
E,D,Ω

≡ A

VR

〈
ΣEψ

〉
E,D,Ω

≡ A

VR
P̂

where Ef,j is the energy released in a fission event by nuclide j, VR is the reactor

volume, and the symbols ΣE and P̂ will be used as a short-hand for an energy-

production macroscopic cross section and un-normalized power, respectively. Finally,

the scalar normalization factor A is the value by which the eigenvector must be scaled

to satisfy the power constraint.

Recall the bilinear relationship between ψ and A as they appear in the Bateman
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operator. This led to Eqs. (3.58) and (3.59), which are reproduced here:

∂B

∂ψ
=
∂B

∂Ψ

∂Ψ

∂ψ
=
∂B

∂Ψ
A (A.27)

∂B

∂A
=
∂B

∂Ψ

∂Ψ

∂A
=
∂B

∂Ψ
ψ. (A.28)

We introduce a new multiplier, A†, for the power equation, and proceed much

the same as before. Beginning with a time-integrated QOI, we form the Lagrangian

L =

∫ tf

t0

〈
R(N,ψ,A, p, t)

〉
E,D,Ω

dt−
∫ tf

t0

〈
ψ†, Hψ − λGψ

〉
E,D,Ω

dt

−
∫ tf

t0

N †
(dN
dt
−
〈
bN
〉
E,D,Ω

)
dt−

∫ tf

t0

A†
( A
VR

〈
ΣEψ

〉
E,D,Ω

− P(t)
)
dt.

(A.29)

We next take the first variation of the Lagrangian (that is, its first derivative

w.r.t. our parameter vector). Using the chain rule, this is written as

dL
dp

=
∂L
∂p

+
∂L
∂ψ

dψ

dp
+
∂L
∂N

dN

dp
+
∂L
∂λ

dλ

dp
+
∂L
∂A

dA

dp
. (A.30)

The partial derivatives in this equation are straightforward to evaluate: they are

Jacobians of the discrete transport, fission, Bateman, and power operators. On the

contrary, the total derivatives or full variations of the unknowns with respect to the

parameters are not readily available. Even for simple test problems, these expres-

sions are complicated by the coupling between the neutron and nuclide equations;

for practical problems of interest, a closed form expression for these derivatives is

hopeless.

Instead, we proceed by expanding the expression and using stationarity conditions

to eliminate the terms we cannot compute. The expanded Lagrangian derivative is
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dL
dp

=

∫ tf

t0

( ∂

∂ψ

〈
R
〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

〈
R
〉
E,D,Ω

dN

dp

)
dt

+

∫ tf

t0

( ∂

∂A

〈
R
〉
E,D,Ω

dA

dp

)
dt+

∫ tf

t0

( ∂
∂p

〈
R
〉
E,D,Ω

)
dt

−
∫ tf

t0

( ∂

∂ψ

〈
ψ,H†ψ†

〉
E,D,Ω

dψ

dp

)
dt−

∫ tf

t0

( ∂

∂N

〈
ψ†, Hψ

〉
E,D,Ω

dN

dp

)
dt

−
∫ tf

t0

( ∂

∂A

〈
ψ†, Hψ

〉
E,D,Ω

dA

dp

)
dt−

∫ tf

t0

( ∂
∂p

〈
ψ†, Hψ

〉
E,D,Ω

)
dt

+

∫ tf

t0

( ∂
∂λ
λ
〈
ψ†Gψ

〉
E,D,Ω

dλ

dp

)
dt

+

∫ tf

t0

(
λ
∂

∂ψ

〈
ψ,G†ψ†

〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

(
λ
∂

∂N

〈
ψ†, Gψ

〉
E,D,Ω

dN

dp

)
dt

+

∫ tf

t0

(
λ
∂

∂A

〈
ψ†, Gψ

〉
E,D,Ω

dA

dp

)
dt+

∫ tf

t0

(
λ
∂

∂p

〈
ψ†, Gψ

〉
E,D,Ω

)
dt

+

∫ tf

t0

( ∂

∂ψ

[
N
dN †

dt

]
dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

[
N
dN †

dt

]
dN

dp

)
dt

+

∫ tf

t0

( ∂

∂A

[
N
dN †

dt

]
dA

dp

)
dt+

∫ tf

t0

( ∂
∂p

[
N
dN †

dt

])
dt

+

∫ tf

t0

( ∂

∂ψ

〈
N †bN

〉
E,D,Ω

dψ

dp

)
dt+

∫ tf

t0

( ∂

∂N

〈
Nb†N †

〉
E,D,Ω

dN

dp

)
dt

+

∫ tf

t0

( ∂

∂A

〈
N †bN

〉
E,D,Ω

dA

dp

)
dt+

∫ tf

t0

( ∂
∂p

〈
N †bN

〉
E,D,Ω

)
dt

−
∫ tf

t0

( ∂

∂ψ

[
A†

A

VR
P̂ − A†P(t)

]dψ
dp

)
dt

−
∫ tf

t0

( ∂

∂N

[
A†

A

VR
P̂ − A†P(t)

]dN
dp

)
dt

−
∫ tf

t0

( ∂

∂A

[
A†

A

VR
P̂ − A†P(t)

]dA
dp

)
dt

−
∫ tf

t0

( ∂
∂p

[
A†

A

VR
P̂ − A†P(t)

])
dt

−
[
∂

∂N

[
N †N

]dN
dp

]tf
t0

. (A.31)
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Many of the above terms with partial derivatives equate to zero. They are

0 =
∂

∂ψ

[
N
dN †

dt

]
=

∂

∂A

[
N
dN †

dt

]
=

∂

∂p

[
N
dN †

dt

]
=

∂

∂A

〈
ψ†Hψ

〉
E,D,Ω

=
∂

∂A

〈
ψ†Gψ

〉
E,D,Ω

=
∂

∂ψ

[
A†P(t)

]
=

∂

∂N

[
A†P(t)

]
=

∂

∂A

[
A†P(t)

]

Other partials can be evaluated directly. They are

∂

∂ψ

〈
ψ,H†ψ†

〉
E,D,Ω

=
〈
H†ψ†

〉
E,D,Ω

∂

∂λ
λ
〈
ψ†, Gψ

〉
E,D,Ω

=
〈
ψ†, Gψ

〉
E,D,Ω

∂

∂ψ

〈
ψ,G†ψ†

〉
E,D,Ω

=
〈
G†ψ†

〉
E,D,Ω

∂

∂N

[
N
dN †

dt

]
=
dN †

dt
∂

∂N

〈
Nb†N †

〉
E,D,Ω

=
〈
b†N †

〉
E,D,Ω

∂

∂ψ
P̂ =

〈
ΣE

〉
E,D,Ω

∂

∂A

[
A†

A

VR
P̂
]

=
A†

VR
P̂

∂

∂N

[
N †N

]
= N †
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We now aggregate the terms that multiply
dψ

dp
,
dλ

dp
,
dN

dp
, and

dA

dp
to write

dL
dp

=

∫ tf

t0

{[〈∂R
∂ψ

〉
E,D,Ω

−
〈
H†ψ† − λG†ψ†

〉
E,D,Ω

+
〈
N †

∂bN

∂ψ

〉
E,D,Ω

−
〈
A†

A

VR
ΣE

〉
E,D,Ω

]dψ
dp

}
dt

+

∫ tf

t0

〈
ψ†, Gψ

〉
E,D,Ω

dλ

dp
dt

+

∫ tf

t0

{[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
dN †

dt
+
〈
b†N †

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

]dN
dp

}
dt

+

∫ tf

t0

{[〈∂R
∂A

〉
E,D,Ω

+
〈
N †

∂bN

∂A

〉
E,D,Ω

− A†

VR
P̂
]dA
dp

}
dt

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt

−
[
N †

dN

dp

]
t=tf

+
[
N †

dN

dp

]
t=t0

. (A.32)

We are now ready to extract the adjoint equations. First, the expression that

multiplies
dA

dp
yields the following adjoint normalization equation:

A† =
VR

P̂

〈∂R
∂A

+N †
∂bN

∂A

〉
E,D,Ω

.

Using Eq. (A.27) this can be written as

A† =
VR

P̂

〈∂R
∂A

+N †
∂bN

∂Ψ
ψ
〉
E,D,Ω

. (A.33)
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Next, the stationarity condition corresponding to
dψ

dp
requires that

H†ψ† − λG†ψ† = S†

where

S† =
∂R

∂ψ
+N †

∂bN

∂ψ
− A† A

VR
ΣE.

This expression requires some extra attention. We know that the operator H†−λG† is

singular. The Fredholm alternative theorem[50] requires that for H†ψ†−λG†ψ† = S†

to have a unique solution, the following must be true:

〈
S†, ψ

〉
E,D,Ω

= 0 (A.34)

where ψ satisfies the forward equation Hψ − λGψ = 0. Using Eq. (A.28), we find

0 =
〈
S†, ψ

〉
E,D,Ω

=
〈∂R
∂ψ

ψ
〉
E,D,Ω

+
〈
AN †

∂bN

∂Ψ
ψ
〉
E,D,Ω

− A†

VR
P(t).

Now, if we multiply Eq. (A.33) by A, manipulate to solve for AN † ∂bN
∂Ψ
ψ, and substi-

tute the result into the preceding equation, we find that Eq. (A.34) is satisfied if our

QOI satisfies

0 =
〈∂R
∂ψ

ψ
〉
E,D,Ω

−
〈
A
∂R

∂A

〉
E,D,Ω

. (A.35)

For most practical QOIs of interest, this will be satisfied. For example, any form of

R that is bilinear in A and ψ will satisfy this relationship. The stationarity condition
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corresponding to dλ
dp

corresponds to

〈
ψ†, Gψ

〉
E,D,Ω

= 0

which says that the adjoint flux must be orthogonal to the fission source. Finally,

the adjoint Bateman equation is

dN †

dt
=
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

−B†N †

−
〈 ∂R
∂N

〉
E,D,Ω

+ A†
A

VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

If the stationarity conditions hold, then Eq. (A.32) reduces to

dQ

dp
=

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

− A† A
VR

∂

∂p

〈
ΣEψ

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt

−
[
N †

dN

dp

]
t=tf

+
[
N †

dN

dp

]
t=t0

. (A.36)

Once again, the only terms left to deal with are dN
dp

evaluated at t = t0 and t = tf .

We eliminate the terminal term by imposing the terminal condition

N †(tf ) = 0.

The initial term, as discussed above, is assumed to be known from other data or

serves as an avenue for computing sensitivities with respect to initial conditions. It

remains in the sensitivity equation.
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To review, the k-eigenvalue adjoint equations for a time-integrated QOI are

dN †

dt
=
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

−B†N †

−
〈 ∂R
∂N

〉
E,D,Ω

+ A†
A

VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

(A.37)

H†ψ† − λG†ψ† =
∂R

∂ψ
+N †

∂bN

∂ψ
− A† A

VR
ΣE (A.38)〈

ψ†, Gψ
〉
E,D,Ω

= 0 (A.39)

A† =
VR

P̂

〈∂R
∂A

+N †
∂bN

∂A

〉
E,D,Ω

(A.40)

with terminal condition

N †(tf ) = 0. (A.41)

If this system is satisfied, the sensitivity equation is

dQ

dp
=
[
N †

dN

dp

]
t=t0

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

− A† A
VR

∂

∂p

〈
ΣEψ

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt (A.42)

Note: Eqs. (A.37)–(A.42) are identical to Eqs. (3.65)–(3.70).

We now consider the case of a terminal QOI, or a QOI that depends only on the

solution at t = tf :

Qf =
〈
R
(
N(tf ), ψ(tf ), λ(tf ), p, tf

)〉
E,D,Ω

. (A.43)

Note that this QOI may reasonably depend on the terminal eigenvalue, keff(tf ).

Therefore, we must account for this dependence. The derivation begins by noting
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that

dQf

dp
=

d

dtf

dQ

dp
.

Again, recall the following rule of calculus:

d

dtf

∫ tf

t0

f(t, tf )dt = f(tf , tf ) +

∫ tf

t0

df

dtf
dt.

This rule is applied to take d
dtf

of the appropriate version of Eq. (A.32). This version

accounts for the dependence on λ(tf ) and is written as follows:

dL
dp

=

∫ tf

t0

{[〈∂R
∂ψ

〉
E,D,Ω

−
〈
H†ψ† − λG†ψ†

〉
E,D,Ω

+
〈
N †

∂bN

∂ψ

〉
E,D,Ω

−
〈
A†

A

VR
ΣE

〉
E,D,Ω

]dψ
dp

}
dt

+

∫ tf

t0

([〈∂R
∂λ

〉
E,D,Ω

+
〈
ψ†, Gψ

〉
E,D,Ω

]
dλ

dp

)
dt

+

∫ tf

t0

{[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
dN †

dt
+
〈
b†N †

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

]dN
dp

}
dt

+

∫ tf

t0

{[〈∂R
∂A

〉
E,D,Ω

+
〈
N †

∂bN

∂A

〉
E,D,Ω

− A†

VR
P̂
]dA
dp

}
dt

+

∫ tf

t0

{〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

−
〈
A†

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†
∂P(t)

∂p

}
dt

−
[
N †

dN

dp

]
t=tf

+
[
N †

dN

dp

]
t=t0

. (A.44)

According to our differentiation rule, after applying d
dtf

to Eq. (A.44), some terms

will be time integrated and others will be evaluated at t = tf . Let us first examine
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the resulting terms that are inside the integral. Define

N †f =
∂N †

∂tf

ψ†f =
∂ψ†

∂tf

A†f =
∂A†

∂tf
.

