
ON THE ANALYSIS OF SPATIALLY-COUPLED GLDPC CODES AND THE

WEIGHTED MIN-SUM ALGORITHM

A Dissertation

by

YUNG-YIH JIAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Henry D. Pfister
Committee Members, Krishna R. Narayanan

Thomas Schlumprecht
Srinivas Shakkottai

Head of Department, Chanan Singh

August 2013

Major Subject: Electrical Engineering

Copyright 2013 Yung-Yih Jian

ABSTRACT

This dissertation studies methods to achieve reliable communication over unre-

liable channels. Iterative decoding algorithms for low-density parity-check (LDPC)

codes and generalized LDPC (GLDPC) codes are analyzed.

A new class of error-correcting codes to enhance the reliability of the communi-

cation for high-speed systems, such as optical communication systems, is proposed.

The class of spatially-coupled GLDPC codes is studied, and a new iterative hard-

decision decoding (HDD) algorithm for GLDPC codes is introduced. The main re-

sult is that the minimal redundancy allowed by Shannon’s Channel Coding Theorem

can be achieved by using the new iterative HDD algorithm with spatially-coupled

GLDPC codes. A variety of low-density parity-check (LDPC) ensembles have now

been observed to approach capacity with iterative decoding. However, all of them

use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of

their component codes. To the best of our knowledge, this is the first system that

can approach the channel capacity using iterative HDD.

The optimality of a codeword returned by the weighted min-sum (WMS) algo-

rithm, an iterative decoding algorithm which is widely used in practice, is studied as

well. The attenuated max-product (AttMP) decoding and weighted min-sum (WMS)

decoding for LDPC codes are analyzed. Applying the max-product (and belief-

propagation) algorithms to loopy graphs is now quite popular for best assignment

problems. This is largely due to their low computational complexity and impressive

performance in practice. Still, there is no general understanding of the conditions

required for convergence and/or the optimality of converged solutions. This work

presents an analysis of both AttMP decoding and WMS decoding for LDPC codes

ii

which guarantees convergence to a fixed point when a weight factor, β, is sufficiently

small. It also shows that, if the fixed point satisfies some consistency conditions, then

it must be both a linear-programming (LP) and maximum-likelihood (ML) decoding

solution.

iii

DEDICATION

To my family,

and in memory of my father-in-law (1924–2013)

iv

ACKNOWLEDGEMENTS

I would like to thank all who have offered help throughout my journey to the

Ph.D. degree, especially the following subset of people. Without their support and

encouragement, it would not have been possible for me to finish this journey.

First and foremost, I would like to express my sincere gratitude to my advisor,

Professor Henry Pfister. Since the first day of joining his group, his vast mathematical

background and the ability of distilling the essence of each problem have continued to

astound me. His valuable suggestions and encouragements in each discussion have

been the most significant help in my research. His research philosophy, thinking

big pictures but starting from small examples, has greatly benefited me in the past

years. Besides the help on research, I also would like to thank for his generous

help and support when I was looking for my future career. At the beginning of my

doctoral study, I was blessed to be able to work with him and learn from him. Upon

completing the degree, I hope I have also absorbed part of his great personality:

kindness and generosity of heart, and optimism for life.

I am also grateful to Professor Krishna Narayanan for his generous help along the

way. His great intuition and deep understanding in coding theory and information

theory have made every discussion invaluable and inspirational. The knowledge I

learned from his class, Advanced Channel Coding, has been one of the most im-

portant cornerstones of my research. I am also grateful to him for his help when

I was looking for a job. I want to take this opportunity to express my sincere ap-

preciation to Professor Srinivas Shakkottai and Professor Thomas Schlumprecht for

serving on my dissertation committee. Their useful comments and generous support

have greatly improved the quality of my research.

v

I want to thank Professor Jean-Francois Chamberland, Professor Tie Liu, Pro-

fessor Shuguang Cui, Professor Scott Miller and Professor Ulisses Braga-Neto for

their wonderful courses. I also want send my warm thanks to the ECE staff for their

excellent administration support, particularly Tammy, Gayle, Claudia, Linda, and

Anni. Their help made my stay at Texas A&M smooth and enjoyable.

Sincere thanks go to all my friends and colleagues in the lab. Fan Zhang for

his constant warm encouragement in my early stage of study. Byung-Hak Kim for

introducing me topics of machine learning. Phong Sy Nguyen for the mutual encour-

agement along the way and for sharing experiences of taking care of baby. Arvind

Yedla for all the meetings and discussions in Sweet Eugene’s that have been some of

the most productive and enjoyable moments in my graduate life. Fatemeh Hamidi-

Sepehr for interesting cultural discussions and her warm encouragement. Santhosh

Kumar for interesting discussions on subjects ranging from analysis, probability to

the life of Bernhard Riemann. Andrew Young for many fruitful discussions and all

the coffee breaks in McDonald’s. Janson Moore for his unique way of introducing me

the American culture. Yu-Chih (Jerry) Huang for teaching me two-way relay chan-

nel. I also want to thank Yu-Pin Hsu, Wei-Yu Chen, Jae Won Yoo, Amir Salimi,

Avinash Vem, Engin Tunali and Brett Hern for their company in the past years.

Last but not least, I express my warmest thanks to my parents and my parents-in-

law for their constant love and support. In particular to my father-in-law, I would not

have gone for study abroad without his encouragement. I especially want to thank

my dear wife, Ching-Hua. She has supported me and believed in me throughout

the years. More than that, she gave birth to our sweetest daughter, Alexis, even

thought she was also busy in her Ph.D. study. I am deeply indebted to her for all

her sacrifices and unconditional love.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Background on LDPC Codes . 2
1.1.1 Irregular LDPC Codes . 3
1.1.2 GLDPC Codes . 4
1.1.3 Spatially-Coupled Codes . 5

1.2 Channel Coding and Inference Problems 6
1.3 Dissertation Outline . 7

2. APPROACHING CAPACITY AT HIGH RATES WITH ITERATIVE
HARD-DECISION DECODING . 9

2.1 Introduction . 9
2.2 Ensembles and Decoding Algorithms 11

2.2.1 Ensembles . 12
2.2.2 Iterative HDD with Ideal Component Decoders 14
2.2.3 Density Evolution for Iterative HDD with Ideal Component

Decoders . 17
2.2.4 Iterative HDD with Bounded Distance Decoders 20
2.2.5 Density Evolution for Iterative HDD with BDD 21

2.3 BCH Component Codes . 24
2.3.1 High-Rate Scaling Limit for Iterative HDD with Ideal Compo-

nent Decoders . 25
2.3.2 High-Rate Scaling Limit for Iterative HDD with BDD 27

2.4 Bounds on the Noise Threshold . 31
2.4.1 Iterative HDD with Ideal Component Decoders 32
2.4.2 Iterative HDD with BDD . 38

2.5 Approaching Capacity . 40

vii

2.6 Practical Implementation of Iterative HDD 45
2.6.1 Intrinsic Message Passing . 46
2.6.2 Extrinsic Message Passing . 47
2.6.3 Low-Complexity EMP Algorithm 49

2.7 Numerical Results and Comparison 52
2.8 Conclusion . 52

3. CONVERGENCE OF WEIGHTED MIN-SUM DECODING VIA
DYNAMIC PROGRAMMING ON TREES 55

3.1 Introduction . 55
3.2 Background . 58

3.2.1 Factor Graphs . 58
3.2.2 Discounted Dynamic-Programming on a Tree 59
3.2.3 Attenuated Max-Product Decoding 62
3.2.4 Weighted Min-Sum Decoding 64
3.2.5 LP Decoding . 66
3.2.6 Impossibility of a General ML Certificate for WMS Decoding . 68

3.3 Convergence and Optimality Guarantees 70
3.3.1 Attenuated Max-product Decoding 71
3.3.2 Weighted Min-Sum Decoding 77

3.4 Weighted Min-Sum Decoding with β = 1
dv−1 87

3.4.1 Optimality Guarantees . 87
3.4.2 Connections with LP Thresholds 98

3.5 Numerical Results . 99
3.6 Conclusions and Future Work . 103

4. CONCLUDING REMARKS AND FUTURE WORK 106

4.1 Capacity Approaching GLDPC Codes Using Hard-Decision Decoding 106
4.2 Convergence of Weighted Min-Sum 107

REFERENCES . 109

APPENDIX A. PROOFS OF LEMMAS . 118

A.1 Proof of Lemma 9 . 118
A.2 Proof of Lemma 10 . 121
A.3 Proof of Lemma 11 . 122
A.4 Proof of Lemma 14 . 124
A.5 Proof of Lemma 20 . 127
A.6 Proof of Lemma 26 . 129
A.7 Proof of Lemma 45 . 130
A.8 Proof of Lemma 54 . 132
A.9 Proof of Lemma 63 . 134

APPENDIX B. SUPPLEMENTAL MATERIALS 137

viii

B.1 Extensions of the Work in [1] . 137

ix

LIST OF FIGURES

FIGURE Page

2.1 A (C,m) GLDPC ensemble, where π is a random permutation. 13

2.2 An example of (C,m, L, w) spatially-coupled GLDPC ensemble, where
w = 3, and (πi, π

′
i) are random permutations at position i for bit nodes

and constraint nodes, respectively. 14

3.1 The WER (solid lines) of the WMS algorithm for (3, 6)-regular LDPC
code and the probability of converging to a set of messages that are
not WMS-consistent (dashed lines). 100

3.2 The lower bound of the LP decoding threshold for (3, 6), (4, 8) and
(5, 10)-regular LDPC codes over the BIAWGNC and the BSC. 101

3.3 WER performance comparisons for a (3, 6)-regular LDPC code over
the BSC. 103

x

LIST OF TABLES

TABLE Page

2.1 The possible values of ν
(`+1)
i,j′ with input vectors µ

(`−1)
i,j′ when c =

D(ν
(`)
j,k,0) and c′ = D(ν

(`)
j,k,1) are codewords, where ν

(`)
j,k,0 and ν

(`)
j,k,1 are

defined in (2.45) and (2.46), respectively. 51

2.2 Iterative HDD thresholds of (C,m, 1025, 16) spatially-coupled GLDPC
ensemble with binary primitive BCH codes 54

xi

1. INTRODUCTION

Communication is one of the most important activities undertaken by human

beings, and it has been a challenge throughout history to convey messages reliably

and quickly. In his ground-breaking paper [2], Shannon introduced a model to de-

scribe communication. There is a sender trying to transmit a message to a receiver

through an unreliable medium, known as the channel. In particular, he introduced

the notion of channel capacity in [2]. Let the message be a sequence of k bits, and

let the information rate be r = k
n

after adding n− k redundant bits. By adding re-

dundancy, Shannon proved that there is a fundamental trade-off between reliability

and the information rate. When the information rate is below the channel capacity,

the probability of error can be made arbitrarily small. This laid the foundation for

channel coding theory.

Researchers have invested a great deal of time looking for good codes and prac-

tical decoding algorithms to achieve the channel capacity. The channel codes can

be roughly divided into two classes: algebraic and probabilistic. For the algebraic

method, powerful mathematical tools are employed to construct codes such that the

code can have good algebraic structure, for example, large minimum distance dmin.

Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon (RS) codes and convo-

lutional codes are some famous codes in this class. When the number of errors in

the received bits is at most bdmin−1
2
c, elegant algebraic decoding algorithms guarantee

the perfect recovery of messages. Instead of having an error-free recovery when the

number of errors is at most bdmin−1
2
c, the probabilistic methods try to decode the

message successfully with high probability. This relaxation allows the probabilistic

method to correct many error patterns with more than bdmin−1
2
c errors with high

1

probability.

The invention of turbo codes [3] by Berrou, Glavieux, and Thitimajshima is an

important milestone in the probabilistic approach to decoding. The encoder of a

turbo code encodes the same message with two simple codes. At the decoder, the

received message is first decoded by one decoder, then the output is used as the input

to the other decoder. The name “turbo” comes from the fact that the outputs of the

decoders are passed between the decoders in a circular fashion, which is analogous

to the mechanism of a “turbocharged” engine. By using the turbo algorithm, the

performance of practical systems can approach Shannon’s capacity limit. This result

shows that one can get close to capacity with a moderate computational complexity.

Later, it was observed that the turbo algorithm is an iterative algorithm similar to the

one introduced by Gallager [4] in 1963. In that work, Gallager introduced another

important class of codes, called low-density parity-check (LDPC) codes. However,

these were not fully appreciated until being rediscovered by MacKay [5]. In Sec-

tion 1.1, we briefly review some background on LDPC codes, which is needed for

this dissertation. In this dissertation, we focus on the probabilistic method, and

especially iterative decoding algorithms for LDPC and generalized LDPC (GLDPC)

codes.

1.1 Background on LDPC Codes

In [4], Gallager proposed the class of regular LDPC codes. These are linear block

codes defined by the null space of a sparse parity-check matrix. In the parity-check

matrix, every column has the same number of non-zero entries, denoted by dv, and

every row has the same number of non-zero entries, denoted by dc. A regular LDPC

code can be obtained by randomly constructing a sparse matrix that satisfies these

constraints. According to these constraints on the parity-check matrix, researchers

2

also denote the regular LDPC codes by (dv, dc)-regular LDPC codes.

Besides defining a regular LDPC code, the sparse parity-check matrix also defines

an undirected bipartite graph known as the Tanner graph of the code [6]. In this

graph, there are two sets of nodes: the set of variable nodes and the set of check

nodes. By treating the parity-check matrix as the adjacency matrix of the graph,

rows in the parity-check matrix correspond to check nodes in the Tanner graph, and

columns in the parity-check matrix correspond to variable nodes. For a (dv, dc)-

regular LDPC code, bit nodes and check nodes in the Tanner graph have degrees dv

and dc, respectively. With the bipartite representation of the LDPC codes, decoding

iteratively becomes a natural strategy for the design of decoders. Researchers have

shown, empirically or theoretically, that the iterative algorithms work very well for

the decoding of LDPC codes.

1.1.1 Irregular LDPC Codes

Various tools and techniques have also been proposed to improve the design of

LDPC codes. One way to improve the design of LDPC codes is by relaxing the

constraints of regular node degrees and allowing irregular degree distributions (d.d.).

Instead of setting all variable node degrees to dv and all check node degrees to dc,

Luby et al. [7] considered the case where both the variable nodes and the check

nodes can have arbitrary degree profiles. With the same rate, it has been shown that

the irregular LDPC codes can correct more errors than the regular LDPC codes [8].

Let λi be the fraction of edges in the graph that connecting to a variable node of

degree i. Similar, ρi is the fraction of edges in the graph that connecting to a check

node of degree i. Then, irregular LDPC codes can be represented by a pair of edge-

perspective degree distributions, denoted by (λ(x), ρ(x)), where λ(x) =
∑

i≥1 λix
i−1

and ρ(x) =
∑

i≥1 ρix
i−1. Equivalently, the d.d. of the irregular LDPC code can be

3

characterized from the node perspective. Let Li and Ri be the fraction of variable

nodes of degree i and the fraction of check nodes of degree i, respectively. The

node-perspective d.d. pair, denoted by (L(x), R(x)), is defined by L(x) =
∑

i≥1 Lix
i

and R(x) =
∑

i≥1Rix
i. Then, the design rate, denote by r, of LDPC codes can be

computed using the d.d. pair by

r = 1− L′(1)

R′(1)
= 1−

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.

Density evolution (DE) is an important analysis technique for iterative algo-

rithms, and was proposed by Richardson and Urbanke in [9]. For LDPC codes with

asymptotically long codewords, the bit error probability of iterative decoding ex-

hibits a threshold phenomena. The error probability has a sharp transition from 0 to

1 as the noise parameter increases. The location of the threshold for a LDPC code

of a d.d. pair (λ(x), ρ(x)) can be computed by using DE analysis. It has been shown

that, with a properly designed d.d. pair, the threshold of the irregular LDPC codes

can be very close to the Shannon’s limit of many channels. An extensive study and

introduction of LDPC codes can be found in [10].

1.1.2 GLDPC Codes

Another way to improve the design of LDPC codes is replacing check nodes by a

small component codes. The resulting code is called a GLDPC code. In the Tanner

graph of a LDPC code, the check node represents a single-parity check (SPC) code.

That is, variable nodes connected to the check node should form a bit vector with

even parity. In 1981, Tanner generalized the SPC code at check nodes to some

general small codes [6], such as small linear block codes. To emphasize the difference

between LDPC codes and GLDPC codes, the check nodes in the graph are called

constraint nodes. For a subset of variable nodes that are connected to a constraint

4

node in the Tanner graph, the valid bit vector for these variable nodes has to be a

codeword of the small code at that constraint node.

After their introduction by Tanner, this class of codes remained largely unex-

plored until the work of Boutros et al., [11] and Lentmaier and Zigangirov [12]. By

introducing stronger constraint nodes than the SPC code to the graph, GLDPC

codes can have both large minimum distance and good iterative decoding thresh-

olds [12, 13]. However, when the soft-input soft-output (SISO) iterative decoding,

such as belief-propagation (BP), is considered, the per-iteration decoding complexity

for GLDPC codes is typically much higher than LDPC codes. This disadvantage of

decoding complexity has slowed the adoption of GLDPC codes in practical designs.

Recently, GLDPC codes with degree-2 variable nodes have been widely considered

for optical communication systems [14]. Codes in this class are called generalized

product (GP) codes since product codes is a special case of codes in this class. From

both the empirical and theoretical analysis, GP codes can provide high coding gains.

But, if the component codes are optimally decoded, then the decoding complexity

is still prohibitively high for very high-speed systems. Thus, finding low-complexity

iterative decoding algorithms for GLDPC codes becomes an interesting topic in the

channel coding area, and has been investigated by researchers [15, 13].

1.1.3 Spatially-Coupled Codes

The third method of improving the design of LDPC code is by spatial coupling.

Convolutional LDPC codes were introduced by Felström and Zigangirov [16] in 1999,

and have been observed to have an excellent performance. This surprising result

spurred a large body of work, and has been shown that the threshold of the ter-

minated convolutional LDPC codes approaches the capacity of many memoryless

channels [17, 18]. Recently, Kudekar, Richardson, and Urbanke explained the mech-

5

anism behind this impressive performance in term of an operation, called spatial

coupling. They also mathematically showed the existence of threshold saturation

phenomena for the BEC channels. That is, as the coupled chain length increases,

the BP threshold of the spatially-coupled LDPC codes will saturate to the maximum

a posteriori (MAP) threshold of the underlying regular LDPC codes. Later, Yedla,

the author, Nguyen and Pfister simplified the proof of the threshold saturation phe-

nomena, and showed that the threshold saturation also exists for more general classes

of scalar and vector recursions [19, 20]. With the same line of proof, Kumar et al.,

also showed the threshold saturation phenomena for binary memoryless symmetric

(BMS) channels [21].

Since the characterization of spatial coupling, applying spatial-coupling technique

to the problems in various disciplines usually shows some performance improvement.

It has been shown by Yedla [22] that spatially-coupled codes can achieve the uni-

versality of the multi-terminal communication system. Moreover, another notable

example is to apply the spatial-coupling technique to compressed sensing problems.

This problem was first investigated by Kudekar et al., [23] and showed that the

spatially-coupled sensing matrix can improve the sparsity to sampling threshold.

Later, Donoho et al., showed the threshold saturation phenomena also exists in com-

pressed sensing problem when the approximate message passing (AMP) algorithm is

employed to reconstruct signals [24]. In this dissertation, we apply spatial coupling

to GP codes. The construction of a spatially-coupled GP code ensemble is introduced

in Section 2.2.

1.2 Channel Coding and Inference Problems

The advent of iterative decoding algorithms started a revolution in several disci-

plines, including statistical physics, machine learning and signal processing [25, 26].

6

Some important problems, that are usually asked in these disciplines, are finding the

marginal probabilities of the system, or finding the assignments which maximizes the

marginal probability. In general, systems considered in these areas are very large. So,

solving problems in these areas directly is usually infeasible. Fortunately, the system

of interest can often be described by a sparse graph. Therefore, iterative algorithms,

such as the BP algorithm and the max-product algorithm, are used to approximate

the desired results. For graphs with cycles, it has been show that the correctness of

the results obtained by these iterative algorithms are not guaranteed [27, 28]. But,

the empirical results show that these iterative algorithms often work well and return

good approximations.

Some of the algorithms studied in the inference problems are equivalent to the

iterative algorithms in the area of channel coding. For example, the BP algorithm

and the max-product algorithm is equivalent to the sum-product algorithm and the

min-sum algorithm in the decoding algorithm of LDPC codes, respectively. Similar

to the case of inference problem, the results computed by these iterative algorithms

are not guaranteed to be correct, and checking the correctness of these solution is

generally as hard as finding the correct solutions. Therefore, the second part of this

dissertation study the iterative algorithm that the correctness of the result can be

checked easily.

1.3 Dissertation Outline

This dissertation is organized as follows. In Section 2, we study a class of GLDPC

codes, and observe that one can approach Shannon’s limit in the high-rate regime by

using iterative HDD. To the best of our knowledge, this is the first class of codes that

can approach capacity using HDD. In Section 3, the weighted min-sum algorithm

for regular LDPC codes are studied. The sufficient condition of the weights for the

7

convergence of the recursion is proposed. Also, conditions that prove the maximum

likelihood (ML) optimality of the returned codeword are given. Finally, conclusions

and future works are given in Section 4.

8

2. APPROACHING CAPACITY AT HIGH RATES WITH ITERATIVE

HARD-DECISION DECODING

2.1 Introduction

In his groundbreaking 1948 paper, Shannon defined the capacity of a noisy chan-

nel as the largest information rate for which reliable communication is possible [2].

Since then, researchers have spent countless hours looking for ways to achieve this

rate in practical systems. In the 1990s, the problem was essentially solved by the in-

troduction of iterative soft decoding for turbo and low-density parity-check (LDPC)

codes [3, 7, 29]. Although the decoding complexity is significant, these new codes

were adopted quickly in wireless communication systems where the data rates were

not too large [30, 31]. In contrast, complexity issues have slowed their adoption in

very high-speed systems, such as those used in optical and wireline communication.

Introduced by Gallager in 1960, LDPC codes are linear block codes defined by

a sparse parity-check matrix [32]. Using the parity-check matrix, an (N,K) LDPC

code can be represented by a Tanner graph, which is a bipartite graph with N bit

nodes and N−K check nodes. The check nodes in the Tanner graph of an LDPC code

represent the constraint that the group of bit nodes connected to a check node should

form a codeword in a single-parity check (SPC) code. In 1981, Tanner generalized

LDPC codes by replacing the SPC constraint nodes with more general constraints

[6]. Particularly, the bit nodes connected to a check node are constrained to be

codewords of (n, k) linear block codes such as Hamming codes, Bose-Chaudhuri-

Hocquengham (BCH) codes or Reed-Solomon codes. After their introduction by

c©2012 IEEE. Part of the results reported in this section is reprinted with permission from Yung-
Yih Jian, Henry D. Pfister, and Krishna R. Narayanan for “Approaching capacity at high rates
with iterative hard-decision decoding,” IEEE International Symposium on Information Theory,
July 2012.

9

Tanner, generalized LDPC (GLDPC) codes remained largely unexplored until the

work of Boutros et al. [11] and Lentmaier and Zigangirov [12].

GLDPC codes can have both large minimum distance and good iterative decod-

ing thresholds [13]. But, the per-iteration decoding complexity of belief-propagation

(BP) decoding of GLDPC codes is typically much higher than LDPC codes since

optimal soft-input soft-output (SISO) decoding has to be performed for each com-

ponent block code. However, the number of iterations required for the decoding

algorithm to converge is substantially smaller. Recently, generalized product codes,

i.e., GLDPC codes with degree-2 bits, have been widely considered in optical com-

munication systems [14]. In [33], GLDPC codes were proposed for 40Gb/s optical

transport networks and it was shown that these codes outperform turbo codes by

about 1 dB at a rate of 0.80. As such, GLDPC codes can provide high coding gains,

but if the full BP decoder is used, the decoding complexity is still prohibitively high

for implementation at very high-speed systems.

In this section, we show that by using iterative hard-decision decoding (HDD)

of generalized product codes with BCH component codes, one can approach the ca-

pacity of the binary symmetric channel (BSC) in the high-rate regime. We consider

an ensemble of spatially-coupled GLDPC codes based on t-error correcting BCH

codes. For the BSC, we show that the redundancy-threshold tradeoff of this en-

semble, under iterative HDD, scales optimally in the high-rate regime. To the best

of our knowledge, this is the first example of an iterative HDD system that can

provably approach capacity. It is interesting to note that iterative HDD of product

codes was first proposed well before the recent revolution in iterative decoding but

the performance gains were limited [34]. Iterative decoding of product codes became

competitive only after the advent of iterative soft decoding based on the turbo princi-

ple [35, 36]. Then a slightly modified iterative HDD for GLDPC codes was proposed

10

by Miladinovic and Fossorier [13], and a good threshold performance of this iterative

HDD algorithm for GLDPC codes were observed.

Under the assumption that the component code decoder corrects all patterns of t

or fewer errors and leaves all other cases unchanged, the asymptotic noise threshold

for product codes has been studied in [37, 38]. In [37], Schwartz et al. analyze the

asymptotic block error probability for product codes using combinatorial arguments.

By using random graph arguments, another asymptotic threshold analysis, based

on the result of the existence of “k-core” in a random graph [39, 40], is proposed

by Justesen et al. [38]. Finally, counting arguments are used in [41] to analyze

the iterative HDD of GLDPC codes (without spatial coupling) for adversarial error

patterns. Therefore, somewhat lower thresholds are reported.

Our choice of ensemble was motivated by the generalized product codes now used

in optical communications [14] and their similarity to braided block codes [42, 43].

In particular, we consider the iterative HDD of generalized product codes with t-

error correcting component codes. This is similar to other recent work on coding

system for optical communication systems [44, 45, 46]. The main difference is that

the proposed iterative HDD updates messages only using the extrinsic information.

Therefore, HDD of our spatially-coupled GLDPC ensemble can be rigorously ana-

lyzed via density evolution (DE) even when miscorrection occurs. The DE analysis

also allows us to show that iterative HDD can approach capacity in the high-rate

regime. Also for generalized product codes, a practical implementation of the pro-

posed iterative HDD is introduced.

2.2 Ensembles and Decoding Algorithms

In this section, various code ensembles and decoding algorithms are introduced.

We first recall the GLDPC ensemble. Based on the GLDPC ensemble, the spatially-

11

coupled GLDPC ensemble is introduced. Also, a modified iterative HDD algorithm

for GLDPC codes is proposed in this section. Since the proposed iterative HDD

updates hard-decision messages only from extrinsic hard-decision messages, the per-

formance of the proposed iterative HDD can be analyzed by DE. An ideal iterative

HDD algorithm is also discussed, and its DE is described for the purpose of compar-

ing with the proposed iterative HDD.

2.2.1 Ensembles

Let C be an (n, k, dmin) binary linear code that can correct all error patterns of

weight at most t (i.e., dmin ≥ 2t + 1). For example, one might choose C to be a

primitive BCH code with parameters (2ν− 1, 2ν− νt− 1, 2t+ 1). Now, we consider a

GLDPC ensemble where every bit node satisfies two code constraints defined by C.

Definition 1. Each element of the (C,m) GLDPC ensemble is defined by a Tanner

graph shown in Figure 2.1 and denoted by G = (I ∪ J , E). There are N = mn
2

degree-2 bit nodes in set I, and m degree-n code-constraint (or constraint) nodes

defined by C in set J . A random element from the ensemble is constructed by

using an uniform random permutation for the mn edges from the bit nodes to the

constraint nodes. From the construction of the code, one can show that the design

rate of (C,m) ensemble is

R =
N −m(n− k)

N
= 1− 2(n− k)

n
= 2

k

n
− 1.

Now, we consider a spatially-coupled GLDPC ensemble where every bit node

satisfies two code constraints defined by C. Similar to the definition introduced in

[47], the spatially-coupled GLDPC ensemble (C,m, L, w) is defined as follows.

Definition 2. The Tanner graph of an element of the (C,m, L, w) spatially-coupled

12

π

· · ·

· · ·

Figure 2.1: A (C,m) GLDPC ensemble, where π is a random permutation.

GLDPC contains L positions, {1, 2, . . . , L}, of bit nodes and L + w − 1 positions,

{1, 2, . . . , L + w − 1}, of code-constraint nodes defined by C. Let m be chosen such

that mn is divisible by both 2 and w. At each position, there are N = mn
2

degree-2 bit

nodes and m degree-n code-constraint nodes. A random element of the (C,m, L, w)

spatially-coupled GLDPC ensemble is constructed as follows. At each bit position

and code-constraint position, the mn sockets are partitioned into w groups of mn
w

sockets via a uniform random permutation. Let S(b)
i,j and S(c)

i,j be, respectively, the

j-th group at the i-th bit position and the j-th group at i-th code-constraint position,

where j ∈ {0, 1, . . . , w − 1}. The Tanner graph is constructed by connecting S(b)
i,j to

S(c)
i+j,w−j−1 (i.e., by mapping the mn

w
edges between the two groups). An example of

the (C,m, L, w) spatially-coupled GLDPC ensemble with w = 3 is shown in Figure

2.2.

Remark 3. Since extra constraint nodes are required for spatial coupling, the design

rate of the spatially-coupled ensemble is smaller than the design rate of the underlying

ensemble [47]. According to the construction in Definition 2, m(w−1) new constraint

nodes are added after coupling. Thus, there are NL bit nodes and m(L + w − 1)

13

· · ·

· · ·

π1

π′1

1 i− 2 i− 1 i i+ 1 i+ 2 L· · · · · ·

· · ·

· · ·
πi−2

π′i−2

· · ·

· · ·
πi−1

π′i−1

· · ·

· · ·

πi

π′i

· · ·

· · ·
πi+1

π′i+1

· · ·

· · ·
πi+2

π′i+2

· · ·

· · ·

πL

π′L

· · ·

· · ·

· · ·

· · · π′L+1

· · ·

π′L+2

· · ·

Figure 2.2: An example of (C,m, L, w) spatially-coupled GLDPC ensemble, where
w = 3, and (πi, π

′
i) are random permutations at position i for bit nodes and constraint

nodes, respectively.

constraint nodes in the spatially-coupled code. The resulting design rate is at least

RSC ≥
NL−m(L+ w − 1)(n− k)

NL

= 1− 2(n− k)

n

(
1 +

w − 1

L

)
(2.1)

= R− (1−R)
w − 1

L
, (2.2)

where the second term in (2.2) is the rate loss due to adding constraint nodes. One

can see that the rate loss goes to zero at a speed of 1
L

. We note that the actual rate,

which is defined as the ratio of the dimension of the code and the codeword length,

may be slightly higher due to the implied shortening of the code constraints.

