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ABSTRACT 

 

 With the advances in process technology, comes the domination of interconnect in 

the overall propagation delay in modern VLSI designs. Hence, interconnect synthesis 

techniques, such as buffer insertion, wire sizing and layer assignment play critical roles 

in the successful timing closure for EDA tools. In this thesis, while our aim is to satisfy 

timing constraints, accounting for the overhead caused by these optimization techniques 

is of another primary concern. 

 We utilized a Lagrangian relaxation method to minimize the usage of buffers and 

metal resources to meet the timing constraints. Compared with the previous work that 

extended traditional Van Ginneken’s algorithm, which allows for bumping up the wire 

from thin to thick given significant delay improvement, our approach achieved around 

25% reduction in buffer + wire capacitance under the same timing budget. 
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1. INTRODUCTION 

 

1.1. Motivation 

Interconnect delay has become a major influence in the overall propagation delay in 

the modern Deep Sub-Micron technology (DSM) designs as process technology advances. 

The focus of design methodology is gradually shifting from logic optimization to 

interconnect optimization. In typical design flows, many interconnect optimization 

techniques are performed between the placement and routing, buffer insertion is the most 

efficient way of them to improve the design performance.  

As new nanometer process technology with multiple routing layers is becoming 

available [1] and metal parasitic among different layers becoming increasingly 

non-uniform, layer and its corresponding parasitic information are necessary in these 

optimization techniques. Without layer and corresponding parasitic information, the 

interconnect optimizations may unnecessarily insert huge amount of buffers so that more 

power is consumed and more areas of chip are occupied.  

Moreover, besides considering the issues of wirelength and overflow, the modern 

router also takes into account the detours of timing-critical nets into high layer. Although  

assigning wires to thick metal results in efficient timing, routability of the design may be 

compromised. Thus, good use of thicker metal is our other target.  
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1.2. Buffer Insertion 

The mainstream of most interconnect optimization techniques remains to be buffer 

insertion, because it is easy to apply and can effectively reduce the interconnect delay. 

Thus this strategy is often widely used in modern VLSI designs to achieve better 

performance [2], [3], [4], [5], [6], [7], [8], and [9]. 

However, these inserted buffers consume more power and occupy more areas of 

chip. Hence, recent research emphasizes more on the arrangement of buffer resources, 

which is different from the traditional Van Ginneken’s algorithm [7] that only 

aggressively improves interconnect timing. Having taken into consideration of power 

consumption, [2], Lillis et al. [3], Liu et al. [4], and Peng and Liu [9] proposed 

techniques to minimize the total buffer size while satisfying a given timing constraint for 

power minimization. 

 

1.3. Layer Assignment 

As the shift towards nanoscale becomes a prevailing trend among VLSI technology, 

interconnect delay is identified as a barrier in circuit performance due to the increasingly 

resistive wires that make transmitting of signal across the chip difficult.  

However, as many more routing layers are becoming available with some 65 nm 

technologies consisting of eight layers of metal, and certain 45 nm technologies having 

ten layers [10], layer assignment has become a new optimization techniques for 
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achieving efficient timing closure. Wires found on the upper metal layers have much less 

resistivity, and can be used to drive further and more efficiently than on thinner metals.  

Although assigning all wires to thick metal results in efficient timing, routability of 

the design may be compromised. Thus, good use of thicker metal is our other target. Our 

aim is to bump up wires that really need timing improvement to thicker layer, so that 

router can have sufficiently thicker wire resources for processing other more critical 

nets. The challenge in this process is the assigning of minimal amount of wires to thick 

metal for meeting timing constraints.  

 

1.4. Our Contributions 

The traditional Van Ginneken’s based algorithms often tries to achieve the 

minimum possible interconnect delay, and thus causing unnecessary waste of power and 

limited thick metal resources. To alleviate this problem, we proposed an alternative 

approach to minimize the usage of buffers and thick layer while efficiently utilize the 

interconnect timing budget. 