Then the terms inside the integral are

∫ tf

t0

df(t, tf )

dtf
dt =

∫ tf

t0

{[
−
〈
H†ψ†f − λG

†ψ†f

〉
E,D,Ω

+
〈
N †f

∂bN

∂ψ

〉
E,D,Ω

−
〈
A†f

A

VR
ΣE

〉
E,D,Ω

]dψ
dp

}
dt

+

∫ tf

t0

〈
ψ†f , Gψ

〉
E,D,Ω

dλ

dp
dt

+

∫ tf

t0

{[
−
〈
ψ†f ,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
dN †f
dt

+
〈
b†N †f

〉
E,D,Ω

−
〈
A†f

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

]dN
dp

}
dt

+

∫ tf

t0

{[〈
N †f

∂bN

∂A

〉
E,D,Ω

−
A†f
VR
P̂
]dA
dp

}
dt

+

∫ tf

t0

{
−
〈
ψ†f ,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †f

∂bN

∂p

〉
E,D,Ω

−
〈
A†f

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†f
∂P(t)

∂p

}
dt
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From this we obtain the expected adjoint equations:

dN †f
dt

= −B†N †f +
〈
ψ†f ,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+ A†f
A

VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

H†ψ†f − λG
†ψ†f = N †f

∂bN

∂ψ
− A†f

A

VR
ΣE〈

ψ†f , Gψ
〉
E,D,Ω

= 0

A†f =
VR

P̂

〈
N †f

∂bN

∂A

〉
E,D,Ω

We now return to the f(tf , tf ) portion of Eq. (A.44) after d
dtf

has been applied. The

terms are

f(tf , tf ) =

[[〈∂R
∂ψ

〉
E,D,Ω

−
〈
H†ψ† − λG†ψ†

〉
E,D,Ω

+
〈
N †

∂bN

∂ψ

〉
E,D,Ω

−
〈
A†

A

VR
ΣE

〉
E,D,Ω

]
dψ†

dp

]
t=tf

+

[[〈∂R
∂λ

〉
E,D,Ω

+
〈
ψ†, Gψ

〉
E,D,Ω

]
dλ

dp

]
t=tf

+

[[〈 ∂R
∂N

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+
dN †

dt
+B†N † −

〈
A†

A

VR

∂ΣEψ

∂N

〉
E,D,Ω

]
dN

dp

]
t=tf

+

[[〈∂R
∂A

〉
E,D,Ω

+
〈
N †

∂bN

∂A

〉
E,D,Ω

− A†

VR
P̂
]
dA

dp

]
t=tf

+

[〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †

∂bN

∂p

〉
E,D,Ω

− A†
[
A

VR

∂

∂p

〈
ΣEψ

〉
E,D,Ω

+
∂P(t)

∂p

]]
t=tf

(A.45)
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The terminal condition for N †f is extracted from Eq. (A.45). First, recall our terminal

condition for N †, which still holds:

N †(tf ) = 0.

Taking the total derivative with respect to time, we have

N †f (tf ) +
dN †

dt

∣∣∣
t=tf

= 0.

To eliminate dN
dp

∣∣∣
t=tf

from Eq. (A.45), we must have

dN †

dt

∣∣∣
t=tf

= A†
A

VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

+
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

−
〈 ∂R
∂N

〉
E,D,Ω

Then, because N †f (tf ) = −dN†

dt

∣∣∣
t=tf

, our terminal condition is

N †f (tf ) =
〈 ∂R
∂N

〉
E,D,Ω

− A† A
VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

.

We have not yet defined ψ(tf ) and A†(tf ), however. They are made to eliminate

dψ
dp

∣∣∣
t=tf

and dA
dp

∣∣∣
t=tf

, respectively, from Eq. (A.45). Accounting for N †(tf ) = 0, these

expressions are

H†ψ† − λG†ψ† =
∂R

∂ψ
− A† A

VR
ΣE〈

ψ†, Gψ
〉
E,D,Ω

= −
〈∂R
∂λ

〉
E,D,Ω

A† =
VR

P̂

〈∂R
∂A

〉
E,D,Ω
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It is straightforward to show that (for almost all forms of R)

〈
ψ,
∂R

∂ψ
− A† A

VR
ΣE

〉
E,D,Ω

= 0

by substituting for A†; therefore, the adjoint transport equation for the terminal

condition has a unique solution.

In summary, for a terminal QOI, we have the following adjoint equations:

dN †f
dt

= −B†N †f +
〈
ψ†f ,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

+ A†f
A

VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

(A.46)

H†ψ†f − λG
†ψ†f = N †f

∂bN

∂ψ
− A†f

A

VR
ΣE (A.47)〈

ψ†f , Gψ
〉
E,D,Ω

= 0 (A.48)

A†f =
VR

P̂

〈
N †f

∂bN

∂A

〉
E,D,Ω

(A.49)

The terminal condition, N †f (tf ), is

N †f (tf ) =
〈 ∂R
∂N

〉
E,D,Ω

− A† A
VR

∂

∂N

〈
ΣEψ

〉
E,D,Ω

−
〈
ψ†,

∂

∂N

[
Hψ − λGψ

]〉
E,D,Ω

(A.50)

where ψ† and A† satisfy

H†ψ† − λG†ψ† =
∂R

∂ψ
− A† A

VR
ΣE (A.51)〈

ψ†, Gψ
〉
E,D,Ω

= −
〈∂R
∂λ

〉
E,D,Ω

(A.52)

A† =
VR

P̂

〈∂R
∂A

〉
E,D,Ω

(A.53)

The solution to the forward and adjoint equations can then be cross-correlated using
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the following sensitivity expression:

dQf

dp
=

[
N †f

dN

dp

]
t=t0

+

[〈∂R
∂p

〉
E,D,Ω

−
〈
ψ†,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

− A†
[
A

VR

∂

∂p

〈
ΣEψ

〉
E,D,Ω

+
∂P(t)

∂p

]]
t=tf

+

∫ tf

t0

{
−
〈
ψ†f ,

∂

∂p

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
N †f

∂bN

∂p

〉
E,D,Ω

−
〈
A†f

A

VR

∂ΣEψ

∂p

〉
E,D,Ω

+ A†f
∂P(t)

∂p

}
dt (A.54)

Equations (A.46)–(A.54) are identical to Eqs. (3.75)–(3.85), which were developed

using the abstraction contributed by this dissertation.
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APPENDIX B

DETAILED DESCRIPTION OF THE DEPLETION, ADJOINT , AND

DEPLETION PERTURBATION SOLVER IMPLEMENTATIONS IN PDT

This appendix serves as a user’s manual and as code documentation for the

depletion, adjoint, and depletion perturbation solver implementations in PDT. We

provide a high level overview of these solvers in Sec. 4; here we give details and

provide example input decks so that a new user can use and understand the solvers

from the code level.

We adopt some notation in this appendix, described as follows

• Words in typewriter font correspond to files, classes, functions, or members

in the PDT code

• The name “active” vector corresponds to the data member in PDT that is

actually used for a transport or depletion calculation. For example, the active

densities are those that the code actually uses to compute cross sections before

a transport calculation. The active fluxes are those that are being iteratively

updated during the source iteration procedure. Opposite of active are storage

vectors. These are vectors where previous iterates or snapshots of the forward

solutions are being stored.

The first half of this appendix is a user’s manual. It details how a modeler

runs PDT in depletion, adjoint, and depletion perturbation mode. Here we provide

descriptions of all options available to the modeler and, when necessary, give a brief

overview of the path taken through the code. The second half of the appendix is code

documentation. We describe the math and logic behind those classes and methods
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that are not immediately self explanatory.

B.1 User’s Manual

The Forward Depletion Solver

First we describe the forward depletion solver and the additional information

required by the user in the input file.

Specifying component depletion information

The depletion solver requires the user to provide additional information about

the components in the problem. Figure B.1 gives an example <component def>

block for a depletion problem. New fields are <A number.int>, <Z number.int>,

<decay product def>, and <fission product def>, which define the mass number,

proton number, and decay/fission children of the component (if any). In addition to

the flags shown here, the option <do not deplete.str> may be set to true if the

user does not want the component’s density to change. This flag defaults to false if

not specified.

Figure B.1: Example <component def> block for depletion in PDT input file
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The current implementation requires the user to manually provide decay par-

ent/child pairs and fission parent/chid pairs. If included, the <decay product def>

block and <fission product def> block require a valid child name (an error will be

thrown if the child does not exist) and a branching ratio or fission yield.

The BaseComponent class now includes members Anum, Znum and dontDepleteMe,

as well as functions for accessing these members. Each component also stores a

vector of ReactionEvent and DecayEvent classes, described below, which contain

information about the reactions that the particular component may undergo and

which, if any, components it may transmute to after the reaction.

The depletion solver implementation requires the storage and use of cross sections

that were not previously used for transport calculations. These include σn2n, σn,γ,

etc. For many nuclides, the half-life and energy-per-fission will be required. These

can be specified in the cross-section file with MT IDs 457 and 458, respectively.

Another complication may arise if the total absorption cross section, MT 27, is not

input explicitly. If it is not given in the cross-section file, it is derived by subtracting

the total, zero-th order scattering cross section from the total cross section. The user

is notified in either case by the depletion info summary.

The bp info block

Depletion mode is activated in PDT using the <bp info> block in the <common>

block of the input file. An example <bp info> block for the OPERATOR SPLIT

mode is shown in Fig. B.2. The various available options are described below.
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Figure B.2: Example <bp info> input file block for OPERATOR SPLIT mode

Specifying reactions to be tracked in the problem

The family of DepletionEvent classes, which are implemented in

BaseDepletionEvent.h, encapsulate the dynamics of the reactions and decays that

cause a nuclide to be depleted and possibly transmuted to another nuclides. The user

specifies a list of reactions to be tracked in the given problem using the <reaction>

keyword. Absorption is always on. Optional supported reactions are fission,

n gamma, n 2n, n proton, n alpha, and decay.

The BaseProblem constructor in BaseProblem.cc reads the list of reactions speci-

fied by the user. The reactions are collected in a vector of class type SupportedReaction,

which stores skeleton information such as name, the mass number change, ∆A, the

proton number change, ∆Z, and the branching ratio. For depletion reactions, the

mass number change and proton number change are known and hard-coded. For

decay and fission, the code relies on the user input in the <component def> block.

After the vector of supported reactions is generated, the BaseProblem constructor

reads each component’s info (cross sections, mass & proton number, etc.) from the

input file. After this, the code proceeds to match parent/child pairs. For each sup-
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ported reaction (except for fission and decay) and each component, the code checks

all other components to see if the ∆A and ∆Z are such that the two components

form a pair. If so, a ReactionEvent class is stored by the parent component. This

class contains the same information as SupportedEvent in addition to the CX MT id

pointing to the correct cross section for the particular reaction. For fission and decay,

the code checks the <component def> block for user-defined child ID and branching

ratio.

After the list of ReactionEvents and DecayEvents has been assembled for each

component, the code checks to see if the necessary cross sections have been provided.

If the cross section for a particular reaction has not been included, an warning is

printed. Then, if the edit print depletion connectivity is ON, a brief summary of

the depletion data for the component is printed to the standard output. An example

of this summary is given in Fig. B.3.

Figure B.3: Example component depletion summary

Options available for OPERATOR SPLIT and RUNGE KUTTA mode

The time marching scheme for integrating the forward depletion equation is speci-

fied using the <ts scheme> tag in the <bp info> block. Options are OPERATOR SPLIT

and RUNGE KUTTA. The settings for the two schemes differ, and we explain these set-

tings here. The parsing is executed in ProblemInput.cc, and options are stored in
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a structure BP Info, a member of structure Kind Info, defined in BPInfo.h.

Figure B.2 gives an example <bp info> block for OPERATOR SPLIT mode. For

this scheme, the time domain is split into depletion cycles. Each cycle may contain a

number of depletion time steps, and each depletion time step may contain a number

of density time steps. The options for OPERATOR SPLIT are described as follows:

• <depletion cycles.int> – The number of depletion cycles

• <cycle length.fp> – The length of a cycle, in seconds

• <depletion time step.fp> – The length of a “flux” time step, in seconds

• <density time step.fp> – The length of a “density” time step, in seconds

• <converge data> – Specifies what to test for convergence at the end of each

depletion time step. Options are both, flux, density, or none.

• <phi pointwise tolerance.fp> – the maximum relative iterative error al-

lowed in phi for convergence

• <density pointwise tolerance.fp> – the maximum relative iterative error

allowed in the densities for convergence

• <max fixed point its.int> – maximum number of iterations to try per de-

pletion time step

• <density rk scheme> – specify the implicit Runge-Kuttta scheme to be used

to integrate the Bateman equation. Only IMPLICIT EULER is supported as an

option at this time, although the code in BatemanSolver->deplete nuclides

is written to support any implicit Runge-Kutta scheme.
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Figure B.4 gives an example <bp info> block for RUNGE-KUTTA mode. In this

mode, the time domain is broken into cycles, and each cycle may contain a number

of time steps.

Figure B.4: Example <bp info> input file block for RUNGE-KUTTA mode

The options for RUNGE-KUTTA mode are described as follows:

• <runge kutta scheme> – Choose the Runge-Kutta scheme to be used to inte-

grate the forward equations. Options are EXPLICIT EULER, MODIFIED EULER,

RK4, HEUN-EULER, and BOGACKI-SHAMPINE, the latter two being embedded rules

to be used when we are producing an adjoint based error estimate. See ap-

pendix E for information about these schemes.