2.2.2 Iterative HDD with Ideal Component Decoders

In this section, an iterative HDD with an ideal (i.e., genie aided) component-

code decoder is introduced. This decoder corrects bits only when the number of

error bits is less than or equal to the decoding radius t. In particular, the aid

of a genie allows the ideal decoder to avoid miscorrection. To be explicit, we define

14

D̂ : {0, 1}n×{0, 1}n → C as the operator of the ideal decoder. Given that a codeword

c ∈ C is transmitted, let e ∈ {0, 1}n be a binary error vector and v , c ⊕ e be the

received vector. Then, the output of the ideal decoder is

D̂(c, e) ,


c if dH(0, e) ≤ t

c⊕ e otherwise,

where dH(·, ·) is the Hamming distance between the two arguments. Also, the bit-

level mapping implied by the ideal decoder, denoted by D̂i : {0, 1}n×{0, 1}n → {0, 1},

maps (c, e) to the i-th bit of D̂(c, e). The decoder performance is independent of the

transmitted codeword since the component decoder satisfies the symmetry condition,

i.e., D̂(c ⊕ c′, e) = D̂(c, e) ⊕ c′ for all c′ ∈ C. In this case, the iterative HDD can

be analyzed (e.g., using DE) under the assumption that the all-zero codeword is

transmitted. Under this assumption, we can also define a simplified ideal decoding

function D̂(e) , D̂(0, e) that takes only one argument.

Now, we start to describe the ideal iterative HDD under the assumption that the

all-zero codeword was transmitted. Decoding proceeds by passing binary messages

along edges connecting variable nodes and constraint nodes. Let ri ∈ {0, 1} denote

the received channel value for the i-th variable node, and let ν
(`)
i,j ∈ {0, 1} be the

binary message from the i-th variable node to the j-th constraint node in the `-th

iteration. For simplicity, we assume no bit appears twice in a constraint, and let

σj(k) be the index of the variable node connected to the k-th socket of the j-th

constraint. Let j′ be the other neighbor of the i-th variable node, and σj(k) = i.

Then, the iterative decoder is defined by the recursion

ν
(`+1)
i,j′ , D̂k

(
v
(`)
i,j

)
,

15

where the candidate decoding vector for the j-th constraint node and i-th variable

node is

v
(`)
i,j ,

(
ν
(`)
σj(1),j

, . . . , ν
(`)
σj(k−1),j, ri, ν

(`)
σj(k+1),j, . . . , ν

(`)
σj(n),j

)
. (2.3)

Note that the k-th entry is replaced by ri. It is important to note that the above

decoder passes extrinsic messages and is not identical to the conventional approach

that simply iterates by exchanging the outputs of the component code decoders. In

particular, replacing the k-th element by the received channel output enables rigorous

DE analysis.

A stopping set is an error pattern where the messages associated with every com-

ponent code either have 0 errors for greater than t errors. In this case, it is easy to

verify that the conventional approach of running the ideal decoder for each compo-

nent code results in no changes to the messages. With ideal component decoders,

the final error pattern to which both decoders converge will be a stopping set. For

the iterative HDD, we define the final error pattern as the set of bits where both

component codes send a 1 (i.e., error) message. This odd convention follows from

the fact that stopping sets arise somewhat more naturally in the context of erasure

channels and decoding. On the other hand, the conventional approach with ideal

component decoders and the above iterative HDD with ideal component decoders

both return the same final error pattern after sufficiently many iterations. As we

will see later, this equivalence does not hold when the component code decoders

introduce miscorrections.

This decoding problem is also very closely connected to a well-known greedy

algorithm for finding the k-core in a graph [39]. The k-core is the largest induced

subgraph where all vertices have degree at least k. The connection can be seen by

considering an error graph whose vertices are the code constraints where two vertices

16

are connected if there is a bit in both code constraints and that bit is received error.

One can obtain this error graph from the Tanner graph by deleting all variable nodes

associated with correctly received bits and then collapsing the remaining degree-2

variables nodes into edges that connect two constraint nodes. Therefore, the degree

of a constraint vertex is equal to the number of errors in its attached bits and the error

graph represents all errors and their associations with component codes. The greedy

algorithm proceeds by removing any vertex of degree less than k along with all of its

edges (because this cannot possibly be part of the k-core). Likewise, conventional

iterative decoding with ideal component decoders can be seen as correcting the errors

in a component code that contains fewer then t + 1 errors. Therefore, stopping set

found by iterative decoding is equivalent to the (t+ 1)-core of the error graph.

2.2.3 Density Evolution for Iterative HDD with Ideal Component Decoders

The iterative decoding performance of GLDPC codes can be analyzed via density

evolution (DE) because, for a randomly chosen bit node, any fixed-depth neighbor-

hood in the Tanner graph is a tree with high probability as m → ∞. For HDD of

the component codes, this DE can be written as a one-dimensional recursion.

For a randomly chosen edge (i, j′) connecting a variable node i and a constraint

node j′, let j , N (i) \ j′ be the other neighbor of the bit node i. One can see that

the message passed on (i, j′) is an error only when the channel output of the i-th

bit is an error and there are at least t error inputs to the constraint node j. For a

n ∈ N, let x(`) be the error probability of a random chosen bit-to-constraint message

in the `-th iteration. The DE recursion of the iterative HDD with ideal component

decoders for the (C,m) GLDPC ensemble is

x(`+1) = pf̂n
(
x(`)
)
, (2.4)

17

where

f̂n(x) ,
n−1∑
i=t

(
n− 1

i

)
xi
(
1− x

)n−i−1
. (2.5)

Let the noise threshold of the iterative HDD with ideal component decoders be

defined by

p̂∗n , sup
{
p ∈ (0, 1]

∣∣∣pf̂n(x) < x for x ∈ (0, p]
}
.

Similar to DE for LDPC codes on the BEC [10, pp. 95–96], there is a compact

characterization of the hard-decision decoding threshold p̂∗n. Since pf̂n(x) is monotone

in p, the threshold p̂∗n can be obtained by

p̂∗n = inf
x∈(0,1)

x

f̂n(x)
. (2.6)

Remark 4. This type of analysis is related to the threshold analysis for the k-core

problem in [40] and [39]. Schwartz et al. also perform a combinatorial analysis

in [37] to determine the decoding threshold for asymptotically long product codes.

Their conclusion is somewhat different from the other analyses because they assume

a finite number of decoding iterations and require that the block error rate vanishes.

However, they treat the number of iterations explicitly and one can extract threshold

estimates from [37, Cor. 2] in the limit as r →∞. In this case, a little algebra shows

that the threshold c-value is c∗ = (t!)1/t. If the number of iterations is chosen to be

r > 2 log log n, then their equations imply that p∗ = c∗/n = (t!)1/t/n. Unfortunately,

this last assumption violates some necessary conditions of their analysis and therefore

gives only a lower bound on the correct threshold.

For the (C,m, L, w) ensemble, let x
(`)
i be the average error probability of the hard-

18

decision messages emitted by bit nodes at position i in the `-th iteration. Assume

that x
(`)
i = 0 for all i /∈ {1, 2, . . . , L} and ` ≥ 0. According to the construction

in Definition 2, the average error probability of the hard-decision inputs to code-

constraint nodes at position i is y
(`)
i = 1

w

∑w−1
j=0 x

(`)
i−j. Then, the error probability

of the hard-decision messages emitted by bit nodes at position i in the (` + 1)-th

iteration is

x
(`+1)
i =

1

w

w−1∑
k=0

pf̂n

(
y
(`)
i+k

)
= p

(
1

w

w−1∑
k=0

f̂n

(
1

w

w−1∑
j=0

x
(`)
i−j+k

))
. (2.7)

Remark 5. Note that (2.7) was first introduced by Kudekar et al. in [47], which tracks

the average error probability of the output hard-decision messages from bit nodes

at each position. One can obtain the DE update of the average error probability

of the input hard-decision messages to the code-constraint nodes at the position

i ∈ {1, 2, . . . , L+ w − 1} by

y
(`+1)
i =

1

w

min{i−1,w−1}∑
j=max{i−L,0}

x
(`+1)
i−j

=
1

w

min{i−1,w−1}∑
j=max{i−L,0}

p

(
1

w

w−1∑
k=0

f̂n

(
y
(`)
i−j+k

))
. (2.8)

In the following analysis, we use (2.8) to find the noise threshold of the spatially-

coupled system with iterative HDD. By the fact that, for any finite w > 0, x
(`)
i → 0

for all i ∈ {1, 2, . . . , L} if and only if y
(`)
i → 0 for all i ∈ {0, 1, . . . , L + w − 1}, we

know that the thresholds obtained from (2.7) and from (2.8) are identical.

19

2.2.4 Iterative HDD with Bounded Distance Decoders

It is well-known that GLDPC codes perform well under iterative soft decoding

[35, 36]. The main drawback is that a posteriori probability (APP) decoding of the

component codes can require significant computation. For this reason, we consider it-

erative HDD with bounded-distance decoding (BDD) of the component codes. Since

the message update rule is the same as the rule introduced in Section 2.2.2, DE can

also be employed to analyze the performance of this algorithm. In Section 2.6, a

practical implementation of the iterative HDD algorithm is proposed.

Likewise, we start by defining the bit-level mapping implied by BDD, denoted by

Di : {0, 1}n → {0, 1}, which maps the received vector v ∈ {0, 1}n to the i-th decoded

bit according to the rule

Di(v) =


ci if c ∈ C satisfies dH(c,v) ≤ t

vi if dH(c,v) > t for all c ∈ C.

It is easy to verify that this decoder satisfies the symmetry condition, i.e., Di(v⊕c) =

Di(v)⊕ ci for all c ∈ C and i = 1, . . . , n.

We follow the same definition in Section 2.2.2. Let ri ∈ {0, 1} denote the received

channel value for variable node i and ν
(`)
i,j ∈ {0, 1} be the binary message from the

i-th variable node to the j-th constraint node in the `-th iteration. The iterative

decoder is defined by the recursion

ν
(`+1)
i,j′ , Dk

(
v
(`)
i,j

)
, (2.9)

where v
(`)
i,j is the candidate decoding vector for the j-th constraint node and the i-th

variable node defined in (2.3). The corresponding DE analysis is introduced in the

20

following section.

2.2.5 Density Evolution for Iterative HDD with BDD

Since the component decoder is symmetric, then it suffices to consider the case

where the all-zero codeword is transmitted over a BSC with error probability p [10,

pp. 188–191]. Let x(`) be the error probability of the hard-decision messages passed

from the variable nodes to the constraint nodes after ` iterations. For an arbitrary

symmetric decoder, let Pn(i) be the probability that a randomly chosen bit is decoded

incorrectly when it is initially incorrect and there are i random errors in the other

n − 1 inputs. Likewise, let Qn(i) be the probability that a randomly chosen bit is

decoded incorrectly when it is initially correct and there are i random errors in the

other n−1 inputs. Then, for the (C,m) GLDPC ensemble, the DE recursion implied

by (2.9) is defined by x(0) = p,

x(`+1) = fn
(
x(`); p

)
, (2.10)

and (with p , 1− p)

fn(x; p) ,
n−1∑
i=0

(
n− 1

i

)
xi
(
1− x

)n−i−1
(pPn(i) + pQn(i)) . (2.11)

For the iterative HDD with BDD described above, the quantities P (i) and Q(i)

can be written in terms of the number of codewords of weight l in C, denoted by Al,

[48]. Using the convention that
(
n
k

)
= 0 if n < 0, k < 0, or k > n, we define

l(i, δ, j) , i− δ + 2j + 1, (2.12)

21

Θ(n, i, δ, j) ,

(
l(i, δ, j)

l(i, δ, j)− j

)(
n− l(i, δ, j)− 1

δ − 1− j

)(
n− 1

i

)−1
,

and

Λ(n, i, δ, j) ,

(
l(i, δ, j)− 2

l(i, δ, j)− j − 1

)(
n− l(i, δ, j) + 1

δ − j

)(
n− 1

i

)−1
.

Since all decoding regions are disjoint, one can compute

Pn(i) = 1−
t∑

δ=1

δ−1∑
j=0

n− l(i, δ, j)
n

Al(i,δ,j)Θ(n, i, δ, j) (2.13)

for t≤ i≤n−t−2 and Pn(i)=0 for 0≤ i≤ t−1. Similarly,

Qn(i) =
t∑

δ=1

δ∑
j=0

l(i, δ, j)− 1

n
Al(i,δ,j)−1Λ(n, i, δ, j) (2.14)

for t + 1 ≤ i ≤ n − t − 1, and Qn(i) = 0 for 0 ≤ i ≤ t. Note that, when the code

contains the all-one codeword, Pn(i) = 1 for n − t − 1 ≤ i ≤ n − 1, and Qn(i) = 1

for n− t ≤ i ≤ n− 1.

Let the noise threshold be defined by

p∗n , sup {p ∈ (0, 1] |fn(x; p) < x for all x ∈ (0, p]} . (2.15)

According to the definition of p∗n, one can show that x(`) → 0 as ` → ∞ for all

p < p∗n. By rewriting fn(x; p) as fn(x; p) = p[fn(x; 1)− fn(x; 0)] + fn(x; 0), we know

that fn(x; p) is monotone in p. However, it is not clear to us whether or not fn(x; p)

is monotone in x. Therefore, the definition of p∗n does not imply that lim`→∞ x
(`) > 0

for all p > p∗n. Define x∗ , sup{z ∈ [0, 1] | fn(x; 0) ≤ x for all x ∈ (0, z]}. We can

22

characterize p∗n similar to (2.6) by

p∗n = inf
x∈(0,x∗)

x− fn(x; 0)

fn(x; 1)− fn(x; 0)
.

Remark 6. Since the operations at bit nodes and constraint nodes are both sub-

optimal, one may observe that for a fixed tuple (p, n, t), there exist some x ∈ [0, 1]

such that fn(x; p) > p. This implies that the average error probability of the messages

emitted by bit nodes after one iteration will be worse than the error probability of

the channel output. In this case, bit nodes can just send the received channel bits

to their neighbors. With this modification, the resulting DE update equation is

x(`+1) = min{p, fn(x(`); p)}.

Let q∗n , sup {p ∈ (0, 1] |min {fn(x; p), p} < x for all x ∈ (0, p]} be the noise thresh-

old of the modified decoding algorithm. We claim that p∗n = q∗n by the following

argument. From the fact that min{p, fn(x; p)} ≤ fn(x; p), we have q∗n ≥ p∗n. Con-

sider the case of p > p∗n. From (2.15), there exists some x0 ∈ (0, p] such that

fn(x0; p) ≥ x0. Since x0 ∈ (0, p], one can show that min{p, fn(x0; p)} ≥ x0 as well.

Thus, we know p > q∗n from the definition of q∗n. This implies that q∗n ≤ p∗n, and

therefore we conclude that p∗n = q∗n.

To derive the DE update equation of the (C,m, L, w) spatially-coupled GLDPC

ensemble, let x
(`)
i be the average error probability of hard-decision messages emitted

by bit nodes at position i after the `-th iteration. According to Definition 2, the

average error probability of input messages to a code-constraint node at position i is

y
(`)
i = 1

w

∑w−1
j=0 x

(`)
i−j. It follows that x

(`+1)
i = 1

w

∑w−1
k=0 fn(y

(`)
i+k; p) for i ∈ {1, 2, . . . , L},

where fn(x; p) is defined in (2.11). We also set x
(`)
i = 0 for i /∈ {1, 2, . . . , L}. There-

23

fore, in the (` + 1)-th iteration, the average error probability of the hard-decision

messages emitted by bit nodes at the position i ∈ {1, 2, . . . , L} is given by

x
(`+1)
i =

1

w

w−1∑
k=0

fn

(
1

w

w−1∑
j=0

x
(`)
i−j+k; p

)
. (2.16)

Similar to the discussion in Remark 5, the DE update of the (C,m, L, w) spatially-

coupled GLDPC ensemble which tracks the average error probability of the input

messages to the constraint nodes at the position i ∈ {1, 2, . . . , L + w − 1} can also

be obtained by

y
(`+1)
i =

1

w

min{i−1,w−1}∑
j=max{i−L,0}

x
(`+1)
i−j

=
1

w

min{i−1,w−1}∑
j=max{i−L,0}

1

w

w−1∑
k=0

fn

(
y
(`)
i−j+k; p

)
.

2.3 BCH Component Codes

In the remainder of this section, an (n, k, 2t + 1) binary primitive BCH code

(or its (n, k − 1, 2t + 2) even-weight subcode) will be used as the component code

for both the (C,m) GLDPC and (C,m, L, w) spatially-coupled GLDPC ensembles.

When the exact weight spectrum is known, one can compute Pn(i) and Qn(i) using

(2.13) and (2.14), respectively. Otherwise, we use the asymptotically-tight binomial

approximation

Al =


2−νt

(
n
l

)
(1 +O (n−0.1)) if d ≤ l ≤ n− d,

1, if l = 0, l = n,

0, otherwise,

(2.17)

24

for n ≥ nt, where d = 2t+ 1, n = 2ν − 1 and nt is a constant depends on t [49].

For the (n, k − 1, 2t+ 2) even-weight subcode of an (n, k, 2t+ 1) primitive BCH

code, the number of codewords is denoted by Ãl where Ãl = Al when l is even and

Ãl = 0 when l is odd. Let P̃n(i) and Q̃n(i) be the miscorrection probabilities implied

by Ãl for the even-weight subcode. Similar to Pn(i) and Qn(i) in the (n, k, 2t + 1)

primitive BCH code, it can be shown that P̃n(i) = 0 for 0 ≤ i ≤ t− 1 and Q̃n(i) = 0

for 0 ≤ i ≤ t + 1. Then, the DE recursions for the (C,m) GLDPC ensemble and

the (C,m, L, w) spatially-coupled GLDPC ensemble can be obtained from (2.10) and

(2.16), respectively.

2.3.1 High-Rate Scaling Limit for Iterative HDD with Ideal Component Decoders

In [38, 45], Justesen et al. analyze the asymptotic performance of long product

codes under the assumption that the component decoders have no miscorrection.

These arguments can be applied for the decoding of both BSC and BEC outputs.

By considering the decoding process as removing vertices of degree less or equal

to t, they show that the process fails if the error graph contains (t + 1)-core. The

problem of having “k-cores” in a random graph has attracted considerable interests in

graph theory [39, 40]. By employing the results in [39], Justesen et al. characterize

the evolution for the number of errors per constraint node as a recursion for the

“Poisson parameter”. That recursion leads to a threshold for successful decoding on

the average number of error bits attached to a code-constraint node. In this section,

we derive the high-rate scaling limiting recursion of the proposed iterative algorithm

with ideal HDD. Then, we show that the obtained high-rate scaling limit (2.18) has

the same update equation as the recursion of Poisson parameter in [38, 45].

For a fixed ρ > 0, let p , ρ
n−1 scale with n and λn , (n − 1)x(`). The recursion

25

(2.4) for λ
(`)
n becomes

λ(`+1)
n = (n− 1)pf̂n

(
λ
(`)
n

n− 1

)
= ρf̂n

(
λ
(`)
n

n− 1

)
.

For any ` > 0, let λ(`) , limn→∞ λ
(`)
n . The high-rate scaling limit of the recursion for

the ideal component code decoder is

λ(`+1) = lim
n→∞

ρf̂n

(
λ
(`)
n

n− 1

)
, f̂

(
λ(`); ρ

)
.

Define the tail probability of the Poisson distribution with mean λ by

φ(λ; k) ,
∞∑

i=k+1

λi

i!
e−λ.

By the Poisson theorem [50, pp. 113], one can show that limn→∞ ρf̂n(λ
n−1) =

ρφ (λ; t− 1). Thus, the high-rate scaling limit of the recursion for the ideal com-

ponent code decoder becomes

λ(`+1) = ρφ
(
λ(`); t− 1

)
. (2.18)

The scaled noise threshold ρ̂∗ is the largest ρ such that the iteration converges from

ρ to 0 and is defined by

ρ̂∗ , sup {ρ ∈ [0,∞) | ρφ (λ; t− 1) < λ for λ ∈ (0, ρ]} .

Since φ(λ; t− 1) is increasing and upper bounded by 1, it follows that

ρ̂∗ = inf
λ>0

λ

φ (λ; t− 1)

26

Remark 7. This threshold condition is identical to the ones given in [39] and [40] for

the equivalent k-core problem. The connection to asymptotically long product codes

with ideal bounded distance decoding was first made in [38].

For the spatially-coupled GLDPC ensemble, let λ
(`)
i with i ∈ {1, 2, . . . , L} be

the average number of error messages emitted by bit nodes at position i in the `-

th iteration. We set λ
(0)
i = ρ for all i ∈ {1, 2, . . . , L}, and set λ

(`)
i = 0 for all

i /∈ {1, 2, . . . , L} and ` ≥ 0. The recursion for the spatially-coupled ensemble is

λ
(`+1)
i =

1

w

w−1∑
k=0

f̂

(
1

w

w−1∑
j=0

λ
(`)
i−j+k; ρ

)

= ρ

(
1

w

w−1∑
k=0

φ

(
1

w

w−1∑
j=0

λ
(`)
i−j+k; t− 1

))
. (2.19)

Remark 8. We note that this vector update equation is the same as the vector update

equation used for Q-coloring analysis (with Q = t + 1) of spatially-coupled graphs

in [51]. Therefore, the results in Section 2.4.1 also apply to the Q-coloring problem.

2.3.2 High-Rate Scaling Limit for Iterative HDD with BDD

We have shown that the recursion using the random graph argument in [38] and

[45] is the same as the DE analysis of ideal iterative HDD in the limit as n → ∞.

The main weakness of the random graph argument is that it is not applicable to

practical decoders. In this section, the high-rate scaling limit of the recursion for our

DE analysis as n → ∞ is introduced. The main contribution is that our approach

rigorously accounts for miscorrection.

We first introduce some notation and a few lemmas that simplify the develop-

ment. Consider the Poisson distribution with mean λ. Let ψ(λ; k) and ϕ(λ; k) be,

respectively, the tail probability for the even terms, and the tail probability for the

27

odd terms. Then, we have

ψ(λ; k) ,
1 + e−2λ

2
−
bk/2c∑
i=0

λ2i

(2i)!
e−λ,

ϕ(λ; k) ,
1− e−2λ

2
−
bk/2c∑
i=0

λ(2i+1)

(2i+ 1)!
e−λ.

Lemma 9. For the codes described above and t ≤ i ≤ n−t−2, the limit limn→∞ Pn(i) =

1. Also, for the same code and t+ 1 ≤ i ≤ n− t− 1, the function nQn(i) is bounded.

If b
√
nc > t+ 1, then

nQn(i) ≤ 1

(t− 1)!
+O

(
n−0.1

)
(2.20)

for all t+ 1 ≤ i ≤ b
√
nc. Thus, for any fixed i > 0, the limit limn→∞ nQn(i) = 1

(t−1)! .

Proof. See Appendix A.1

Consider the DE recursion (2.10) for the (C,m) GLDPC ensemble. For a fixed ρ,

let p , ρ
n−1 scale with n and λ

(`)
n , (n−1)x(`). From (2.10) and (2.11), the recursion

for λ
(`)
n equals

λ(`+1)
n = (n− 1)fn

(
λ
(`)
n

n− 1
;

ρ

n− 1

)

=
n−1∑
i=t

(
n− 1

i

)(
λ
(`)
n

n− 1

)i(
1− λ

(`)
n

n− 1

)n−1−i

× (ρ (Pn(i)−Qn(i))+(n− 1)Qn(i)) , (2.21)

with initial value λ
(0)
n = ρ for all n.

Lemma 10. Let Xn ∼ B(n− 1, λn
n−1) be a sequence of binomial random variables for

n− 1 trials with success probability λn
n−1 . If λn → λ <∞, then limn→∞E [Pn(Xn)] =

28

φ (λ; t− 1) and limn→∞E [Qn(Xn)] = 0.

Proof. See Appendix A.2.

Lemma 11. Let Xn ∼ B(n− 1, λn
n−1) be a sequence of binomial random variables for

n− 1 trials with success probability λn
n−1 . If λn → λ <∞, then

lim
n→∞

E [nQn(Xn)] =
φ (λ; t)

(t− 1)!
.

Proof. See Appendix A.3.

Using Lemma 10 and Lemma 11, one can simplify the recursion for λ(`) ,

limn→∞ λ
(`)
n .

Lemma 12. For any fixed ` > 0, the limit λ(`) , limn→∞ λ
(`)
n exists, and the recur-

sion for λ(`) is given by λ(0) = ρ and

λ(`+1) = f
(
λ(`); ρ

)
, ρφ

(
λ(`); t− 1

)
+

1

(t− 1)!
φ
(
λ(`); t

)
. (2.22)

Proof. We prove the lemma by induction. The base case λ(0) = ρ holds by as-

sumption. For the inductive step, suppose that λ(`) = limn→∞ λ
(`)
n exists. Let

X
(`)
n ∼ B(n− 1, λ

(`)
n

n−1) be a binomial random variable with parameters n− 1 and λ
(`)
n

n−1 .

Then, the recursion (2.21) can be represented as λ
(`+1)
n = E[ρ(Pn(X

(`)
n)−Qn(X

(`)
n))+

(n− 1)Qn(X
(`)
n)]. Again, Lemma 10 and Lemma 11 imply that limn→∞E[Pn(X

(`)
n)],

limn→∞E[Qn(X
(`)
n)], and limn→∞E[nQn(X

(`)
n)] exist. Thus, the limit of λ

(`+1)
n exists

as n→∞, and satisfies the recursion

λ(`+1) , lim
n→∞

λ(`+1)
n = ρφ

(
λ(`); t− 1

)
+

1

(t− 1)!
φ
(
λ(`); t

)
.

29

This completes the mathematical induction.

Remark 13. For any n <∞, n
n−1ρ can be seen as the average number of initial error

bits attached to a code-constraint node, and n
n−1λ

(`)
n can be viewed as the average

number of error messages passed to a code-constraint node after the `-th iteration.

Since n
n−1λ

(`)
n → λ(`), it follows that the recursion (2.22) tracks the evolution of the

average number of error messages passed to a code-constraint node.

The following lemma shows that the DE recursion for the GLDPC ensemble

whose component code is the even-weight subcode of a BCH code can be obtained

by modifying (2.22).

Lemma 14. Consider the GLDPC ensemble whose component code is the even-

weight subcode of a BCH code. If t is even, then the recursion for λ(`) is λ(`+1) =

f̃e
(
λ(`); ρ

)
with

f̃e
(
λ(`); ρ

)
, ρφ

(
λ(`); t− 1

)
+

1

(t− 1)!
ψ
(
λ(`); t

)
.

If t is odd, the recursion is λ(`+1) = f̃o
(
λ(`); ρ

)
with

f̃o
(
λ(`); ρ

)
, ρφ

(
λ(`); t− 1

)
+

1

(t− 1)!
ϕ
(
λ(`); t

)
.

Proof. See Appendix A.4.

For the spatially-coupled GLDPC ensemble, let λ
(`)
i with i ∈ {1, 2, . . . , L} be

the average number of error messages emitted by bit nodes at positions i in the

`-th iteration. We set λ
(0)
i = ρ for all i ∈ {1, 2, . . . , L}, and set λ

(`)
i = 0 for all

i /∈ {1, 2, . . . , L} and ` ≥ 0. Similar to (2.16), the recursion for spatially-coupled

30

ensemble is

λ
(`+1)
i =

1

w

w−1∑
k=0

f

(
1

w

w−1∑
j=0

λ
(`)
i−j+k; ρ

)
(2.23)

for i ∈ {1, 2, . . . , L}. When the even-weight subcode of a BCH code is used as a

component code in the spatially-coupled GLDPC ensemble, the recursion becomes

λ
(`+1)
i =


1

w

w−1∑
k=0

f̃e

(
1

w

w−1∑
j=0

λ
(`)
i−j+k; ρ

)
if t is even,

1

w

w−1∑
k=0

f̃o

(
1

w

w−1∑
j=0

λ
(`)
i−j+k; ρ

)
if t is odd.

2.4 Bounds on the Noise Threshold

In this section, we consider the noise thresholds of the decoding algorithms in

Section 2.2 for the spatially-coupled ensemble when L� w and w →∞. We employ

the analysis proposed by Yedla et al. [19, 20] to compute these thresholds. Consider

the recursion defined by the DE update equation of a decoding algorithm. Let x

be the average error probability of the messages emitted by bit nodes. For each

channel parameter p ∈ [0, 1], the potential function, denoted by U(x; p), is proposed

in [19], and the energy gap ∆E(p) is defined as the minimum of the potential function

over the non-zero fixed points of the recursion. If the recursion is a scalar admissible

system (see [19, Definition 1]), the potential threshold, p∗∗, defined as the supremum of

the channel parameter p such that ∆E(p) ≥ 0 is introduced. Finally, they show that

the noise threshold of the decoding algorithm saturates to p∗∗ when the algorithm is

applied to a spatially-coupled system with L� w and w →∞ [19, 20].

While the exact value of p∗∗ is easily computed numerically, a simple expression

is not readily available. Therefore, we derive instead a suitable lower bound.

31

2.4.1 Iterative HDD with Ideal Component Decoders

Suppose that one ignores the effect of miscorrection and considers the natural

hard-decision peeling decoder for the (C,m) ensemble based on BCH codes, then

it is easy to see that at most mt errors can be corrected using BDD. To achieve

this upper bound, it must happen that each code corrects exactly t errors. If some

codes decode with fewer than t errors, then there is an irreversible loss of error-

correcting potential. Since there are nm
2

code bits per code constraint, normalizing

this number shows that the noise threshold is upper bounded by 2t
n

. In terms of the

average number of errors in each code constraint, the threshold is upper bounded by

2t because each code involves n bits.

Before we delve into the analysis of the potential threshold for the iterative HDD

with ideal component decoders, we first recall that the definitions of the beta func-

tion, B(a, b), and the normalized incomplete beta function, Ix(a, b), [52, §8.17] are

given by

B(a, b) ,
∫ 1

0

za−1(1− z)b−1dz (2.24)

and

Ix(a, b) ,
1

B(a, b)

∫ x

0

za−1(1− z)b−1dz ,
Bx(a, b)

B(a, b)
. (2.25)

When a, b are positive integers, these functions have the following well-known prop-

32

erties [52, §8.17]:

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!
,

Ix(a, b) =
a+b−1∑
k=a

(
a+ b− 1

k

)
xk(1− x)a+b−1−k, (2.26)

B(a+ 1, b) =
a

a+ b
B(a, b), (2.27)

Ix(a+ 1, b) = Ix(a, b)−
xa(1− x)b

aB(a, b)
. (2.28)

Since the DE update equation (2.4) for the iterative HDD without miscorrection

is a scalar recursion. The following lemma enables us to apply the result in [19] to

the current noise threshold analysis.

Lemma 15. Let the recursion (2.4) be represented as x(`+1) = f̃(g̃(x(`)); p) with

f̃(x; p) = px and g̃(x) = f̂n(x). The pair (f̃ , g̃) = (px, f̂n(x)) is a scalar admissible

system for any finite n > 0.