In this thesis, we adopt a Lagrangian relaxation method to minimize the usage of 

buffers and metal resources while meeting the timing constraints. Compared with the 

previous work [1] that extended traditional Van Ginneken’s algorithm that allows for the 

bumping up of wires from thin to thick given significant delay improvement, our 

approach achieved around 25% reduction in buffer + wire capacitance. 
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1.5. Overview 

The remainder of this thesis is organized as follows. Section 2 briefly introduces the 

backgound information and formulates the problem. Section 3 presents our 

multi-objective models that simultaneously minimize buffer and matel capacitance. 

Senction 4 shows our experimental results. Section 5 concludes this thesis. 
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2. PROBLEM FORMULATION 

2.1. Circuit Model 

 

 

For this experiment the buffers are modeled after switch level RC model, in which 

Cb is the input capacitance seen by the fan-in signal, Rb and Cbo are the output resistance 

and the output capacitance of the buffer. The circuit model is shown in Fig. 1(a).  

The lumped RC model shown in Fig. 1(b) is then used to model each uniform 

interconnect. l denotes the interconnect length, r and c are the unit resistance and unit 

capacitance of the interconnect. To compute the delay of the circuit, the widely adopted 

Elmore delay model [2, 3, 4] is used. 

The total buffer capacitance will be used as the measure of power dissipation 

employed in [11]. The reason being that dynamic and leakage power dissipation of 

buffer are proportional to its capacitance. For the rest of this thesis, we replace the power 

minimization by the minimization of the total buffer capacitance. 

 

Fig. 1(a) Switch-level RC model for buffer    Fig. 1(b) Lumped RC π-model for interconnect 
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2.2. Multi-layer Interconnect Tree 

Fig. 2 shows the structure of a multi-layer interconnect tree T = (V, E) where V is a 

set of nodes and E is a set of edges. Also, each edge e is made of several segment s. Each 

segment s is assumed to be routed on any specific layer within the multiple layer 

choices. In Fig. 2, there are three layer thickness options, 1x, 2x and 4x. 

Supposed that a set of M routing layers l1, l2, . . . , lM are given where l1 is the 

thinnest layer and lM is the thickest layer. Each layer li is associated with its own unit 

resistance and unit capacitance. In Fig. 3, the length ls, unit resistance rs and unit 

capacitance cs for segment s are the corresponding parameter values of layer li when the 

segment s is assigned to layer li. 

 

Fig. 2. Multi-layer interconnect tree 
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The output resistance Rs of the driver src is given. For each sink ti (i = 1, ..., n), the 

required arrival time and downstream capacitance are given. Also, the number of buffer 

candidate locations of each edge have been determined manually. Then, simultaneous 

buffer insertion and layer assignment on each edge are ready to be performed to 

minimize the total buffer capacitance and metal capacitance under the timing budget. 

The formulations for this multi-objective buffer insertion and layer assignment 

problem are proposed. 

 

2.3. Primal Problem 

In Fig. 3, the beginning and end points of edge e are denoted as ue and ve. Xe denotes 

the total buffer capacitance inserted on edge e, and Ye denotes the total metal capacitance 

used for edge e. Let de be the signal delay of edge e. Let ak be the required arrival time 

(RAT) at node k V , and qi be the RAT for sink ti. We combine the buffer and metal 

Fig. 3. An edge and a segment 
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capacitance into one objective function, expressed as e e

e E

X Y 


 . Then the primal 

problem of buffer and metal optimization is formulated as follows: 

 

 

 

 
 

 

Where α and β denote the weights of the objective. 
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3. OUR APPROACH 

 

A large number of inequality constraints exist in the primal problem. Moreover, 

unknowns ak and the solutions of buffer insertion and layer assignment have yet to be 

calculated. Thus, the primal problem is translated into a dual problem using Lagrangian 

relaxation method for the relief of complex nature [9], [12], [13], [14], [15]. 

In Lagrangian relaxation method, constraints are incorporated into the objective 

function called Lagrangian relaxation function by introducing non-negative Lagrangian 

multipliers. Then the dual problem can be solved by heuristic techniques. 