• <depletion cycles.int> – the number of depletion cycles

• <cycle length.fp> – the cycle length, in seconds

• <depletion time step.fp> – the depletion time step, in seconds

• <bateman subcycles.int> – specify the number of Bateman subcycles per

time-step. This option can only be different from 1 if the scheme is EXPLICIT EULER
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or IMPLICIT EULER, as it will prevent convergence at rates higher than first or-

der. (note: this option is not pictured above).

BaseComponent functionality supporting depletion

The BaseComponent class was updated with several members and member access

functions to support the depletion routines. Many of these are self-explanatory, but

one requires some explanation.

First, the function computeRxProdRate, which is only valid for neutronics com-

ponents, is a function designed to compute depletion-related reaction rates. The

arguments to this function are an index, i, and a scalar flux vector φ. The function

returns a microscopic reaction rate. The math performed is simply

R =
∑
g

φgσi,gγi,

where σi,g is the microscopic cross section corresponding to the ith ReactionEvent

stored by this particular component and γi is the proper branching ratio. If the

reaction is absorption, which is a special case depletion reaction, the microscopic

reaction rate is multiplied by -1.

Specifying a QOI for the Problem

The QOI classes play an integral role in the adjoint problems because it appears

in the source terms of the adjoint equations. At the time of this publication, the files

that contain the QOI classes are

• BaseQOI.h – The base class implementation

• TotalInventoryQOI.h – A QOI that is the total number of mols of a compo-

nent in a certain volume
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• ReactionRateQOI.h – A QOI that is the total reaction rate for a certain com-

ponent in a certain volume

• ReactivityQOI.h – The reactivity QOI, ρ = keff−
keff

The QOI class is created if the <QOI def> tag is present inside the <prototype>

block of the input deck. An example QOI definition block is shown in Fig. B.5.

Figure B.5: Example <QOI def> block

Options for this block are as follows:

• <QOI type.str> – Specifies the type of QOI. Options are total inventory,

either detector response or reaction rate, or reactivity.

• <QOI id.str> – A string QOI ID. This must match <adjoint QOI id.str> in

the <adjoint def> block if it is an adjoint problem.

• <keyComp> – required for the detector response and total inventory QOIs.

Specifies which component the total reaction rate or total inventory will be

computed for. Error will be thrown if the component name does not match a

valid component name for the problem.
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• <QOI reg.dim bounds> – Method for specifying which volume of the problem

the QOI applies to. Same syntax as the material region specification in input

file.

The QOI is a member of SweepProblem and is accessible via a public function,

QOI(). The proper QOI constructor is called in constructor of SweepProblem.h.

The QOI class is templated over a grid type. The problem materials vector, energy

group aggregation information, Kind info, and problem handle are all made available

to the QOI after its construction. Note: the current QOI implementation operates

only on the t = tf solution; it is not integrated in time.

Steady-state adjoint calculations

The steady-state adjoint transport solver is a useful tool for computing the sen-

sitivity of the given QOI with respect to parameters defined by the modeler. The

problem that is solved is described in Sec. 4.3. Adjoint mode is activated by the

inclusion of the <adjoint def> block inside the <common> block. If the adjoint def

block is present but the bp info block is not present, the code enters steady-state

adjoint mode. An example adjoint def block is given in Fig. B.6.
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Figure B.6: Example <adjoint def> block

Many of the pictured tags are not active during steady state mode, but we provide

the description here. The tags inside the <adjoint def> block are

• <problemID.str> – This is a required tag for adjoint problems. Names of

checkpointing files and subdirectories will reflect the problem ID. Note that

<problemID.str> is a member of <common> and not <adjoint def>.

• adjoint QOI id.sr – The ID of the QOI to which the adjoint will correspond.

This must match the ID of the QOI set by the <QOI def> block, described

below.

• <forward solution location.str> – Method for generating the forward so-

lution. Options are compute or files. If the former, the forward solution will

be computed at run time and the checkpointing scheme will be determined by

the <forward solution.str> tag. If the latter, the code will look for preex-

isting files that were generated during a previous run of the forward problem.

This option is only active for adjoint-depletion problems.

• <forward solution.str – Method for checkpointing the forward solution.
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Options are STORE, STORE MOMENTS, CHECKPOINT, CHECKPOINT MOMENTS, and

INTERPOLATE MOMENTS. In steady-state mode, only STORE and CHECKPOINT are

supported.

• <adjoint QOI do.str> – What to do with the adjoint variable. Options are

NOTHING, COMPUTE SENSITIVITY, COMPUTE SENSITIVITY AND ERROR, or

COMPUTE ERROR. The latter two options are only available for depletion prob-

lems. If NOTHING is specified, the adjoint solution will not be computed. This

option may be useful for generating checkpointing files for use in later, separate

adjoint runs.

• <orthogonalize psi dagger.str> – option of whether or not to orthogonalize

ψ† to the forward fission source (that is, whether or not to enforce Eq. (3.67)

or Eq. (3.77)). This is not a required tag. Options are true or false. Default

is true.

• <orthogonalize S dagger.str> – option of whether or not to orthogonalize

S† to ψ before and MSASolve. This is not a required tag. Options are true or

false. Default is true.

• <param vec def> – a listing of parameters to which the QOI sensitivity will be

computed. This will be discussed in further detail below.

• <max memory MB.fp> – The maximum memory footprint in MB that will be

allowed for checkpointing the forward solution. If we are in STOR ALL or

STOR MOM mode and the maximum footprint will be exceeded, the code

automatically switches to CKPT ALL or CKPT MOM mode, respectively.

If the user selected CKPT ALL or CKPT MOM mode, the memory foot-

print will determine the checkpointing frequency (unless it is greater than
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<max checkpoint period.int>). This is only active for depletion adjoint

problems.

• <max checkpointing period.int> – specify the maximum number of cycles

between writes to file. Applies to CKPT ALL, CKPT MOM, and INTP MOM

modes. The smaller of the periods between <max checkpoint period.int>

and that resulting from <max memory MB.fp> wins. This is only active for

depletion adjoint problems.

• <num ckpt dirs.str> – specify the number of directories to create for writing

checkpoint files. This is to be used when running with multiple processors,

as it is typically more efficient to have them write to different directories on

the I/O system. Options are ONE PER CORE, SQRT NUM CORE, ALL IN HOME, and

SPECIFIED. This is not a required tag. Default is ALL IN HOME.

• <num ckpt dirs.int> – Required if <num ckpt dirs.str> is SPECIFIED.

• <terminal density source.str> – Not required. Default is compute, which

is the normal adjoint mode setting. Option read from input allows user to

specify the terminal adjoint densities by writing them into the <material def>

block of the input file instead of using the typical QOI-related terminal adjoint

density expressions developed in this dissertation. This options was used, for

example, to facilitate “shuffling” during adjoint mode of the traveling wave

reactor problem.

Those settings that are only active for depletion adjoint problems will be discussed

below. For steady-state adjoint problems, we need to define the <param vec def>

tag, which allows the user to specify which parameters to consider in the adjoint

problem. Options are SIGMA T, SIGMA S, NU SIGMA F, SIGMA F, NU, DECAY CONSTANT,
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and INITIAL DENSITY. The option ALL DATA will activate all parameters. If a pa-

rameter is active, it is active for every component. If the parameter does not exist

for the particular component, the code produces zeros for sensitivity. For parameters

that do not decay, however, a sensitivity is still produced for the DECAY CONSTANT.

Finally, the INITIAL DENSITY option will produce sensitivity with respect to initial

density (or, for steady-state problems, the given number density) of every component

in every spatial cell.

If the code determines that we are in steady-state adjoint mode, the SSAdjointSolver

class is instantiated and the method ss adjoint solve() is called. The problem may

be either fixed-source or k-eigenvalue. The solver first allocates the proper storage

for the forward solution and computes the total problem volume, which may be re-

quired for k-eigenvalue problems. The forward solution is computed using either a

fixed-source solve or power iteration. If STORE mode, the full angular flux and density

vector are stored in memory. If CHECKPOINT mode, the full angular flux and density

vector are written to file, then immediately read back into RAM and stored.

The code then chooses the proper path for computing S†. This depends on the

QOI and whether the problem is k-eigenvalue or fixed source. See Sec. 3.6 for the

specific forms of S†, which is ultimately computed by the QOI class. Then, the

code calls either the adjoint version of ss solve or msa solve to compute ψ†. The

sensitivity equation is then evaluated by the QOI class for those parameters requested

by the input file.

The sensitivity information is printed to the output file in a block called QOI SENSITIVITY.

The information is sorted by parameter type, component ID, and group number.
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Depletion Perturbation (adjoint) calculations

To run a depletion perturbation problem (that is, a forward depletion solve fol-

lowed by a backwards adjoint solve), specify both the bp info and adjoint def

blocks inside the common block of the input file. A QOI must also be defined in

the problem using the QOI def block. Adjoint mode is only available using the

RUNGE KUTTA option for ts scheme in the bp info block.

An example adjoint def block is pictured in Fig. B.6. For basic depletion pertur-

bation problems, the major adjoint def options to consider are the checkpoint pe-

riod (max checkpoint period.int), maximum memory(max memory MB.fp), check-

point scheme, (forward solution.str), and the parameter vector definition

(param vec def). The checkpointing schemes are outlined in Sec. 4.6; the other

options are described above.

Other, more advanced options for the depletion perturbation solver are:

• <forward solution location.str> (default = compute) – Adjoint mode can

be run without first computing the forward solution if the necessary info

about the forward solution is already saved to checkpointing files. To acti-

vate this option, set this tag to files. This option is only available for the

CHECKPOINT, CHECKPOINT MOMENTS, and INTERPOLATE MOMENTS checkpointing

schemes. Note: the checkpointing scheme, problemID, and checkpointing fre-

quency specified in the adjoint input deck must exactly match those that were

used during the forward solve. This way, the proper forward solution informa-

tion and file structure is present for the adjoint calculation.

• <terminal density source> (default = compute) – The terminal adjoint den-

sity calculation can be bypassed if this option is set to read from input. In

this case, the terminal adjoint densities will be set to the density value given in
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the material definition block of the input file. This was a useful option when

running back-to-back adjoint calculations or when re-starting adjoint calcula-

tions.

If the code is in depletion perturbation mode, the DplAdjointSolver class is cre-

ated and its method dpl adjoint solve is called. The first major calculation within

this method is compute display memStats, a memory diagnostic routine that popu-

lates the data members in the memoryStats struct. The function count memory load

loops over the unknowns in the problem and counts the total number of unknowns

per snapshot of ψ, φ, and N . Then, depending on the checkpointing scheme, the

RAM footprint per cycle is computed and ultimately the RAM footprint to store

the entire problem. The code then checks the user-defined limits. If the limits

will be exceeded, the code either changes the checkpointing scheme or changes the

checkpointing frequency until the limits are satisfied.

After the memory diagnostics, the code enters one of two major blocks inside the

dpl adjoint solve function. If the code is in STORE or STORE MOMENTS mode, it en-

ters the first block. If the checkpointing scheme is CHECKPOINT, CHECKPOINT MOMENTS,

or INTERPOLATE MOMENTS, the code enters the second block. In any case, the general

flow of the subroutine is the same.

First, the total memory to store the forward solution (or the discrete chunks of

it) is re-computed, allocated, and printed to the output file for processing. The code

then performs a loop over the forward cycles by repetitively calling bp solve. If we

are in one of the STORE modes, the forward solution (either ψ or the source moments)

is stored to RAM by the Checkpointer class at each stage of each time step of each

cycle. Otherwise, the forward solution is written to file at the intervals specified by

the user (or corrected by the memory limitations).
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The code then enters adjoint mode. The correct terminal condition is com-

puted based on the problem type and QOI. The backwards time-march then be-

gins. If we are in one of the STORE modes, the code proceed backwards without

entering RECOMPUTE mode. Otherwise, the code alternates between ADJOINT mode

and RECOMPUTE mode, recomputing the chunks of the forward solution as necessary,

computing the adjoint solution, cross-correlating, and then throwing the data away.

The forward and adjoint solutions are cross-correlated at every stage. The QOI

class handles the cross-correlation and the integration of the sensitivity equation.

Likewise, it handles the integration of the error estimate. The forms of the inner

product calculations that appear in the adjoint and sensitivity equations are discussed

below.

Once the adjoint time-march has reached t = t0 and the last bit of the sensi-

tivity and/or error equations have been integrated, the QOI sensitivity is reported

to the output file in a block called QOI SENSITIVITY. The information is sorted by

parameter type, component ID, and group number.

B.2 Code Documentation

The purpose of the remainder of this appendix is to document the logic and math

behind some of the more complex and important methods and functions in the PDT

implementation. We do not include documentation of simple or low-level functions

and classes, as they are documented in the code. We focus more on the inner product

and integral calculations that appear in the adjoint equations.

The BatemanSolver Class

The BatemanSolver class is implemented in BatemanSolver.h. The class is

templated on the grid, so it has access to all data stored on the cells and elements.

The class is instantiated in the constructor of the BPSolver class.
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Major functions in the BatemanSolver class are

1. compute macroscopic data – this function computes the macroscopic cross-

section data (Σt, Σf , νΣf , and Ef on each cell given an index into the

densityForward vector. That is, it uses a checkpointed snapshot of the forward

density solution to compute the macroscopic data that is used by the solver

during sweeps and/or k-eigenvalue source updates.

2. compute bateman matrix – this function computes and returns B, the Bate-

man matrix, on the cell referenced by the cell-reference input. The matrix is

computed by looping over each component in the cell, checking whether that

component produces any other components in the cell by reactions or decays,

and accumulating the production/destruction rates in the proper entries. This

requires interaction with the ReactionEvent and DecayEvent classes belonging

to each component. Note that absorption is always “on”, and is implemented

as a special case.