Proof. It is obvious that f̃(x; p) is strictly increasing in both x and p, and f̃(0; p) =

f̃(x; 0) = 0. Using (2.25), we rewrite g̃(x) by

g̃(x) = f̂n(x) =
1

B(t, n− t)

∫ x

0

za−1(1− z)b−1dz,

then we know g̃(0) = 0. Since g̃′(x) , dg̃(x)
dx

= 1
B(t,n−t)x

a−1(1 − x)b−1 > 0 for all

x ∈ (0, 1), g̃(x) is strictly increasing in x. Also, the second derivative

d2g̃(x)

dx2
=

1

B(t, n− t)
(
(a− 1)xa−2(1− x)b−1 − (b− 1)xa−1(1− x)b−2

)
is a continuous function. Therefore, the recursion (2.4) is a scalar admissible system

according to [19, Definition 1].

33

By the fact that the DE update (2.4) defines a scalar admissible system for any

n > 0, the associated potential function is given by the following definition.

Definition 16. The potential function for the recursions (2.4) is defined by Vn(x; p) ,∫ x
0

(z − pf̂n(z))f̂ ′n(z)dz. The potential threshold for the recursion (2.4) is

p̂∗∗n , sup

{
p ∈ [0, 1]

∣∣∣ min
x∈(0,1]

Vn(x; p) ≥ 0

}
. (2.29)

This threshold for iterative HDD without miscorrection is achieved by (C,m, L, w)

spatially-coupled GLDPC ensembles in the limit where m � L � w as w → ∞

[19, 20].

Remark 17. Let Kf̃ ,g̃ be a constant determined by the system (f̃ , g̃) [19, Lemma 5].

In [19, Theorem 1], Yedla et al. showed that, for all p < p̂∗∗n and w > Kf̃ ,g̃/∆E(p),

the error probabilities y
(`)
i for all i ∈ {1, 2, . . . , L + w − 1} in (2.8) converge to 0 as

`→∞. Moreover, this implies that p̂∗∗n is also a noise threshold for the recursion (2.7)

according to the fact that x
(`)
i → 0 for all i ∈ {1, 2, . . . , L} if and only if y

(`)
i → ∞

for all i ∈ {1, 2, . . . , L+ w − 1}.

Remark 18. Since Vn(x; p) = xf̂n(x)−
∫ x
0
f̂n(z)dz− p

2
f̂ 2
n(x), we know that Vn(x; p) is

decreasing in p. Therefore, one can easily obtain p̂∗∗n by numerically computing

p̂∗∗n = inf
x∈(0,1]

xf̂n(x)−
∫ x
0
f̂n(z)dz

1
2
f̂ 2
n(x)

.

As shown in [19], for any p ∈ [0, 1], fixed points of the recursion (2.4) are cor-

responding to stationary points of Vn(x; p). Since the minimum of the potential

function always occurs at a stationary point which is corresponding to a stable fixed

point [20], it is sufficient to consider the potentials at fixed points. For a p ∈ (0, 1],

let x be a non-zero fixed point of the recursion (2.4) with n > 0. Then, we have

34

x = pf̂n(x), and define p(x) , x

f̂n(x)
. Since f̂n(x) is increasing in x, the pair (x, p(x))

for all x ∈ (0, 1] characterizes all possible non-zero fixed points for the recursion (2.4)

for all x ∈ (0, 1] and p ∈ (0, 1]. Thus, we can have the fixed-point potentials as a

function of x ∈ (0, 1]. The potential at the fixed point x, denoted by Vn(x), is

Vn(x) , Vn (x; p (x)) = xf̂n (x)− 2

∫ x

0

f̂n(z)dz.

Remark 19. Vn(x) is the potential at the fixed point of the admissible system (f̃ , g̃) =

(px, f̂n(x)), and the DE update equation for the corresponding spatially-coupled

system is given in (2.8). On the other hand, one can also consider the update

equation (2.4) as the recursion of the function pair (f̃ , g̃) = (pf̂n(x), x). Then, the

DE update equation for the corresponding spatially-coupled system is

y
(`+1)
i =

1

w

min{i−1,w−1}∑
j=max{i−L,0}

pf̂n

(
1

w

w−1∑
k=0

y
(`)
i−j+k

)
,

where y
(`)
i is the average error probability of the input messages to the g̃-nodes at

the i-th position and i ∈ {1, 2, . . . , L + w − 1}. Using the proof of Lemma 15, one

can show that (pf̂n(x), x) is also a scalar admissible system. By the definition of

the potential function in [19, Definiton 2], the potential function of the (pf̂n(x), x)

system is Ûn(x; p) ,
∫ x
0

(z − pf̂n(z))dz. This is the potential function introduced in

[53]. Let Ûn(x) , Ûn(x; p(x)) be the potential of the (pf̂n(x), x) system at the fixed

point (x, p(x)). Since (px, f̂n(x)) and (pf̂n(x), x) systems share the same set of fixed

points, one can show that their potentials at non-zero fixed points satisfy

Vn(x) =
2f̂n(x)

x
Ûn(x).

35

To find the lower bound of the potential threshold, it is convenient to represent

the potential functions by the incomplete beta function. From (2.5) and (2.26), Vn(x)

can be written as

Vn(x) = xIx(t, n− t)− 2

∫ x

0

Iz(t, n− t)dz.

Applying integration by parts, we have

Vn(x) = xIx(t, n− t)− 2zIz(t, n− t)
∣∣∣x
0

+ 2

∫ x

0

zdIz(t, n− t)

= −xIx(t, n− t) +
2

B(t, n− t)

∫ x

0

zzt−1(1− z)n−t−1dz.

By (2.25), one can rewrite Vn(x) as

Vn(x) = −xIx(t, n− t) +
2Bx(t+ 1, n− t)

B(t, n− t)
.

By (2.27) and (2.28), one gets

Vn(x) = −xIx(t, n− t) +
2t

n

Bx(t+ 1, n− t)
B(t+ 1, n− t)

= −xIx(t, n− t) +
2t

n

(
Ix(t, n− t)−

xt(1− x)n−t

tB(t, n− t)

)
= −

(
x− 2t

n

)
Ix(t, n− t)−

2xt(1− x)n−t

nB(t, n− t)
. (2.30)

Using (2.30), we can lower bound the potential threshold p̂∗∗ with the following

lemma.

Lemma 20. Let x̂∗∗n ∈ (0, 1], and let (x̂∗∗n , p̂
∗∗
n) be a fixed point of (2.4) and Vn(x̂∗∗n) =

0. Then, there exists a pair (n0, t0) such that, for all n ≥ n0 and t ≥ t0, 2t−2
n
≤ x̂∗∗n ≤

2t
n

. Moreover, p̂∗∗n > 2t−2
n

.

36

Proof. See Appendix A.5.

Remark 21. The constants t0 and n0 are for a rigorous proof of Vn(2t−2
n

) > 0 when

n ≥ n0 and t ≥ t0. However, through the numerical evaluation, we observed that

Vn(2t−2
n

) > 0 for all t ≥ 2 and n > 2t. Thus, we conjecture that the lemma holds for

all t ≥ 2 and n > 2t.

For the high-rate scaling limit recursion (2.18), one can show that f̂(λ; ρ) =

ρφ(λ; t − 1) is increasing in both λ and ρ. Thus, the noise threshold in terms of

the average number of errors per n− 1 bits for the recursion (2.18), denoted by ρ̂∗t ,

exists [10, §3.10 – §3.11]. Also by the monotonicity property of f̂(λ; ρ), the noise

threshold for the recursion (2.19) exists as well. We define the potential function and

the potential threshold for the recursion (2.18), respectively, by

V (λ; ρ) ,
∫ λ

0

(
z − f̂ (z; ρ)

)
f̂ ′ (z; ρ) dz

=

∫ λ

0

(z − ρφ(z; t− 1))φ′(z; t− 1)dz,

and

ρ̂∗∗t , sup

{
ρ ∈ [0,∞)

∣∣∣∣min
λ≥0

V (λ; ρ) ≥ 0

}
. (2.31)

By [19] as well, the potential threshold ρ̂∗∗t can be achieved by applying to the

(C,m, L, w) spatially-coupled ensemble in the limit where m� L� w as w →∞.

Corollary 22. For the high-rate scaling limit recursion (2.18), the potential threshold

in terms of the average number of errors in a code constraint satisfies ρ̂∗∗t ≥ 2t − 2

for all t ≥ t0.

Proof. Consider the DE recursion (2.4) for the (C,m) GLDPC ensemble. Let p̂∗∗n be

37

the potential threshold as defined in (2.29). Note that p̂∗∗n can be achieved by the

(C,m, L, w) spatially-coupled ensemble in the limit where m � L � w as w → ∞.

For any fixed n ≥ n0 and t ≥ t0, we define ρ̂∗∗n,t , (n − 1)p̂∗∗n . From Lemma 20, we

know that ρ̂∗∗n,t ≥ (2t − 2)n−1
n

for all n ≥ n0 and t ≥ t0. Thus, we conclude that

ρ̂∗∗t , limn→∞ ρ̂
∗∗
n,t ≥ 2t− 2 for all t ≥ t0.

2.4.2 Iterative HDD with BDD

For the case of iterative HDD algorithm, it is not clear if the recursion (2.10)

defines an admissible system for every linear code (e.g., monotonicity could fail).

However, we believe this is the case. Fortunately, one can show that in the high-rate

scaling limit, the function f(λ; ρ) in (2.22) is strictly increasing in both arguments for

λ, ρ > 0. Therefore, the noise threshold and the potential threshold for the recursion

(2.22), denoted by ρ∗ and ρ∗∗ respectively, exist as well. The potential function and

the potential threshold for the recursion (2.22) are, respectively,

U(λ; ρ) ,
∫ λ

0

(z − f (z; ρ)) f ′ (z; ρ) dz,

and

ρ∗∗t , sup

{
ρ ∈ [0,∞)

∣∣∣∣min
λ≥0

U (λ; ρ) ≥ 0

}
.

Using the threshold of iterative HDD without miscorrection, ρ̂∗∗t , one can obtain

a lower bound of ρ∗∗t from the following lemma.

Lemma 23. For the high-rate scaling limit, the potential threshold of iterative HDD

with miscorrection, ρ∗∗t , satisfies ρ∗∗t ≥ ρ̂∗∗t − 1
(t−1)! .

38

Proof. To show the lower bound of ρ∗∗t , we introduce the recursion

λ
(`+1)

=

(
ρ+

1

(t− 1)!

)
φ
(
λ
(`)

; t− 1
)
. (2.32)

Let ρ , ρ+ 1
(t−1)! . From (2.22), one can show that

f (λ; ρ) ≤ ρφ(λ; t− 1) +
1

(t− 1)!
φ(λ; t− 1)

= ρφ(λ; t− 1), (2.33)

and thus

λ
(`+1) ≥ f

(
λ
(`)

; ρ
)
.

Therefore, we know that λ(`) in the recursion (2.22) satisfies λ(`) ≤ λ
(`)

when the

initial values λ(0) = λ
(0)

.

By rewriting (2.32) as λ
(`+1)

= ρφ(λ
(`)

; t − 1), the recursion (2.32) can be con-

sidered as a (ρx, φ(x; t− 1)) system. The update equation of the spatially-coupled

(ρx, φ(x; t− 1)) system is

λ
(`+1)

i = ρ

(
1

w

w−1∑
k=0

φ

(
1

w

w−1∑
j=0

λ
(`)

i−j+k; t− 1

))
, (2.34)

where λ
(`)

i is the average number of error messages emitted by bit nodes at position

39

i in the `-th iteration and i ∈ {1, 2, . . . , L}. From (2.33), we know

λ
(`+1)

i =
1

w

w−1∑
k=0

ρφ

(
1

w

w−1∑
j=0

λ
(`)

i−j+k; t− 1

)

≥ 1

w

w−1∑
k=0

f

(
1

w

w−1∑
j=0

λ
(`)

i−j+k; ρ

)
.

With the same w and the same initial value, λ
(0)
i = λ

(0)

i for i ∈ {1, 2, . . . , L}, λ(`)i in

(2.23) is upper bounded by λ
(`)

i for i ∈ {1, 2, . . . , L} and ` ≥ 0.

Denote the potential threshold for the recursion (2.32) by ρ∗∗. We know that

ρ∗∗ = ρ̂∗∗, where ρ̂∗∗ is defined in (2.32). According to [19, Theorem 1], for each

ρ < ρ∗∗− 1
(t−1)! = ρ̂∗∗t − 1

(t−1)! , there exists a wρ > 0 such that all w > wρ, λ
(`)

i → 0 as

`→∞ for all i ∈ {1, 2, . . . , L}. By the fact that λ
(`)
i ≤ λ

(`)

i for all i ∈ {1, 2, . . . , L},

we know that λ
(`)
i → 0 as well. This implies that ρ∗∗t ≥ ρ̂∗∗t − 1

(t−1)! .

2.5 Approaching Capacity

In this section, we show that the proposed iterative HDD for the spatially-coupled

ensemble can approach the capacity in the high-rate regime. We first introduce the

notion of ε-redundancy.

Definition 24. Let C(p) be the capacity of a BSC(p). For an ε > 0, a code ensemble

with rate R and threshold p∗ is called ε-redundancy achieving if

1− C (p∗)

1−R
≥ 1− ε.

Let nν , 2ν − 1. The following lemma shows that, for any ε > 0, a sequence of

ensembles with rate Rν = 1 − 2νt
nν

and threshold p∗ν = 2t
nν

is ε-redundancy achieving

over BSC channels when ν ∈ N is large. That is, for any ε > 0, there exists a ν0 ∈ N

40

such that, for all ν ≥ ν0, one has

1− C(2tn−1ν)

2tνn−1ν
≥ 1− ε.

Lemma 25. Consider a sequence of BSCs with error probability 2tn−1ν for a fixed t

and ν ∈ N. Then, the ratio of 1−C (2tn−1ν) to 2tνn−1ν goes to 1 as ν →∞. That is,

lim
ν→∞

1− C (2tn−1ν)

2tνn−1ν
= 1. (2.35)

Proof. Recall that the capacity of the BSC(p) is 1−H (p), where H(p) = −p log2(p)−

(1−p) log2(1−p) is the binary entropy function. The numerator of the LHS of (2.35)

can be written as

H

(
2t

nν

)
=

2t log2 nν
nν

(
1−

log2

(
2t
e

)
log2 nν

−O
(
n−1ν
))
. (2.36)

By substituting (2.36) into the LHS of (2.35), we have

1− C (2tn−1ν)

2tνn−1ν
=

2tn−1ν log2 (nν)

2tνn−1ν

(
1−O

(
ν−1
))
.

Then, the equality (2.35) follows since log2(nν) =ν+o(1).

With (nν , k, 2t+ 1) binary primitive BCH codes, the sequence of the (C,m, L, w)

spatially-coupled GLDPC codes can have rate R ≥ 1 − 2tn−1ν . In the following

discussion, we will show that the noise threshold of the (C,m, L, w) spatially-coupled

GLDPC ensemble using iterative HDD with BDD, denoted by p∗∗nν and defined in

(2.37), satisfies (nν−1)p∗∗nν ≥ 2t−2− 1
(t−1)!− ε for some t > 0, ε > 0 and L� w > 0.

Then, we show that the (C,m, L, w) spatially-coupled GLDPC code is ε-redundancy

achieving when n� t� 1 in Theorem 29.

41

Lemma 26. For any 0 ≤ λ <∞ and 0 < t <∞, let n satisfy b
√
nc > max{eλ, λ+

1 + t}, and let Xn ∼ B(n− 1, λ
n−1) be a binomial random variable with the mean λ.

Then,

E [nQn(Xn)] ≤
(

1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t+ 1, n− t− 1).

Proof. See Appendix A.6.

Lemma 27. Given a pair (t, ρ) with t > 0 and ρ ≥ 2, and for each ε > 0, there

exists a n1 > 0 such that, for all n ≥ n1,

(n− 1)fn

(
λ

n− 1
;

ρ

n− 1

)
≤
(
ρ+

1

(t− 1)!
+ ε

)
φ (λ; t− 1) ,

for all 0 ≤ λ ≤ 3ρ, where fn(x; p) is defined in (2.11).

Proof. From (2.21), we know

(n− 1)fn

(
λ

n− 1
;

ρ

n− 1

)
≤ ρI λ

n−1
(t, n− t) +

n−1∑
i=t+1

(
n− 1

i

)(
λ

n− 1

)i(
1− λ

n− 1

)n−1−i
nQn(i)

(a)
≤ ρI λ

n−1
(t, n− t) +

(
1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t+ 1, n− t− 1)

≤
(
ρ+

1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t, n− t) .

where the inequality (a) is obtained by applying Lemma 26. From [54], we know that

Iλ
n
(t, n− t+ 1) converges to φ(t− 1, λ) uniformly for λ ∈ [0, 3ρ]. For any ε > 0, there

exists a n1 > 0 such that I λ
n−1

(t, n− t) ≤ φ(λ; t− 1) + ε
2
(ρ+ 1

(t−1)! + ε)−1φ(λ; t− 1)

42

for all 0 ≤ λ ≤ 3ρ, and O(n−0.1) ≤ ε
2
. Then, whenever n ≥ n1,

(n− 1)fn

(
λ

n− 1
;

ρ

n− 1

)
≤
(
ρ+

1

(t− 1)!
+
ε

2

)(
1 +

ε

2

(
ρ+

1

(t− 1)!
+ ε

)−1)
φ(λ; t− 1)

≤
(
ρ+

1

(t− 1)!
+ ε

)
φ(λ; t− 1).

For the spatially-coupled (C,m, L, w) GLDPC codes with iterative BDD, let

x(`)(x(0); p) ∈ [0, 1]L be the vector of error probabilities after ` iterations of (2.16)

with the initial error probability vector x(0) ∈ [0, 1]L, where the i-th element, denoted

by x
(`)
i (x(0); p), is the average error probability of the messages emitted by bit nodes

at the i-th position. We define the noise threshold for the recursion (2.16) by

p∗∗n , sup
{
p ∈ (0, 1]

∣∣∣lim
`→0

x(`)(p′1; p′) = 0 for all p′ ∈ [0, p]
}
. (2.37)

Corollary 28. Given a pair (t, ρ) with t > 0 and ρ ≥ 2, and for each ε > 0, there

exists a n1 > 0 such that, whenever n1 ≤ n < ∞, the noise threshold p∗∗n satisfies

(n− 1)p∗∗n ≥ 2t− 2− 1
(t−1)! − ε when m� L� w and w →∞.

Proof. According to Lemma 27, we consider the following recursion

λ
(`+1)

= ρφ(λ
(`)

; t− 1), (2.38)

where

ρ , (n− 1)p+
1

(t− 1)!
+ ε. (2.39)

Since the recursion (2.38) can also be considered as a (ρx, φ(x; t− 1)) admissible

system, and the DE update equation of the spatially-coupled system is shown in

43

(2.34). For each ε > 0, let n1 be selected according to the proof of Lemma 27. Then,

we know that, when n > n1,

λ
(`+1)

i

n− 1
=

1

n− 1
ρ

(
1

w

w−1∑
k=0

φ

(
1

w

w−1∑
j=0

λ
(`)

i−j+k; t− 1

))

≥ 1

n− 1

(
1

w

w−1∑
k=0

(n− 1)fn

(
1

w

w−1∑
j=0

λ
(`)

i−j+k

n− 1
;

ρ

n− 1

))

=
1

w

w−1∑
k=0

fn

(
1

w

w−1∑
j=0

λ
(`)

i−j+k

n− 1
;

ρ

n− 1

)
. (2.40)

Note that the RHS of the last equality in (2.40) is the update equation (2.16) with

x
(`)
i = λ

(`)
i

n−1 and p = ρ
n−1 . When (n − 1)x

(0)
i = λ

(0)

i = λ for all i ∈ {1, 2, . . . , L} and

p = ρ
n−1 , one can show that λ

(`)
i

n−1 ≥ x
(`)
i for all ` ≥ 0 by induction.

Let ρ∗∗ be the potential threshold of the recursion (2.38). For each ρ < ρ∗∗, there

exists a wρ > 0 such that for all w > wρ, λ
(`)

i → 0 for all i ∈ {1, 2, . . . , L}. Since

λ
(`)
i

n−1 ≥ x
(`)
i , we also know that x

(`)
i → 0 whenever p satisfies

(n− 1)p+
1

(t− 1)!
+ ε < ρ∗∗.

Thus the potential threshold p∗∗n is lower bounded by

p∗∗n ≥
1

n− 1

(
ρ∗∗ − 1

(t− 1)!
− ε
)
.

Since ρ∗∗ = ρ̂∗∗ ≥ 2t− 2, we conclude that (n− 1)p∗∗n ≥ 2t− 2− 1
(t−1)! − ε.

The following theorem shows that iterative HDD of the spatially-coupled GLDPC

ensemble approaches capacity in high-rate regime.

Theorem 29. For any ε > 0, there exists a tuple (t, n, L, w) such that iterative HDD

of the (C,m, L, w) GLDPC spatially-coupled ensemble is ε-redundancy achieving when

44

C is a t-error correcting BCH code of length n.

Proof. We prove the theorem by showing the existence of the tuple (t, n, L, w) such

that for a given ε ∈ (0, 1), the (C,∞, L, w) GLDPC spatially-coupled ensemble with

the proposed iterative HDD algorithm is ε-redundancy achieving.

We first let t ≥ max{8
ε
, t0}, where t0 is defined in Lemma 20. Select a ν1 > 0 and

define nν1 = 2ν1−1 such that H(2t
nν1

) ≥ 2tνn−1ν1 (1− ε
4
) log2 nν1 . From the threshold of

the high-rate scaling limit introduced in Lemma 23, we know that the noise threshold

of the spatially-coupled system is around 2t. Thus, we can consider the channel noise

in terms of the average number of errors per code ρ ∈ [0, 3t]. By Lemma 27, there

exists a n1 > 0 such that (n − 1)fn
(

λ
n−1 ; ρ

n−1

)
≤
(
ρ+ 1

(t−1)! + 1
2

)
φ (λ; t− 1) for

all 0 ≤ λ ≤ 3ρ. Let ν ≥ dmax{log2 nt, log2 n0, log2 n1, ν1}e and n = 2ν − 1. From

Corollary 28, we know the noise threshold of the spatially-coupled recursion of (2.21)

satisfies (n− 1)p∗∗ ≥ 2t− 2− 1
(t−1)! −

1
2
. By selecting p = (2t− 4)(n− 1)−1, we know

that there exists a 0 < w < ∞ such that the spatially-coupled recursion of (2.21)

converges to 0 as `→∞. After determining w, we select L such that L ≥ 2(w−1)ε−1.

Thus, the rate loss due to spatial coupling (2.1) is R ≥ 1 − 2tν
nν

(1 + ε
2
). Finally, we

conclude the proof by showing that the (C,m, L, w) spatially-coupled ensemble is

ε-redundancy achieving by

1− C (p)

1−R
≥

(2t− 4) νn−1ν
(
1− ε

4

)
2tνn−1ν

(
1 + ε

2

) =
(2t− 4)

(
1− ε

4

)
2t
(
1 + ε

2

) ≥
(
1− ε

4

)2(
1 + ε

2

) ≥ 1− ε.

2.6 Practical Implementation of Iterative HDD

In this section, we describe the practical implementation of the iterative HDD

described in Section 2.2. We highlight the difference between conventional decoding,

which we call intrinsic message passing (IMP), and the proposed approach in Section

45

2.2, which we call extrinsic message passing (EMP). In EMP algorithms, messages

passed on edges in the Tanner graph are computed only from their extrinsic informa-

tion. For certain random ensembles, this enables analysis via density evolution. We

emphasize that this is different than the conventional iterative HDD rule typically

used by product codes. In contrast to Section 2.2.4, this section introduces the EMP

algorithm in a message-passing fashion to make it clear that the EMP uses only the

extrinsic information.

Let r be the vector of channel output bits, ν
(`)
i,j ∈ {0, 1} be the messages passed

from the i-th bit node to the j-th constraint node in the `-th iteration, and µ
(`)
i,j ∈

{0, 1} be the messages passed from the j-th constraint node to the i-th bit node in

the `-th iteration. We assume the constraint nodes define an (n, k, dmin) component

code C with dmin = 2t + 1. Let v ∈ {0, 1}n be an input vector to a constraint node,

and let D : {0, 1}n → C ∪ {fail} be the operator of bounded distance decoding

(BDD) with decoding radius t defined by

D(v) =


c if c ∈ C and dH(v, c) ≤ t

fail otherwise.

2.6.1 Intrinsic Message Passing

In this section, we recall the IMP algorithm for highlighting the difference with

EMP. For a bit node i and a constraint node j, let N (i) = {j, j′} be the constraint-

node neighbors of i. Let ν
(`)
j , (ν

(`)
σj(1),j

, . . . , ν
(`)
σj(n),j

) be the collection of the all

input messages to the j-th constraint node in the `-th iteration, where σj(k) ∈ I

is defined in Section 2.2. Let w
(`)
j , (w

(`)
1,j, . . . , w

(`)
n,j) = D(ν

(`)
j) be the output of the

BDD decoder applied to the input messages at the j-th constraint node. Then, the

46

message-passing rules, for each constraint node j, are

ν
(`+1)
i,j = µ

(`)
i,j′ (2.41)

µ
(`)
σj(k),j

=


w

(`)
k,j if D

(
ν
(`)
j

)
6= fail

ν
(`)
σj(k),j

otherwise.

(2.42)

The iteration starts by initializing ν
(0)
i,j = ri for each bit node i and all j ∈ N(i). From

(2.41) and (2.42), one can see that the IMP algorithm only uses channel outputs at

the beginning of the iterations, and then, exchanges the output of the constraint

nodes in the subsequent iterations. The IMP is the conventional approach used for

the iterative HDD of product codes.

2.6.2 Extrinsic Message Passing

In the IMP message-passing rule (2.42), the computation of the output message

µ
(`)
i,j passed from j to i uses the input message ν

(`)
i,j . This violates the principle of

using only extrinsic information in message-passing rules. The decoding algorithm

proposed in Section 2.2 can rectify this problem. We note that the messages in the

EMP decoder are denoted by ν̂
(`)
i,j and µ̂

(`)
i,j to distinguish them from the IMP decoder.

Let ν̂
(`)
i,j ∈ {0, 1} be the message passed by the EMP algorithm from the i-th bit

node to the j-th constraint node and let ν̂
(`)
j , (ν̂

(`)
σj(1),j

, . . . , ν̂
(`)
σj(n),j

) be the collection

of all input messages to the j-th constraint node in the `-th iteration. To compute

the EMP message µ̂
(`)
i,j ,

(
µ̂
(`)
i,j,0, µ̂

(`)
i,j,1

)
from the j-th constraint node to the i-th bit

node, BDD is performed twice. In the `-th iteration, similar to the arrangement of

the candidate decoding vector in (2.3), we first define

ν̂
(`)
j,k,0 , (ν̂

(`)
σj(1),j

, . . . , ν̂
(`)
σj(k−1),j, 0, ν̂

(`)
σj(k+1),j, . . . , ν̂

(`)
σj(n),j

)

47

and

ν̂
(`)
j,k,1 , (ν̂

(`)
σj(1),j

, . . . , ν̂
(`)
σj(k−1),j, 1, ν̂

(`)
σj(k+1),j, . . . , ν̂

(`)
σj(n),j

),

and then computes ŵ
(`)
j,k,0 = D(ν̂

(`)
j,k,0) and ŵ

(`)
j,k,1 = D(ν̂

(`)
j,k,1), respectively. Based on

ŵ
(`)
j,k,0 and ŵ

(`)
j,k,1 computed at the j-th constraint node, the messages µ̂

(`)
σj(k),j,0

and

µ̂
(`)
σj(k),j,1

is assigned, respectively, by

µ̂
(`)
σj(k),j,0

=


[
ŵ

(`)
j,k,0

]
k

if D
(
ν̂
(`)
j,k,0

)
6= fail

fail otherwise,

and

µ̂
(`)
σj(k),j,1

=


[
ŵ

(`)
j,k,1

]
k

if D
(
ν̂
(`)
j,k,1

)
6= fail

fail otherwise.

One can see that the message µ̂
(`)
i,j will be in the set

{(0, 0), (1, 1), (0, 1), (0, fail), (fail, 1), (fail, fail)}.

We recall that N (i) = {j, j′}. The message-passing rule for the i-th bit node is

ν̂
(`+1)
i,j ,



0 if µ̂
(`)
i,j′ = (0, 0)

1 if µ̂
(`)
i,j′ = (1, 1)

ri otherwise.

(2.43)

The iteration is initialized by setting ν̂
(0)
i,j = ri for each bit node i and all j ∈ N (i).

By replacing the k-th element of ν̂
(`)
j with both 0 and 1, the computed output

µ̂
(`)
σj(k),j

remains independent of the incoming message ν̂
(`)
σj(k),j

on that edge. Therefore,

48

only extrinsic information is used in the computation of the output message on

the (σj(k), j) edge from the j-th constraint node. The output message from a bit

node depends only on the channel observation and the input from the other edge.

Therefore, this defines an extrinsic message-passing algorithm with hard-decision

messages.

2.6.3 Low-Complexity EMP Algorithm

As described above, the EMP algorithm needs to run the BDD algorithm 2n

times to compute the output messages from a single constraint node. The primary

purpose of that description was to demonstrate that the algorithm is indeed an EMP

algorithm. Now, we show that exactly the same outputs can be computed with a

single decode and some post processing. In the `-th iteration, let w , D(ν̂
(`)
j) be

the output of the BDD at the j-th constraint node with ν̂
(`)
j as an input. In this

case, we will see that one can calculate ν̂
(`+1)
j directly from ν̂

(`)
j . In this section, the

µ̂
(`)
σj(k),j

messages are used only to explain the correctness of the simplified algorithm.

Consider the following facts.

Proof 30. If w = fail, then at least one element of µ̂
(`)
σj(k),j

will be a fail for all

k = 1, 2, . . . , n. By (2.43), one can show that ν̂
(`+1)
σj(k),j′

= rσj(k) for all k = 1, 2, . . . , n.

Proof 31. If w 6= fail and dH(ν̂
(`)
j ,w) < t, then one can show that µ̂

(`)
σj(k),j,0

=

µ̂
(`)
σj(k),j,1

for all k = 1, 2, . . . , n. Thus, we have ν̂
(`+1)
σj(k),j′

= µ̂
(`)
σj(k),j,0

for all k =

1, 2, . . . , n.

Proof 32. If w 6= fail and dH(ν̂
(`)
j ,w) = t, then first suppose that wk = ν̂

(`)
σj(k),j

for some k. One can see that µ̂
(`)
σj(k),j

must not be (0, 0) or (1, 1). Thus, we know

ν̂
(`+1)
σj(k),j′

= rσj(k). On the other hand, suppose that wk 6= ν̂
(`)
σj(k),j

. One can show that

µ̂
(`)
σj(k),j,0

= µ̂
(`)
σj(k),j,1

= wk. Therefore, ν̂
(`+1)
σj(k),j′

= wk.