 

3.1. Lagrangian Relaxation 

 The Lagrangian relaxation function is written as: 

 

 

 

 

 

where X is the vector of total buffer capacitance of eX , e E  , Y is the vector of  

 

total metal capacitance of eY , e E  , a are the RATs of all nodes,  is the  

 

Lagrangian multiplier vector in which src is the Lagrangian multiplier for constraint  

 

(2), e is the Lagrangian multipliers of edge e for constraint (3), and ev ia q for e iv t . 
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According to Karush-Kuhn-Tucker (KKT) Theorem, at the optimal solution, 

 

                 for all node k. From this condition, we can derive the equation: 

  

 

 

where des(e) denotes the set of descendant edges of edge e. 

By equation (6), we can eliminate the terms with RAT at all nodes while keeping the 

terms with RAT at sinks, to reduce equation (5) into a simpler form (7). In addition, after 

the Lagrangian multipliers are fixed in each iteration, ( , , , ) L X Y a  can be rewritten 

as ( , )L X Y


. 

 

 

 

 

 

 

 

Then, the Lagrangian relaxation dual of the primal problem of simultaneous buffer 

insertion and layer assignment is described as follows: 
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In equation (8), Q


is defined as the minimal value of ( , )L X Y


. Given the 

Lagrangian multiplier vector in each iteration, the Lagrangian functions (7) can be 

solved heuristically using dynamic programming.  

    

 

3.2. Heuristic Solver 

 

 
 

 

 

 

Fig.4 shows the flow chart of algorithm used to solve the Lagrange dual problem. 

First, the Lagrangian multipliers was initialized. Under the given multiplier values 

during each iteration, the edges are processed in reverse topological order.  

Fig. 4. The flow chart of solving the Lagrange dual problem 
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During the current iteration with a fixed , we insert buffers and assign segments of 

edges to the most appropriate layers to minimize the contribution to the value of 

( , )L X Y


. At the end of the process in this iteration, we can select the best solution at 

the source node to determine the minimal value of ( , )L X Y


.  

According to the results from the current iteration, a new is derived for the next 

iteration. This process is repeated until convergence occurs under a fixed threshold, 

afterwards the solutions in the current iteration can be returned. 

The convergence condition can be set as                  [9], [15], where
( )iQ


 

is the value of Q


at the iteration i, and is a user defined threshold. 

 

 

 

3.2.1. Local Optimizer 

 

The first main component in solving the Lagrangian dual problem is to use dynamic 

programming algorithm as shown in Fig. 5 to minimize ( , )L X Y


, under a given  

during each iteration. The inputs of this pseudocode consist of a binary routing tree T, 

buffer library B, M leyers, and a given  . After processing an entire interconnect tree in 

reverse topological order, the solutions of buffer insertion and layer assignment will be 

derived, and the minimal value of ( , )L X Y


, namelyQ


, will be returned. 

For an entire binary interconnect tree, each buffer candidate location has a set of 

non-inferior solutions. Each solution is denoted by a 2-tuple (obj, cap), where obj  

( 1) ( )

( )

i i

i

Q Q

Q

 




 





 

 

13 

 

 

 

 

Fig. 5. Dynamic programming scheme 
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represents the total contribution to the value of ( , )L X Y


from all the downstream 

candidate locations including current candidate location. cap denotes the downstream 

capacitance at current candidate location. 

For each edge e, the solution set associated with its endpoint ve is derived first in 

lines 2–10. If  sev inks ,   {(0,  )}e iv tS c , where itc is the given sink capacitance of ti. 

If e has only one descendant ê , because ev and êu are the same vertex, ˆe ev uS S . If e has 

two descendants eL and eR , evS is derived by merging any pair of solutions, one 

from ( )eLuS and one from ( )eRuS . It is found that a solution (obj1, cap1) is inferior to (obj2, 

cap2) if cap1 > cap2 and obj1 > obj2. Inferior solutions are then pruned. Slew constraint 

[16] is also considered in the pruning procedure to efficiently reduce the size of solution 

set while keeping the solution quality. 