3. deplete nuclides – this is the work-horse depletion method for the

OPERATOR SPLIT mode. It is not called during RUNGE KUTTA mode. Recall from

Sec. 4.2.1 that the cell-averaged flux magnitude is treated as a linear function

over the broad time step, and the Bateman equation is solved implicitly over the

broad time steps, possibly using shorter time steps. Let B(t) be the Bateman

operator,

dN

dt
= B(t)N,

where the time dependence comes from the linear time-dependence of the flux.
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Our strategy is to decompose B as follows:

B(t) = DpR0 +
t

∆t
dR,

where DpR0 contains the initial decay + reaction rates and dR contains the

change in the reaction rate over the time step ∆t. This formulation prevents

the need to recompute a Bateman matrix at each density time step.

The matrices are allocated and a loop over each component, cmp, occurs. For

each component, a loop over its ReactionEvents and DecayEvents occurs.

For each ReactionEvent, the code checks to make sure the child exists in this

cell. If so, the index of that child is set to clInd. the component calls its

computeRxProdRate method twice: first with the beginning-of-time-step flux,

which gives an initial reaction rate for this reaction, R0, and a second time

with the flux change over the time step, which gives a delta reaction rate for

this reaction, ∆R. Recall that R0 and ∆R are microscopic reaction rates; that

is, they have not been multiplied by the parent density. Then

DpR0[clInd][cmp] += R0,

dR[clInd][cmp] += ∆R.

Similarly for decay, we first subtract λcmp from DpR0:

DpR0[cmp][cmp] -= λ.
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We then search for decay children in this cell. If they exist,

DpR0[clInd][cmp] += λγ,

where γ is the appropriate branching ratio.

Once these matrices are formed, the code enters a time march over the depletion

time step using the (usually shorter) density time steps. A loop over density

time steps progresses until the depletion time step length is reached. For stage

s of density time step t ∈ [tn, tn+1], the following linear system must be solved

[
I − assBs

]
Ns = Nn + (tn−1 − tn)

s−1∑
j=1

asjBjNj.

Here

Bj = DpR0 +
tj

tn+1 − tn
dR,

where tj = tn + cj. The solution at t = tn+1 is

Nn+1 = Nn + (tn+1 − tn)
s∑
i=1

biBiNi.

Recall that coefficients a, b, and c define the particular Runge-Kutta scheme.

We solve the linear system using PDT’s built-in LU solver with pivoting. Once

the end of the depletion time step is reached, each cell updates its macroscopic

cross sections with the new densities to prepare for the next transport solve.

4. compute stage vector – This method computes

Ns = Nn + ∆t
s−1∑
i=1

asiBiNi,
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where the BiNis have been stored in dpl dNdt.

5. compute and store dNdt – This function computes the time-derivative of the

densities given the active flux vector. It is used exclusively by explicit schemes

in RUNGE KUTTA mode. The function loops over cells. Within each cell, the

Bateman matrix is computed using compute bateman matrix and a cell-averaged

scalar flux. If we are not sub-cycling the Bateman equation, the code simply

computes BN , stores it in dpl dNdt on each cell, and exits. If we are sub-

cycling the Bateman solution, the sub-cycle time step, δt, is computed. The

sub-cycle proceeds as follows

N `+1 = N ` + δtBN `.

The time derivative for stage s is accumulated (or smeared) as

(
BN

)
s

=

∑
` δtBN

`∑
` δt

.

6. advance implicit RK – the implicit version of compute and store dNdt. The

sub-cycle equation requires a linear solve, namely

[
I − δt

]
N `+1 = N `,

and the time derivative is smeared as above.

7. set adjoint depletion transport source – this function sets S† for source-

driven problems. It takes a single argument: the index into the checkpointing

vectors where the proper forward solution snapshot will be found. According
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to Eq. (3.49),

S† = N †
∂bN

∂ψ
.

The adjoint densities are on the cells in the active vectors. Using Eq. (2.25),

we find

∂bNi

∂ψgeq
=

1∑
e′ Ve′

∑
j

Fcm
b

(
σ̂g,j→iNj − δijσ̂a,g,iNi

)
.

The source vector is taken as a dot product over i, integrated over angle (be-

cause that’s how PDT expects fixed sources), and placed in q fixed on each

element.

8. compute and store dNdt adjoint –This function computes the time deriva-

tive of the adjoint densities (Eqs. (3.43), (3.48), (3.65), and (3.75)) for explicit

methods. The time derivatives are written to the dpl dNdt vector on each cell.

This function takes the following arguments:

(a) dt – time step

(b) stage – stage index

(c) forwardSourceInd – index of the forward solution vectors to reference

(d) ckpt moments – bool, true if we are in a checkpoint-moments mode

(e) isKeig – true if k-eigenvalue problem

(f) keff – keff

(g) A – power normalization factor

(h) ratio – A†

VR

The function enters a loop over cells. For each cell, the Bateman matrix is
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produced. Next, for each nuclide k, the variable f †k is computed as

f †k =
〈
ψ†,

∂

∂Nk

[
Hψ − λGψ

]〉
E,D,Ω

+
〈
A†

A

VR

∂ΣEψ

∂Nk

〉
E,D,Ω

.

These inner products are computed using the compute ip psidppN and

compute ip AdagRatSigmaE functions, which are described below. The code

then advances the adjoint densities through the time step, subcycling as de-

scribed above if required, and the result is left in the stage index of dpl dNdt

on each cell.

9. advance implicit RK adjoint – this function advances the adjoint densities

for implicit methods. It is the implicit analog of compute and store dNdt adjoint.

10. compute ip psidppN – this function computes

〈
ψ†,

∂

∂Nk

[
Hψ − λGψ

]〉
E,D,Ω

for nuclide k. The subroutine inputs are a cell reference, density vector source

index, flux vector source index, nuclide index k, and a value for keff if it is a

k-eigenvalue problem. This subroutine amounts to loops over the phase space

variables to compute the inner product. The three main parts are the total

collision part, scattering part, and the fission part. See below for notation

definitions. The total collision term is

〈
ψ†,

∂

∂Nk

Σtψ
〉
E,D,Ω

=
E∑
e=1

E∑
e′=1

G∑
g=1

Q∑
q=1

ψ†e′q̃gσt,k,gMe,e′ψeqgωq0
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The scattering term is

〈
ψ†,

∂

∂Nk

Sψ
〉
E,D,Ω

=
E∑
e=1

G∑
g=1

Q∑
q=1

G∑
g′=1

M∑
m=1

Q∑
q′=1

E∑
e′=1

ψ†egq̃ωq0

ω

mqσs,k,`,g→g′Me,e′ψe′g′q′ωmq′

Finally, the fission term is implemented assuming the number density spectrum

for χ, which complicates the derivative with respect to a particular number

density. Recall our representation for the neutron emission spectrum:

χg =

∑K
k=1Nkχg,k∑K
n=1Nk

,

where K is the number of fissionable nuclides present in the mixture. Given

this, we ultimately need

〈
ψ†,

∂

∂Nk

Fψ
〉
E,D,Ω

=
〈
ψ†,

∂

∂Nk

[ 1

4π

∑K
k′=1Nk′χk′

Nk′

G∑
g′=1

Q∑
q′=1

νΣf,g′ψg′,q′ωq′0

]〉
E,D,Ω

.

Define the following terms

P1,e ≡
K∑
k′=1

Nk′

P2,eg ≡
K∑
k′=1

Nk′χg,k′

P3,e ≡
G∑

g′=1

Q∑
q′=1

νk,g′σf,k,g′ψe,g′,q′ωq′0

P4,e ≡
G∑

g′=1

Q∑
q′=1

νg′Σf,g′ψe,g′,q′ωq′0
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The discrete inner product in terms of these sums is

〈
ψ†,

∂

∂Nk

Fψ
〉
E,D,Ω

=
1

keff

E∑
e=1

G∑
g=1

Q∑
q=1

E∑
e′=1

ωq0Me,e′ψ
†
e′gq̃

ω

q0

(P3,eP2,e

P1,e

+
χk,gP1,e − P2,e

P2
2,e

P4,e

)

11. compute ip AdagRatSigmaE – This function computes

〈
A†

A

VR

∂ΣEψ

∂Nk

〉
E,D,Ω

for nuclide k in a particular cell. If the component does not have a fission cross

section, this term is zero. Otherwise, the discrete sum in a particular cell is

simply

〈
A†

A

VR

∂ΣEψ

∂Nk

〉
E,D,Ω

=
E∑
e=1

G∑
g=1

Q∑
q=1

A†A

VR
Ef,kσf,k,gψegqVeωq0.

The function returns the sum over all cells.

12. compute density residual This function computes an estimate for the den-

sity residual (called rd1(t) in Eq. (3.20)). The residual is formed as follows. The

true Bateman solution satisfies

dN

dt
−BN = 0.

The approximate solution satisfies

dÑ

dt
−BÑ = rd1.
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Thus

rd1 =
dÑ

dt
− dN

dt
−BÑ +BN

=
Ñn+1 −Nn

∆t
− Nn+1 −Nn

∆t
−BÑ +BN

=
Ñn+1 −Nn+1

∆t
−BÑ +BN

Before entering this routine, BPSolver has computed a low and high order es-

timate for Nn+1, the end-of-time-step Bateman solution and the corresponding

flux solution. We treat the higher-order solution estimate as “exact”, or as N ,

and the calculation of the residual is straightforward.

13. compute Adagger – this function performs the bulk of the calculation of A†,

given by Eq. (3.78) as

A† =
VR

P̂

〈
N †

∂bN

∂A

〉
E,D,Ω

.

This subroutine takes care of the inner product part of the calculation using

the ReactionEvent class.

14. compute baseMSAsource – this subroutine computes the right-hand-side of Eq.

(3.76), which we call the base MSA source because it does not change at each

MSA iteration. The term to be computed is

N †
∂bN

∂ψ
− A†A

VR
ΣE,

which must be computed for each ψ, or for each element, group, and angle.

The code takes care of the dot product portion, which is a straightforward

differentiation of Eq. (2.25), and the calculation of ΣE. Note that there is no

inner product about these terms; we do, however, integrate the final result for
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each element and group over the angular moments for storage as a source term.

The OPERATOR SPLIT forward depletion implementation

The depletion routines are implemented in BPSolver.h. The BPSolver class

inherits from KSolver, which inherits from NeutronicsSolver. The problem may

be either source-driven or k-eigenvalue – the correct “transport solve” routine is

called whenever necessary.

If we are in OPERATOR SPLIT mode, each spatial cell allocates the following

vectors:

• bp old phi – stores the beginning of depletion-time-step cell-average scalar

flux (size = [nGroup])

• bp test phi – stores the latest guess for the end of depletion-time-step scalar

flux (size = [nGroup])

• densityCopy – stores the beginning of depletion-time-step densities (size = [#

components])

• densityTest – stores the latest guess for the end of depletion-time-step den-

sities (size = [# components])

Pseudocode for the OPERATOR SPLIT mode was given in Fig. 4.1 – here we

elaborate on some of these steps. Before entering a loop over cycles, a transport

solve is performed to get the initial flux. Then bp old pi and densityCopy are set

to the beginning-of-run cell-average fluxes and densities, respectively. This copy is

performed by the BatemanSolver class, implemented in BatemanSolver.h.

The code then enters a loop over the requested number of cycles. Within each

cycle is a loop over time depletion time steps, where a counter runningTime is
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accumulated until the cycle length is reached. Within each time step, the code

performs these steps:

1. BatemanSolver copies the latest flux and density end-of-time-step guesses to

bp test phi and densityTest, respectively. The initial guess is the beginning-

of-time-step flux and density.

2. The function deplete nuclides in BatemanSolver is called, which loops over

each cell and performs the nuclide depletion over the time step (described

below). After this call, the next guess for the end-of-time-step densities is in

the active vector on each cell.

3. A transport solve is called to compute the next end-of-time-step flux guess

using the densities computed in the previous step.

4. If requested, point-wise convergence is tested for the cell-averaged flux in each

group and each cell (this compares the active scalar fluxes to bp test phi).

5. If requested, point-wise convergence is tested for each density on each cell (this

compares the active densities to densityTest).

6. The code decides whether this time step has converged or if we have reached

the maximum number of fixed point iterations for this time step

After a time step, densityTest and bp test phi are updated to the latest guesses

for the end-of-time-step densities and fluxes to serve as the initial guess for the next

time step. The code exits the solver after the loop over cycles has completed.

Now we give details of the deplete nuclides function, which is a member of

the BatemanSolver class. For each cell, this routine uses an implicit Runge-Kutta

scheme to solve the Bateman equations using a linear guess for the time-dependence

of the cell averaged scalar flux.
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The RUNGE-KUTTA forward depletion implementation

Here we describe the depletion solve if the <ts scheme> tag is set to RUNGE-

KUTTA. If we are in this mode, the following vectors are allocated on each cell

• densityCopy – stores the beginning of depletion-time-step densities (size = [#

components])

• dpl dNdt – stores the time derivative of each nuclide at each stage (size =

[#stages][# components])

The code enters a loop over cycles. Within each cycle, there is a loop over

depletion time steps until the cycle length is reached. Pseudocode for integration

over a single time step was shown in Fig. 4.2.

In the case of an explicit Runge-Kutta scheme, the code proceeds as follows. For

the first stage, the code calls the compute and store dNdt method in the BatemanSolver

class. This scheme simply computes BN , using the same steps described above, and

stores the resulting vector in the first index of dpl dNdt. This is repeated for each

spatial cell.