49

Using these facts, we define the low-complexity EMP decoder in Algorithm 1.

Since the distance dH(ν̂
(`)
j ,w) is automatically obtained while performing BDD, the

only overhead of the EMP algorithm is a little Boolean logic.

Algorithm 1 The low-complexity EMP algorithm

Iteration `: For each constraint node j,

• Compute w = D(ν̂
(`)
j).

• For k = 1, . . . , n,

– if dH(ν̂
(`)
j ,w) > t, then ν̂

(`+1)
σj(k),j′

= rik

– elseif dH(ν̂
(`)
j ,w) < t, then ν̂

(`+1)
σj(k),j′

= wk

– else ν̂
(`+1)
σj(k),j′

=
((

1− ν̂σj(k),j
)(
rσj(k) OR wk

))
OR (rσj(k)wk).

Remark 33. While preparing this extended version of our earlier work [53], we notice

that Miladinovic and Fossorier also proposed an iterative HDD algorithm for general

product codes [13]. We briefly describe their algorithm as follows. For an edge (i, j)

connecting the bit node i and the constraint node j, let j′ = N (i) \ j, i = σj(k), and

ν
(`)
j , (ν

(`)
σj(1),j

, ν
(`)
σj(2),j

. . . , ν
(`)
σj(n),j

). Note that the k-th element of ν
(`)
j is ν

(`)
i,j . The

message passed by the constraint node j, denoted by µ
(`)
i,j , consists of two elements

µ
(`)
i,j , (Dk(ν

(`)
j), s(`)), where s(`) = 1 if the decoding at the j-th constraint node has

succeeded; otherwise, s(`) = 0. At the i-th bit node, the message ν
(`+1)
i,j′ is updated

by

ν
(`+1)
i,j′ =

(
1− s(`)

)
ri + sDk

(
ν
(`)
j

)
. (2.44)

50

One can see that the proposed algorithm is similar to the iterative HDD algorithm

proposed. However, the outputs of the two iterative HDD algorithm are different

when t = dmin−1
2

, c = D(ν
(`)
j), dH(c,ν

(`)
j) = t, and ck = ν

(`)
i,j 6= ri. For the proposed

iterative HDD and the vector v
(`)
i,j defined in (2.3), we know that D(v

(`)
i,j) will be ri,

but (1−s)ri+sDk(ν
(`)
j) = ck. Moreover, we notice that ν

(`+1)
i,j′ in the update equation

(2.44) will depend on µ
(`−1)
i,j′ . In the `-th iteration, we define two vectors

ν
(`)
j,k,0 ,

(
ν
(`)
σj(1),j

, . . . , ν
(`)
σj(k−1),j, 0, ν

(`)
σj(k+1),j, . . . , ν

(`)
σj(n),j

)
(2.45)

and

ν
(`)
j,k,1 ,

(
ν
(`)
σj(1),j

, . . . , ν
(`)
σj(k−1),j, 1, ν

(`)
σj(k+1),j, . . . , ν

(`)
σj(n),j

)
. (2.46)

Suppose that the decoder outputs c = D(ν
(`)
j,k,0) and c′ = D(ν

(`)
j,k,1) are both code-

words. It is clear that dH(c,ν
(`)
j,k,0) = dH(c′,ν

(`)
j,k,1) = t, ck = 0, and c′k = 1. Also, we

know s = 1 for the decoding of both vectors. The possible values of ν
(`+1)
i,j′ are listed

in Table 2.1. Since the values of ν
(`+1)
i,j′ for different µ

(`−1)
i,j′ are different, we observe

that ν
(`+1)
i,j′ is not independent of µ

(`−1)
i,j′ .

µ
(`−1)
i,j′ ν

(`)
i,j µ

(`)
i,j ν

(`+1)
i,j′

(0, 1) 0 (0, 1) 0
(1, 1) 1 (1, 1) 1

Table 2.1: The possible values of ν
(`+1)
i,j′ with input vectors µ

(`−1)
i,j′ when c = D(ν

(`)
j,k,0)

and c′ = D(ν
(`)
j,k,1) are codewords, where ν

(`)
j,k,0 and ν

(`)
j,k,1 are defined in (2.45) and

(2.46), respectively.

51

2.7 Numerical Results and Comparison

In the following numerical results, the iterative HDD threshold of (C,m, L, w)

spatially-coupled GLDPC ensemble with L = 1025, and w = 16 are considered. In

Table 2.2, the thresholds of the ensembles are shown in terms of the average number of

error bits attached to a code-constraint node. Let p∗n,t be the iterative HDD threshold

of the spatially-coupled GLDPC ensemble based on a (n, k, 2t+ 1) binary primitive

BCH component code, and p̃∗n,t be the iterative HDD threshold of the spatially-

coupled GLDPC ensemble based on the (n, k−1, 2t+2) even-weight subcode. Then,

we define a∗n,t , np∗n,t and ã∗n,t , np̃∗n,t to be the thresholds in terms of the average

number of error bits attached to a component code. In the high-rate scaling limit, we

let ρ∗t and ρ̃∗t denote the iterative HDD thresholds of the ensembles based on primitive

BCH component codes and their even-weight subcodes, respectively. Moreover, the

threshold of HDD without miscorrection, ρ̂∗t , is shown in Table 2.2 along with the

potential threshold, ρ̂∗∗t , of iterative HDD without miscorrection from (2.18).

From Table 2.2, one can observe that the thresholds (ρ∗t , ρ̃
∗
t and ρ̂∗t) of the

spatially-coupled ensemble with primitive BCH component codes or the even-weight

subcodes approach to 2t as t increases. This verifies the results predicted by Lemma 22

and the vanishing impact of miscorrection predicted by Lemma 23.

2.8 Conclusion

The iterative HDD of GLDPC ensembles, based on on t-error correcting block

codes, is analyzed with and without spatial coupling. Using DE analysis, noise

thresholds are computed for a variety of component codes and decoding assumptions.

In particular, the case of binary primitive BCH component-codes is considered along

with their even-weight subcodes. For these codes, the miscorrection probability

is characterized and included in the DE analysis. Scaled DE recursions are also

52

computed for the high-rate limit. When miscorrection is neglected, the resulting

recursion for the basic ensemble matches the results of [44, 45]. It is also proven that

iterative HDD threshold of the spatially-coupled GLDPC ensemble can approach

capacity in high-rate regime. Finally, numerical results are presented that both

verify the theoretical results and demonstrate the effectiveness of these codes for

high-speed communication systems.

53

Table 2.2: Iterative HDD thresholds of (C,m, 1025, 16) spatially-coupled GLDPC
ensemble with binary primitive BCH codes

t 3 4 5 6 7
a∗255,t 5.432 7.701 9.818 11.86 13.87
a∗511,t 5.417 7.665 9.811 11.86 13.85
a∗1023,t 5.401 7.693 9.821 11.87 13.88
ρ∗t 5.390 7.688 9.822 11.91 13.93
ã∗255,t 5.610 7.752 9.843 11.88 13.87
ã∗511,t 5.570 7.767 9.811 11.86 13.85
ã∗1023,t 5.606 7.765 9.841 11.88 13.88
ρ̃∗t 5.605 7.761 9.840 11.91 13.93
ρ̂∗t 5.735 7.813 9.855 11.91 13.93
ρ̂∗∗t 5.754 7.843 9.896 11.93 13.95

54

3. CONVERGENCE OF WEIGHTED MIN-SUM DECODING VIA

DYNAMIC PROGRAMMING ON TREES

3.1 Introduction

The introduction of turbo codes in 1993 started a revolution in coding and infer-

ence that continued with the rediscovery of low-density parity-check (LDPC) codes

and culminated in optimized LDPC codes that essentially achieve the capacity of

practical channels [3, 4, 5, 29]. During this time, Wiberg et al. advanced the anal-

ysis of iterative decoding by proving a number of results for the min-sum (MS)

decoding algorithm, which is equivalent to the max-product (MP) decoding algo-

rithm [55, 56, 57]. Richardson and Urbanke also introduced the technique of density

evolution (DE) to compute noise thresholds of message-passing decoding algorithms

for turbo and LDPC codes [9].

For a particular noise realization, the optimality of iterative decoding solutions

has also been considered by a number of authors. Weiss and Freeman have shown

that the max-product assignment is locally optimal w.r.t. all single-loop and tree

perturbations [27]. Unfortunately, this result is typically uninformative for LDPC

codes with variables degrees larger than 2. Frey and Koetter have also shown that,

with proper weights and adjustments, the attenuated max-product (AttMP) decod-

ing algorithm for LDPC codes returns the maximum-likelihood (ML) codeword if the

algorithm converges to a codeword [58]. For general graphs, Wainwright et al. pro-

posed the tree-reweighted max-product (TRMP) message-passing algorithm which

attempts to compute the MAP assignment on strictly positive Markov random fields

c©2010 IEEE. Part of the results reported in this section is reprinted with permission from
Yung-Yih Jian and Henry D. Pfister for “Convergence of weighted min-sum decoding via dynamic
programming on coupled trees,” International Symposium on Turbo Codes & Iterative Information
Processing, Sept. 2010.

55

[59]; in fact, they have shown that, under some optimality conditions, the converged

solution gives the MAP configuration for the graph. Their algorithm, though strictly

different, has some similarity to the AttMP algorithm in [58].

Linear programming (LP) decoding for LDPC codes, proposed by Feldman et al.,

solves a relaxed version of the ML decoding problem [60]. Since its introduction, a

number of authors have looked for connections to the MP algorithm decoding [61, 62].

One interesting open question is, “What is the noise threshold of LP decoding?”. In

[63], Vontobel and Koetter introduced a necessary condition for LP decoding to

return the correct codeword under the all-zero codeword assumption. Based on this

necessary condition, upper bounds of the noise threshold of LP decoding for various

LDPC codes under the binary symmetric channel (BSC) were obtained. The first

lower bound of the noise threshold of LP decoding under the BSC was proposed in

[64]. Using expander graph arguments, they showed that LP decoding of a rate-1
2

regular LDPC code can correct all error patterns with weight less than 0.000175 of

the block length. Since this is a worst-case analysis, the large gap to the empirical

observations is not too surprising. Daskalakis et al. [65] were able to improve the

lower bound to 0.002 using probabilistic arguments based on a construction of a LP

dual feasible solution under the BSC. In [66], Koetter and Vontobel applied girth-

based arguments to the dual LP problem. For a (3, 6)-regular LDPC code, they

proved that LP decoding can tolerate a crossover probability of p = 0.01 on the BSC

and a noise level of σ = 0.5574 on the binary-input additive white Gaussian noise

channel (BIAWGNC).

Arora et al. showed recently that, for a (3, 6)-regular LDPC code, LP decoding

can tolerate a crossover probability p = 0.05 on the BSC [1]. Instead of using

a dual LP solution, they investigated the primal solution of the LP problem and

proposed a local optimality condition for codewords. They proved that the local

56

optimality implies both global optimality and LP optimality. So the probability that

LP decoding succeeds is lower bounded by the probability that the correct codeword

satisfies a set of local optimality conditions. Since their local optimality conditions

are amenable to analysis on tree-like neighborhoods, they perform a DE-type analysis

to obtain the lower bound of the BSC noise thresholds for LP decoding. Using

similar DE-type analysis for memoryless binary-input output symmetric (MBIOS)

channels, Halabi and Even showed that LP decoding can achieve a noise threshold

σ = 0.735 on the BIAWGNC [67]. By using the same local optimality argument, the

authors further extended the sufficient conditions for the ML certificate to the class

of GLDPC codes [68, 69].

Similar to the connection between the MP algorithm and the MS algorithm,

the AttMP algorithm, for any finite number of iterations, is equivalent to the WMS

algorithm proposed by Chen and Fossorier [70]. They showed that, for regular LDPC

codes, the WMS algorithm with a proper choice of the weight factor, β, can have

the noise threshold better than the noise threshold of the MS algorithm. Therefore,

both the AttMP and the WMS algorithms are considered in this section. The results

can be seen as an extension of the work by Frey and Koetter that provides new

insight into the results of [66, 1]. In [71], Mooij and Kappen characterized sufficient

conditions for the convergence of the sum-product algorithm by using the contraction

mapping theorem [72, pp. 97–100]. With the same approach, sufficient conditions for

the convergence of the AttMP and the WMS algorithms are analyzed. We view both

the AttMP and the WMS [70] algorithms as computing the dynamic-programming

(DP) solution to the optimal discounted-reward problem on a set of overlapping

trees. This allows us to show that, for any received vector, the one-step update

of the algorithm is a contraction on the space of message values when the weight

factor is sufficiently small. From this, we deduce that the messages converge to a

57

unique fixed point [72, pp. 97–100]. We first show that, for (dv, dc)-regular LDPC

codes, if the resulting fixed point satisfies some consistency conditions, then the

hard decisions obtained based on the fixed point must be an LP optimum solution

and, hence, an ML decoding solution. Then, the WMS algorithm on (dv, dc)-regular

LDPC codes with messages diverging to ±∞ is considered. We show that, for the

weight β = 1
dv−1 , if the WMS messages diverge to ±∞ and satisfy the consistency

conditions, the corresponding hard decisions also return an ML decoding solution.

The rest of the section is organized as follows. Section 3.2 provides the background

on factor graphs as well as the message update rules of the AttMP algorithm and the

WMS algorithm. In Section 3.3, we first investigate the convergence property of both

algorithms, and then introduce consistency conditions for both algorithms. Then,

the ML optimality certificate property is discussed for hard decisions associated with

a consistent fixed point. In Section 3.4, the optimality of a codeword returned by the

WMS algorithm is analyzed for the case when the message diverges. A conjecture

about the connection between noise thresholds of WMS decoding and noise thresholds

of LP decoding is proposed in the same section. Numerical results are described and

discussed in Section 3.5. Finally, conclusions and extensions are given in Section 3.6.

3.2 Background

3.2.1 Factor Graphs

A binary LDPC code can be defined by a bipartite graph G = (V , E), where E is

the set of edges, and V = Vv ∪ Vc consists of variable nodes (or bit nodes) Vv and

check nodes (or constraint nodes) Vc. In this section, (dv, dc)-regular LDPC codes

are considered. That is, each variable node in Vv has dv edges attached to it, and

each check node in Vc has dc edges attached to it. For a set S, let |S| denote the

cardinality of S. Let n , |Vv| be the number of variable nodes. Let N(i) be the

58

neighbors of a node i ∈ V . For a check node j ∈ Vc, we say that j is satisfied when

the binary values assigned to the bit nodes in N(j) satisfy the parity check imposed

in j. Any binary vector x ∈ {0, 1}n is a codeword, or a valid assignment, if and only

if it satisfies all check nodes in Vc. We use C to denote the collection of all codewords.

Let T Li be the computation tree of G which has depth L and is rooted at node i [55,

§4.1]. The set of vertices in the `-th level of T Li , where ` ≤ L, is denoted by N(i, `).

The girth of a graph G is the length of the smallest cycle in G, denoted by girth(G).

Suppose that the computation tree T 2L
i has depth L < 1

4
girth(G). Then, each

node in T 2L
i is associated with a different node in G. Let Iv ⊆ Vv and Ic ⊆ Vc be the

subset of variable nodes associated with the variable nodes in T 2L
i and the subset of

check nodes associated with the check nodes in T 2L
i , respectively. A binary vector

w ∈ {0, 1}n is a valid assignment on T 2L
i if w satisfies all check nodes in Ic. Let

CT 2L
i

be the set of all valid assignments on T 2L
i , and let CT 2L

i
(x) , {w ∈ CT 2L

i
: wi =

x,wm = 0,∀m /∈ T 2L
i } be a subset of CT 2L

i
, where the assignment for every node

m ∈ Vv \ Iv is 0 and the assignment of the root node is x. In the remainder of this

section, we often simplify CT 2L
i

to CT when i and L are evident from the context.

Similarly, we also simplify CT 2L
i

(x) to CT (x).

3.2.2 Discounted Dynamic-Programming on a Tree

In this section, we recall the AttMP algorithm proposed in [58] for LDPC codes.

When the number of iterations L satisfies L < 1
4
girth(G), it can be considered as

performing the AttMP algorithm on the computation trees, T 2L
i , for all i ∈ Vv. As in

[58], we consider the objective function in the logarithmic domain, and an alternative

interpretation from the discounted DP point of view on the obtained message update

rules is introduced.

Let γm(xm) , log(pY |X(ym|xm)) be the log-likelihood of receiving ym ∈ R given

59

that xm ∈ {0, 1} is the m-th transmitted codeword bit, and let β ∈ R+ be a non-

negative weight factor. For a fixed i ∈ Vv, let Iv ⊆ Vv be the subset of variable

nodes associated with the variable nodes in a tree T 2L
i . The AttMP algorithm solves

the problem of finding a best assignment w∗ ∈ CT (0) ∪ CT (1) to T 2L
i so that the

objective function

∑
m∈Iv

βmγm(wm), (3.1)

is maximized, where βm = β` if m ∈ N(i, 2`). Since CT (0) and CT (1) are disjoint,

(3.1) can be separated into two subproblems. For x ∈ {0, 1}, define a function

µi(x) , max
w∈CT (x)

∑
m∈Iv

βmγm(wm), (3.2)

where µi(x) is the optimal reward for assigning x to the root node of T 2L
i . Assume

that the objective function (3.1) is uniquely maximized by w∗. It can be shown that

w∗i = arg maxx∈{0,1} µi(x). Therefore, finding the best assignment of the tree T 2L
i is

equivalent to finding the best assignment of the root node of T 2L
i .

The RHS in (3.2) can be rewritten as

µi(x) = γi(x) + max
w∈CT (x)

L∑
`=1

∑
m∈N(i,2`)

β`γm(wm). (3.3)

This suggests that we can compute µi(x) recursively by using DP. In the (` + 1)-th

iteration, we compute the optimal discounted total reward µ
(`+1)
i→j (x) of assigning x

60

to the directed edge i→ j by

µ
(`+1)
i→j (x) , γi(x) + β

∑
k∈N(i)\j

µ
(`)
i←k(x)

= γi(x) + β
∑

k∈N(i)\j

max
w∈Sk,i(x)

∑
m∈N(k)\i

µ
(`)
m→k(wm), (3.4)

where

Sk,i(x) ,
{
w ∈ {0, 1}n : wi = x,

∑
m∈N(k)

wm = 0 mod 2
}

(3.5)

is the set of all valid assignments for the neighbors of the check node k when x is

assigned to the i-th bit node. This follows from defining µ
(`)
i←k(x) to be the optimal

discounted total reward for assigning x to the directed edge i ← k according to the

rule

µ
(`)
i←k(x) , max

w∈Sk,i(x)

∑
m∈N(k)\i

µ
(`)
m→k(wm). (3.6)

Finally, the reward function (3.3) can be computed by

µi(x) = γi(x) + β
∑
j∈N(i)

µ
(L−1)
i←j (x), (3.7)

and the best assignment, or hard decision, to the root of the tree T 2L
i is then

x̂i , arg max
x∈{0,1}

µi(x). (3.8)

To initialize the process, we choose µ
(0)
i→j(x) = γi(x) for all edges (i, j) ∈ E and all

x ∈ {0, 1}. The update rule in (3.4) is the same as the AttMP algorithm proposed

in [58], where the optimal discounted total rewards µ
(`)
i→j(x) and µ

(`)
i←j(x) are the

61

messages passed on the directed edges i → j and i ← j, respectively. Note that

the obtained message update rule for the AttMP algorithm is actually an attenuated

max-sum algorithm since the objective function as well as the message updates are

considered in the logarithmic domain.

By using the message update rule (3.4), one can compute µi(x) for all i ∈ Vv in

parallel. Suppose that the total number of iterations L is less than 1
4
girth(G). The

vector x̂ = {x̂i : i ∈ Vv} is a collection of the best assignment to the root of the trees

{T 2L
i : i ∈ Vv}. In [68], the VERIFY-LO algorithm is proposed to test the local

optimality of x̂. Note that we do not define local optimality in the dissertation. The

interested reader can refer to [1] and [68] for the definition. After knowing that x̂

is locally optimal, it can be shown that x̂ is also an ML codeword [1, 67]. In this

section, we discuss how the weight factor β affects the convergence of the AttMP

decoding algorithm. When the AttMP decoding algorithm converges, a sufficient

condition for testing the ML optimality of the corresponding hard-decision vector is

proposed. It can be shown that checking the proposed sufficient condition is simpler

than the VERIFY-LO algorithm. Finally, the analysis is extended to L > 1
4
girth(G).

3.2.3 Attenuated Max-Product Decoding

In Section 3.2.2, the original AttMP algorithm was introduced. In this section,

we introduce a modified version of the AttMP algorithm, which is mathematically

equivalent to the original one for any finite number of iterations.

Let γm , γm(0) − γm(1) be the channel log-likelihood ratio (LLR) for the m-th

bit. Consider the computation tree T 2L
i of depth 2L with L < 1

4
girth(G) and rooted

at i ∈ Vv. Let Iv ⊆ Vv be the subset of variable nodes associated with the variable

nodes in a tree T 2L
i . It can be shown that any assignment w∗(x) that maximizes the

62

objective function of (3.2) also maximizes the following objective function

µi(x) , max
w∈CT (x)

∑
m∈Iv

βm (1− wm) γm, (3.9)

where µi(x) is the optimal reward for assigning x to the root node of T 2L
i . To show

the equivalence between (3.2) and (3.9), we subtract a constant
∑

m∈Iv βmγm(1) from

the objective function of (3.2). Then,

arg max
w∈CT (x)

∑
m∈Iv

βmγm(wm) = arg max
w∈CT (x)

∑
m∈Iv

βmγm(wm)−
∑
m∈Iv

βmγm(1)

= arg max
w∈CT (x)

∑
m∈Iv

βm (γm(wm)− γm(1))

= arg max
w∈CT (x)

∑
m∈Iv

βm (1− wm) γm.

Therefore, the modified AttMP update rule becomes

µ
(`+1)
i→j (x) , (1− x)γi + β

∑
k∈N(i)\j

µ
(`)
i←k(x)

= (1− x)γi + β
∑

k∈N(i)\j

max
w∈Sk,i(x)

∑
m∈N(k)\i

µ
(`)
m→k(wm), (3.10)

and thus

µ
(`)
i←k(x) , max

w∈Sk,i(x)

∑
m∈N(k)\i

µ
(`)
m→k(wm). (3.11)

After obtaining (3.11), we can compute the total reward function and the hard

decision for the root node of the tree T 2L
i using (3.7) and (3.8), respectively. Note

that the message µ
(`+1)
i→j (x) now represents the weighted correlation between the LLRs

and the best valid assignment with x assigned to the directed edge i → j. The

algorithm starts by setting µ
(0)
i→j(x) = (1− x)γi for all (i, j) ∈ E and all x ∈ {0, 1}.

63

Similar to the analysis in Section 3.2.2, µi→j(x) can be considered as a DP value

function, that assigns a real number to each bit-to-check directed edge i → j with

all possible assignments x ∈ {0, 1}. Since the messages can be updated in parallel,

all bit-to-check messages with all possible assignments can be arranged as an AttMP

message vector µ ∈ R2|E| defined by µ , {µi→j(x) : (i, j) ∈ E , x ∈ {0, 1}}. Based on

the standard approach to DP [73, §6], the update process can be seen as applying

an operator A : R2|E| → R2|E| to message vectors. From (3.10), the operator A is

defined by ν = A[µ] with

νi→j(x) , (1− x)γi + β
∑

k∈N(i)\j

µi←k(x).

= (1− x)γi + β
∑

k∈N(i)\j

max
w∈Sk,i(x)

∑
m∈N(k)\i

µm→k(wm). (3.12)

The AttMP algorithm proceeds iteratively by computing µ(`+1) = A[µ(`)].

3.2.4 Weighted Min-Sum Decoding

Instead of passing the vector (µ
(`)
i→j(0), µ

(`)
i→j(1)) ∈ R2 as the i→ j message in the

AttMP algorithm, the WMS algorithm passes the message µ
(`)
i→j , µ

(`)
i→j(0)−µ(`)

i→j(1),

which is simply the difference between the best 0-root correlation and the best 1-root

correlation. Similarly, the i ← j message is simplified to µ
(`)
i←j , µ

(`)
i←j(0) − µ(`)

i←j(1).

The message update rules of the WMS algorithm are therefore given by

µ
(`+1)
i→j , γi + β

∑
k∈N(i)\j

µ
(`)
i←k, (3.13)

µ
(`)
i←j ,

 ∏
m∈N(j)\i

sgn
(
µ
(`)
m→j

) min
m′∈N(j)\i

∣∣∣µ(`)
m′→j

∣∣∣ , (3.14)

64

where sgn(x) is the standard sign function defined by

sgn(x) ,


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Define µ
(`)
i , γi + β

∑
j∈N(i) µ

(`)
i←j. The hard decision of the i-th bit node after `

iterations is

x̂i =


1
2

(
1− sgn

(
µ
(`)
i

))
if µ

(`)
i 6= 0,

0 otherwise.

(3.15)

Note that µ
(`)
i = 0 implies µ

(`)
i (0) = µ

(`)
i (1). So, the decoder can either assign 0 or 1

to the i-th bit. In the practical implementation of the WMS algorithm, ties can be

broken by randomly assigning 0 or 1 with probability 1
2
. In the present analysis, we

avoid this case by assuming that sgn
(
µ
(`)
i

)
6= 0 when computing hard decisions.

Similar to the AttMP algorithm, we define the WMS message vector µ ∈ R|E|

by µ , {µi→j : (i, j) ∈ E}. The message update rule of the WMS algorithm is also

given by the operator W : R|E| → R|E|, which is defined by ν = W[µ] with

νi→j = γi + β
∑

k∈N(i)\j

 ∏
m∈N(k)\i

sgn (µm→k)

 min
m′∈N(k)\i

|µm′→k| . (3.16)

The WMS algorithm is initialized by setting µ
(0)
i→j = γi and proceeds iteratively by

computing µ(`+1) = W[µ(`)].

65

3.2.5 LP Decoding

Given the received vector y ∈ Rn, the ML decoder finds a codeword x∗ ∈ C

such that the probability p(y|x∗) is maximal among all x ∈ C. Let γ ∈ Rn be the

vector of channel LLRs. Then, ML decoding can be rewritten as the following integer

programming problem [60],

min
∑n

i=1 xiγi

subject to x ∈ C.
(3.17)

Note that the problem (3.17) is equivalent to the problem of max
∑n

i=1−xiγi subject

to x ∈ C. By the fact that adding the constant,
∑n

i=1 γi, to the objective function

does not change the solution, the problem (3.17) is then equivalent to

max
∑n

i=1 (1− xi) γi

subject to x ∈ C.
(3.18)

For LDPC codes, solving (3.17) or (3.18) directly is computationally infeasible for

large n because the number of codewords grows exponentially in n. In [60], a sub-

optimal decoder, the so called LP decoder, was proposed. With the same objective

function as in (3.17), the LP decoder searches the optimal solution over a relaxed

polytope which is obtained by intersecting all local codeword polytopes defined by

each check node of the graph G.

Here, we briefly describe the LP decoder in [60] as follows. Given a check node

j ∈ Vc, let

Ej = {S ⊆ N(j) : |S| is even}

be the collection of all support sets of local codewords for j. Note that ∅ ∈ Ej and

66

represents the all-zero codeword. For each j ∈ Vc, and S ∈ Ej, ζj,S is an indicator

function of the local codeword being assigned to j. The LP decoder solves the

following problem

min
∑
i∈Vv

xiγi

subject to
∑
S∈Ej

ζj,S = 1 ∀j ∈ Vc∑
S∈Ej
S3i

ζj,S = xi ∀(i, j) ∈ E

ζj,S ≥ 0, ∀j ∈ Vc, ∀S ∈ Ej.

In the sequel, this LP problem is called Problem-P. The vector x∗ is LP optimal if

it is the solution of Problem-P. Moreover, if x∗ ∈ {0, 1}n, then the vector x∗ is an

ML codeword.

To establish the dual problem of Problem-P, a Lagrange multiplier τi,j is associ-

ated with each edge (i, j) ∈ E of the graph G. The resulting dual problem is given

by

max
∑
j∈Vc

τj

subject to
∑
i∈S

τi,j ≥ τj ∀j ∈ Vc, ∀S ∈ Ej∑
j∈N(i)

τi,j ≤ γi ∀i ∈ Vv,

which, as shown in [66], is equivalent to

max
∑
j∈Vc

min
S∈Ej

∑
i∈S

τi,j

subject to
∑
j∈N(i)

τi,j = γi ∀i ∈ Vv.

In the remainder of thissection, this dual problem is called Problem-D.

67

Consider a (dv, dc)-regular LDPC code, and let

L ,

{
w ∈ {0, 1}dc :

dc∑
i=1

wi = 0 mod 2

}
(3.19)

be the set of all valid codeword of a check node. For each check node j ∈ Vc, define

a mapping ϕj : {1, 2, . . . , dc} → N(j) such that ϕj(1) < ϕj(2) < · · · < ϕj(dc).

Let τj ∈ Rdc be a vector with (τj)m = τϕj(m),j for m = 1, 2, . . . , dc. The objective

function in Problem-D can be rewritten as
∑

j∈Vc minw∈L 〈w, τj〉, where 〈w, τj〉 ,∑dc
m=1wm(τj)m.

3.2.6 Impossibility of a General ML Certificate for WMS Decoding

One of the main goals of this section, is to show that the WMS algorithm with

β < 1
dv−1 converges to a fixed point, and returns an ML codeword if the fixed point

satisfies the proposed consistency conditions. Before we prove this, two examples are

provided in this section for showing that the WMS algorithm with some β > 1
dv−1 is

not guaranteed to return an ML codeword.

The first example is a numerical simulation of the WMS algorithm with β = 0.8

on a small code (n = 12). Since the codeword length is short, we are able to

implement the ML decoder defined in (3.17) and compare the ML output with the

WMS output.

Example 34. In this example, the ML optimality of the codeword returned by the

WMS decoder with β = 0.8 is checked. We consider a (3, 4)-regular LDPC code

over the BSC with cross-over probability p = 0.1. The parity check matrix for the

68

(3, 4)-regular LDPC code is

H =



0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1

0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0

0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0

1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0

1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0

0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1



.

For the WMS decoder, 200 iterations were performed in decoding each block. Af-

ter testing 105 blocks, there were 90905 codewords returned by the WMS decoder.

Among these codewords returned by the WMS algorithm, only 90850 codewords

were the ML codeword. Therefore, codewords returned by the WMS algorithm with

β = 0.8 cannot be guaranteed to be ML optimal.

For the general case, the following example gives some intuition.

Example 35. Consider a (dv, dc)-regular LDPC code with codeword length n, where

dc is an odd number and dv > 3. Assume that the all-zero codeword is transmitted.

Let the channel output LLR vector be γ = (−1, . . . ,−1). Consider the WMS algo-

rithm with β > 2
dv−1 .