Assume that there are k buffer candidate locations along the edge e. After the 

derivation of evS , in lines 14-24, edge e is processed with its buffer candidate locations 

starting from the one closest to its end point ve. Here ,e iS denotes the solution set 

associated at the candidate location i (i = 1, ..., k), along edge e. evS and euS can be seen 

as , 0eS and , 1e kS  , respectively. 

In lines 16-17, ls is the length of the segment s of edge e. Unit capacitance cs and 

unit resistance rs for segment s will be assigned the corresponding parameter values cm 

and rm of layer m, when the segment s is selected to use layer m. 

 In lines 18-24, for each candidate location along the edge e, all buffer options 

(including no buffer inserted) are analyzed and the corresponding set of non-inferior 
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solutions is computed. 

In Lines 25–30, euS is derived in a similar fashion. At the end of the process, we can 

select the solution with minimum obj at the root to determine the minimal value of 

( , )L X Y


at Line 31. 

 

 

3.2.2. Update of Lagrangian Multiplier 

 

An efficient update scheme of Lagrangian multipliers will speed up the run time 

in solving the Lagrangian dual problem. Useful update scheme is crucial to increase the 

convergence rate so that our approach can converge faster due to less iterations. 

The convergence rate of the traditional subgradient method is unstable because it 

is extremely sensitive to not only the step size but also the initial values of the 

Lagrangian multipliers [9]. Hence, after each current iteration, a more efficient 

mathematical scheme called the ellipsoid method is used to compute the new Lagrangia 

multipliers for the next iteration. 

 

 
 

 

 

Fig. 6. Illustration of ellipsois method 
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The basic principle of ellipsoid method is illustrated in Fig. 6. We use to 

denote the Lagrange multipliers
es of the edges which are connected to sinks ve = ti. 

We first initialize and A as the center vector and volume matrix of a ellipsoid 

1

0 0 0 0 0Z(A , )  {z | (z ) A (z ) 1}
T  

     at iteration 0, which contains the optimal 

solution 
* with maximum Q


. We initialize A to be a diagonal matrix with the 

element 
2

max , {0,1, ,| | 1}
i

iia i    , where
max i
 is an initial Lagrangian multiplier 

related to the sink ti.  

Then, we use the subgradient of Q


at 0 to generate a cut plane passing through 

0 , which divides the 0 0Z(A , ) into two parts, with the optimal solution
* included in 

one of the parts. A new ellipsoid 1 1Z(A , ) with smaller volume is then created to cover 

the partition that contains the optimum. This procedure is conducted iteratively until the 

volume of the ellipsoid containing the optimum is smaller than the predetermined 

threshold. Subsequently, the optimal solution will be estimated as the ellipsoid center. 

The steps in the Fig. 7 compute the new ( A), pair to represent the new 

ellipsoid. In the beginning, the timing slack set S  for n sinks are computed. In line 2, a 

vector g is derived by the values of S and A . Then the new pair ( A), can be created 

in lines 3-4. 
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During each iteration, Lagrange multipliers
es of the edges, which are connected 

to sinks ve = ti, will be updated by ellipsoid method. According to equation (6), the 

Lagrange multipliers
es of other edges are then updated by the edges connected to the 

sinks. 

 

2

2

Ellipsoid method( , )

1.timing  slack vector  for  sinks are computed

2. /

1 
3. 

1

 2 
4. ( )
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Fig. 7. Ellipsois method 
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4. EXPERIMENT RESULTS 

 

We conduct the experiments on a set of interconnect trees. The number of sinks for 

the interconnect trees ranges from 5 to 25. The length of each wire for the trees ranges 

from 1000 to 12000μm. We further divided each edge into k uniformed divisions (k = 

20) to determine the buffer candidate locations of each edge. Then we set α = 100, and β 

= 1 as the value of the weights in the objective function e e

e E

X Y 


 . 

The timing constraint of each interconnect is set from 0.5
max  to 0.9

max  

where
max is the timing when only the 1x layer and w/o buffer options are used. Also, 

we set another timing constraint, max ,  30     to give a more restrictive timing 

budget for each interconnect testcase.  