If it is a multi-stage scheme, then the second stage vector is computed by call-

ing the compute stage vector function of the BatemanSolver class. This method

computes

Ns = Nn + ∆t
s−1∑
i=1

asiBiNi,

where the BiNis have been stored in dpl dNdt. The loop then proceeds to the next

stage, where it computes the flux stage vector. This stage vector is then used to

compute the next BiNi, and the cycle continues.

After the stage vectors have been computed, the densities at the end of the

time step are computing using another call to compute stage vector, except the
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coefficients that are used are the bs:

Nn+1 = Nn + ∆t
s∑
i=1

biBiNi.

These densities are used to compute the end-of-time-step fluxes, and the code moved

on to the next time step.

A first look at this code in BPSolver.h will reveal numerous blocks of code related

to checkpointing and storing snapshots of the depletion solution This code will be

documented below. The code that is used for straightforward depletion problems

using the Runge-Kutta scheme is only a small subset of what appears in the file.

The AdjointController structure

The AdjointController structure is a member of Kind info and is implemented

in AdjointController.h. It stores the options and settings requested by the user

for an adjoint problem. An adjoint problem is specified with the <adjoint def>

block in the input file. An example adjoint definition block is given in Fig. B.6.

Parameters are defined by the parameterDefinition struct in AdjointController.h.

They are classified by the PARAM DIMENSION enum as either scalar, 1D, transfer, or

initial condition. When the parameter is specified by the <param vec def> tag, the

active flag in parameterDefinition is turned on. This will ultimately tell the QOI

where to allocate space to store the parameter derivatives.

The adjoint transport solver

Here we describe the manner by which we solve an adjoint transport problem.

We want to solve

H†ψ† = S†.
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We are not worried about the form of S† here; just suppose it has been computed and

it is sitting on qfixed on each element. If it’s an adjoint k-eigenvalue problem, then

the most recent fission source update is part of qfixed. If it’s not a k-eigenvalue

problem but there are fissionable materials, then we have lumped them into the

scattering source.

We know that all we need to do is transpose the energy in-scatter source. First,

we add a bool member to Kind Info called adjoint mode. If we are waning to

solve and adjoint transport problem, this is set to true; otherwise false. Second,

we added adjoint inscattering and total source classes called Neut AdjointInscat

and Neut TotAdjointSource in SetInscat Method.h and SetTotSource Method.h,

respectively. These classes mimic Neut Inscat and Neut TotSource in their inheri-

tance properties and structure – they simply transpose the matrix!

The adjoint source classes are instantiated inside the get inscat and get totsource

methods of NeutronicsSolver.h. If the adjoint mode tag is on, the solver is pointed

to the transposed source methods. If the tag is off, the solver is pointed to the forward

methods. The default setting for the tag is false at problem construction.

Inner product calculations in BaseQOI.h

We will now describe the major operations carried out by the members of BaseQOI.h.

First is a series of inner product calculations of the form

〈
x†,

∂

∂p
Ax
〉
E,D,Ω

,

where x may be ψ or N and A is the transport, fission, Bateman, etc. operator. The

parameter p belongs to a particular component (i.e. total cross section for group g

in component i). The inner product requires a forward and adjoint solution. Thus,

these functions take as inputs a global component index, cmpInd, and an index,
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srcInd, pointing to the correct snapshot of the forward solution, ψ and N . srcInd

may be split into a density source index and a flux source index if our checkpointing

mode is such that we are only storing source moments.

A description of each inner product calculation follows. Assume that the correct

snapshot of the forward solution has been found. Also, let k index the component

to which the parameter corresponds. Finally, adopt the following notation:

• C = number of spatial cells

• E = number of elements on current cell

• Q = number of angles (for the particular group set)

• G = number of groups (in reality its a loop over groups per group set)

• M = degree of Legendre expansion (for this group set)

• K = number of components in current cell

• Me,e′ = entry e, e′ in cell mass matrix

• ωqm = discrete-to-moment weight for angle q and moment m

• ω

qm = moment-to-discrete weight for angle q and moment m

• q̃ – index of angle opposite of angle with index q

• compute dHdSigmaT computes

〈
ψ†,

∂

∂σk,t,g
Hψ
〉
E,D,Ω

=
〈
ψ†g, Nkψg

〉
E,D,Ω

=
C∑
c=1

E∑
e=1

E∑
e′=1

Q∑
q=1

ψ†g,q̃,e′ψg,q,eωq0Me.e′Nc,k
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for each group and stores the results in the dHdSigmaT vector, which is a

member of BaseQOI.

• compute dHdSigmaS computes

〈
ψ†,

∂

∂σk,s,`,g′→g
Hψ
〉
E,D,Ω

.

The discrete scattering source to angle q and group g on element e is

Sg,q,e =
M∑
m=0

ω

q,m

G∑
g′=1

K∑
k=1

σk,s,`,g′→gNk

Q∑
q′=1

ωq′,mψg′,q′,e

where ` is the Legendre moment corresponding to moment m. Therefore

〈
ψ†,

∂

∂σk,s,`,g′→g
Hψ
〉
E,D,Ω

= −
C∑
c=1

E∑
e=1

E∑
e′=1

Q∑
q=1

M∑
m=0

δ`,mωq,0Me,e′ψ
†
g,q̃,e′

ω

q,mNk

Q∑
q′=1

ωq′,mψg′,q′,e,

which is stored for each g, g′, ` in dHdSigmaS.

• compute dGdNuSigmaF computes

〈
ψ†,

∂

∂νσk,f,g′
Gψ
〉
E,D,Ω

=
〈
ψ†g,

ω

q0χgNkφg′
〉
E,D,Ω

=
C∑
c=1

E∑
e=1

E∑
e′=1

G∑
g=1

Q∑
q=1

ωq,0Me,e′

ω

q0ψ
†
g,q̃,e′Nkχg

Q∑
q′=1

ψg′,q′,eωq′0

for each g′ and stores the result in dGdNuSigmaF.
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• compute dGdSigmaF computes

〈
ψ†,

∂

∂σk,f,g′
Gψ
〉
E,D,Ω

=
〈
ψ†g,

ω

q0χgNkφg′νk,g′
〉
E,D,Ω

=
C∑
c=1

E∑
e=1

E∑
e′=1

G∑
g=1

Q∑
q=1

ωq,0Me,e′

ω

q0ψ
†
g,q̃,e′Nkχgνk,g′

Q∑
q′=1

ψg′,q′,eωq′0

for each g′ and stores the result in dGdSigmaF.

• compute dGdNuBar computes

〈
ψ†,

∂

∂νk,f,g′
Gψ
〉
E,D,Ω

=
〈
ψ†g,

ω

q0χgNkφg′σk,f,g′
〉
E,D,Ω

=
C∑
c=1

E∑
e=1

E∑
e′=1

G∑
g=1

Q∑
q=1

ωq,0Me,e′

ω

q0ψ
†
g,q̃,e′Nkχgσk,f,g′

Q∑
q′=1

ψg′,q′,eωq′0

for each g′ and stores the result in dGdNuBar.

• compute dPhatdSigmaF computes

A†A

V

∂

∂σk,f,g′

〈
ΣEψ

〉
E,D,Ω

=
A†A

V

〈
Ef,kNkψg′

〉
E,D,Ω

,

where Ef is the energy released per fission in component k. This inner product

is

A†A

V

∂

∂σk,f,g′

〈
ΣEψ

〉
E,D,Ω

=
A†A

V

C∑
c=1

E∑
e=1

Ve

Q∑
q=1

ωq0ψg′,q,eNkEf,k

for each g′ and stores the result in dPhatdSigmaF.
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• compute dBNdSigmaA computes

〈
N †,

∂bN

∂σk,a,g

〉
E,D,Ω

= N † · ∂BN
∂σk,a,g

= N † · ∂

∂σk,a,g

[
−

G∑
g=1

K∑
k=1

Aσk,a,gφgNkF
cm
b

]

where A is the flux normalization constant (it is set to A = 1.0 for source-driven

problems), and φg is the cell averaged flux in group g, namely

φg =

∑
e φg,eVe∑
e Ve

=

∑
e

∑
q ψe,g,qωq,0Ve

Vc
.

Thus

∂

∂σk,a,g
BN = −ANkF

cm
b

∑
e

∑
q ψe,g,qωq,0Ve

Vc
.

and 〈
N †,

∂bN

∂σk,a,g

〉
E,D,Ω

= −N †kANkF
cm
b

∑
e

∑
q ψe,g,qωq,0Ve

Vc
.

This is computed for each g and stored in dBNdSigmaA. Later we will simply

note that ∂BN
∂σt

= ∂BN
∂σa

. Also, in the case that σa is derived at run-time by

subtracting σs from σt, we find ∂BN
∂σs

= −∂BN
∂σa

for zero-th order moments.

• compute dBNdSigmaF computes

〈
N †,

∂bN

∂σk,f,g

〉
E,D,Ω

= N † · ∂BN
∂σk,f,g

The term ∂BN
∂σk,f,g

is non-zero for
dNj
dt

if nuclide k produced nuclide j via fission.

The code checks to see if a fission child of nuclide k exists in the cell. Define

δkj =

 1 Nuclide k produces nuclide j via fission

0 else
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Then

〈
N †,

∂bN

∂σk,f,g

〉
E,D,Ω

= −δkjN †jANkγkjF
cm
b

∑
e

∑
q ψe,g,qωq,0Ve

Vc
,

where γkj is the fission yield for nuclide j from nuclide k. Again, this is com-

puted for every group g and the result is stored in dBNdSigmaF.

• compute dBNdDecayConstant computes

〈
N †,

∂bN

∂λk

〉
E,D,Ω

= N † · ∂BN
∂λk

.

Let δkj carry the same meaning as above, but let δkk = 1 and γkk = −1. Then

〈
N †,

∂bN

∂λk

〉
E,D,Ω

= δkjN
†
j γkjNk.

• compute dPhatdN computes

∂
〈

ΣEψ
〉
E,D,Ω

∂Nk

for the kth nuclide in a particular cell. This term appears in Eq. (3.84), the

terminal condition for the adjoint densities in k-eigenvalue problems. If the

nuclide contributes to the power production, the inner product is

∂

∂Nk

〈
ΣEψ

〉
E,D,Ω

=
G∑
g=1

E∑
e=1

∑
q=1Q

ωq0VeψegqEf,kσf,k,g.

Otherwise it is zero.
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• compute dGpsidN and compute dHpsidN compute the inner products

〈
ψ†,

∂

∂Nk

Gψ
〉
E,D,Ω

and 〈
ψ†,

∂

∂Nk

Hψ
〉
E,D,Ω

for the kth nuclide in a particular spatial cell. The form of these calculations

was covered in the discussion of the BatemanSolver class above. These terms

appear in Eq. (3.84), the terminal condition for the adjoint densities in k-

eigenvalue problems.

Sensitivity equation integration in BaseQOI.h

The BaseQOI class contains a member that integrates the sensitivity equation

after each time step. Our technique for performing this integration was introduced

in Sec. 3.5. Suppose we are only using a single time step, ∆t, t ∈ [a, b], and let us

use the following model sensitivity expression to illustrate this process:

S = ST −
∫ b

a

(
αt+ β

)
dt,

where ST represents terms evaluated at either t = a or t = b and the integrand

represents cross-correlation terms. The sensitivity obtained by analytic integration

is

S = ST −
[α

2

(
b2 − aa

)
+ β

(
b− a

)]
.
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Recall that we define a dummy variable z which satisfies

dz

dt
= αt+ β

z(b) = ST ,

and that after integration backwards, S = z(a). To see this, consider integrating

z(t) using an s stage Runge-Kutta rule:

z(b)− z(a)

∆t
=

s∑
i=1

αiti + βi.

Here αi and βi represent the cross-correlation terms in the sensitivity equation eval-

uated at stage i in time. The integration rule becomes

z(a) = z(b)− (b− a)
s∑
i=1

αiti + βi.

For example, the second-order modified Euler scheme applied to this system is

S = z(a) = z(b)− (b− a)
1

2
[αaa+ βa + αbb+ βb] .

If α and β are constant in time, we recover the exact sensitivity expression derived

above:

S = ST −
[α

2

(
b2 − aa

)
+ β

(
b− a

)]
.

The base and derived QOI classes work in tandem to perform this integration. Three

vectors belonging to �BaseQOI are allocated at problem outset:

• dCCSCALARdt – size: [# parameters][# components][# stages]

• dCCONEDdt – size[# parameters][# components][# groups][# stages]
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• dCCTRANSFERdt – size[# parameters][# components][# groups][# moments][#

groups][# stages]

During each time step of the backwards solve, the code computes each term in the

sensitivity equation (for each component and each parameter) at each Runge-Kutta

stage. These calculations require the inner product functions that are described

above. The results of these calculations are stored in the proper dCC vector (depend-

ing on the parameter dimensionality).

At the end of the time step, the depletion-adjoint solver calls

integrate cross correlation, which computes

dQ

dp
← dQ

dp
−∆t

s∑
i=1

F
(p)
i .

Members of the derived QOI classes

At the time of this dissertation, three QOI classes are available in PDT. Here

we describe some of their functionality. First, each QOI inherits a virtual function

compute QOI. This function computes

• TotalInventoryQOI:

Q =
C∑
c=1

δcVcNk,cNA,

where δc = 1.0 if the cell is in the specified QOI sub-volume, else 0.0, Vc is

the cell volume, subscript k indicates the component of interest, and NA is

Avogadro’s number.