At the beginning, all LLR-based messages from variable nodes to their neighbor-

ing check nodes are µ
(0)
i→j = −1 for i = 1, . . . , n and j ∈ N(i). Consider messages

µi←j passed from the j-th check node to its neighbor variable nodes i ∈ N(j). Since

the incoming messages are all equal to −1, the message update rule of the WMS

69

algorithm at the check node gives

µ
(0)
i←j =

(∏
k∈N(j)\i

sgn(µk→j)

)
min

k′∈N(j)\i

∣∣∣µ(0)
k′→j

∣∣∣ = 1,

for all (i, j) ∈ E . In the first iteration, the outgoing message from the i-th variable

node to the j-th check node is therefore

µ
(1)
i→j = γi + β

∑
k∈N(i)\j

µ
(0)
i←k > −1 + (dv − 1)

2

dv − 1
= 1.

Moreover, one can show that µ
(`)
i→j →∞ as `→∞. Thus, the hard decisions return

the all-zero codeword. Unfortunately, given this γ, we know that the ML output

must be a nonzero codeword with maximal Hamming weight. Therefore, the WMS

algorithm cannot provide an ML certificate for β > 2
dv−1 . One might worry that

this effect may be related to ties between ML codewords, but these can be avoided,

without affecting the above result, by adding a very small amount of uniform random

noise to the channel output LLR vector.

3.3 Convergence and Optimality Guarantees

For the AttMP algorithm on (dv, dc)-regular LDPC codes with the weight factor

β satisfying β(dv − 1)(dc − 1) < 1, Frey and Koetter [58] showed that it will return

the ML codeword if it converges to a codeword. However, the convergence of the

AttMP algorithm, when β(dv − 1)(dc − 1) < 1, is not shown in their work. In this

section, we first show that the AttMP algorithm will converge to a fixed point by

using the contraction mapping theorem [72, pp. 97–100]. Then, we introduce another

proof showing that the codeword obtained at the fixed point is the ML codeword if

the fixed point satisfies the proposed consistency conditions. We also analyze the

convergence of the WMS algorithm. Compared to the convergence analysis of the

70

AttMP algorithm, a weaker condition for the convergence of the WMS algorithm,

namely β(dv − 1) < 1, is obtained. We also show that, if the converged messages

satisfy the consistency conditions, which are similar to the conditions for the AttMP

algorithm, the LP, and therefore ML, optimality of the WMS codeword is guaranteed.

3.3.1 Attenuated Max-product Decoding

Before showing that the AttMP algorithm converges to a fixed point when β <

1
(dv−1)(dc−1) , we first introduce the following auxiliary lemma.

Lemma 36. For any two vectors f , g ∈ Rn, the following inequality holds

max
i
|fi − gi| ≥

∣∣∣max
i
fi −max

i′
gi′
∣∣∣ . (3.20)

Proof. Let 1 ≤ `,m ≤ n be the integers such that f` = maxi fi and gm = maxi gi. If

f` ≥ gm, we know that f` − gi ≥ 0 for all i = 1, 2, . . . , n. It follows that

max
i
|fi − gi| ≥ |f` − g`| = f` − g` ≥ f` − gm = |f` − gm| .

On the other hand, if f` ≤ gm, a symmetric argument shows maxi |fi − gi| ≥ |f` − gm|

as well. Therefore, we obtain (3.20).

Theorem 37. For any 0 ≤ β < 1
(dv−1)(dc−1) , the operator A is a contraction on(

R2|E|, ‖·‖∞
)
. Therefore, the AttMP algorithm with 0 ≤ β < 1

(dv−1)(dc−1) converges to

a unique fixed point as `→∞.

Proof. Let µ,ν ∈ R2|E| be two AttMP message vectors, and let µ′ = A[µ] and

ν ′ = A[ν]. By the definition of A in (3.12) and the triangle inequality, ‖µ′ − ν ′‖∞can

71

be upper bounded by

‖µ′ − ν ′‖∞ = β max
x∈{0,1}, (i,j)∈E

∣∣∣∣∣ ∑
k∈N(i)\j

µi←k(x)−
∑

k′∈N(i)\j

νi←k′(x)

∣∣∣∣∣
≤ β max

x∈{0,1}, (i,j)∈E

∑
k∈N(i)\j

|µi←k(x)− νi←k(x)| . (3.21)

From (3.6), the last term of the RHS in (3.21) can be rewritten as

|µi←k(x)− νi←k(x)| =

∣∣∣∣∣ max
w∈Sk,i(x)

∑
m∈N(k)\i

µm→k(wm)− max
w′∈Sk,i(x)

∑
m′∈N(k)\i

νm′→k(w
′
m′)

∣∣∣∣∣
(a)
≤ max

w∈Sk,i(x)

∣∣∣∣∣ ∑
m∈N(k)\i

µm→k(wm)−
∑

m∈N(k)\i

νm→k(wm)

∣∣∣∣∣
≤ max
w∈Sk,i(x)

∑
m∈N(k)\i

∣∣µm→k(wm)− νm→k(wm)
∣∣,

where the inequality (a) follows by Lemma 36. Thus, the RHS in (3.21) is upper

bounded by

β max
x∈{0,1}, (i,j)∈E

∑
k∈N(i)\j

max
w∈Sk,i(x)

∑
m∈N(k)\i

|µm→k (wm)− νm→k (wm)| . (3.22)

Since max(f + g) ≤ max g + maxf , Equation (3.22) is less than or equal to

β max
x∈{0,1}, (i,j)∈E

∑
k∈N(i)\j

∑
m∈N(k)\i

max
w∈Sk,i(x)

|µm→k (wm)− νm→k (wm)| . (3.23)

By the fact that, for any m ∈ N(k) \ i,

max
w∈Sk,i(x)

|µm→k (wm)− νm→k (wm)| = max
z∈{0,1}

|µm→k (z)− νm→k (z)|

72

and

max
z∈{0,1}

|µm→k (z)− νm→k (z)| ≤ max
(i′,j′)∈E

max
x′∈{0,1}

|µi′→j′ (x′)− νi′→j′ (x′)|

= ‖µ− ν‖∞ ,

Equation (3.23) is further upper bounded by

β max
x∈{0,1}, (i,j)∈E

∑
k∈N(i)\j

∑
m∈N(k)\i

‖µ− ν‖∞

(a)
= β (dv − 1) (dc − 1) ‖µ− ν‖∞
(b)
< ‖µ− ν‖∞ ,

where the equality (a) holds since ‖µ− ν‖∞ is independent of (x, i, j,m, k), and the

inequality (b) follows from the fact that β(dc − 1)(dv − 1) < 1. This shows the

contraction.

The second part of the theorem follows from the contraction mapping theorem.

Remark 38. Theorem 37 shows that, for an arbitrary (dv, dc)-regular LDPC code

and any 0 ≤ β < 1
(dc−1)(dv−1) , the AttMP algorithm converges to a unique fixed point

denoted by µ∗. That is, µ(`) → µ∗ as ` → ∞, and µ∗ = A[µ∗]. In the context of

the DP, the contraction mapping theorem is also employed to show the existence of

optimal stationary policies for discounted Markov decision processes [73, §6.2].

For each (i, j) ∈ E , let x∗i,j ∈ {0, 1} be the assignment that uniquely maximizes

the converged message µ∗i→j(x), and let x∗ ∈ {0, 1}n be the vector returned by the

AttMP algorithm. In [58], Frey and Koetter showed that x∗ is the ML codeword if

x∗i,j = x∗i for all i ∈ Vv and j ∈ N(i), and x∗ ∈ C. We first state these conditions

formally in Definition 39. Then, using the equivalent objective function in (3.9), an

73

easier proof of showing the ML optimality of x∗ is introduced.

Definition 39 (AttMP-consistency). The assignment {x∗i,j : (i, j) ∈ E} is called

AttMP-consistent if x∗i,j = x∗i for all i ∈ Vv and j ∈ N(i) and if the vector x∗ with

components x∗i is a codeword.

Lemma 40. Consider a (dv, dc)-regular LDPC code, and choose β < 1
(dv−1)(dc−1) . Let

µ∗ be a fixed point of the AttMP algorithm, and let x∗i,j uniquely maximize µ∗i→j(x)

for each edge (i, j) ∈ E. Then for any binary vector {xi,j} ∈ {0, 1}|E|,

∑
(i,j)∈E

µ∗i→j (xi,j) ≤
∑

(i,j)∈E

(1− xi,j) γi + β (dv − 1) (dc − 1)
∑

(i,j)∈E

µ∗i→j
(
x∗i,j
)
, (3.24)

with equality if and only if {x∗i,j : (i, j) ∈ E} is AttMP-consistent.

Proof. By the definition of the DP value function in (3.10), we have

∑
(i,j)∈E

µ∗i→j (xi,j) =
∑

(i,j)∈E

(1− xi,j) γi + β
∑

(i,j)∈E
k∈N(i)\j

max
w∈Sk,i(xi,j)

∑
m∈N(k)\i

µ∗m→k (wm) ,

(3.25)

where Sk,i(xi,j) is defined in (3.5). Since x∗i,j maximizes µ∗i→j(x) for all (i, j) ∈ E , by

replacing wm in (3.25) with x∗m,k, we obtain

∑
(i,j)∈E

µ∗i→j(xi,j) ≤
∑

(i,j)∈E

(1− xi,j)γi + β
∑

(i,j)∈E, k∈N(i)\j,
m∈N(k)\i

µ∗m→k
(
x∗m,k

)

=
∑

(i,j)∈E

(1− xi,j) γi + β (dv − 1) (dc − 1)
∑

(i,j)∈E

µ∗i→j
(
x∗i,j
)
,

which is the promised inequality in (3.24). To show the equality in (3.24), by sub-

74

stituting x∗i,j into (3.25), we have

∑
(i,j)∈E

µ∗i→j
(
x∗i,j
)

=
∑

(i,j)∈E

(
1− x∗i,j

)
γi + β

∑
(i,j)∈E
k∈N(i)\j

max
w∈Sk,i(x∗i,j)

∑
m∈N(k)\i

µ∗m→k (wm) .

(3.26)

Since {x∗i,j} is AttMP-consistent, there exists a vector x∗ ∈ C such that x∗i = x∗i,j for

all i ∈ Vv and j ∈ N(i). By the fact that x∗ ∈ Sk,i(x∗i,j), the last term in (3.26) is

equal to

β
∑

(i,j)∈E, k∈N(i)\j,
m∈N(k)\i

µ∗m→k
(
x∗m,k

)
.

Therefore, we obtain the equality.

Remark 41. From Lemma 40, we know that, when the assignment {x∗i,j} is AttMP-

consistent, then

∑
(i, j)∈E

µ∗i→j
(
x∗i,j
)

=
dv
∑

i∈Vv (1− x∗i) γi
1− β (dv − 1) (dc − 1)

, (3.27)

where x∗i = x∗i,j for all i ∈ Vv and (i, j) ∈ E .

Theorem 42. Given the LLR vector γ ∈ Rn and β < 1
(dv−1)(dc−1) , let the assignment

x∗i,j uniquely maximize µ∗i→j(x) for all (i, j) ∈ E. If {x∗i,j : (i, j) ∈ E} is AttMP-

consistent, let x∗ , {x∗i : i ∈ Vv} with x∗i = x∗i,j for any j ∈ N(i). Then, x∗ is the

ML codeword.

Proof. We prove that x∗ is the ML codeword by showing that x∗ uniquely maximizes

the correlation
∑

i∈Vv(1− x∗i)γi over all codewords in C.

Consider any codeword x̃ ∈ C such that x̃ 6= x∗, and let {x̃i,j} ∈ {0, 1}|E| be the

corresponding binary vector with x̃i,j = x̃i for all j ∈ N(i). From (3.10), we know

75

that

∑
(i, j)∈E

(1− x̃i,j) γi =
∑

(i, j)∈E

µ∗i→j (x̃i,j)− β
∑

(i, j)∈E
k∈N(i)\j

max
w∈Sk,i(x̃i,j)

∑
m∈N(k)\i

µ∗m→k (wm) .

(3.28)

By the fact that x̃ is also in Sk,i(x̃i,j), we have

max
w∈Sk,i(x̃i,j)

∑
m∈N(k)\i

µ∗m→k (wm) ≥
∑

m∈N(k)\i

µ∗m→k (x̃m,k) .

Therefore, the RHS in (3.28) is upper bounded by

∑
(i,j)∈E

µ∗i→j (x̃i,j)− β
∑

(i,j)∈E, k∈N(i)\j
m∈N(k)\i

µ∗m→k (x̃m,k)

= (1− β (dv − 1) (dc − 1))
∑

(i,j)∈E

µ∗i→j (x̃i,j) . (3.29)

Since x∗i,j uniquely maximizes µ∗i→j (x) for all (i, j) ∈ E , the vector {x∗i,j : (i, j) ∈ E}

also uniquely maximizes
∑

(i, j)∈E µ
∗
i→j (x). The RHS in (3.29) is less than

(1− β (dv − 1) (dc − 1))
∑

(i, j)∈E

µ∗i→j
(
x∗i,j
)
.

Thus, we have

∑
i∈Vv

(1− x̃i) γi <
1

dv
(1− β (dv − 1) (dc − 1))

∑
(i, j)∈E

µ∗i→j
(
x∗i,j
)

(a)
=
∑
i∈Vv

(1− x∗i) γi,

where (a) follows from (3.27). This shows that x∗ uniquely maximizes the correlation

76

∑
i∈Vv (1− xi) γi over all x ∈ C. From (3.18), we know that x∗ is the ML codeword.

3.3.2 Weighted Min-Sum Decoding

We first introduce the consistency condition for the WMS decoding algorithm.

Then, we prove this consistency condition is a sufficient condition for showing the

ML optimality of the WMS codeword. In the following discussion, we use the vector

µ(`) with the variable-to-check node messages at iteration ` to implicitly also define

the vector with the check-to-variable node messages at iteration `.

Definition 43 (WMS-consistency). Let µ
(`)
i→j, defined in (3.13), be the message

passed from the i-th bit node to the j-th check node in the first half of the `-th

iteration, and µ
(`)
i←j, defined in (3.14), be the message passed from the j-th check

node to the i-th bit node in the second half of the `-th iteration. The message vector

µ(`) is called WMS-consistent if, for each bit i ∈ Vv, it satisfies

γi + β
∑
j∈N(i)

µ
(`)
i←j 6= 0,

and

sgn
(
µ
(`)
i→j

)
= sgn

(
µ
(`)
i←j

)
= sgn

γi + β
∑

j′∈N(i)

µ
(`)
i←j′

 (3.30)

for all j ∈ N(i).

When the WMS message vector is WMS-consistent, the following theorem shows

that the corresponding hard decisions define a codeword.

Theorem 44. If the WMS message vector in the `-th iteration is WMS-consistent,

then the hard decision vector x̂ , {x̂i : i ∈ Vv} with x̂i defined in (3.15) gives a

codeword.

77

Proof. We prove this result by a contradiction. Suppose that x̂ is not a codeword.

There exists at least one unsatisfied check node. Let j ∈ Vc be an unsatisfied check

node. Since
∑

i∈N(j) x̂i = 1 mod 2, we have

−1 =
∏

i∈N(j)

sgn

γi + β
∑

j′∈N(i)

µ
(`)
i←j′


(a)
=

∏
i∈N(j)

sgn
(
µ
(`)
i→j

)
,

where (a) follows from (3.30). Consider the message passed from the j-th check to

the i-th bit. From the WMS message update rule (3.14),

µ
(`)
i←j =

 ∏
m∈N(j)\i

sgn
(
µ
(`)
m→j

) min
m∈N(j)\i

∣∣∣µ(`)
m→j

∣∣∣
= − sgn

(
µ
(`)
i→j

)
min

m∈N(j)\i

∣∣∣µ(`)
m→j

∣∣∣ .
This contradicts the first equality in (3.30). Therefore, we conclude that x̂ is a

codeword.

Next, we consider the ML optimality of the solution returned by the WMS algo-

rithm. Similar to the analysis of the AttMP algorithm, we first discuss the conver-

gence of the WMS messages. When the WMS messages converge to a fixed point,

we show that the implied hard decisions give an optimal codeword if the fixed point

is WMS-consistent.

To show the convergence of the WMS algorithm, we first introduce the following

lemma.

Lemma 45. Consider two WMS message vectors µ,ν ∈ R|E|. Let i ∈ Vv, k ∈ Vc

78

with (i, k) ∈ E, and define

Di,k ,

∣∣∣∣∣∣
 ∏
m∈N(k)\i

sgn (µm→k)

 min
m′∈N(k)\i

|µm′→k|

−

 ∏
m∈N(k)\i

sgn (νm→k)

 min
m′∈N(k)\i

|νm′→k|

∣∣∣∣∣∣ .
Then,

max
m∈N(k)\i

|µm→k − νm→k| ≥ Di,k.

Proof. See Appendix A.7.

To show the convergence of the WMS messages, it will suffice to show that the

WMS operator W is an ‖·‖∞ contraction. The following theorem provides a precise

statement.

Theorem 46. For all LLR vectors and message vectors, the WMS operator W is a

contraction on
(
R|E|, ‖·‖∞

)
if 0 ≤ β < 1

dv−1 . Therefore, the WMS algorithm with

0 ≤ β < 1
dv−1 converges to a unique fixed point as `→∞.

Proof. Let µ,ν ∈ R|E| be two WMS message vectors. Using Lemma 45, one can

79

upper bound ‖W[µ]− W[ν]‖∞ as follows

‖W [µ]− W [ν]‖∞ = max
(i, j)∈E

∣∣∣∣∣∣β ∑
k∈N(i)\j

 ∏
m∈N(k)\i

sgn (µm→k)

 min
m′∈N(k)\i

|µm′→k|

−β
∑

k′∈N(i)\j

 ∏
m∈N(k′)\i

sgn (νm→k′)

 min
m′∈N(k′)\i

|νm′→k′ |

∣∣∣∣∣∣
≤ max

(i, j)∈E
β
∑

k∈N(i)\j
Di,k

≤ β (dv − 1) max
(i, k)∈E

Di,k

≤ β (dv − 1) max
(i, k)∈E
m∈N(k)\i

|µm→k − νm→k|

= β (dv − 1) ‖µ− ν‖∞ .

This implies that W is a contraction on
(
R|E|, ‖·‖∞

)
if β < 1

dv−1 .

The second part of the theorem follows from the contraction mapping theorem.

Therefore, for an arbitrary (dv, dc)-regular LDPC code and any 0 ≤ β < 1
dv−1 , the

WMS algorithm converges to a unique fixed point, i.e., µ
(`)
i→j → µ∗i→j and µ

(`)
i←j →

µ∗i←j, as `→∞.

For any WMS-consistent fixed point, there are two ways to prove the ML opti-

mality of the hard decisions. One way, as shown in our earlier work [74], is by looking

at Problem-P directly. Therein, we generalize the definition of a minimal T -local de-

viation of [1] to T ≥ 1
4
girth(G). By using the generalized minimal T -local deviation,

we show that, if the fixed point is WMS-consistent, the corresponding hard-decision

vector is a locally optimal codeword. By the fact that local optimality implies both

global optimality and LP optimality [1], the hard-decision vector is an ML codeword,

and also, an integer LP optimal solution. A summary of [74] is provided in Appendix

B.1.

80

The other method, which is introduced in the rest of this section, is by solving

Problem-D. When the WMS algorithm converges to a WMS-consistent fixed point,

we construct a dual witness, denoted by τ ∗ ∈ R|E|, using the method proposed in

[66]. By Theorem 51, it can be shown that the vector τ ∗ is a dual optimal point of

Problem-P. Also, the hard-decision vector is an LP optimal codeword and, hence, an

ML codeword.

The following lemma shows that the vector τ ∗, which is constructed from the

fixed-point messages µ∗i→j and µ∗i←j, is a dual feasible point of Problem-P.

Lemma 47. Consider the WMS algorithm with β < 1
dv−1 for a (dv, dc)-regular LDPC

code. Let the bit node and check node messages, µ∗i→j and µ∗i←j, be the unique fixed

point of the WMS message update rule. The vector τ ∗ ∈ R|E|, defined by

τ ∗i,j ,
1

dv

(
µ∗i→j − β (dv − 1)µ∗i←j

)
, (3.31)

is a dual feasible point of Problem-P.

Proof. Fix a variable node i ∈ Vv. The sum of the dual variables on the edges

incident to i is given by

∑
j∈N(i)

τ ∗i,j =
1

dv

∑
j∈N(i)

(
µ∗i→j − β (dv − 1)µ∗i←j

)

=
1

dv

∑
j∈N(i)

µ∗i→j − β ∑
k∈N(i)\j

µ∗i←k


= γi.

This proves the lemma.

Remark 48. In contrast to the construction in [66, Lemma 1], Lemma 47 is a simpli-

81

fied version that considers a one-step update of the WMS messages. In [66], min-sum

messages over L iterations are considered. For a computation tree T 2L
j of depth 2L

rooted at the check node j, those min-sum messages are used to generate an assign-

ment τ (j, L) to edges in T 2L
j . Koetter and Vontobel showed that the dual feasible

point τ ∗ can be obtained by averaging τ (j, L) over all j ∈ Vc. Since the number of

leaf nodes in a computation tree increases exponentially in the depth of the compu-

tation tree, a weight factor α is introduced to attenuate the influence of the leaves of

the computation tree. In our analysis, by the fact that the WMS messages satisfy a

fixed-point equation, we simplify the construction and consider only the assignments

on the computation tree T 2
j of depth 2. Next, we will show that the proposed dual

feasible point τ ∗ is also a optimal point in Problem-D if it is constructed from a

WMS-consistent fixed point.

For a j ∈ Vc, let µ∗j ∈ Rdc with (µ∗j)m = µ∗ϕj(m)→j for m = 1, 2, . . . , dc be a vector

of the converged messages passed to j, where ϕj(m) is defined in Section 3.2.5. Recall

that τ ∗j ∈ Rdc is a vector with (τ ∗j)m = τ ∗ϕj(m),j. Let sgn(µ∗j) be a vector which is

composed of the signs of the entries in µ∗j . The following lemma shows that an affine

function of sgn(µ∗j) minimizes the inner product 〈w, τ ∗j 〉 for all w ∈ L when the fixed

point is WMS-consistent. Recall that L is defined in (3.19). We use 1 to denote an

all-one vector, and the vector dimension is determined by the context.

Lemma 49. Consider a (dv, dc)-regular LDPC code. If the WMS algorithm with

β < 1
dv−1 converges to a WMS-consistent fixed point µ∗i→j and µ∗i←j for all (i, j) ∈ E,

then for each j ∈ Vc,

arg min
w∈L

〈
w, τ ∗j

〉
=

1

2

(
1− sgn

(
µ∗j
))
. (3.32)

Proof. For a fixed j ∈ Vc, let
→
µ , µ∗j , and

←
µ ∈ Rdc be a vector with

←
µm = µ∗ϕj(m)←j

82

for m = 1, 2, . . . , dc. The inner product in (3.32) can be rewritten as

〈
w, τ ∗j

〉
=

dc∑
m=1

wm
(
τ ∗j
)
m

(a)
=

1

dv

dc∑
m=1

wm

(
→
µm − β (dv − 1)

←
µm

)
(b)
=

1

dv

dc∑
m=1

wm sgn
(
→
µm

)(∣∣→µm∣∣− β (dv − 1)
∣∣←µm∣∣) , (3.33)

where the equality (a) follows from (3.31), and the equality (b) holds because µ∗j

is WMS-consistent. Let |→µm1
| and |→µm2

| be the two smallest absolute values in the

vector |→µ| and |→µm1
| ≤ |→µm2

|. From the message update rule of the WMS algorithm

(3.14), one can show that

∣∣∣←µm∣∣∣ =


∣∣∣→µm2

∣∣∣ , if m = m1,∣∣∣→µm1

∣∣∣ , otherwise.

Thus, the summation in (3.33) becomes

1

dv
wm1 sgn

(
→
µm1

)(∣∣∣→µm1

∣∣∣− β (dv − 1)
∣∣∣→µm2

∣∣∣)
+

1

dv

dc∑
m=1,m 6=m1

wm sgn
(
→
µm

)(∣∣∣→µm∣∣∣− β (dv − 1)
∣∣∣→µm1

∣∣∣) .
Since 0 < β (dv − 1) ≤ 1, one can show that

∣∣∣∣∣→µm1

∣∣− β (dv − 1)
∣∣→µm2

∣∣∣∣∣ ≤ ∣∣∣∣∣→µm∣∣− β (dv − 1)
∣∣→µm1

∣∣∣∣∣
for all m 6= m1. Thus, the minimum of the inner product in the LHS of (3.32) is

83

achieved by choosing

wm =


dc∑

m′=1,m′ 6=m1

wm′ mod 2 if m = m1,

1

2

(
1− sgn

(
→
µm

))
otherwise.

By Theorem 44, the vector 1
2

(1− sgn (µ∗j)) satisfies the j-th check node, and there-

fore we know that wm1 = 1
2

(1− sgn (
→
µm1

)) = 1
2

(
1− sgn

(
(µ∗j)m1

))
. This completes

the proof.

Remark 50. The proof of Lemma 49 employs an important observation in the proof

of [66, Lemma 3]. Namely, given a check node, there are at least dc − 1 outgoing

messages with the same absolute value. If there is an outgoing message with a

different absolute value, it will be along the edge where the incoming message with

the smallest absolute value was passed, i.e., the edge (ϕj(m1), j). Also, we note

that the absolute value of the m1-th entry of τ ∗j is the smallest among the absolute

values of the entries of τ ∗j . With the goal of minimizing the inner product in (3.32),

the entry of the binary vector w corresponding to the smallest absolute value of

τ ∗j has to be the modulo-2 sum of the other entries. Since the MS messages are

not guaranteed to converge, Koetter and Vontobel computed the dual feasible point

using computation trees of depth greater than one. Also, the assumption of large

initial values for the MS algorithm is required for their construction of an optimal

dual feasible point for Problem-D.

Similar to the idea in [66], we further find the ML optimal codeword after ob-

taining the local configuration for each j ∈ Vc based on τ ∗j . Let τ ∈ R|E| be a

dual feasible point, and g(τ) be the objective function in Problem-D. Consider the

dual feasible point τ ∗ defined in (3.31), and let wj , 1
2
(1 − sgn(µ∗j)) be the local

84

assignment to check j, where µ∗j is the vector of converged messages passed to j. By

Lemma 49, one can show that the objective function in Problem-D evaluated at τ ∗

is

g(τ ∗) =
∑
j∈Vc

〈
τ ∗j ,wj

〉
.

However, to solve Problem-D, one needs to search over all τ in the dual feasible

set and find the maximum of g(τ). In the following theorem, we will show that

τ ∗ is actually an optimal solution of Problem-D if the WMS fixed point is WMS-

consistent. This also implies that the corresponding hard decisions define an ML

codeword.

Theorem 51. Consider the WMS algorithm with β < 1
dv−1 . If the message vector

µ(`) converges to a WMS-consistent fixed point, µ∗, then the vector of hard decisions

x∗ ∈ {0, 1}n with

x∗i =
1

2

1− sgn

γi + β
∑
j∈N(i)

µ∗i←j


is a codeword. Also, x∗ is LP optimal for Problem-P and, hence, ML optimal.

Proof. Let the optimal value of Problem-P and the optimal value of Problem-D be

f ∗ and g∗, respectively. Since τ ∗ proposed in Lemma 47 is in the feasible set of

Problem-D, it is obvious that g∗ ≥ g(τ ∗). Let wj ∈ L be the binary vector that

minimizes the inner product 〈w, τ ∗j 〉 over all w ∈ L. From Lemma 49, we know that

wj = 1
2

(1− sgn (µ∗j)) for each j ∈ Vc. Since µ∗ is WMS-consistent, we also know

that (wj)m = x∗ϕj(m) for m = 1, 2, . . . , dc. By using these facts, we will show that x∗

is LP optimal by contradiction.

85

Assume that x∗ does not minimize Problem-P, then we have

f ∗ <
∑
i∈Vv

γix
∗
i

(a)
=
∑
i∈Vv

 ∑
j∈N(i)

τ ∗i,j

x∗i

=
∑
j∈Vc

 ∑
i∈N(j)

τ ∗i,jx
∗
i

 =
∑
j∈Vc

(
dc∑
m=1

τ ∗ϕj(m),jx
∗
ϕj(m)

)
(b)
=
∑
j∈Vc

〈
τ ∗j ,wj

〉
= g (τ ∗) ≤ g∗,

where (a) follows from Lemma 47, and (b) is a result of the WMS-consistency. How-

ever, weak duality implies that f ∗ ≥ g∗. This gives a contradiction. Thus, x∗

minimizes the primal problem, and hence, is LP optimal. Moreover, since x∗ ∈ C, it

is also an ML codeword.

Remark 52. Consider the WMS algorithm on a (dv, dc)-regular LDPC code with

β < 1
dv−1 . From Theorem 51, we are able to check the ML optimality of the WMS

solution by testing the WMS-consistency conditions. Namely, if the messages satisfy

the consistency conditions, then the hard decisions return an ML codeword.

Remark 53. Although the WMS algorithm and the AttMP algorithm are equivalent

for a finite number of iterations, our results show that, for guaranteed convergence,

the WMS algorithm allows a larger weight factor than the AttMP algorithm. To

compare the convergence of these two algorithms, it is clear that the AttMP algorithm

converges if and only if µ
(`)
i→j(x) → µ∗i→j(x) and µ

(`)
i←j(x) → µ∗i←j(x) for all (i, j) ∈ E

and x ∈ {0, 1} as ` → ∞. On the other hand, when considering the convergence of

the WMS algorithm, we first note that the WMS messages are simply the differences

of the AttMP messages. That is, µ
(`)
i→j = µ

(`)
i→j(0) − µ(`)

i→j(1) and µ
(`)
i←j = µ

(`)
i←j(0) −

µ
(`)
i←j(1). The convergence of the WMS messages includes the following two cases

in the underlying AttMP message space. First, if the underlying AttMP messages

86

converge, the corresponding WMS messages converge as well. For example, when

the WMS algorithm has the weight factor β < 1
(dv−1)(dc−1) , we know that the WMS

messages converge from Theorem 46. In fact, the underlying AttMP messages must

converge according to Theorem 37. The second case is that the underlying AttMP

messages do not converge, but their differences converge. For example, consider the

case when 1
(dv−1)(dc−1) ≤ β < 1

dv−1 and γi = γ > 0 for all i ∈ Vv. One can show

that the AttMP message µ
(`)
i→j(0), defined in (3.10), is lower bounded by (` + 1)γ

for any (i, j) ∈ E . Thus, the AttMP message µ
(`)
i→j(0) does not converge as ` → ∞.

However, by Theorem 46, we know that the WMS message µ
(`)
i→j → µ∗i→j as ` → ∞

for all (i, j) ∈ E . This implies that the difference µ
(`)
i→j(0)− µ(`)

i→j(1) converges for all

(i, j) ∈ E . Since the convergence requirement for the WMS algorithm is weaker than

the AttMP algorithm, the allowable weight factor for the convergence of the WMS

algorithm is greater than the required weight factor for the AttMP algorithm.