• ReactionRateQOI:

Q =
C∑
c=1

δc

E∑
e=1

G∑
g=1

Q∑
q=1

VeNk,cσt,k,gψe,g,qωq,0.
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• ReactivityQOI:

Q =
keff − 1

keff

.

Each class also has the function compute dCCdt, which computes the value of

the cross-correlation terms in the sensitivity expression at the current stage. This

function is not in BaseQOI because it can be different for each QOI if the QOI has

a time-integrated component. This function loops over each supported parameter,

checks to see if it is active, computes the proper inner product, and stores the

cross-correlation term in either dCCSCALARdt, dCCONEDdt, or DCCTRANSFERdt. For

example, the procedure for parameter σt,g in component k in stage s is

1. compute dHdSigmaT

2. compute dBNdSigmaA

3. For each group, g, dCCONEDdt[SIGMA T][k][g][s]=dHdSigmaT[g]-dBNdSigmaA[g]

A similar inner-product and storage step is required for each parameter at each stage.

The term
〈

∂R
∂σt,k,g

〉
E,D,Ω

is non-zero for the reaction rate QOI. The function

add dQOI dSigmaT in ReactionRateQOI.h computes this term as

〈 ∂R

∂σt,k,g

〉
E,D,Ω

=
〈 ∂

∂σt,k,g
ψ

K∑
j=1

σt,jNj

〉
E,D,Ω

=
C∑
c=1

E∑
e=1

∑
q

ψe,g,qωq,0NkVe

where the loop over cells only covers those that are in the QOI region.

The functions set terminal condition qfixed and set tc baseMSAsource are

used to compute the terminal condition source terms (right hand sides of Eq. (3.50)

and Eq. (3.83), respectively. Similarly, the function compute hatAdagger computes
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Â†, if it exists. These functions are only required is ∂R
∂ψ
6= 0, and the calculations are

straightforward and similar to many of the inner products described above.

The SSAdjointSolver class

The SSAdjointSolver class is implemented in SSAdjointSolver.h. This solver

is called if the input file specifies an adjoint problem but does not specify depletion

data. The driver function is ss adjoint solve(). The flow of the function is fairly

straightforward and heavily documented in the source code, thus we do not cover it

in detail here. We note that it is broken into two blocks, one for STORE mode and

one for CHECKPOINT mode. First the forward problem is solved, and subsequently

the adjoint problem is solved. The form of the adjoint solution depends on whether

the problem is a k-eigenvalue problem or not.

If it is a fixed-source problem, the function perform adjoint fxdS solve() is

called to compute the adjoint fluxes. This subroutine first tells the QOI class to

initialize the sensitivity vectors. Then, the proper adjoint source is computed and

stored in qfixed. Finally, the steady state solver is called with adjoint mode set to

true, and the adjoint fluxes are computed.

The k-eigenvalue case is a bit more complicated. The subroutine

perform adjoint keig solve() handles this case. First, the temporary variable Â†

is computed (see Eq. (3.82) for an example). Then, the homogeneous adjoint flux is

solved using an adjoint k-eigenvalue solve. If the QOI is REACTIVITY, then we are

done (there is no MSASolve required). Otherwise, the MSA source is computed and

an MSA solve is performed using the homogeneous ψ† for orthogonalization.

The DplAdjointSolver class

The DplAdjointSolver class is implemented in DplAdjointSolver.h. This

solver is called if the input file specifies that the problem is both an adjoint problem
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and a depletion problem. The driver subroutine is dpl adjoint sollve(), which is

heavily documented in the source code and very procedural in nature, meaning that

it is simply a flow of logic depending on the user specifications. Therefore, we do not

document this subroutine here, as it would be much less effective than examining

the source code.

Other subroutines do require some notes. The subroutine adjoint depletion step()

integrates the adjoint variables backwards over a single cycle. The subroutine first

compute the end-of-cycle adjoint fluxes. It then enters a loop over time-steps and,

within each time step, a loop over stages. Within a stage, the code proceeds as

follows

1. if (not first stage), compute ψ†

2. advance the index of the forward solution backwards one

3. recover forward fluxes (depends on checkpointing scheme, see recover forward psis()

documentation

4. cross-correlate

5. advance N †s according to Runge-Kutta rule

This procedure is exactly like the Runge-Kutta integration of the forward equations,

but with the added complication of keeping track of the forward solution index.

Two subroutines exist to prepare for adjoint flux solves. The first,

prepare for adjoint ss solve(), computes the adjoint fixed source and stores it

in qfixed prior to a fixed-source adjoint solve. This calculation involves the right-

hand-side of Eq. (3.49). This subroutine also updates Σt in each cell using the proper

forward density solutions.
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The second subroutine is for k-eigenvalue problems; it is

prepare for adjoint keig solve(). This subroutine does three major calcula-

tions: (a) solves for the current A†; (b) solves for the homogeneous adjoint funda-

mental mode flux shape, which is required for orthogonalization of the adjoint flux

solution; and (c) it computes and stores the “base MSA source”, or right-hand-side

of Eq. (3.76) by calling the compute baseMSAsource function in the BatemanSolver

class.

The subroutine initialize sensitivity vectors() is called just before the

adjoint solve commences. The logic here is somewhat convoluted because of the many

forms of the sensitivity equation for the different QOIs. The overarching functionality

here is to compute the terms in the sensitivity equation (either Eq. (3.52) is source-

driven or Eq. (3.85) if k-eigenvalue) that are to be evaluated at t = tf . First, if the

QOI is REACTIVITY, everything is treated different (see Sec. 3.6.3). Here we calculate

and normalize ψ̂†, which is simply the homogeneous adjoint flux. The QOI class then

uses this to calculate the terminal sensitivity terms.

For other QOIs, if the QOI does not depend on the flux, then ψ̂† and Â†, if

it exists, are zero, and this sub-routine simply allocates the sensitivity vectors as

necessary. On the other hand, if the QOI does depend on the flux (that is, ∂R
∂ψ
6= 0),

ψ̂† and Â† (if necessary) must be computed. In the k-eigenvalue case, this requires

the homogenous adjoint k-eigenvalue solve, calculation and storage of the terminal

condition MSA source (right hand side of Eq. (3.83)), which is done by the QOI class,

and finally and MSA solve for ψ̂†. Otherwise, if it is a source-driven problem, the

right terminal adjoint fixed source (right hand side of Eq. (3.50)) must be calculated,

again by the QOI class, and a fixed source solve is performed.

At the end of this calculation, ψ̂† is sitting on the active elements (if necessary)

and is used by the QOI class in a subsequent call to compute the sensitivity terms
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that are evaluated at t = tf as well as the terminal condition for N †.

The final subroutine in the DplAdjointSolver class that we describe is

recover forward psis(). This subroutine is called during the adjoint depletion step

subroutine to recover the forward angular fluxes at the current stage in order to form

the adjoint source and operator terms. The manner by which the adjoint fluxes are re-

covered depends on the checkpointing scheme. If the scheme is STORE or CHECKPOINT,

the angular fluxes are already in RAM and nothing is to be done. If the scheme is

STORE MOMENTS or CHECKPOINT MOMENTS, the angular flux must be recovered from the

stored source moments. This calculation is handled by the compute forward psis

subroutine in the BPSolver class.

This subroutine becomes more complicated if the checkpointing scheme is the

INTERPOLATE MOMENTS scheme. First, if we are using this scheme and we have reached

the end of the cycle, we do not need to perform any interpolation because the source

moments are already stored. This is handled by a call to compute forward psis

with a pointer to the first (zero-th) moment storage location.

If we are somewhere in the middle of the cycle, we must interpolate source mo-

ments between the beginning-of-cycle and end-of-cycle, which are stored in RAM.

First, the interpolation is performed linearly using the known forward source index.

This interpolation is performed by the Checkpointer class. Once the source mo-

ments have been calculated, a single sweep is performed to recover a guess for φ to

form the initial flux guess, and then a full ss solve is performed to converge the

scalar flux.
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APPENDIX C

LISTING OF OTHER VERIFICATION PROBLEMS

C.1 Infinite Medium, Pure Absorber Source-Driven Problem

We can derive analytic solutions for the depletion adjoint equations in the limit

of a pure absorber in an infinite medium. For example, in this limit with two energy

groups and a single pure absorbing material, the governing equations are

dN

dt
+N

(
φ1σ̂1 + φ2σ̂2

)
= 0

Nσ̂1ψe1q =
S1

4π

Nσ̂2ψe2q =
S2

4π

t ∈ [0, T ]

N(t = 0) = N0

where e and q are element and angle indices, respectively, the element scalar flux is

φeg =
∑

q ψegqωq→0, and the cell-averaged scalar flux is φg = 1
V

∑
e φegVe, where Ve

and V are the element and cell volumes, respectively (note: we model an infinite

medium in PDT using a single, really big cell, so these volumes make sense for the

discrete problem). Our task is to compute some QOI, a functional of the solution

to these equations, and the sensitivity of this QOI with respect to the microscopic

cross sections.

Consider solving these equations over a single time step T with the forward Euler
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(fully explicit) time discretization scheme. The initial fluxes are

ψegq(0) =
Sg

4πN(0)σ̂g
−→ φg(0) =

Sg
N(0)σ̂g

.

We now integrate the Bateman equation from t = 0 to t = T using the time derivative

evaluated at t = 0, and subsequently solve the transport equations for the t = T

fluxes:

dN

dt
= −N(0)

(
φ1(0)σ̂1 + φ2(0)σ̂2

)
= −

(
S1 + S2

)
−→

 N(T ) = N(0)− T
∑

g Sg

ψegq(T ) = Sg
4πN(T )σ̂g

We now put the problem in the context of the adjoint formalism given in Sec.

3.2. We first define a QOI: the total inventory (in moles) of the material at t = T .

The expression for this QOI is

Q =

∫
D

N(T )

NA

dV =

∫
D

∫ ∞
0

∫
4π

N(T )

NA

∫
dΩ
∫
dE

dΩdEdV =
VN(T )

NA

, (C.1)

where NA is Avogadro’s number in units of
[

atom
mol

cm2

b

]
. We see that for this discretiza-

tion scheme, the QOI is not sensitive to the cross sections. The adjoint analysis

should result in dQ
dσ̂g

= 0.

From Eq. (C.1), we extract our definition for the functional R appearing in Eq.

(3.47)

R ≡ N(T )

NA

∫
dΩ
∫
dE

,

which has units of
[

mol
cm3−MeV−Ster

]
.

The terminal condition for the adjoint densities is given by Eq. (3.51) (with ψ̂† = 0
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as

N †(T ) =
∂

∂N

〈
g
〉
E,D,Ω

=
V

NA

,

which has units of
[

b−cm−mol
atom

]
. We can now solve for the terminal adjoint flux using

the adjoint transport equation (Eq. (3.49)), which for this problem reduces to

H†ψ†egq = N †
∂bN

∂ψegq
.

Operator b has the form of Eq. (2.25); to extract the expression for b of this problem,

we write

〈
bN
〉
E,D,Ω

= −N(φ1σ̂1 + φ2σ̂2) =
〈−σ̂gψegqN

V

〉
E,D,Ω

where we recall that ψegg must be converted to units of
[

1
b−s−MeV−Ster

]
. Then the

operator is

bN =
−σ̂gψegqN

V
Fcm

b ,

which has units of
[

atom
b−cm4−s−MeV−Ster

]
.

Our adjoint transport equation for adjoint flux at t = T can now be written

specifically as

σ̂gN(T )ψ†egq(T ) =

(
V

NA

)(
−σ̂gN(T )Fcm

b

V

)
,
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yielding solution

ψ†egq(T ) = −Fcm
b

NA

which has units of
[

mol
atom

]
.

The next step is to integrate the adjoint Bateman equation, Eq. (3.48), to obtain

the adjoint densities at t = 0. For adjoint consistency, this equation must be inte-

grated with the forward Euler scheme, which for the reverse time integration, means

that the derivatives are evaluated at t = T . For this problem, the adjoint Bateman

equation reduces to

dN †

dt
=
〈
ψ†
∂Hψ

∂N
− b†N †

〉
E,D,Ω

(C.2)

The first term inside the inner product on the right hand side, evaluated at t = T , is

ψ†(T )
∂Hψ(T )

∂N
=

(
−Fcm

b

NA

)
σ̂gψegq(T ) (C.3)

The second term inside the inner product requires a definition of b†, which we have

shown is simply the transpose of the forward operator b. As we only have a single-

term matrix,

b†N † =

(
− σ̂gψegq(T )

V
Fcm

b

)(
V

NA

)
= − σ̂gψegq(T )Fcm

b

NA

, (C.4)

which has units of
[

b−mol
atom−s−MeV−Ster−cm2

]
. Subtracting Eq. (C.4) from Eq. (C.3), we

see that the right hand side of Eq. (C.2) is zero, or

N †(0) = N †(T ) =
V

NA
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Finally, the adjoint flux at t = 0 is also the same as at t = T , namely

ψ†geq(0) = − 1

NA

The final task is to integrate the sensitivity equation, Eq. (3.52), using the forward

and adjoint solutions derived above. This integration must be performed once for

each σ̂g. The non-zero terms in the sensitivity equation are

dQ

dσ̂g
= −

∫ tf

t0

〈
ψ†
(∂Hψ
∂σ̂g

〉
E,D,Ω

dt+

∫ tf

t0

〈
N †

∂bN

∂σ̂g

〉
E,D,Ω

dt.

As described in Sec. 3.5, we compute this integral by appending a dummy system of

equations to the adjoint system of equations. The forward Euler expression for this

backwards integration is

dQ

dσ̂g
= −T

{
−
〈
ψ†(T )

(∂Hψ(T )

∂σ̂g

〉
E,D,Ω

+
〈
N †(T )

∂bN(T )

∂σ̂g

〉
E,D,Ω

}

The first term on the right hand side is

−
〈
ψ†(T )

∂Hψ(T )

∂σ̂g

〉
E,D,Ω

= −
〈(
−Fcm

b

NA

)
N(T )ψegq(T )

〉
E,D,Ω

, (C.5)

which has units of
[

mol
b−s

]
. The second term is

〈
N †(T )

∂bN(T )

∂σ̂g

〉
E,D,Ω

=
〈( V

NA

)(
−Fcm

b

V

)
ψegq(T )N(T )

〉
E,D,Ω

(C.6)

which also has units of
[

mol
b−s

]
. We see that these terms cancel, giving the desired

result of
dQ

dσ̂g
= 0.

This problem was run in PDT using the parameters and geometry given in Table
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C.1.

Table C.1: Parameters for the “infinite medium”, pure absorber, 2 group adjoint
verification problem

Parameter Value

# Cells 1

Cell Volume, V (2.0× 3.0× 2.0) · 107 = 1.2e+22 cm3

Spatial Discretization PWLD (8 Elements)

Element Volume, Ve 1.5e+21 cm3

Simulation Time, T 6.048e+05s = 1 week

Runge-Kutta Scheme Explicit Euler

Initial Density, N0 3
[

a
bn−cm

]
σ̂1, σ̂2 4.0 [bn], 1.0 [bn]

S1, S2 4.2e12
[

n
cm3−MeV−s

]
, 4.2e12

[
n

cm3−MeV−s

]
Solver Tolerances 1.0e-07

Table C.2 gives a list of analytic expressions, their numerical value, the value

computed with PDT, and the relative difference.
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Table C.2: Key expressions, analytic values, and numerical values for the infinite
medium, 2 group pure absorber adjoint depletion verification problem (ε =machine
precision).

Description Expression Analytic PDT Relative

Value Value Difference

Initial Group 1 S1

N(0)σ̂1
3.50e11 3.4999999e+11 -6.4e-07%

Scalar Flux

Initial Group 2 S2

N(0)σ̂2
1.40e12 1.3999999e+12 -2.6e-06%

Scalar Flux

Final Density N0 − T
∑

g Sg 2.9999949e+00 2.9999949e+00 ε

QOI VN(T )
NA

5.9779299e+22 5.9779299e+22 ε

Final Group 1 S1

N(T )σ̂1
3.5000059e+11 3.5000059e+11 -6.4e-07%

Scalar Flux

Final Group 2 S2

N(T )σ̂2
1.4000024e+12 1.4000023e+12 -2.6e-06%

Scalar Flux

Terminal Adjoint V

NA
1.9926467e+22 1.9926467e+22 ε

Density, N †(T )

Gp. 1 Adjoint
− σ̂1N(T )Fcm

b

NA
-1.9926433e-23 -1.9926433e-23 3.1e-06%

Trans. Src.

Gp. 2 Adjoint
− σ̂1N(T )Fcm

b

NA
-4.9816083e-24 -4.9816084e-24 3.1e-06%

Trans. Src.

Gp. 1 Adjoint
−4πFcm

b

NA
-2.0866947e-23 -2.0866948e-23 2.4e-06%

Scalar Flux, t = T

Gp. 2 Adjoint
−4πFcm

b

NA
-2.0866947e-23 -2.0866948e-23 2.4e-06%

Scalar Flux, t = T
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Table C.2 continued

Adj. Btmn Src 〈
ψ† ∂Hψ

∂N

〉
E,D,Ω

-5.5794202e+10 -5.5794106e+10 -1.7e-04%Term 1:〈
Eq. (C.3)

〉
E,D,Ω

Adj. Btmn Src 〈
b†N †

〉
E,D,Ω

-5.5794202e-14 -5.5794106e+10 -1.7e-04%Term 2:〈
Eq. (C.4)

〉
E,D,Ω

First Term,

Eq. (C.5) -2.0922790e+10 -2.0922790e+10 -1.3e-06%Gp 1 Sens. Eq.:

Eq. (C.5)

Second Term,

Eq. (C.6) -2.0922790e+10 -2.0922790e+10 -6.4e-07Gp 1 Sens. Eq.:

Eq. (C.6)

First Term,

Eq. (C.5) -8.3691161e+10 -8.3691157e+10 -5.1e-06%Gp 2 Sens. Eq.:

Eq. (C.5)

Second Term,

Eq. (C.6) -8.3691161e+10 -8.3691159e+10 -2.6e-06Gp 2 Sens. Eq.:

Eq. (C.6)

Sensitivity dQ

dσ̂1

0.0 -8.1176259e+07 ε
w.r.t. σ̂1

Sensitivity dQ

dσ̂2

0.0 -1.2988200e+09 ε
w.r.t. σ̂2

Adj. Density, V

NA

1.9926467e+22 1.9926467e+22 ε
N †(T )

Gp. 1 Adjoint −4πFcm
b

NA

-2.0866947e-23 -2.0866948e-23 2.4e-06%
Scalar Flux, t = 0

Gp. 2 Adjoint −4πFcm
b

NA

-2.0866947e-23 -2.0866948e-23 2.4e-06%
Scalar Flux, t = 0
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C.2 Infinite Medium, Source-Driven Problem with Scattering

We can also derive analytic solutions for a single-component, infinite-medium

problem with down scattering and within-group scattering. We will use the analytic

solutions to verify both sensitivity and error estimates. The governing equations are

dN

dt
+ Fcm

b N(σ̂a,1φ1 + σ̂a,2φ2) + λN = 0

Nσ̂t,1ψ1 =
S1

4π
+
σ̂s,11φ1N

4π

Nσ̂t,2ψ2 =
S2

4π
+
σ̂s,22φ2N

4π
+
σ̂s,12φ1N

4π

t ∈ [0, tf ]

N(0) = N0

As we are in an infinite medium, φg = 4πψg, and the flux is the same for all angles

and all spatial points. Also, the absorption cross sections are σ̂a,1 = σ̂t,1− σ̂s,11− σ̂s,12

and σ̂a,2 = σ̂t,2 − σ̂s,22. We find the following flux solutions:

ψ1 =
S1

4πNσ̂R,1
→ φ1 =

S1

Nσ̂R,1

ψ2 =
S2

4πNσ̂R,2
+

S1σ̂s,12

4πσ̂R,1σ̂R,2N
→ φ2 =

S2

Nσ̂R,2
+

S1σ̂s,12

σ̂R,1σ̂R,2N
,
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where σ̂R,1 = σ̂1,t− σ̂s,11 and σ̂R,2 = σ̂t,2− σ̂s,22 = σ̂a,2. Substituting the flux solutions

into the Bateman equation, we find

0 =
dN

dt
+ Fcm

b N

(
σ̂a,1

S1

Nσ̂R,1
+ σ̂a,2

[ S2

Nσ̂R,2
+

S1σ̂s,12

Nσ̂R,1σ̂R,2

])
+ λN

=
dN

dt
+ Fcm

b

(
S1σ̂a,1
σ̂R,1

+
S1σ̂s,12σ̂a,2
σ̂R,1σ̂R,2

+
S2σ̂a,2
σ̂R,2

)
+ λN

=
dN

dt
+ Fcm

b

(
S1σ̂a,1
σ̂R,1

+
S1σ̂s,12

σ̂R,1
+ S2

)
=
dN

dt
+ Fcm

b

(
S1 + S2

)
+ λN

≡ dN

dt
+ α + λN

The analytic solution to the Bateman equation is

N(t) =
[α
λ

+N0

]
exp (−λt)− α

λ
.

Define our QOI as the total number of mols of the component at t = tf ,

Q =
〈 1

〈〉E,Ω
N

NA

〉
E,D,Ω

=
N(tf )V

NA

.

Thus we have an analytic solution for our QOI

Q =
V

NA

[
α

λ
+N0

]
exp (−λtf )−

αV

λNA

(C.7)

Note that this QOI is not sensitive to the cross sections: dQ
dσ̂∗

= 0. We have an

analytic sensitivity w.r.t the decay constant, λ:

dQ

dλ
= − V

NA

[
tfα

λ
+ tfN0 +

α

λ2

]
exp (−λtf ) +

αV

NAλ2
(C.8)
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Consider solving our Bateman equation (which is not dependent on the flux) using a

series of explicit Euler steps. Let the time step be fixed at T and denote the solution

N(t = jT ) as Nj. The procession is

N1 = N0 − T (α + λN0)

= (1− λT )N0 − αT

N2 = N1 − T (α + λN1)

= (1− λT )N1 − αT

= (1− λT )2N0 − αT (1− λT )− αT

N3 = N2 − T (α + λN2)

= (1− λT )N2 − αT

= (1− λT )3N0 − αT (1− λT )2 − αT (1− λT )− αT

. . .

Nj = (1− λT )jN0 − αT
j−1∑
i=0

(1− λT )i.

The expressions for our discrete QOI, Q̃j = Q̃(t = jT ), and its sensitivity to λ are

Q̃j =
V

NA

[
(1− λT )jN0 − αT

j−1∑
i=0

(1− λT )i
]

(C.9)

dQ̃j

dλ
=

V

NA

[
− jTN0(1− λT )j−1 + αT 2

j−2∑
i=0

(i+ 1)(1− λT )i
]

(C.10)

First, we verify that this time marching scheme is giving us the expected result,
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Q̃ = Q+O(T ). If we let tf = jT and expand Eq. (C.7) about small T , we find

Q =
V

NA

[
N0 −

(
α +N0λ

)
T +

1

2

(
αλ+ λ2N0

)
T 2 − 1

6

(
N0λ

3 + αλ2
)
T 3

]
+O(T 4)

(C.11)

Next we expand Eq. (C.9) to O(T 3):

Q̃ =
V

NA

[
N0 − jλN0T +

j−1∑
i=0

iλN0T
2 − αT

j−1∑
i=0

(1− iλT )

]
+O(T 3)

=
V

NA

[
N0 − jλN0T +

j−1∑
i=0

iλN0T
2 − jαT +

j−1∑
i=0

iαλT 2

]
+O(T 3) (C.12)

By inspection of Eqs. (C.11) and (C.12), we indeed see that the expansions of Q and

Q̃ agree through O(T ) terms. Similarly, we expand our expression for the analytic

sensitivity

dQ

dλ
= − V

NA

[
jTα

λ
+ jTN0 +

α

λ2

][
1− jλT +

1

2
j2λ2T 2

]
+

αV

NAλ2
+O(T 3)

= − V

NA

[
jαT

λ
+ jTN0 +

α

λ2
− j2αT 2 − j2λN0T

2

− jαT

λ
+

1

2
j2αT 2

]
+

αV

NAλ2
+O(T 3)

= − V

NA

[
jN0T −

[1

2
j2α + j2λN0

]
T 2

]
+O(T 3) (C.13)

and the discrete sensitivity

dQ̃

dλ
=

V

NA

[
− jN0T + j(j − 1)N0λT

2 + αT 2

j−2∑
i=0

(i+ 1)

]
(C.14)

Again, by inspection of Eqs. (C.13) and (C.14) we see that the discrete sensitivity

matches the analytic sensitivity through O(T ) terms.
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This problem was run in PDT using the parameters and geometry given in Table

C.3.

Table C.3: Parameters for the “infinite medium”, 2 group adjoint verification prob-
lem with within-group and down scattering

Parameter Value

# Cells 1

Cell Volume, V (2.0× 3.0× 2.0) · 107 = 1.2e+22 cm3

Spatial Discretization PWLD (8 Elements)

Element Volume, Ve 1.5e+21 cm3

Simulation Time, tf 5 Cycles of 5.0e9 s

Time Steps, T Varying

Initial Density, N0 3.0
[

a
bn−cm

]
σ̂t,1, σ̂t,2 4.0, 2.2 [bn]

σ̂s,11, σ̂s,12, σ̂s,21, σ̂s,22 0.3, 1.2, 0.0, 1.2 [bn]

S1, S2 4.2e14
[

n
cm3−MeV−s

]
, 4.2e14

[
n

cm3−MeV−s

]
Solver Tolerances 1.0e-12

First we show that PDT is indeed computing the predicted explicit Euler result.

Table C.4 gives ε, defined as

ε =
Q̃PDT − Q̃Pred

Q̃Pred

for each of the different time steps that were tested. Here, Q̃PDT is the PDT result

and Q̃Pred is the evaluation of Eq. (C.9). We see that the relative difference is very

small.
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Table C.4: Comparison of the predicted Explicit Euler result, Eq. (C.9), and the
result computed in PDT

Time Step (s) Difference, ε

1.5625e+08 8.9598e-09

3.125e+08 8.9225e-09

6.25e+08 8.8491e-09

1.25e+09 8.7064e-09

2.50e+09 8.4307e-09

5.00e+09 7.9215e-09

Next we verify that our QOI prediction and its sensitivity to λ are achieving the

order of accuracy predicted by theory. Above, we showed that the explicit Euler

method should converge linearly with the time step T . We also test the modified

Euler Runge-Kutta scheme (see Eq. (E.2) in Appendix E), which should achieve

second order accuracy in these predictions. Figure C.1 shows the error in predicting

the QOI as a function of the time step. Figure C.2 shows the error in predicting the

sensitivity of the QOI with respect to the decay constant λ.
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Figure C.1: The figure gives the error in predicting the inventory QOI as a function
of time-step size. The explicit Euler method converges as O(T ) and the modified
Euler method converges as O(T 2), as predicted by theory.
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Figure C.2: The figure gives the error in predicting the sensitivity of the QOI with
respect to λ as a function of time-step size. The explicit Euler method converges as
O(T ) and the modified Euler method converges as O(T 2), as predicted by theory.