3.4 Weighted Min-Sum Decoding with β = 1
dv−1

We have shown that the unique fixed point of the WMS algorithm with β < 1
dv−1

returns an ML codeword if the fixed point is WMS-consistent. In this section, the

WMS algorithm with β = 1
dv−1 is considered. In this case, the WMS algorithm is

not guaranteed to converge. Thus, we introduce a sufficient condition for the ML

optimality of the hard-decision output when the WMS algorithm diverges. Moreover,

when β ≥ 1
dv−1 , the DE noise threshold of the WMS algorithm exists. We conjecture

that the noise threshold of the WMS algorithm with β = 1
dv−1 gives a lower bound

of the noise threshold of the LP decoder.

3.4.1 Optimality Guarantees

We begin this subsection by introducing notation and definitions for the following

discussion. We denote the WMS messages {µ(`)
i→j : (i, j) ∈ E} with β = δ

dv−1 and

87

δ ∈ [0, 1] in the `-th iteration by a vector µ
(`)
δ ∈ R|E|, and a sequence of WMS message

vectors {µ(`)
δ : ` = 1, 2, . . . } is denoted by {µδ}. The hard decisions computed by

µ
(`)
δ are denoted by x

(`)
δ ∈ {0, 1}n. When δ < 1, Theorem 46 shows that the WMS

algorithm converges to a fixed point µ∗δ ∈ R|E|. The hard decisions computed using

µ∗δ are denoted by a vector x∗δ ∈ {0, 1}n. For any WMS message vector µ ∈ R|E|,

the vector |µ| ∈ R|E|+ consists of the absolute value of each element of µ. For any

two WMS message vectors µ,ν ∈ R|E|, we use the partial order µ � ν to denote

µi→j > νi→j for all (i, j) ∈ E , and µ � ν to denote µi→j ≥ νi→j for all (i, j) ∈ E . We

extend the definition of the WMS operator in (3.16) to Wδ for β = δ
dv−1 and δ ∈ [0, 1].

The operator Wδ preserves the partial order of the absolute values of the WMS

messages under the following conditions.

Lemma 54. Consider a (dv, dc)-regular LDPC code and a particular LLR vector

γ ∈ Rn. Let µ,ν ∈ R|E| be two WMS-consistent message vectors. If |µ| � |ν| �
‖γ‖∞
δ

1 for a δ ∈ (0, 1] and sgn(µ) = sgn(ν), then |Wδ[µ]| � |Wδ[ν]| and sgn (Wδ[µ]) =

sgn (Wδ[ν]) = sgn(µ).

Proof. See Appendix A.8.

When β = 1
dv−1 , we have observed three types of trajectories for the WMS mes-

sages. They converge to a fixed point, oscillate in a limit cycle, or diverge to ±∞. In

this section, we are interested in the case where the sequence of WMS message vec-

tors, {µ1}, is divergent and WMS-consistent. We formalize this case by the following

definition.

Definition 55. A sequence of WMS message vectors, {µ}, is divergent and consistent

if for any c > 0, there exists an L(c) > 0 such that whenever ` ≥ L(c), the WMS

message vector satisfies |µ(`)| � c1 and µ(`) is WMS-consistent.

88

Lemma 56. For a divergent and consistent sequence of WMS message vectors {µ1},

there exists an L̂ such that µ
(L̂+`)
1 is WMS-consistent and sgn (µ

(L̂+`)
1) = sgn (µ

(L̂)
1)

for all ` ≥ 0.

Proof. For a given received LLR vector γ, let L̂ = L (‖γ‖∞ + ε), where ε > 0. From

Definition 55, we know that µ
(L̂+`)
1 is WMS-consistent for all ` ≥ 0.

We prove the second part of the theorem by induction. The base case holds when

` = 0. Then, we consider the inductive step. Suppose that sgn (µ
(L̂+`)
1) = sgn (µ

(L̂)
1)

for some ` ≥ 0. Since |µ(L̂+`)
1 | � ‖γ‖∞1, by Lemma 54, we know that

sgn
(
µ

(L̂+`+1)
1

)
= sgn

(
W1

[
µ

(L̂+`)
1

])
= sgn

(
µ

(L̂+`)
1

)
= sgn

(
µ

(L̂)
1

)
.

Thus, we conclude that sgn (µ
(L̂+`)
1) = sgn (µ

(L̂)
1) for all ` ≥ 0.

Corollary 57. For a divergent and consistent sequence of WMS message vectors

{µ1}, there exists an L̂ such that the hard-decision vectors xL̂+` satisfy xL̂+` = xL̂

for all ` ≥ 0.

Proof. The result follows from Lemma 56 and the hard decision equation defined in

(3.15).

Given two positive integers L1 > L0, to simplify notation, let I(L0, L1) ,

{L0, L0 + 1, . . . , L1} be the set of all integers from L0 to L1. A property of a se-

quence of WMS message vectors, {µδ}, is introduced in the following definition.

Definition 58 (Block-wise monotone property). A sequence of WMS message vec-

tors {µδ} with δ ∈ (0, 1] is said to have the block-wise monotone property in I(L0, L1),

denoted by BMP(I(L0, L1)), if for all ` ∈ I(L0, L1), 1) µ
(`)
δ is WMS-consistent, 2)

sgn (µ
(`)
δ) = sgn (µ

(L0)
δ), 3) |µ(`)

δ | �
‖γ‖∞
δ

1, and 4) |µ(L1)
δ | � |µ(L0)

δ |.

89

For any non-negative integer k ≥ 0, let

Ik(L0, L1) , I (L0 + k(L1 − L0), L1 + k(L1 − L0)) .

In the following analysis, we show that, if there is a pair of integers L1 > L0 > 0

such that the sequence of WMS message vectors, {µδ}, satisfies BMP(I0(L0, L1)),

then {µδ} also satisfies BMP(Ik(L0, L1)) for all k ≥ 0. We first show that if {µδ}

satisfies BMP(I0(L0, L1)), then {µδ} also satisfies BMP(I1(L0, L1)).

Lemma 59. Let γ ∈ Rn be the received LLR vector, and {µδ} be the sequence of

WMS message vectors of a (dv, dc)-regular LDPC code with δ ∈ (0, 1]. Suppose there

exist 0 < L0 < L1 such that {µδ} satisfies BMP(I0(L0, L1)), then

sgn
(
µ

(L1+`′)
δ

)
= sgn

(
µ

(L0+`′)
δ

)
(3.34)

and ∣∣∣µ(L1+`′)
δ

∣∣∣ � ∣∣∣µ(L0+`′)
δ

∣∣∣ (3.35)

for all `′ = 0, 1, . . . , L1 − L0.

Proof. We prove this lemma by induction. The base case, `′ = 0, holds because

conditions 2) and 4) of BMP(I1(L0, L1)) are satisfied.

For the inductive step, suppose that sgn (µ
(L1+`′)
δ) = sgn (µ

(L0+`′)
δ) and |µ(L1+`′)

δ | �

|µ(L0+`′)
δ | for some `′ > 0. Since µ

(L0+`′)
δ satisfies conditions 1) and 3) of BMP(I0(L0, L1)),

from Lemma 54, we have

∣∣∣µ(L1+`′+1)
δ

∣∣∣ � ∣∣∣µ(L0+`′+1)
δ

∣∣∣

90

and

sgn
(
µ

(L1+`′+1)
δ

)
= sgn

(
µ

(L0+`′+1)
δ

)
.

Since both the base case and the inductive step are proved, we know that (3.34) and

(3.35) hold for 0 ≤ `′ ≤ L1 − L0.

Corollary 60. Let γ ∈ Rn be the received LLR vector, and {µδ} be the sequence

of WMS message vectors of a (dv, dc)-regular LDPC code with δ ∈ (0, 1]. Suppose

there exist 0 < L0 < L1 such that {µδ} satisfies BMP(I0(L0, L1)). Then {µδ} also

satisfies BMP(I1(L0, L1)).

Proof. We first show that, for any 0 ≤ `′ ≤ (L1 − L0), µ
(L1+`′)
δ is WMS-consistent.

For a fixed i ∈ Vv, let µ
(L1+`′)
δ,i←j be the WMS message with β = δ

dv−1 passed from

j ∈ N(i) to i in the (L1 + `′)-th iteration. From the WMS message update rule

(3.14), we know that, for any j ∈ N(i),

sgn
(
µ
(L1+`′)
δ,i←j

)
=

∏
m∈N(j)\i

sgn
(
µ
(L1+`′)
δ,m→j

) (a)
=

∏
m∈N(j)\i

sgn
(
µ
(L0+`′)
δ,m→j

)
= sgn

(
µ
(L0+`′)
δ,i←j

)
= sgn

(
µ
(L0+`′)
δ,i→j

) (b)
= sgn

(
µ
(L1+`′)
δ,i→j

)
, (3.36)

where the equalities (a) and (b) follow from (3.34). Since µ
(L0+`′)
δ is WMS-consistent,

we know that

sgn
(
µ
(L0+`′)
δ,i→j0

)
= sgn

γi + β
∑
j∈N(i)

µ
(L0+`′)
δ,i←j


= sgn

γi + sgn
(
µ
(L0+`′)
δ,i→j0

)
β
∑
j∈N(i)

∣∣∣µ(L0+`′)
δ,i←j

∣∣∣


91

for any j0 ∈ N(i). Therefore, one can show

0 < sgn
(
µ
(L0+`′)
δ,i→j0

)γi + sgn
(
µ
(L0+`′)
δ,i→j0

)
β
∑
j∈N(i)

∣∣∣µ(L0+`′)
δ,i←j

∣∣∣


= sgn
(
µ
(L0+`′)
δ,i→j0

)
γi + β

∑
j∈N(i)

∣∣∣µ(L0+`′)
δ,i←j

∣∣∣ .
From the WMS message update rule (3.14) and Lemma 59, one can also see that

|µ(L1+`′)
δ,i←j | ≥ |µ

(L0+`′)
δ,i←j | for all j ∈ N(i). Thus, we have

γi + β
∑

j′∈N(i)

µ
(L1+`′)
δ,i←j′ 6= 0 (3.37)

and

sgn

γi + β
∑

j′∈N(i)

µ
(L1+`′)
δ,i←j′

 = sgn
(
µ
(L1+`′)
δ,i→j

)
(3.38)

because

0 < sgn
(
µ
(L0+`′)
δ,i→j0

)
γi + β

∑
j∈N(i)

∣∣∣µ(L0+`′)
δ,i←j

∣∣∣
≤ sgn

(
µ
(L1+`′)
δ,i→j0

)
γi + β

∑
j∈N(i)

∣∣∣µ(L1+`′)
δ,i←j

∣∣∣ .
From (3.36), (3.37) and (3.38), we conclude that µ

(L1+`′)
δ is WMS-consistent.

Equation (3.34) implies that

sgn
(
µ

(L1+`′)
δ

)
= sgn

(
µ

(L0+`′)
δ

)
= sgn

(
µ

(L1)
δ

)
,

where the second equality follows from the condition 2) of BMP(I0(L0, L1)). Also

from Lemma 59, we know that |µ(`′+L1)
δ | � |µ(`′+L0)

δ | � ‖γ‖∞
δ

1 for all `′ = 0, 1, . . . , (L1−

92

L0). Finally, by (3.35), we have

∣∣∣µ(2L1−L0)
δ

∣∣∣ � ∣∣∣µ(L1)
δ

∣∣∣ .
Therefore, we conclude that {µδ} also satisfies BMP(I1(L0, L1)).

Remark 61. Although Corollary 60 shows that BMP(I0(L0, L1)) implies BMP(I1(L0, L1)),

it can be easily extended to the statement that BMP(Ik(L0, L1)) implies BMP(Ik+1(L0, L1))

for any k > 0 by the same argument in the proof of Corollary 60.

Now, we extend the property to intervals Ik(L0, L1) for all k ≥ 0.

Lemma 62. Let γ ∈ Rn be the received LLR vector, and {µδ} be the sequence of

WMS message vector of a (dv, dc)-regular LDPC code with δ ∈ (0, 1]. Suppose there

exist 0 < L0 < L1 such that the sequence of WMS message vectors, {µδ}, satisfies

BMP(I0(L0, L1)). Then, for all ` ≥ L0,

sgn
(
µ

(`)
δ

)
= sgn

(
µ

(L0)
δ

)

and

∣∣∣µ(`)
δ

∣∣∣ � ‖γ‖∞
δ

1.

Proof. Since that the set of integers greater or equal to L0 can be written as

lim
K→∞

K⋃
k=0

Ik(L0, L1),

the lemma can be proved by showing that {µδ} satisfies BMP(Ik(L0, L1)) for any

k ≥ 0. We will prove this statement by induction.

93

The base case is obtained from the assumption when setting k = 0. Next, we

consider the inductive step. Suppose that {µδ} satisfies BMP(Ik(L0, L1)). From

Corollary 60, we know that {µδ} also satisfies BMP(Ik+1(L0, L1)). Thus, we know

that µ
(`)
δ satisfies BMP(Ik(L0, L1)) for any k ≥ 0.

In the following analysis, we show that there exist 0 < L0 < L1 and a δ ∈ (0, 1)

such that {µδ} satisfies BMP(I0(L0, L1)) when {µ1} is divergent and consistent. We

first show that, for any integer L > 0, the WMS message µ
(`)
1 for ` ≤ L can be

approximated by {µδ} with δ close enough to 1.

Lemma 63. Consider a (dv, dc)-regular LDPC code. Given the LLR vector γ ∈ Rn,

let {µ1} and {µδ} be two sequences of WMS message vectors with β = 1
dv−1 and

β = δ
dv−1 , respectively. For any ε > 0 and integer L > 0, there exists a δ0(L) > 0

such that ‖µ(`)
1 − µ

(`)
δ ‖∞ ≤ ε for all 0 ≤ ` ≤ L whenever δ ∈ [δ0(L), 1].

Proof. See Appendix A.9.

The following lemma shows the existence of 0 < L0 < L1 and δ ∈ (0, 1] such

that the sequence of WMS message vectors {µδ} satisfies BMP(I0(L0, L1)) when the

sequence of WMS vectors {µ1} is divergent and consistent. Note that the choices of

δ, L0, and L1 are also suggested in the proof of Lemma 63.

Lemma 64. Given the received LLR vector, γ ∈ Rn, suppose that {µ1} is divergent

and consistent. There exist L0 and L1 with 0 < L0 < L1 and a δ ∈ (0, 1] such that

{µδ} satisfies BMP(I0(L0, L1)).

Proof. Since {µ1} is divergent and consistent, by Definition 55 and Lemma 56, we can

choose L0 > 0 such that, for all ` ≥ L0: µ
(`)
1 is WMS-consistent; |µ(`)

1 | � 2‖γ‖∞1;

and sgn (µ
(`)
1) = sgn (µ

(L0)
1) for all ` ≥ L0. Similarly, we can also find an L1 > L0

such that ∣∣∣µ(`)
1

∣∣∣ � (∥∥∥µ(L0)
1

∥∥∥
∞

+ 2 ‖γ‖∞
)

1, (3.39)

94

whenever ` ≥ L1. From the proof of Lemma 63, we can choose ε = 1
2
‖γ‖∞ and

δ ≥ 1− 2ε

L1 (L1 + 1) ‖γ‖∞
= 1− 1

L1 (L1 + 1)
(3.40)

so that, for all ` ∈ I0(L0, L1),

∥∥∥µ(`)
1 − µ

(`)
δ

∥∥∥
∞
≤ ε =

1

2
‖γ‖∞. (3.41)

Note that Equation (3.40) and the inequalities L1 > L0 > 2 imply δ ≥ 19
20

. With

these choices of L0 and L1, it can be shown that

∣∣∣µ(L1)
δ

∣∣∣ (a)
�
(
‖µ(L0)

1 ‖∞ + 2‖γ‖∞ − ε
)

1

=

(
‖µ(L0)

1 ‖∞ +
3

2
‖γ‖∞

)
1

�
(
‖µ(L0)

1 ‖∞ +
1

2
‖γ‖∞

)
1

=
(
‖µ(L0)

1 ‖∞ + ε
)

1

�
∣∣∣µ(L0)

δ

∣∣∣ , (3.42)

where the inequality (a) follows from (3.39) and (3.41). From (3.41), one can show,

for all ` ∈ I0(L0, L1),

µ
(`)
1 −

1

2
‖γ‖∞ � µ(`)

δ � µ
(`)
1 +

1

2
‖γ‖∞.

Since |µ(`)
1 | � 2‖γ‖∞1 for all ` ∈ I0(L0, L1), one can have

sgn
(
µ

(`)
δ

)
= sgn

(
µ

(`)
1

)

95

and ∣∣∣µ(`)
δ

∣∣∣ � ∣∣∣µ(`)
1

∣∣∣− ε1 � 3

2
‖γ‖∞1 � ‖γ‖∞

δ
1 (3.43)

for all ` ∈ I0(L0, L1). Since sgn (µ
(`)
1) = sgn (µ

(L0)
1), we know that

sgn
(
µ

(`)
δ

)
= sgn

(
µ

(`)
1

)
= sgn

(
µ

(L0)
1

)
= sgn

(
µ

(L0)
δ

)
(3.44)

for all ` ∈ I0(L0, L1). Since µ
(L0)
1 is WMS-consistent, Equation (3.44) implies that

µ
(`)
δ is WMS-consistent for all ` ∈ I0(L0, L1) as well. By (3.42)–(3.44) and the fact

that µ
(`)
δ is WMS-consistent for all ` ∈ I0(L0, L1), we conclude that {µδ} satisfies

BMP(I0(L0, L1)).

Corollary 65. Given the received LLR vector, γ ∈ Rn, suppose that {µ1} is di-

vergent and consistent. Then, there exist an L0 > 0 and a 0 < δ < 1 such that,

whenever ` ≥ L0, ∣∣∣µ(`)
δ

∣∣∣ � ‖γ‖∞
δ

1 (3.45)

and

sgn
(
µ

(`)
δ

)
= sgn

(
µ

(L0)
1

)
. (3.46)

Proof. From Lemma 62 and Lemma 64, we obtain (3.45) and (3.46) directly.

Theorem 66. Consider a (dv, dc)-regular LDPC code and a particular LLR vector

γ ∈ Rn. Assume that the WMS algorithm with β = 1
dv−1 is divergent and consistent.

There exists an L > 0 so that the hard decision vectors satisfy x(`) = x(L) for all

` ≥ L, and x(L) is an ML codeword.

Proof. To prove this theorem, we show that there is a δ ∈ (0, 1) such that the WMS

algorithm with β = δ
dv−1 converges to a WMS-consistent fixed point whose hard

decisions give the same codeword as x(L).

96

From Corollary 65, there exist an L0 > 0 and a δ ∈ (0, 1) such that sgn (µ
(`)
δ) =

sgn (µ
(`)
1) = sgn (µ

(L0)
1) for all ` ≥ L0. Since δ

dv−1 < 1
dv−1 , the message vector

converges to a fixed point µ∗δ and sgn (µ∗δ) = sgn
(
µ

(L0)
1

)
. Since µ

(L0)
1 is WMS-

consistent, the converged message vector µ∗δ is also WMS-consistent. Hence, for all

(i, j) ∈ E

sgn

γi + β
∑
j∈N(i)

µ∗δ,i←j

 = sgn
(
µ∗δ,i→j

)

= sgn
(
µ
(L0)
1,i→j

)
= sgn

γi +
1

dv − 1

∑
j∈N(i)

µ
(L0)
1,i←j

 .

For any i ∈ Vv, the hard decision x∗δ,i with β = δ
dv−1 is

x∗δ,i =
1

2

1− sgn

γi + β
∑
j∈N(i)

µ∗δ,i←j


=

1

2

1− sgn

γi +
1

dv − 1

∑
j∈N(i)

µ
(L0)
1,i←j


= x

(L0)
i .

From Theorem 51, we know that x∗δ is LP and ML optimal. Therefore, the hard

decision vector x(L0) is also an LP and ML optimal codeword. By setting L = L0

and from Corollary 57, we conclude the proof.

Remark 67. In this section, we considered the WMS algorithm as a DP problem with

discount factor β(dv − 1) ≤ 1. When β = 1
dv−1 and the sequence of WMS message

vectors {µ} is divergent and consistent, the WMS update is equivalent to a Markov

decision process (MDP) problem with discount factor 1. Theorem 66 essentially

states that WMS decoding always has the natural analog of a Blackwell optimal

97

policy [75] if {µ} is divergent and consistent according to Definition 55.

3.4.2 Connections with LP Thresholds

In this subsection, we connect the LP threshold estimation with both the WMS

algorithm and the DE-type analysis in [1, 67]. We have shown that when the WMS

algorithm with β < 1
dv−1 converges to a set of WMS-consistent messages, the WMS

algorithm returns a codeword which is LP optimal. Similarly, when the WMS algo-

rithm with β = 1
dv−1 is divergent and consistent, the WMS algorithm also returns a

codeword which is LP optimal. If the following conjecture is true, we can conclude

that the threshold of the WMS algorithm with β = 1
dv−1 gives a lower bound for the

threshold of LP decoding.

Conjecture 68. Consider WMS decoding of (dv, dc)-regular LDPC codes with girth

Ω (log n) over the BSC with cross-over probability p and let p∗ be the bit-error rate

threshold for WMS decoding with β = 1
dv−1 . Then, as n → ∞, WMS decoding

diverges to consistent messages with probability 1− on(1) for all p < p∗.

Remark 69. The DE analysis of the WMS decoding of (dv, dc)-regular LDPC codes

with β = 1
dv−1 gives automatically that almost all messages diverge to consistent

values (i.e., a BER threshold). Conjecture 68 is that p∗ is also a word-error rate

(WER) threshold. Conjecture 68 has been tested via simulation, and we are currently

pursuing a rigorous proof.

Example 70. Consider a (3, 6)-regular LDPC code over the BSC. From a DE anal-

ysis of the WMS algorithm (i.e., not the DE-type analysis for local optimality as

proposed in [1]) with β = 1/2, one finds that the WMS algorithm will decode cor-

rectly when p ≤ 0.055. Note that the obtained LP threshold lower bound matches

the best possible bound using techniques from [1].

98

3.5 Numerical Results

The WER for the WMS algorithms and the probability of not converging to a set

of consistent messages are shown in Figure 3.1. The solid lines are the WER of the

WMS algorithm, and the dashed lines are the probability of not satisfying WMS-

consistent. The simulation is conducted over a (3, 6)-regular LDPC code ensemble

with n = 104. Two weight factors, β = 0.49 and β = 0.5, are considered, and a

maximum of 500 iterations are used to decode each codeword. Both the BSC and the

BIAWGNC are tested. As shown in Figure 3.1, when β = 0.49, the WMS algorithm

may converge to a set of messages that are not WMS-consistent even though the

codeword is successfully decoded. However, when β = 0.5, those two probabilities

become nearly identical.

In [1] and [67], a DE-type analysis is employed to compute the threshold for

having the all-zero codeword as a locally optimal codeword. Whenever the channel

noise is below this threshold, the probability that the all-zero codeword is not a

locally optimal codeword goes to 0 as the number of iterations goes to infinity.

Since the local optimality implies the LP and global optimality, this threshold is a

lower bound of the LP decoding threshold. In Figure 3.2, we plot the thresholds

obtained by DE-type analysis versus some weight factors β. It is worth noting

that according to our numerical results, the best lower bound for the LP decoding

threshold, in all cases, are obtained when β = 1
dv−1 . When β < 1

dv−1 , the DE-type

analysis proposed in [1] has no threshold effect. The threshold effect does not occur

because the density of the correlation between the best skinny trees and the channel

output in [1, 67] converges to a fixed point instead of diverging to ±∞. Therefore,

the probability of not having the all-zero codeword as a locally optimal codeword

can not be arbitrarily small. Note that the weight vector we used in Figure 3.2 is

99

0.68 0.7 0.72 0.74 0.76
10−5

10−4

10−3

10−2

10−1

100

σ

BIAWGNC

10−5

10−4

10−3

10−2

10−1

100
W

E
R

β = 0.5
β = 0.49

4 5 6

·10−2

10−5

10−4

10−3

10−2

10−1

100

p

P
r(

N
ot

W
M

S
-c

on
si

st
en

t)

BSC

10−5

10−4

10−3

10−2

10−1

100

β = 0.5
β = 0.49

Figure 3.1: The WER (solid lines) of the WMS algorithm for (3, 6)-regular LDPC
code and the probability of converging to a set of messages that are not WMS-
consistent (dashed lines).

different from the weight factor proposed in [1]. In Figure 3.2, only one weight factor

β ∈ [0, 1] is employed. For a T -depth skinny tree, this is equivalent to weighting the

tree from the root to the leafs by a weight vector (1, β, β2, · · · , βT). In [1], Arora et

al. considered a two-stage weighting strategy. For a fixed s < T , the weight vector is

(ρ, ρ, . . . , ρ, 1, β, β2, · · · , βs) ∈ RT . In the first s < T iterations, exponential weights

are employed. According to the density of the correlation between the best skinny

trees and the channel output, a proper ρ is chosen so that the threshold effect can

occur. Although this two-stage weighting strategy in [1] has a threshold effect for

any β ∈ [0, 1], the observed best threshold also occurs when β = 1
dv−1 .

100

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5
·10−2

β

T
h
re

sh
ol

d
(p

)

BSC

(3, 6)
(4, 8)
(5, 10)

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

β

T
h
re

sh
ol

d
(σ

)

BIAWGNC

(3, 6)
(4, 8)
(5, 10)

Figure 3.2: The lower bound of the LP decoding threshold for (3, 6), (4, 8) and
(5, 10)-regular LDPC codes over the BIAWGNC and the BSC.

The comparisons of the WER performance between the WMS algorithm and the

TRMP algorithm [59] are shown in Figure 3.3. For any strictly positive pairwise

Markov random field (MRF) with binary variables, it has been shown that the fixed

point of the TRMP algorithm always specifies an optimal LP dual solution [59, 76].

The TRMP message update rules in the logarithmic domain are

ν
(`+1)
i→j = γi + ρ

∑
k∈N(i)\j

ν
(`)
i←k − (1− ρ) ν

(`)
i←j,

ν
(`+1)
i←j = ρ

 ∏
m∈N(j)\i

sgn
(
ν
(`)
m→j

) min
m′∈N(j)\i

∣∣∣ν(`)m′→j∣∣∣− (1− ρ) ν
(`)
i→j,

101

where ρ ≤ 1 is the edge appearance probability in a random spanning tree. An

uniform edge appearance probability ρ = n(1+dv/dc)−1
|E| is employed in our simulation.

One can notice that these message update rules are similar to the WMS algorithms.

Although, the factors associated with the factor graph of an LDPC code are not

strictly positive, the optimality of the TRMP hard decisions is observed in a nu-

merical simulation of a (3, 4)-regular LDPC code with n = 12. Thus, we take the

TRMP algorithm into consideration, and compare its WER performance with the

WER performance of the WMS algorithms.

In this comparison, a (3, 6)-regular LDPC codes over the BSC is considered, and

the codeword length for both algorithms is n = 104. Three weight factors for the

WMS algorithm are tested: β = 0.5, which is discussed in this section; β = 0.8,

which has been shown to have the best performance by DE analysis [70]; and β = 1,

which is equivalent to the MS algorithm for LDPC codes. All WMS algorithms

perform 100 iterations in decoding a codeword. In the case of the TRMP algorithm,

two simulations with 100 iterations and 1000 iterations, respectively, for decoding

a codeword are conducted. As shown in Figure 3.3, the WER performance of the

TRMP algorithm with 1000 iterations is close to the WMS algorithm with β = 1.

However, if the TRMP algorithm only performs 100 iterations in decoding each

codeword, it becomes close to the WMS algorithm with β = 0.5. The performance

loss of the TRMP algorithm with 100 iterations is caused by the insufficient number of

iterations. Since the TRMP algorithm is not close enough to the converged point, the

corresponding hard decisions are not reliable. Although the TRMP algorithm over

the binary alphabet has been shown to be LP optimal when the algorithm converges,

finding the noise threshold of the TRMP algorithm is still an open problem.

102

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

·10−2

10−5

10−4

10−3

10−2

10−1

100

p

W
E

R

BSC

WMS, β = 0.5

TRMP, 102 iters

TRMP, 103 iters
WMS, β = 1.0
WMS, β = 0.8

Figure 3.3: WER performance comparisons for a (3, 6)-regular LDPC code over the
BSC.

3.6 Conclusions and Future Work

For (dv, dc)-regular LDPC codes, both the AttMP algorithm and the WMS al-

gorithm are studied. By slightly modifying the objective function of the original

AttMP problem in (3.2) to an equivalent problem in (3.9), we show that the AttMP

messages will converge to a fixed point when β < 1
(dv−1)(dc−1) . Further, a set of

sufficient conditions (AttMP-consistency) for testing the optimality of the AttMP

solutions is proposed. With the modified AttMP problem in (3.9), we show the LP

and ML optimality of the AttMP solution by a simple proof if β < 1
(dv−1)(dc−1) and

the fixed point is AttMP-consistent

103

Similarly, when the weight factor satisfies β < 1
dv−1 , we show that the WMS

algorithm converges to a unique fixed point. We also introduce the sufficient condi-

tions (WMS-consistency) for the hard decisions of the WMS algorithm to be a valid

codeword. By employing the construction of a dual feasible point of Problem-P in

[66], we show that if the weight factor satisfies β < 1
dv−1 and the WMS algorithm

converges to a WMS-consistent fixed point, we can simplify the construction by us-

ing the converged messages. Also, we show that the dual feasible point obtained by

the converged messages is a dual optimal point of Problem-P, and the corresponding

hard decisions are the LP optimum as well as the ML decoding solution. Based

on the analysis of the WMS algorithm with β < 1
dv−1 , the optimality of the WMS

algorithm with β = 1
dv−1 is also discussed. When the WMS messages with β = 1

dv−1

are divergent and consistent, we show that the hard decisions are ML optimum as

well. This result can be seen as the natural completion of the work initiated by Frey

and Koetter in [58]. Also, our results have interesting connections with the results of

[1] because their best LP thresholds also occur when β = 1
dv−1 according to DE-type

analysis. For weight factors β > 1
dv−1 , we provide examples which show that the

WMS algorithm does not always return a ML codeword. In particular, the messages

in Example 35 are divergent and consistent, but the hard decisions do not return a

ML codeword.

In regards to future work, the most interesting open question is whether connec-

tions between LP decoding and WMS decoding can be extended beyond β = 1
dv−1 .