This verification problem is also useful for testing the prediction of the global

discretization error. First, consider solving for a single time-step, tf = T . By Eq.

(C.7), the analytic value of the QOI is

Q(T ) =
V

NA

[
α

λ
+N0

]
exp (−λT )− V α

NAλ
.

The explicit Euler solution over the time step is simply

N (1)(T ) = N0 − αT − λN0T, (C.15)
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where the superscript (p) indicates an order-(p) solution. Using this or Eq. (C.9) with

j = 1, we have for our discrete QOI

Q̃(T ) =
V

NA

[
N0 − αT − λN0T

]
.

We will now follow our formalism given in section 3.1.2 for computing an estimate

for ∆Q = Q − Q̃, defined in this case as the error in predicting the QOI due to

truncation in the time discretization. For this, we will consider only rd1(t), which is

a residual error made in evaluating the differential governing equations. In this case,

Eq. (3.53) simplifies to

∆Q = −
∫ tf

t0

N †(s)rd1(s)ds. (C.16)

The residual rd1 is defined by subtracting the exact Bateman equation from the

approximate Bateman equation as

rd1(T ) = B(φ(T ))N(T )−B(φ̃(T ))Ñ(T )−

(
dN

dt
− dÑ

dt

)

= (−α− λN(T ))−
(
−α− λÑ(T )

)
−

(
N(T )−N0

T
− Ñ(T )−N0

T

)

= −λ
[
N(T )− Ñ(T )

]
− N(T )− Ñ(T )

T
. (C.17)

In this expression, N is the true (or continuous) density vector, and Ñ is the ap-

proximate (discrete) density vector. We do not have the continuous solution; we can,

however, use our Heun-Euler (see Eq. (E.4) in Appendix E) embedded Runge-Kutta
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method to obtain a second-order accurate estimate for N . This method gives

N (2)(T ) = N0 −
T

2

(
α + λN̂1

)
− T

2

(
α + λN̂2

)

where

N̂1 = N0

N̂2 = N0 − αT − λN0T.

After some manipulation, we find our second-order accurate solution for N is

N (2)(T ) = N0 − αT − λN0T +
1

2
αλT 2 +

1

2
λ2N0T

2 (C.18)

If we take N (2) as our estimate for N and substitute Eqs. (C.15) and (C.18) into Eq.

(C.17), we find the following expression for our residual:

rd1(T ) = −1

2
λT
(
1 + λT

)(
α + λN0

)
.

By Eq. (3.51), the terminal value of the adjoint density is N †(T ) = V
NA

.

At this point, we must decide how to integrate Eq. (C.16). If we choose an

explicit, first order rule (that is, a rule consistent with the integration of the adjoint

equations), we find

∆Qpred =
V

2NA

λT 2
(
1 + λT

)(
α + λN0

)
.

We can check the accuracy of this estimate by expanding ∆Qpred and ∆Qanalytic ≡
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Q− Q̃ in terms of T :

∆Qpred =
V

2NA

(
λT 2 + λ2T 2

)(
α + λN0

)
=

V

2NA

(
αλT 2 + λ2N0T

2 + αλ2T 3 + λ3N0T
3
)

∆Qanalytic =
V

NA

[α
λ

+N0

][
1− λT +

1

2
λ2T 2 +O(T 3)

]
− V α

λNA

− V

NA

[
N0 − αT − λN0T

]
=

V

2NA

[
αλT 2 + λ2N0T

2
]

+O(T 3).

Note that the prediction of the error and the actual error match through O(T 2).

We now move back to our problem of multiple time steps and multiple cycles.

We expect the accuracy of the error prediction to drop by a factor of T when inte-

grating over multiple time steps. Figure C.3 shows that indeed the error in the error

prediction is decreasing as O(T 2) for this test problem.
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Figure C.3: The figure gives the error in predicting the error in the QOI as a function
of time-step size. For this problem, the error is converging as O(T 2).
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APPENDIX D

THE FUNDAMENTAL SOLUTION MATRIX METHOD APPLIED TO

FORWARD AND ADJOINT SYSTEMS

In this appendix we review the fundamental solution matrix and its application

in solving a linear system of equations and the corresponding adjoint system[61].

Consider the general, homogeneous system of ordinary differential equations

dx

dt
= A(t)x, t ∈ [t0, tf ], x ∈ Rn (D.1)

Under a common set of assumptions, this system has an infinitude of solutions, each

corresponding to a unique initial condition x(t0) = x0. Define the notation x(t; t0, xi)

to be the solution x(t) corresponding to the initial condition x(t0) = xi. This is, in

effect, a mapping from xi ∈ Rn to x(t) ∈ Rn, which we will write as x(t) = C(t; t0)xi.

If x1 and x2 are two linearly independent initial conditions, then it follows that

C(t; t0)(α1x1 + α2x2) = x(t; t0, α1x1 + α2x2)

and

α1C(t; t0)x1 + α2C(t; t0)x2 = α1x(t; t0, x1) + α2x(t; t0, x2)

are equivalent. Thus, the mapping C(t; t0) is linear. In particular, note that

x(t0) = C(t0; t0)x0 → C(t0; t0) = In.
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A final essential property is that for all t, s, u, we have

C(t; s)C(s;u) = C(t;u)

This can be shown by writing

C(t; s)C(s;u)x0 = x
(
t; s, C(s;u)x0

)
= x

(
t; s, x(s;u, x0)

)
= x

(
t;u, x0

)
= C(t;u)x0

Then, for s = t0 and u = t, we can write

C(t; t0)C(t0, t) = C(t; t) = In,

revealing that C(t; t0) is invertible, and its inverse is C(t0; t).

Now we are ready to proceed with forming solutions to Eq. (D.1) and its adjoint.

First, define the matrix Φ ∈ Rn×n as the matrix whose columns are a set of n linearly

independent solutions to Eq. (D.1), Φ ≡
[
x1(t), . . . xn(t)

]
. This matrix is called a

fundamental solution matrix, and it satisfies

dΦ

dt
= A(t)Φ(t)

Theory of superposition gives that for any vector v ∈ Rn, the vector

y = Φv

is a solution to Eq. (D.1). In particular, consider solving for a set of coefficients to
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satisfy the initial condition

x0 = Φ(0)v → v = Φ−1(0)x0,

and the solution to Eq. (D.1) with initial condition x(t0) = x0 is

x(t) = Φ(t)Φ−1(0)x0.

Note that this is immediately related to our mapping from before: C(t, t0) = Φ(t)Φ−1(0).

Now consider the adjoint of Eq. (D.1),

dx†

dt
= −A†(t)x†, (D.2)

where A† is such that
〈
x†, Ax

〉
=
〈
x,A†x†

〉
. Let C†(t; t0) be its corresponding linear

transformation. To relate C†(t; t0) and C(t; t0), we first show that the inner product〈
x, x†

〉
is a constant:

d

dt

〈
x, x†

〉
=
〈dx
dt
, x†

〉
+
〈
x,

dx†

dt

〉
=
〈
Ax, x†

〉
−
〈
x, A†x†

〉
= 0.

Now note that
[
C†(t; t0)

]T
is a matrix whose rows are solutions to the adjoint system.

Thus,

d

dt

〈[
C†(t; t0)

]T
C(t, t0)

〉
= 0,

because this matrix multiplication is simply a series of dot products of adjoint and

forward solution vectors. Now, using a previous result, namely
[
C†(t0; t0)

]T
C(t0, t0) =
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InIn = In, and the preceding equation, we can write

〈[
C†(t; t0)

]T
C(t, t0)

〉
=
〈
In

〉
∀t

This is satisfied if the following is true:

[
C†(t; t0)

]T
= C−1(t; t0)

or

C†(t; t0) = C−T (t; t0).

If this is true,

C†(t; t0) = C−T (t; t0) =
[
Φ(t)Φ−1(t0)

]−T
= Φ−T (t)ΦT (0)

Adjoint equations typically have terminal conditions. Thus, the solution to Eq. (D.2)

with terminal condition x†(tf ) = x†f is

x†(s) = Φ−T (s)ΦT (tf )x
†
f .

Finally, to support some theory in this dissertation, we will need to use the

preceding formalism to solve equations of the form

dx

dt
= A(t)x+ f(t)

Following the theory in [61], we make a change of variables x(t) = C(t; t0)y(t), note
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that y(t0) = x(t0), and write

dx

dt
=
dC(t; t0)

dt
y(t) + C(t; t0)

dy

dt

= A(t)C(t; t0)y(t) + f(t).

From this we extract C(t; t0)dy
dt

= f(t), or dy
dt

= C−1(t; t0)f(t) = C(t0; t)f(t). If we

integrate this equation from y0:

y(t) = y0 +

∫ t

t0

C(t0; s)f(s)ds

and transform back to the variable x:

x(t; t0, x0) = C(t; t0)x0 + C(t; t0)

∫ t

t0

C(t0; s)f(s)ds

and find that the solution to the inhomogeneous equations can be related to Φ as

follows

x(t; t0, x0) = Φ(t)Φ−1(0)x0 +

∫ t

t0

Φ(t)Φ−1(s)f(s)ds (D.3)
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APPENDIX E

LISTING OF RUNGE-KUTTA METHODS

The following is a list of common Runge-Kutta methods, some of which are used

in the analysis and numerical examples of this dissertation.

• Explicit Euler

– Number of Stages: 1

– Order of accuracy: 1

– Explicit method

– Embedded Method? No

– Butcher tableau:

0 0

1
(E.1)

• Modified Euler

– Number of Stages: 2

– Order of accuracy: 2

– Explicit method

– Embedded Method? No
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– Butcher tableau:

0 0

1 1 0

1
2

1
2

(E.2)

• Classic Fourth Order (RK4)

– Number of Stages: 4

– Order of accuracy: 4

– Explicit method

– Embedded Method? No

– Butcher tableau:

0 0

1
2

1
2

0

1
2

0 1
2

0

1 0 0 1 0

1
6

1
3

1
3

1
6

(E.3)

• Heun-Euler

– Number of Stages: 1/2

– Order of Accuracy: 1/2

– Explicit Method

– Embedded Method? Yes
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– Butcher tableau:

0 0 0

1 1 0

1 0

1
2

1
2

(E.4)

• Implicit Euler

– Number of Stages: 1

– Order of accuracy: 1

– Implicit method

– Embedded Method? No

– Butcher tableau:

1 1

1
(E.5)

• Implicit “Midpoint” Rule

– Number of Stages: 1

– Order of accuracy: 1

– Implicit method

– Embedded Method? No

– Butcher tableau:

1
2

1
2

1
(E.6)
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APPENDIX F

LISTING OF DEPLETION CHAINS

F.1 Synthetic Two Group, Four Component Model

Group boundaries (eV): 5.0, 4.0, 0.0

Depletion mechanisms:

• U-235 (n,removal) (nothing)

• U-235 (n,fission) Fe-56 (83%)

• U-238 (n,removal) (nothing)

• U-238 (n, γ) U-239

• U-238 (n,fission) Fe-56 (13%)

• U-239 (n,removal) (nothing)

• U-239 (n,fission) Fe-56 (50%)

• Fe-56 (n,removal) (nothing)
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Table F.1: List of parameters and values for the synthetic, 2-group, 4-component
depletion model

Parameter U-235 U-238 U-239 Fe-56

σt,1 [b] 1.8 1.8 2.0 2.6

σt,2 [b] 8.3 12.3 9.3 1.3

σf,1 [b] 0.7 0.15 0.0 0.0

σf,2 [b] 5.0 6.1 6.0 0.0

σγ,1 [b] 0.4 0.8 0.8 0.0

σγ,2 [b] 1.3 3.3 0.3 0.0

Ef [MeV] 190.3 210.0 220.3 0.0

ν1 2.2 2.2 2.2 0.0

ν2 2.2 2.2 2.2 0.0

χ1 0.9 0.8 0.95 n/a

χ2 0.1 0.2 0.05 n/a

σs,1→1 [b] 0.05 0.15 0.45 0.50

σs,1→2 [b] 0.2 0.2 0.2 0.04

σs,2→1 [b] 0.0 0.0 0.2 0.8

σs,2→2 [b] 2.0 1.0 1.4 0.2

F.2 33 group, fast spectrum cross sections from Argonne National Laboratory

Michael Smith, Oleg Roderick, and Mihai Anitescu, staff members at Argonne

National Laboratory (ANL), generated this set of cross sections for use in a fast-

spectrum, traveling wave reactor simulation. They are spatially self-shielded, 33-

group cross sections with data for total, capture, n-2n, n-proton, n-deuteron, n-

triton, n-alpha, fission, neutrons per fission, fission spectrum, and scattering with

three moments. The nuclides provided are listed in Fig. F.1, and the nuclides used

in this dissertation are enclosed by the red boxes.
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Figure F.1: List of nuclides in the 33g ANL fast-spectrum cross section dataset

The cross sections were generated by the MC2 Monte Carlo transport code using

fast-spectrum averaging, ENDF-VII data, and a reference composition from bench-

mark solutions to the traveling wave reactor problem. As the figure indicates, the

cross sections that contributed to this work are the major actinides and the lumped

fission products. There is one lumped fission product for each actinide that could

fission (e.g. MU-35 corresponds to Uranium-235), and that actinide produces one

such fission product per fission event.
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