In [70], Chen and Fossorier studied the optimal attenuation factor for the WMS al-

gorithm. For example, the best β for the (3, 6)-regular LDPC code on the BSC is

β = 0.8, and the corresponding threshold is p = 0.083. The DE of the WMS algo-

rithm also shows that any extension of β beyond β = 1
dv−1 will immediately provide

an improved lower bound on the LP threshold. When the WMS algorithm with a

104

general weighting strategy for irregular LDPC codes is considered, let dv,i and βi be

the degree of the i-th bit and the weight factor for the i-th bit, respectively. By a

simple extension of Theorem 46, it can be shown that the WMS algorithm for irregu-

lar LDPC codes converges to a fixed point if the weight factors satisfy βi <
1

dv,i−1 for

all i ∈ Vv. However, the construction of the dual optimal point of Problem-P using

the unique fixed point of the WMS algorithm breaks down when the weight factors

are not all equal. A general weighting strategy and the corresponding construction

of the dual optimal point of Problem-P for irregular LDPC codes remains an open

problem. Since suitably designed irregular LDPC codes are capacity-approaching

[29], we suspect that irregular LDPC codes with a general weighting scheme might

improve current estimates of the noise threshold for the LP decoding of rate-1
2

LDPC

codes.

105

4. CONCLUDING REMARKS AND FUTURE WORK

In this section, we summarize the main contributions of this dissertation, and

point out the potential future works.

4.1 Capacity Approaching GLDPC Codes Using Hard-Decision Decoding

The iterative HDD of GLDPC ensembles, based on on t-error correcting block

codes, is analyzed with and without spatial coupling. In particular, we consider

binary primitive BCH codes and their even-weight subcodes as component codes of

GLDPC codes. Using DE analysis, noise thresholds are computed for a variety of

component codes and decoding assumptions. It is proven that iterative HDD for the

spatially-coupled GLDPC ensemble with BCH component codes can approach the

capacity of the BSC in the high-rate regime. Finally, numerical results are presented.

These results both verify the theoretical results and demonstrate the effectiveness of

these codes for high-speed communication systems.

In regard to the future work, the error floor analysis of the proposed code in the

finite block length case can give us a better understanding of the performance of the

code. It is important for the practical design to know the error floor performance

of the spatially-coupled GLDPC codes after we show good asymptotic performance.

In the application of the optical communications, the system are required to have

a very small bit-error probability, e.g., 10−15. To achieve this requirement, the de-

signed code should not have error floor greater than the desired error probability.

Although we have shown the capacity of the BSC can be approached by the pro-

posed codes and iterative HDD algorithms, it is still unclear to us how to approach

the capacity of other channels, such as bursty channel or channel with memory, using

HDD algorithms. For different channels, one may need to use different component

106

codes to correct errors. Exploring different component codes for GLDPC codes for

different channel is an open problem to us.

4.2 Convergence of Weighted Min-Sum

For (dv, dc)-regular LDPC codes, the AttMP algorithm and the WMS algorithm,

are studied in the second part of this dissertation. We first study the convergence

of both algorithms. By slightly modifying the objective function of the original

AttMP problem in (3.2) to an equivalent problem in (3.9), we show that the AttMP

messages will converge to a fixed point when β < 1
(dv−1)(dc−1) . Similarly, when the

weight factor β < 1
dv−1 , we show that the WMS algorithm converges to a unique fixed

point. AttMP-consistency and WMS-consistency are proposed to test the optimality

of the AttMP decoding output and the WMS decoding output, respectively. If the

messages passed on the edges converge to a fixed point and the fixed point satisfies

the proposed sufficient condition, we show that the hard-decisions based on the fixed

point are ML optimum. Based on the analysis of the WMS algorithm with β < 1
dv−1 ,

the optimality of the WMS algorithm with β = 1
dv−1 is also discussed. Similar to

the case of β < 1
dv−1 , we are able to show that the hard decisions are ML optimum

as well when the messages are divergent and consistent. This result can be seen

as the natural completion of the work initiated by Frey and Koetter in [58]. Also,

our results have interesting connections with the results of [1] because their best LP

thresholds also occur when β = 1
dv−1 according to DE-type analysis.

In regards to future work, the most interesting open question is whether connec-

tions between LP decoding and WMS decoding can be extended beyond β = 1
dv−1 .

In [70], Chen and Fossorier studied the optimal attenuation factor for the WMS al-

gorithm. For example, the best β for the (3, 6)-regular LDPC code on the BSC is

β = 0.8, and the corresponding threshold is p = 0.083. The DE of the WMS algo-

107

rithm also shows that any extension of β beyond β = 1
dv−1 will immediately provide

an improved lower bound on the LP threshold. A general weighting strategy for

irregular LDPC codes is another interesting extension of this work. Let dv,i and βi

be the degree of the i-th bit and the weight factor for the i-th bit, respectively. By a

simple extension of Theorem 46, it can be shown that the WMS algorithm for irregu-

lar LDPC codes converges to a fixed point if the weight factors satisfy βi <
1

dv,i−1 for

all i ∈ Vv. However, the construction of the dual optimal point of Problem-P using

the unique fixed point of the WMS algorithm breaks down when the weight factors

are not all equal. A general weighting strategy and the corresponding construction

of the dual optimal point of Problem-P for irregular LDPC codes remains an open

problem.

108

REFERENCES

[1] S. Arora, C. Daskalakis, and D. Steurer, “Message-passing algorithms and

improved LP decoding,” in Proc. 41st Ann. ACM Symp. Theory of Comput.

(STOC’09), Bethesda, MD, USA, 2009, pp. 3–12.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell Syst.

Techn. J., vol. 27, pp. 379–423, 623–656, July / Oct. 1948.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf. Com-

mun., vol. 2. Geneva, Switzerland: IEEE, May 1993, pp. 1064–1070.

[4] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: The

M.I.T. Press, 1963.

[5] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

[6] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inform. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[7] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Effi-

cient erasure correcting codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.

569–584, Feb. 2001.

[8] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-

density parity-check codes using irregular graphs,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 585–598, 2001.

109

[9] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check

codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47,

no. 2, pp. 599–618, Feb. 2001.

[10] ——, Modern Coding Theory. New York, NY: Cambridge University Press,

2008.

[11] J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,”

in Proc. IEEE Int. Conf. Commun., vol. 1, no. 9, June 1999, pp. 441–445.

[12] M. Lentmaier and K. S. Zigangirov, “On generalized low-density parity-check

codes based on Hamming component codes,” IEEE Commun. Letters, vol. 3,

pp. 248–250, Aug. 1999.

[13] N. Miladinovic and M. Fossorier, “Generalized LDPC codes and generalized

stopping sets,” IEEE Trans. Commun., vol. 56, no. 2, pp. 201–212, 2008.

[14] Forward Error Correction for High Bit-Rate DWDM Submarine Systems, ITU-

T Recommedation G.975.1, 2004.

[15] S. Hirst and B. Honary, “Decoding of generalised low-density parity-check codes

using weighted bit-flip voting,” IEE Proc.-Commun., vol. 149, no. 1, pp. 1–5,

2002.

[16] J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes

with low-density parity-check matrix,” IEEE Trans. Inform. Theory, vol. 45,

no. 6, pp. 2181–2191, 1999.

[17] A. Sridharan, M. Lentmaier, D. J. Costello, and K. S. Zigangirov, “Convergence

analysis of a class of LDPC convolutional codes for the erasure channel,” in Proc.

Annual Allerton Conf. on Commun., Control, and Comp., Monticello, IL, 2004,

pp. 953–962.

110

[18] M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, “Terminated

LDPC convolutional codes with thresholds close to capacity,” in Proc. IEEE

Int. Symp. Inform. Theory, Adelaide, Australia, 2005, pp. 1372–1376.

[19] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of thresh-

old saturation for coupled scalar recursions,” in Proc. Int. Symp. on Turbo Codes

& Iterative Inform. Proc., 2012, pp. 51–55, arxiv preprint arXiv:1204.5703, 2012.

[20] ——, “A simple proof of threshold saturation for coupled vector recursions,”

in Proc. IEEE Inform. Theory Workshop, 2012, pp. 25–29, arxiv preprint

arXiv:1208.4080.

[21] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “A proof of threshold

saturation for spatially-coupled LDPC codes on BMS channels,” in Proc. Annual

Allerton Conf. on Commun., Control, and Comp., Monticello, IL, Oct. 2012, pp.

176–184.

[22] A. Yedla, “Universality for multi-terminal problems via spatial coupling,” Ph.D.

dissertation, Texas A&M University, College Station, TX, 2012.

[23] S. Kudekar and H. D. Pfister, “The effect of spatial coupling on compressive

sensing,” in Proc. Annual Allerton Conf. on Commun., Control, and Comp.,

Monticello, IL, Oct. 2010, pp. 347–353.

[24] D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically opti-

mal compressed sensing via spatial coupling and approximate message passing,”

Dec. 2011, arxiv preprint arXiv:1112.0708.

[25] M. I. Jordan, Ed., Learning in graphical models. Cambridge, MA: MIT Press,

1998.

111

[26] M. Mezard and A. Montanari, Information, Physics, and Computation. New

York, NY: Oxford University Press, 2009.

[27] Y. Weiss and W. T. Freeman, “On the optimality of solutions of the max-product

belief-propagation algorithm in arbitrary graphs,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 763–744, Feb. 2001.

[28] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy approx-

imations and generalized belief propagation algorithms,” IEEE Trans. Inform.

Theory, vol. 51, pp. 2282–2312, 2005.

[29] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inform.

Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[30] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. J. Viterbi,

“CDMA/HDR: A bandwidth-efficient high-speed wireless data service for no-

madic users,” IEEE Commun. Magazine, vol. 38, no. 7, pp. 70–77, July 2000.

[31] C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J. Tousch, and N. Pham,

“The turbo code standard for DVB-RCS,” in Proc. Int. Symp. on Turbo Codes

& Related Topics, 2000, pp. 535–538.

[32] R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, M.I.T.,

Cambridge, MA, USA, 1960.

[33] I. B. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, “Achievable informa-

tion rates for high-speed long-haul optical transmission,” J. Lightwave Technol.,

vol. 23, no. 11, p. 3755, Nov. 2005.

[34] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans. Com-

mun. Tech., vol. 16, no. 3, pp. 398–402, 1968.

112

[35] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable MAP “filters”

for the decoding of product and concatenated codes,” in Proc. IEEE Int. Conf.

Commun., vol. 3, 1993, pp. 1740–1745.

[36] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,”

IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

[37] M. Schwartz, P. H. Siegel, and A. Vardy, “On the asymptotic performance of

iterative decoders for product codes,” in Proc. IEEE Int. Symp. Inform. Theory,

2005, pp. 1758–1762.

[38] J. Justesen and T. Hoholdt, “Analysis of iterated hard decision decoding of

product codes with Reed-Solomon component codes,” in Proc. IEEE Inform.

Theory Workshop, Sept. 2007, pp. 174–177.

[39] B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a giant k-core

in a random graph,” Journal of Combinatorial Theory-Series B, vol. 67, no. 1,

1996.

[40] S. Janson and M. J. Luczak, “A simple solution to the k-core problem,” Random

Struct. Alg, vol. 30, pp. 50–62, 2005.

[41] A. Barg and A. Mazumdar, “On the number of errors correctable with codes on

graphs,” IEEE Trans. Inform. Theory, vol. 57, no. 2, pp. 910–919, 2011.

[42] D. Truhachev, M. Lentmaier, and K. Zigangirov, “On braided block codes,” in

Proc. IEEE Int. Symp. Inform. Theory, 2003, p. 32.

[43] A. J. Feltstrom, D. Truhachev, M. Lentmaier, and K. S. Zigangirov, “Braided

block codes,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp. 2640–2658, 2009.

[44] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error correcting coding for

OTN,” IEEE Commun. Magazine, vol. 48, no. 9, pp. 70–75, 2010.

113

[45] J. Justesen, “Performance of product codes and related structures with iterated

decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415, 2011.

[46] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase

Codes: FEC for 100 Gb/s OTN,” J. Lightwave Technol., vol. 30, no. 1, pp.

110–117, 2012.

[47] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via

spatial coupling: Why convolutional LDPC ensembles perform so well over the

BEC,” IEEE Trans. Inform. Theory, vol. 57, no. 2, pp. 803–834, 2011.

[48] M. G. Kim and J. H. Lee, “Undetected error probabilities of binary primitive

BCH codes for both error correction and detection,” IEEE Trans. Commun.,

vol. 44, no. 5, pp. 575–580, 1996.

[49] V. M. Sidel’nikov, “Weight spectrum of binary Bose-Chaudhuri-Hoquinghem

codes,” Problems of Inform. Transm., vol. 7, no. 1, pp. 14–22, 1971.

[50] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic

Processes, 4th ed. New York, NY, USA: McGraw-Hill, 2002.

[51] S. H. Hassani, N. Macris, and R. Urbanke, “Threshold saturation in spatially

coupled constraint satisfaction problems,” 2011, arxiv preprint arXiv:1112.6320.

[52] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, Eds., NIST

Handbook of Mathematical Functions. New York, NY: Cambridge University

Press, 2010, [Online]. Available: http://dlmf.nist.gov/.

[53] Y.-Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity at high

rates with iterative hard-decision decoding,” in Proc. IEEE Int. Symp. Inform.

Theory, 2012, pp. 2696–2700.

114

[54] H.-K. Hwang and V. Zacharovas, “Uniform asymptotics of Poisson approxi-

mation to the Poisson-binomial distribution,” Theory of Probab. & its Appl.,

vol. 55, no. 2, pp. 198–224, 2011.

[55] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,

Linköping University, Department of Electrical Engineering, S-581 83 Linköping,

Sweden, 1996.

[56] N. Wiberg, H.-A. Loeliger, and R. Kötter, “Codes and iterative decoding on

general graphs,” Eur. Trans. Telecom., vol. 6, no. 5, pp. 513–525, Sept. – Oct.

1995.

[57] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms. New

York, NY: Cambridge University Press, 2003.

[58] B. J. Frey and R. Koetter, “Exact inference using the attenuated max-product

algorithm,” in Advanced Mean Field Methods: Theory and Practice, M. Opper

and D. Saad, Eds. Cambridge, MA: MIT Press, 2000.

[59] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation via

agreement on trees: Message-passing and linear programming,” IEEE Trans.

Inform. Theory, vol. 51, no. 11, pp. 3697–3717, Nov. 2005.

[60] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming

to decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp.

954–972, March 2005.

[61] R. Koetter and P. O. Vontobel, “Graph covers and iterative decoding of finite-

length codes,” in Proc. Int. Symp. on Turbo Codes & Iterative Inform. Proc.,

Brest, France, Sept. 2003, pp. 75–82.

115

[62] P. O. Vontobel and R. Koetter, “On the relationship between linear program-

ming decoding and min-sum algorithm decoding,” in Int. Symp. Inform. Theory

and its Appl., Parma, Italy, Oct. 2004.

[63] ——, “Bounds on the threshold of linear programming decoding,” in Proc. IEEE

Inform. Theory Workshop, Punta del Este, Uruguay, March 2006, pp. 175–179.

[64] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright, “LP

decoding corrects a constant fraction of errors,” IEEE Trans. Inform. Theory,

vol. 53, no. 1, pp. 82–89, Jan. 2007.

[65] C. Daskalakis, A. G. Dimakis, R. M. Karp, and M. J. Wainwright, “Probabilistic

analysis of linear programming decoding,” IEEE Trans. Inform. Theory, vol. 54,

no. 8, pp. 3565–3578, 2008.

[66] R. Koetter and P. O. Vontobel, “On the block error probability of LP decoding

of LDPC codes,” in Proc. 1st Annual Workshop on Inform. Theory and its

Appl., San Diego, CA, Feb. 2006.

[67] N. Halabi and G. Even, “LP decoding of regular LDPC codes in memoryless

channels,” IEEE Trans. Inform. Theory, vol. 57, no. 2, Feb. 2011.

[68] ——, “Linear-programming decoding of Tanner codes with local-optimality cer-

tificates,” in Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, July 2012,

pp. 2696–2700.

[69] ——, “Hierarchies of local-optimality characterizations in decoding Tanner

codes,” in Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, July 2012,

pp. 2701–2705.

[70] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based

decoding algorithms of LDPC codes,” IEEE Commun. Letters, vol. 6, no. 5, pp.

116

208–210, 2002.

[71] J. M. Mooij and H. J. Kappen, “Sufficient conditions for convergence of the sum-

product algorithm,” IEEE Trans. Inform. Theory, vol. 53, no. 12, pp. 4422–4437,

Dec. 2007.

[72] N. L. Carothers, Real Analysis. New York, NY: Cambridge University Press,

1999.

[73] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. New York, NY: John Wiley and Sons, 1994.

[74] Y.-Y. Jian and H. D. Pfister, “Convergence of weighted min-sum decoding via

dynamic programming on coupled trees,” in Proc. Int. Symp. on Turbo Codes

& Iterative Inform. Proc., Brest, France, Sept. 2010.

[75] D. Blackwell, “Discrete dynamic programming,” Ann. Math. Stats., vol. 33, pp.

719–726, 1962.

[76] V. Kolmogorov and M. J. Wainwright, “On the optimality of tree-reweighted

max-product message-passing,” in Proc. Uncertainty in Artificial Intelligence,

Edinburgh, Scotland, UK, July 2005.

[77] P. O. Vontobel, “A factor-graph-based random walk, and its relevance for LP de-

coding analysis and Bethe entropy characterization,” in Proc. Annual Workshop

on Inform. Theory and its Appl., San Diego, CA, Feb. 2010.

117

APPENDIX A

PROOFS OF LEMMAS

A.1 Proof of Lemma 9

Proof. Let

F (n, i, δ, j) ,
n− l(i, δ, j)

n
2−mt

(
n

l(i, δ, j)

)
×
(

l(i, δ, j)

l(i, δ, j)− j

)(
n− l(i, δ, j)− 1

δ − 1− j

)(
n− 1

i

)−1
.

By using (2.17), for a fixed i ≥ t, one can rewrite the last term of (2.13) as

(
1 +O

(
n−0.1

)) t∑
δ=1

δ−1∑
j=0

F (n, i, δ, j),

and Pn(i) is

Pn(i) = 1−
(
1 +O

(
n−0.1

)) t∑
δ=1

δ−1∑
j=0

F (n, i, δ, j). (A.1)

By the fact that 2m = n+ 1, it is simple to show that

F (n, i, δ, j) =
n− l(i, δ, j)

n

1

(n+ 1)t
n!

(n− l(i, δ, j))!l(i, δ, j)!

× l(i, δ, j)!

(l(i, δ, j)− j)!j!
(n− l(i, δ, j)− 1)!

(n− l(i, δ, j)− δ + j)!(δ − 1− j)!
i!(n− 1− i)!

(n− 1)!

=
1

(n+ 1)t
i!

(l(i, δ, j)− j)!
(n− 1− i)!

(n− l(i, δ, j)− δ + j)!

1

j!(δ − 1− j)!
(A.2)

=
1

(n+ 1)t
i!

(i− δ + j + 1)!

(n− 1− i)!
(n− i− j − 1)!

1

j!(δ − 1− j)!
, (A.3)

118

where (A.3) is obtained by substituting (2.12) into (A.2). When j < δ−1, (A.3) can

be written as

1

j!(δ − 1− j)!
1

(n+ 1)t−δ+1

(
δ−j−2∏
k=0

i− k
n+ 1

)(
j−1∏
k′=0

n− 1− i− k′

n+ 1

)
. (A.4)

On the other hand, when j = δ − 1, (A.3) becomes

1

(n+ 1)t−δ+1

1

(δ − 1)!

(
δ−2∏
k′=0

n− 1− i− k′

n+ 1

)
. (A.5)

Substituting (A.4) and (A.5) into (A.1), we have

Pn(i) = 1−
(
1 +O

(
n−0.1

))(t−1∑
j=0

F (n, i, t, j) +
t−1∑
δ=1

δ−1∑
j=0

F (n, i, δ, j)

)

= 1−
(
1 +O

(
n−0.1

)) 1

n+ 1

(
1

(t− 1)!

t−2∏
k′=0

n− 1− i− k′

n+ 1

+
t−2∑
j=0

1

j!(t− 1− j)!

(
t−j−2∏
k=0

i− k
n+ 1

)(
j−1∏
k′=0

n− 1− i− k′

n+ 1

))
+O

(
n−2
)

> 1−
(
1 +O

(
n−0.1

))
n−1

(
t−1∑
j=0

1

j!(t− j − 1)!

)
+O

(
n−2
)
.

By the fact that
∑t−1

j=0
1

j!(t−j−1)! ≤ 2, we have limn→∞ Pn(i) = 1.

For the analysis of nQn(i), we also define

K(n, i, δ, j) ,
l(i, δ, j)− 1

n
2−mt

(
n

l(i, δ, j)− 1

)
×
(

l(i, δ, j)− 2

l(i, δ, j)− j − 1

)(
n− l(i, δ, j) + 1

δ − 1

)(
n− 1

i

)−1
. (A.6)

119

Then, we have

nQn(i) =
t∑

δ=1

δ∑
j=0

(
1 +O

(
n−0.1

))
nK(n, i, δ, j). (A.7)

We first show that nK(n, i, δ, j) is bounded. By the similar simplification as (A.3),

one can have

nK(n, i, δ, j) =
n

(n+ 1)t
i!

(i− δ + j)!

(n− 1− i)!
(n− i− j)!

1

(j − 1)!(δ − j)!
. (A.8)

When j < δ, the RHS of (A.8) can be simplified by

1

(j − 1)!(δ − j)!
n

(n+ 1)t−δ+1

(
δ−j−1∏
k=0

i− k
n+ 1

)(
j−2∏
k′=0

n− 1− i− k′

n+ 1

)
. (A.9)

On the other hand, when j = δ, (A.8) becomes

1

(δ − 1)!

n

(n+ 1)t−δ+1

(
δ−2∏
k′=0

n− 1− i− k′

n+ 1

)
. (A.10)

It is obvious that both (A.9) and (A.10) are upper bounded by 1, and therefore,

nQn(i) is bounded for all t+ 1 ≤ i ≤ n− t− 1.

To show (2.20), we first introduce some upper bounds for nK(n, i, δ, j). When j

and δ satisfy δ < t and 0 ≤ j ≤ δ, both (A.9) and (A.10) imply that nK(n, i, δ, j) <

n
nt−δ+1 ≤ 1

n
for all t+ 1 ≤ i ≤ n− t− 1. Also, by substituting j = δ = t into (A.10),

we have nK(n, i, t, t) < 1
(t−1)! for all t + 1 ≤ i ≤ n − t − 1. When δ = t but j < δ,

the interval t+ 1 ≤ i ≤ b
√
nc is considered. From (A.9), we know

nK(n, i, t, j) ≤ b
√
nc

n+ 1
<

1√
n
.

120

From (A.7), nQn(i) for t+ 1 ≤ i ≤ b
√
nc can be upper bounded by

nQn(i) =
t∑

δ=1

δ∑
j=0

(
1 +O

(
n−0.1

))
nK(n, i, δ, j)

≤
(
1 +O

(
n−0.1

))(t−1∑
δ=1

δ∑
j=0

1

n
+

t−1∑
j=0

1√
n

+
1

(t− 1)!

)

=
1

(t− 1)!

(
1 +O

(
n−0.1

))
. (A.11)

From (A.11) and the fact that nQn(i) ≥ 0, we know limn→∞ nQn(i) = 0.

A.2 Proof of Lemma 10

Proof. Since Pn(i) = 0 for 0 ≤ i ≤ t− 1 and Pn(i) < 1 for all i ≥ t, we know that

1− E [Pn(Xn)] ≥
t−1∑
i=0

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
,

and limn→∞E [Pn(Xn)] ≤ φ(λ; t− 1). With the convention that
(
n
k

)
= 0 if k > n, we

know that, for any fixed T � 1,

E [Pn(Xn)] ≥
T∑
i=t

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
Pn(i).

Then

lim
n→∞

E [Pn(Xn)] ≥ lim
n→∞

T∑
i=t

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
Pn(i)

= φ(λ; t− 1)− φ(λ;T).

121

Since T is arbitrary and by Markov’s inequality φ(λ;T) ≤ λ
T+1

, we have

lim
n→∞

E [Pn(Xn)] = φ(λ; t− 1).

By the fact that Qn(i) ≤ 1 for all i ≥ t+ 1, one can show that, for any T � 1,

E [Qn(Xn)] ≤
T∑

i=t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
Qn(i)

+
∞∑

i=T+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
.

From Lemma 9, we have limn→∞E [Qn(Xn)] ≤ φ(λ;T). Since Qn(i) ≥ 0 for all i, we

have limn→∞E [Qn(Xn)] = 0.

A.3 Proof of Lemma 11

Proof. By using the convention that
(
n
k

)
= 0 when ever k > n, for any T � 1, we

can rewrite E [nQn(Xn)] as

E [nQn(Xn)] =
T∑

i=t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQn(i)

+
∞∑

i=T+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQn(i).

Then, by the Poisson theorem [50, pp. 113] and Lemma 9 we know

lim
n→∞

E [nQn(Xn)] ≥ lim
n→∞

T∑
i=t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQn(i)

=
1

(t− 1)!
(φ(λ; t)− φ(λ;T)) .

122

Since nQn(i) is bounded for t+1 ≤ i ≤ n−2−t according to Lemma 9, there exists a

constant 0 < C <∞ independent of n such that nQn(i) ≤ C for t+1 ≤ i ≤ n−2−t.

Also, we know nQn(i) = 0 for 0 ≤ i ≤ t and nQn(i) = n for n − t − 1 ≤ i ≤ n − 1.

Thus, E [nQn(Xn)] can be upper bounded by

E [nQn(Xn)] ≤
T∑

i=t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQn(i)

+ C

∞∑
i=T+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
+ n

n−1∑
i=n−t−1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
. (A.12)

By the Chernoff bound of the binomial distribution B(n − 1, λn
n−1), the last term of

(A.12) can be upper bounded by

n
n−1∑

i=n−t−1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
≤ n

(
eλn

n− 1− t

)n−t−1
e−λn .

(A.13)

Since λn → λ and λ <∞, we know that there exists a N0 > 0 and a ε > 0 such that

λn ≤ λ+ ε whenever n > N0. Thus, we have

0 ≤ lim
n→∞

n

(
eλn

n− 1− t

)n−t−1
e−λn ≤ e−λ lim

n→∞
n

(
e(λ+ ε)

n− 1− t

)n−t−1
= 0,

123

and

lim
n→∞

E [nQn(Xn)] ≤ lim
n→∞

T∑
i=t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQn(i)

+ C lim
n→∞

∞∑
i=T+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
=

1

(t− 1)!
φ(λ; t) +

(
C − 1

(t− 1)!

)
φ(λ;T).

Therefore, we have

1

(t− 1)!
φ(λ; t)− 1

(t− 1)!
φ(λ;T)

≤ lim
n→∞

E [nQn(Xn)] ≤ 1

(t− 1)!
φ(λ; t) +

(
C − 1

(t− 1)!

)
φ(λ;T).

Since C is independent of n and T is arbitrary, we know limn→∞E [nQn(Xn)] =

1
(t−1)!φ(λ; t).

A.4 Proof of Lemma 14

Proof. To show the lemma, it suffices to show that limn→∞ P̃n(i) = 1 for i ≥ t,

limn→∞E[Q̃n(Xn)] = 0, and

lim
n→∞

E
[
nQ̃n(Xn)

]
=


1

(t−1)!ψ (λ; t) if t is even,

1
(t−1)!ϕ (λ; t) if t is odd.

(A.14)

Let L1(i, δ) , {j ∈ [0, δ] | l(i, δ, j) = 0 mod 2} be the set of all j such that l(i, δ, j)

is an even number. Since A` = 0 for all odd `, we have

P̃n(i) = 1−
t∑

δ=1

∑
j∈L1(i,δ)

n− l(i, δ, j)
n

Al(i,δ,j)Θ(n, i, δ, j) ≥ Pn(i).

124

Likewise, we define L2(i, δ) , {j ∈ [0, δ] | (l(i, δ, j)− 1) = 0 mod 2} be the set of all

j such that l(i, δ, j)− 1 is an even number. Then,

Q̃n(i) =
t∑

δ=1

∑
j∈L2(i,δ)

l(i, δ, j)− 1

n
Al(i,δ,j)−1Λ(n, i, δ, j) ≤ Qn(i).

From Lemma 9 and Lemma 10, we immediately have limn→∞ P̃n(i) = 1 for i ≥ t,

and limn→∞E[Q̃n(Xn)] = 0.

From (A.6) and (A.7, we have

nQ̃n(i) =
t∑

δ=1

∑
j∈L2(i,δ)

(
1 +O

(
n−0.1

))
nK(n, i, δ, j),

When t is even, and i is odd, one can show that L2(i, t) = ∅. From (A.10), we know

nQ̃n(i) ≤
t−1∑
δ=1

δ∑
j∈0

(
1 +O

(
n−0.1

))
nK(n, i, δ, j) = O

(
n−1
)
.

When both t and i are even numbers, one can show t ∈ L2(i, t). By the same

argument in the proof of Lemma 9, we know nQ̃n(i) is upper bounded by a constant

for all even i with i ≥ t + 1, and for all even t + 1 ≤ i ≤
√
n, nQ̃n(i) = 1

(t−1)!(1 +

O(n−0.1)). Let Ne be the set of even natural numbers, and No be the set of odd

nature numbers. Then, when t is even, we have

E
[
nQ̃n(Xn)

]
=

∑
i∈Ne,i≥t+2

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i)

+
∑

i∈No,i≥t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i)

=
∑

i∈Ne,i≥t+2

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i) +O

(
1

n

)
.

125

By the same calculation in the proof of Lemma 11, we have

lim
n→∞

E
[
nQ̃n(Xn)

]
=

1

(t− 1)!

∑
i∈Ne,i≥t+2

λie−λ

i!

=
1

(t− 1)!

 ∑
i∈Ne,i≥t+2

λie−λ

i!
−

t
2∑

i′=0

λ2ie−λ

(2i)!


(a)
=

1

(t− 1)!

(1− e−2λ)
2

−
t
2∑
i=0

λ2ie−λ

(2i)!

 ,

where (a) follows from the fact that
∑

i∈Ne,i≥t+2
λie−λ

i!
= 1

2
(1−e−2λ). Thus, we showed

(A.14) when t is a even number.

When t is a odd number, we know L2(i, t) = ∅ for all even i. Then, one can

have nQ̃n(i) < 1
n

for all even i ≥ t+ 1, and nQ̃n(i) = 1
(t−1)!(1 +O(n−0.1)) for all odd

t + 1 ≤ i ≤
√
n. With the same argument in showing the case where t is even, we

have

E
[
nQ̃n(Xn)

]
=

∑
i∈No,i≥t+2

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i)

+
∑

i∈Ne,i≥t+1

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i)

=
∑

i∈No,i≥t+2

(
n− 1

i

)(
λn
n− 1

)i(
1− λn

n− 1

)n−1−i
nQ̃n(i) +O

(
1

n

)
.

Then,

lim
n→∞

E
[
nQ̃n(Xn)

]
=

1

(t− 1)!

∑
i∈No,i≥t+2

λie−λ

i!

=
1

(t− 1)!

(1 + e−2λ
)

2
−

t−1
2∑
i=0

λ2i+1e−λ

(2i+ 1)!

 .

126

This shows the other case of (A.14), and also, complete the proof the lemma.

A.5 Proof of Lemma 20

Proof. Since Vn(x) is a continuous function in (0, 1], we prove that x̂∗∗n exists by

showing that Vn
(
2t
n

)
< 0 and Vn

(
2t−2
n

)
> 0 when n ≥ n0 and t ≥ t0. From (2.30),

one can readily have

Vn

(
2t

n

)
= − 2

nB(t, n− t)

(
2t

n

)t(
1− 2t

n

)n−t
< 0. (A.15)

We simplify Vn
(
2t−2
n

)
by

Vn

(
2t− 2

n

)
=

2

n
I 2t−2

n
(t, n− t)− 2

nB(t, n− t)

(
2t− 2

n

)t(
1− 2t− 2

n

)n−t
(a)
=

2

n

(
I 2t−2

n
(t, n− t)− t

(
1− 2t− 2

n

)(
n− 1

t

)(
2t− 2

n

)t(
1− 2t− 2

n

)n−t−1)

≥ 2

n

(
I 2t−2

n
(t, n− t)− t

(
n− 1

t

)(
2t− 2

n

)t(
1− 2t− 2

n

)n−t−1)
,

where (a) follows from the definition of B(t, n − t) in (2.24). Since t0 > 3, one can

apply Chernoff bound for the lower tail of the binomial distribution by

1− I 2t−2
n

(t, n− t) ≤
(

2− 2

t

)t
e−(t−2).

127

Thus, we know

Vn

(
2t− 2

n

)
≥ 2

n

(
1−

(
2− 2

t

)t
e−(t−2) − t

(
n− 1

t

)(
2t− 2

n

)t(
1− 2t− 2

n

)n−t−1)

=
2

n
Ψ(n; t),

where Ψ(n; t) , 1− e−(t−2)
(
2− 2

t

)t − t(n−1
t

) (
2t−2
n

)t (
1− 2t−2

n

)n−t−1
. By the Poisson

theorem [50, pp. 113] and the fact that t! ≤ tte−t [10, pp. 30], one can show

lim
n→∞

(
n− 1

t

)(
2t− 2

n

)t(
1− 2t− 2

n

)n−t−1
=

(2t− 2)t

t!
e−(2t−2) ≥ (2t− 2)t

tte−t
e−(2t−2).

We first let n → ∞, and then t → ∞. The function Ψ(n; t) can be lower bounded

by

lim
t→∞

lim
n→∞

Ψ(n; t) ≥ lim
t→∞

(
1−

(
2− 2

t

)t
e−(t−2) − t

(
2− 2

t

)t
e−(t−2)

)

= 1− lim
t→∞

(1 + t)

(
2− 2

t

)t
e−(t−2)

= 1.

Therefore, there exists a pair (n0, t0) with t0 > 3 and n0 > t0 such that Ψ(n; t) > 0

for all n ≥ n0 and t ≥ t0, and thus, Vn
(
2t−2
n

)
> 0. Since (A.15) holds for any n > 0

and t > 0, we conclude that x̂∗∗ exists and 2t−2
n
≤ x̂∗∗n ≤ 2t

n
.

By the fact that p̂∗∗n = x̂∗∗n
f̂n(x̂∗∗n)

and f̂n(x) ≤ 1 for all x ∈ [0, 1], we know

p̂∗∗n ≥ x̂∗∗n ≥
2t− 2

n
.

128

A.6 Proof of Lemma 26

Proof. We first rewrite E [nQn(Xn)] by

E [nQn(Xn)] =

b
√
nc∑

i=t+1

(
n− 1

i

)(
λ

n− 1

)i(
1− λ

n− 1

)n−i−1
nQn(i)

+
n−t−2∑

i=b
√
nc+1

(
n− 1

i

)(
λ

n− 1

)i(
1− λ

n− 1

)n−i−1
nQn(i)

+ n
n−1∑

i=n−t−2

(
n− 1

i

)(
λ

n− 1

)i(
1− λ

n− 1

)n−i−1
.

From Lemma 9 and (2.20), we can upper bound E [nQn (Xn)] by

E [nQn(Xn)] ≤
(

1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t+ 1, n− t− 1)

+ C1I λ
n−1

(
b
√
nc+ 1, n− b

√
nc − 1

)
+ nI λ

n−1
(n− t− 2, t− 2) ,

(A.16)

where C1 is a constant. By applying Chernoff bound, the second term of (A.16) is

upper bounded by (
eλ

b
√
nc

)b√nc
e−λ.

Thus, with the upper bound (A.13) for the last term of (A.16), we have

E [nQn(Xn)] ≤
(

1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t+ 1, n− t− 1)

+ C1

(
eλ

b
√
nc

)b√nc
e−λ + n

(
eλ

n− 1− t

)n−t−1
e−λ

129

By the fact that, for any λ > 0,

lim
n→∞

(
eλ
b
√
nc

)b√nc
I λ
n−1

(t+ 1, n− t− 1)
≤ lim

n→∞

(
eλ
b
√
nc

)b√nc
(

λ
n−1

)t+1 (
1− λ

n−1

)n−t−2 = 0,

and

lim
n→∞

lim
λ→0

(
eλ
b
√
nc

)b√nc
I λ
n−1

(t+ 1, n− t− 1)
≤ lim

n→∞
lim
λ→0

(
eλ
b
√
nc

)b√nc
(

λ
n−1

)t+1 (
1− λ

n−1

)n−t−2
= lim

n→∞
lim
λ→0

(n− 1)t+1
(

e
b
√
nc

)b√nc
λb
√
nc−t−1(

1− λ
n−1

)n−t−2
= lim

λ→0
lim
n→∞

(n− 1)t+1
(

e
b
√
nc

)b√nc
λb
√
nc−t−1(

1− λ
n−1

)n−t−2 = 0,

we have

((
eλ
b
√
nc

)b√nc
+ n

(
eλ

n−1−t

)n−t−1)
I−1λ
n−1

(t+ 1, n− t− 1) = O(n−1), and thus,

E [nQn(Xn)] ≤
(

1

(t− 1)!
+O

(
n−0.1

))
I λ
n−1

(t+ 1, n− t− 1).

This concludes the proof of the lemma.

A.7 Proof of Lemma 45

Proof. Since
∏

m∈N(k)\i sgn(µm→k) sgn(νm→k) can be ±1, we need to verify the in-

equality

max
m∈N(k)\i

|µm→k − νm→k| ≥
∣∣∣∣ min
m∈N(k)\i

|µm→k| − min
m∈N(k)\i

|νm→k|
∣∣∣∣ (A.17)

whenever an even number of signs of µm→k and νm→k on m ∈ N(k)\ i do not match.

On the other hand, if an odd number of signs on m ∈ N(k) \ i do not match, we

130

need to show

max
m∈N(k)\i

|µm→k − νm→k| ≥
∣∣∣∣ min
m∈N(k)\i

|µm→k|+ min
m∈N(k)\i

|νm→k|
∣∣∣∣ . (A.18)

To show (A.17), letm1, m2, andm? be bit nodes in setsMµ , arg minm∈N(k)\i |µm→k|,

Mν , arg minm∈N(k)\i |νm→k|, and M? , arg maxm∈N(k)\i |µm→k − νm→k|, respec-

tively. Notice that

|µm?→k − νm?→k| ≥ max
m∈N(k)\i

∣∣|µm→k| − |νm→k|∣∣
= max

m∈N(k)\i

∣∣|νm→k| − |µm→k|∣∣.
Consider the case when |µm1→k| ≥ |νm2→k|. Since |µm2→k| ≥ |µm1→k| ≥ |νm2→k|, it

follows that

|µm?→k − νm?→k| ≥ max
m∈N(k)\i

∣∣|µm→k| − |νm→k|∣∣
≥
∣∣|µm2→k| − |νm2→k|

∣∣
≥
∣∣|µm1→k| − |νm2→k|

∣∣.
On the other hand, when |µm1→k| ≤ |νm2→k|, one can show |µm1→k| ≤ |νm2→k| ≤

|νm1→k|. Therefore, we have

|µm?→k − νm?→k| ≥ max
m∈N(k)\i

∣∣|µm→k| − |νm→k|∣∣
≥
∣∣|νm1→k| − |µm1→k|

∣∣
≥
∣∣|νm2→k| − |µm1→k|

∣∣
=
∣∣|µm1→k| − |νm2→k|

∣∣.
131

Combining these two cases implies (A.17).

To show (A.18), let Mk = {m ∈ N(k) \ i : µm→kνm→k < 0} be the set of indices

such that µm→k and νm→k have different signs. Notice that

max
m∈N(k)\i

|µm→k − νm→k| ≥ max
m∈Mk

|µm→k − νm→k|

≥ max
m∈Mk

∣∣|µm→k|+ |νm→k|∣∣
≥
∣∣∣∣ min
m∈Mk

|µm→k|+ min
m∈Mk

|νm→k|
∣∣∣∣

≥
∣∣∣∣ min
m∈N(k)\i

|µm→k|+ min
m∈N(k)\i

|νm→k|
∣∣∣∣ .

This completes the proof.

A.8 Proof of Lemma 54

Proof. Let µ′ , Wδ[µ] and ν ′ , Wδ[ν]. The signs of the check-to-bit node mes-

sages on the edge (i, j) ∈ E are sgn(µi←j) =
∏

m∈N(j)\i sgn(µm→j) and sgn(νi←j) =∏
m∈N(j)\i sgn(νm→j). Using this and the fact that sgn (µ) = sgn (ν), it follows that

sgn(µi←j) = sgn(νi←j) (A.19)

for all (i, j) ∈ E .

Since µ, ν are both WMS-consistent, we know that sgn(µi←j) = sgn(µi←j′) and

sgn(νi←j) = sgn(νi←j′) for all j, j′ ∈ N(i). Thus, for each (i, j) ∈ E , µ′i→j and ν ′i→j

can be expressed as

µ′i→j = sgn (µi←j)

sgn (µi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|µm′→k|

 (A.20)

132

and

ν ′i→j = sgn (νi←j)

sgn (νi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|νm′→k|

 . (A.21)

Since |µ| � |ν| � ‖γ‖∞
δ

1, we have

sgn (µi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|µm′→k|

> sgn (µi←j) γi + ‖γ‖∞ ≥ 0 (A.22)

and

sgn (νi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|νm′→k|

> sgn (νi←j) γi + ‖γ‖∞ ≥ 0. (A.23)

Hence, one can have

∣∣µ′i→j∣∣ = sgn (µi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|µm′→k|

and

∣∣ν ′i→j∣∣ = sgn (νi←j) γi +
δ

dv − 1

∑
k∈N(i)\j

min
m′∈N(k)\i

|νm′→k| .

By |µ| � |ν| and (A.19), we have |µ′| � |ν ′|.

Moreover, from (A.20)–(A.23), the signs of µ′i→j and ν ′i→j satisfy sgn(ν ′i→j) =

sgn(νi←j) and sgn(µ′i→j) = sgn(µi←j). Since µ and ν are WMS-consistent, it follows

133

that sgn(ν ′i→j) = sgn(νi←j) = sgn(νi→j) and sgn(µ′i→j) = sgn(µi←j) = sgn(µi→j) for

all (i, j) ∈ E . This concludes the proof.

A.9 Proof of Lemma 63

Before going into the proof of Lemma 63, we first introduce the following auxiliary

lemma.

Lemma 71. Given a received LLR vector γ and a δ ∈ [0, 1], let µ
(`)
i→j be the WMS

message with β = δ
dv−1 on the edge (i, j) in the `-th iteration. For all (i, j) ∈ E, the

absolute value of the WMS message is upper bounded by

|µ(`−1)
i→j | ≤ `‖γ‖∞. (A.24)

Proof. Using the update equations (3.13) and (3.14), the absolute value of the mes-

sage µ
(`)
i→j for any ` > 0 can be upper bounded by

∣∣∣µ(`)
i→j

∣∣∣ =

∣∣∣∣∣∣γi + β
∑

k∈N(i)\j

 ∏
m∈N(k)\i

sgn
(
µ
(`−1)
m→k

) min
m′∈N(k)\i

∣∣∣µ(`−1)
m′→k

∣∣∣
∣∣∣∣∣∣

≤ |γi|+ β

∣∣∣∣∣∣
∑

k∈N(i)\j

 ∏
m∈N(k)\i

sgn
(
µ
(`−1)
m→k

) min
m′∈N(k)\i

∣∣∣µ(`−1)
m′→k

∣∣∣
∣∣∣∣∣∣

≤ ‖γ‖∞ + β
∑

k∈N(i)\j

min
m′∈N(k)\i

∣∣∣µ(`−1)
m′→k

∣∣∣
≤ ‖γ‖∞ + β(dv − 1)

∥∥µ(`−1)∥∥
∞

≤ ‖γ‖∞ +
∥∥µ(`−1)∥∥

∞ .

Since the last upper bound is independent of (i, j), we have the following recursion

∥∥µ(`)
∥∥
∞ ≤ ‖γ‖∞ + β(dv − 1)

∥∥µ(`−1)∥∥
∞ . (A.25)

134

By applying (A.25) recursively and the fact that
∥∥µ(0)

∥∥
∞ = ‖γ‖∞, the inequality

(A.24) is obtained.

Having established Lemma 71, we can proceed and prove Lemma 63.

Proof. Let µ
(`)
i→j = (µ

(`)
1)i→j and µ

(`)
δ,i→j = (µ

(`)
δ)i→j. From (3.13), the absolute value

of the difference µ
(`)
i→j − µ

(`)
δ,i→j in the `-th iteration can be written as

∣∣∣µ(`)
i→j − µ

(`)
δ,i→j

∣∣∣ =

∣∣∣∣∣∣ 1

dv − 1

∑
k∈N(i)\j

µ
(`−1)
i←k −

δ

dv − 1

∑
k′∈N(i)\j

µ
(`−1)
δ,i←k′

∣∣∣∣∣∣ . (A.26)

By the triangle inequality, Equation (A.26) is upper bounded by

δ

dv − 1

∑
k∈N(i)\j

∣∣∣µ(`−1)
i←k − µ

(`−1)
δ,i←k

∣∣∣+
1− δ
dv − 1

∑
k′∈N(i)\j

∣∣∣µ(`−1)
i←k′

∣∣∣ . (A.27)

From (3.14) and Lemma 45, we know that |µ(`−1)
i←k − µ

(`−1)
δ,i←k| ≤ maxm∈N(k)\i |µ(`−1)

m→k −

µ
(`−1)
δ,m→k|. Also, by the fact that |µ(`−1)

i←k′ | = minm∈N(k′)\i |µ(`−1)
m→k′ |, we can therefore upper

bound (A.27) by

δ

dv − 1

∑
k∈N(i)\j

max
m∈N(k)\i

∣∣∣µ(`−1)
m→k − µ

(`−1)
δ,m→k

∣∣∣
+

1− δ
dv − 1

∑
k′∈N(i)\j

min
m∈N(k′)\i

∣∣∣µ(`−1)
m→k′

∣∣∣ .
By Lemma 71 and the fact that |µ(`−1)

i→j −µ
(`−1)
δ,i→j| ≤ ‖µ(`−1)−µ(`−1)

δ ‖∞ for all (i, j) ∈ E ,

we have

∣∣∣µ(`)
i→j − µ

(`)
δ,i→j

∣∣∣ ≤ δ

dv − 1

∑
k∈N(i)\j

∥∥∥µ(`−1) − µ(`−1)
δ

∥∥∥
∞

+
1− δ
dv − 1

∑
k′∈N(i)\j

`‖γ‖∞

≤
∥∥∥µ(`−1) − µ(`−1)

δ

∥∥∥
∞

+ (1− δ)`‖γ‖∞. (A.28)

135

Since the RHS of (A.28) is a constant with respect to (i, j) ∈ E , one gets the recursive

upper bound

∥∥∥µ(`) − µ(`)
δ

∥∥∥
∞
≤
∥∥∥µ(`−1) − µ(`−1)

δ

∥∥∥
∞

+ (1− δ)`‖γ‖∞. (A.29)

Note that |µ(0)
i→j − µ

(0)
δ,i→j| = 0. For a given ` ≤ L, we can apply (A.29) recursively,

and have

∥∥∥µ(`) − µ(`)
δ

∥∥∥
∞
≤ (1− δ)` (`+ 1)

2
‖γ‖∞

≤ (1− δ)L (L+ 1)

2
‖γ‖∞,

for all ` ≤ L. Therefore, for any fixed ε > 0, let

δ0(L) , 1− 2ε

L (L+ 1) ‖γ‖∞
. (A.30)

For any δ ∈ [δ0(L), 1], we know that |µ(`)
i→j−µ

(`)
δ,i→j| ≤ ‖µ(`)−µ(`)

δ ‖∞ ≤ ε for all ` ≤ L

136

APPENDIX B

SUPPLEMENTAL MATERIALS

B.1 Extensions of the Work in [1]

In this appendix, we briefly recall the main idea and statement in our earlier work

in [74], and provide detailed proof of lemmas which were omitted in [74]. We extend

the lemmas and theorems in [1] to the case when the depth of the computation

tree exceeds 1
2
girth(G). With these extended results, another proof of the conclusion

drawn in Section 3.3.2 is obtained.

Since a computation tree with depth greater than 1
2
girth(G) is considered in this

section, we generalize the definition in Section 3.2.2 as follows. Let T 2T
i0

= (I∪J , E ′)

be a depth-2T computation tree and rooted at i0 ∈ Vv, where I and J are the set of

variable nodes and the set of check nodes in T 2T
i0

, respectively, and T ≥ 1
4
girth(G).

Let i
′

and j
′

denote a variable node and a check node in T 2T
i0

, respectively. We

say that i′ is associated with the bit i ∈ Vv in G (denoted i′ ∼ i) if i′ is a copy of

i ∈ Vv. Similarly, j′ ∼ j denotes that j′ ∈ J is a copy of j ∈ Vc. Moreover, we

define two projections η : I → Vv and θ : J → Vc by η(i
′
) = {i ∈ Vv : i

′ ∼ i} and

θ(j
′
) = {j ∈ Vc : j

′ ∼ j}. Note that the result of these maps, η and θ, are a subsets

of Vv. However, according to the specification, they are all singleton sets.

First, we generalize the definitions from [55] and [1, Definition 1] as follows.

Definition 72. Consider a computation tree T 2T
i0

= (I ∪ J , E ′) of depth 2T ≥
1
2
girth(G) rooted at i0. A bit assignment u ∈ {0, 1}|I| on T 2T

i0
is a generalized valid

deviation of depth T at i0 ∈ Vv or, in short, a generalized T -local deviation at i0, if

ui0 = 1 and u satisfies all parity checks in T 2T
i0

. Moreover, u is a generalized minimal

137

T -local deviation if, for every check node j ∈ T 2T
i0

, at most two neighbor bits are

assigned the value 1. Note that a generalized minimal T -local deviation at i0 can be

seen as a subtree of T 2T
i0

of depth 2T rooted at i0, where every variable node has full

degree and every check node has degree 2. Such a tree is referred as a skinny tree. If

$ = ($0, . . . , $T) ∈ [0, 1]T is a weight vector and u is a generalized minimal T -local

deviation at i0, then u($) denotes the $-weighted deviation

u
($)
i =


$tui if i ∈ N (i0, 2t) and 0 ≤ t ≤ T,

0 otherwise,

where N(i0, 2t) is the set of vertices in the 2t-th level of T 2T
i0
. For any $-weighted

deviation u($) on T 2T
i0

, let the projection of u($) onto the code bit i ∈ Vv be

πi
(
u($)

)
,

∑
m′∈I:m′∼i

u
($)
m′

=
T∑
t=0

$t

∑
m′∈N(i0,2t):m′∼i

um′ .

Likewise, we let π
(
u($)

)
represent the vector whose elements are πi

(
u($)

)
for i ∈

Vv. In the following, the weights are chosen to be $t = βt for some β ∈ [0, 1].

To extend the results of [1] to the computation trees of depth independent of

girth(G), we utilize the following fact that, given the LLR vector γ and for each

i0 ∈ Vv, the WMS algorithm computes the best assignment, x̃
(T)
i0

, for the root of

T 2T
i0

. Also, there is a corresponding best assignment x̃(T) for the tree T 2T
i0

that

maximizes (3.9). Recall that CT 2T
i0

(x) is the set of all valid assignment of the tree

T 2T
i0

with root assignment x, and CT 2T
i0

= CT 2T
i0

(0) ∪ CT 2T
i0

(1). For a valid assignment

138

x ∈ CT 2T
i0

and a T ′ ≤ T , we define the function V T ′
i0

(x) by

V T ′

i0
(x) ,

n∑
i=1

γi

T ′∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

xm′ . (B.1)

Let x̃
(T)
i0

be the best root assignment of T 2T
i0

, and let x̃(T) ∈ CT 2T
i0

(x̃
(T)
i0

) maximize

(3.9). We know

µi0

(
x̃
(T)
i0

)
= max
x∈CT (x̃

(T)
i0

)

n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(1− xm′)

=
n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(
1− x̃(T)m′

)

=

 n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

1

−
 n∑

i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

x̃
(T)
m′


= V T

i0
(1)− V T

i0

(
x̃(T)

)
. (B.2)

The T ′-level weighted correlation, denoted by UT ′
i0

(x,u), between an assignment x

and a generalized minimal T -local deviation u for the tree T 2T
i0

is defined as

UT ′

i0
(x,u) ,

n∑
i=0

γi

T ′∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(−1)xm′um′ . (B.3)

Let x⊕ u be the modulo-2 sum of x and u. Then, one can show that

V T
i0

(x⊕ u) =
n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(xm′ + (−1)xm′um′)

=
n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

xm′ +
n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(−1)xm′um′

= V T
i0

(x) + UT
i0

(x,u). (B.4)

139

By the fact that x̃(T) is the best assignment for the tree T 2T
i0

, the following lemma

shows that the weighted correlation is positive when the number of iterations is large

enough.

Lemma 73. Given the LLR vector γ ∈ Rn and a weight 0 < β < 1
dv−1 , suppose

the WMS algorithm converges to a WMS-consistent fixed point µ∗. For a T > 0, let

x̃(T) ∈ CT (2T)
i0

be the assignment such that the equality (B.2) holds and µi0 (x̃
(T)
i0

) −

µi0 (x̃
(T)
i0
⊕ 1) = |µ(T)

i0
|. There exists an T ∗ > 0 such that, for all T ≥ T ∗ and for any

generalized minimal T -local deviation u(T) of the tree T 2T
i0

, the weighted correlation

UT ∗
i0

(x̃(T),u(T)) > 0.

Proof. Let µ∗i←j be the converged check to bit message on the edge (i, j) ∈ E , and

let µ∗i , γi + β
∑

j∈N(i) µ
∗
i←j. Similarly, we define µ

(T)
i , γi + β

∑
j∈N(i) µ

(T)
i←j for any

T > 0. Let ε , 1
4

mini∈Vv |µ∗i |. Since the WMS algorithm converges to µ∗, there

exists a T1(ε) > 0 such that, for all T ≥ T1(ε) and i ∈ Vv, |µ∗i − µ
(T)
i | ≤ ε. By the

triangle inequality, one can show that |µ(T)
i | ≥ |µ∗i | − ε > ε for all i ∈ Vv. From the

assumption of the lemma, we know that

ε < µi0

(
x̃
(T)
i0

)
− µi0

(
x̃
(T)
i0
⊕ 1
)

(a)
≤ V T

i0

(
x̃(T) ⊕ u(T)

)
− V T

i0

(
x̃(T)

)
(b)
= UT

i0

(
x̃(T),u(T)

)
, (B.5)

where (a) holds because µi0 (x̃
(T)
i0
⊕ 1) ≥ V T

i0
(1) − V T

i0

(
x̃(T) ⊕ u(T)

)
for all u(T),

and (b) follows from (B.4). From Definition 43, we know ε > 0. Thus, we have

UT
i0

(
x̃(T),u(T)

)
> 0 when T ≥ T1(ε).

We further show that there exists a T ∗ > 0 such that UT ∗
i0

(
x̃(T),u(T)

)
> 0 for all

140

T > T ∗ and all generalized minimal T -local deviation u(T) of the tree T 2T
i0

. Define

T2(ε) ,

⌈
log (ε− ε (dv − 1) β)− log (‖γ‖∞dvβ)

log ((dv − 1) β)

⌉
, (B.6)

and let T ∗ , max{T1(ε), T2(ε)}. For any T > T ∗, we rewrite UT
i0

(
x̃(T),u(T)

)
as

UT
i0

(
x̃(T),u(T)

)
= UT ∗

i0

(
x̃(T),u(T)

)
+RT ∗

i0

(
x̃(T),u(T)

)
, (B.7)

where

RT ∗
(
x̃(T),u(T)

)
,

n∑
i=1

γi

T∑
t=T ∗+1

βt
∑

m′∈N(i0,2t):m′∼i

(−1)x̃
(T)

m′ u
(T)
m′ . (B.8)

By the fact that RT ∗ (x̃(T),u(T)) ≤ |RT ∗ (x̃(T),u(T))|, the LHS of (B.8) can be upper

bounded by,

RT ∗
(
x̃(T),u(T)

)
≤

n∑
i=1

|γi|
T∑

t=T ∗+1

βt
∑

m′∈N(i0,2t):m′∼i

u
(T)
m′

(a)
≤

n∑
i=1

|γi|
T∑

t=T2(ε)+1

βt
∑

m′∈N(i0,2t):m′∼i

u
(T)
m′

≤ ‖γ‖∞
n∑
i=1

T∑
t=T2(ε)+1

βt
∑

m′∈N(i0,2t):m′∼i

u
(T)
m′

= ‖γ‖∞
T∑

t=T2(ε)+1

dv (dv − 1)t−1 βt

< ‖γ‖∞
∞∑

t=T2(ε)+1

dv (dv − 1)t−1 βt

= ‖γ‖∞
dvβ

1− (dv − 1) β
((dv − 1) β)T2(ε) , (B.9)

where the inequality (a) follows from the fact that T2(ε) ≤ T ∗. By substituting (B.6)

141

into (B.9), we have RT ∗
(
x̃(T),u(T)

)
< ε. Moreover, by using (B.5) and (B.7), one

can show

UT ∗

i0

(
x̃(T),u(T)

)
= UT

i0

(
x̃(T),u(T)

)
−RT ∗

i0

(
x̃(T),u(T)

)
> 0.

This completes the proof of the lemma.

Remark 74. Let x̃(T), u(T), and T ∗ be as defined in Lemma 73 with T > T ∗. Since

UT ∗
i0

(x̃(T),u(T)) > 0, it follows that V T ∗
i0

(x̃(T) ⊕ u(T)) = V T ∗
i0

(x̃(T))+UT ∗
i0

(x̃(T),u(T)) >

V T ∗
i0

(x̃(T)) for all ũ(T). This observation implies that, when β < 1
dv−1 and the number

of iterations is large, the binary assignments for the leaf nodes of the tree T 2T
i0

are

asymptotically irrelevant to the best assignment of the root node x̃
(T)
i0

.

The following extends the key result [1, Lemma 4] to our generalized minimal

local deviations on the computation tree.

Lemma 75. Let P be the fundamental polytope of an LDPC, and z ∈ P be an LP

solution of a bit-regular code. Consider the set of depth-T computation trees with

T independent of girth(G) rooted at all non-zero variable nodes. For these trees,

there exists a distribution over generalized minimal local deviations such that the

expected value, when projected onto the original Tanner graph, is proportional to the

LP solution z.

Proof. This fact was first observed in [77, Remark 22].

The following theorem shows that if the WMS messages converge to a WMS-

consistent fixed point, then the hard decisions of the WMS algorithm define a code-

word that is both LP and ML optimal.

Theorem 76. Given a LLR vector γ ∈ Rn and a weight 0 ≤ β < 1
dv−1 , suppose the

WMS algorithm converges to a WMS-consistent fixed point. Then, the hard decisions,

142

x̂, form a T -locally optimal codeword [1, Definition 2] for some T independent of

girth(G). Moreover, x̂ is the LP optimal and, hence, ML codeword.

Proof. From Theorem 44, we know that x̂ is a codeword. To prove that x̂ is a T -

locally optimal codeword, we have to show that for the projection π(u($)) of any

generalized minimal T -local deviation u($), the inequality

〈
x̂⊕ cπ

(
u($)

)
,γ
〉
> 〈x̂,γ〉

holds, where c > 0 is a scaling factor such that cπi(u
($)) ≤ 1 for all i ∈ 1, 2, . . . , n,

and (x̂⊕ cπ(u($)))i = |x̂i− cπi(u($))| is as defined in [1]. Without loss of generality,

we assume that u($) is rooted at i0 and consider the correlation of x̂⊕ π(u($)) and

γ. This gives

〈
x̂⊕ cπ

(
u($)

)
,γ
〉

=
n∑
i=1

∣∣x̂i − cπi (u($)
)∣∣ γi

= 〈x̂,γ〉+ c
n∑
i=1

γi

T∑
t=0

βt
∑

m′∈N(i0,2t):m′∼i

(−1)x̃m′um′

= 〈x̂,γ〉+ cUT
i0

(x̃,u) ,

where x̃ ∈ CT 2T
i0

and x̃i′ = x̂i if i′ ∼ i, and UT
i0

(x̃,u) is defined in (B.3).

To show that UT
i0

(x̃,u) > 0 for some T > 0, consider a tree T 2T ′
i0

of depth

2T ′ = 2(T ∗ + T1(ε)) rooted at i0 ∈ Vv. Note that the constants ε, T ∗, and T1(ε) are

defined in the proof of Lemma 73. Let x̃(T ′) be the best assignment for the tree T 2T ′
i0

.

Since we know that sgn (µ
(`)
i) = sgn (µ∗i) for all ` ≥ T1(ε), the best assignment for

each i′ ∈ T 2(T ′−T1(ε))
i0

is x̃
(T ′)
i′ = x̂i, where i′ ∼ i. Here, Lemma 73 is required because

the leaf assignment may not match a codeword. Also, u can be obtained from the

143

generalized minimal T ′-local deviation u(T ′) on T 2T ′
i0

by truncating

um′ =


u
(T ′)
m′ if m′ ∈ N(i0, 2t) for some 0 ≤ t ≤ T ′ − T1(ε),

0 otherwise.

Let T = T ∗. By Lemma 73, one can see that UT
i0

(x̃,u) = UT
i0

(x̃(T ′),u(T ′)) > 0.

Therefore, x̂ is a T -locally optimal codeword.

According to [1, Theorem 4] or [67, Theorem 6], and by Lemma 75, the T -local

optimality of x̂ implies that x̂ is the unique optimal LP solution given the LLR γ.

Since x̂ ∈ {0, 1}n is a codeword, x̂ is also an ML codeword.

144