The initial Lagrange multipliers
es of edges, which are connected to sinks ve = ti, 

are set to 0.1. According to equation (6), the Lagrange multipliers
es of other edges are 

completely determined by those of the edges connected to the sinks. The value of is set 

to 0.1%. 

We then compare the results to previous work [1], which extends the classic van 

Ginneken/Lillis algorithm [3], [7] and directly controls the wire resources by timing 

improvement. The foundamental idea of this previous work is that during interconnect 

buffering, the segment of an edge receives a raise from current thinner layer to the next 

thicker layer when the assignment caused a significant delay improvement. Therefore, 
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assigning a wire to thicker layer is directly controlled by the timing improvement 

before/after layer assignment and the threshold of the current layer. Both [1] and our 

approach are implemented by C++ under Linux operating system.  

 

Table 1. Comparison between previous work [1] and our complete approach under timing 

constraint = 0.5
max  

Timing Constraint 

= 0.5 max  
LADY Ours 

Net Sinks Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) 

Net5-1 5 3.80835 0.087282 6.647619 6.734901 0.46 562.518 0.039471 5.257142 5.296613 1.45 

Net5-2 5 3.80835 0.094539 6.4 6.494539 0.45 562.518 0.046471 5.214285 5.260756 1.45 

Net6-1 6 4830.82 0.12128 6.195238 6.316518 1.37 448.872 0.039487 4.95238 4.991867 14.43 

Net6-2 6 5989.67 0.150308 7.394285 7.544593 1.36 317.123 0.044639 6.182857 6.227496 9.24 

Net8 8 3167.58 0.121312 4.714285 4.835597 2.5 2343.75 0.04638 4 4.04638 13.65 

Net10 10 1515.45 0.133218 6.861904 6.995122 4.91 1149.92 0.05112 4.921428 4.972548 49.24 

Net14 14 6221.46 0.213334 12.523809 12.737143 13.26 92.8548 0.062125 8.566666 8.628791 9.77 

Net17 17 3535.81 0.213564 9.747619 9.961183 24.19 798.352 0.071305 7.433333 7.504638 64.78 

Net20 20 2605.89 0.320405 14.290476 14.610881 39.62 1891.46 0.101157 10.519047 10.620204 59.28 

Net25 25 3840 0.375719 13.728571 14.10429 78.56 964.105 0.100531 11.37619 11.476721 52.2 

Average   3171.43 0.1830961 8.8503806 9.0334767 16.668 913.1473 0.0602686 6.8423328 6.9026014 27.549 

Normalization   1 1 1 1 1 0.287929 0.3291637  0.7731117  0.7641134  1.6528077  

 

Table 1 shows the comparison among the five items: slacks, buffer capacitance, wire 

capacitance, total capacitance and CPU time between [1] and our approach while 

meeting the timing budget 0.5
max . 
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In Table 1, the first two columns show the name of each interconnect tree, and the 

number of sinks. Columns eight to twelve show the slacks, the usage of buffer 

capacitance, the usage of wire capacitance, the total capacitance and the required CPU 

time in our approach, respectively. We also apply the algorithm of [1] to these 10 

interconnect trees to obtain the values of these five items for comparison and record 

them in columns three to seven, respectively. 

Take Net25 as an example, after running 52.2 seconds, our approach terminates and 

achieves positive slack at 562.52 ps. At the same time, our approach uses buffer, wire 

and total resources at 0.039 pf, 5.257 pf and 5.297 pf, respectively. In constrast, [1] uses 

more buffer, wire and total resources at 0.087 pf, 6.648 pf and 6.735 pf, respectively and 

improves less timing, (i.e., the slack is 3.80ps). However, [1] requires less CPU time 

(0.46 seconds) than our method because many more iterations were used to find optimal 

result in our approach. 

Then we take the average among the 10 trials as shown in the second to the last row 

in Table 1. Moreover, we obtained values of normalization by dividing our obtained 

average by the corresponding average values in [1]. The experimental results show that 

compared with [1], our approach achieved around 23.6% reduction in buffer + wire 

capacitance on average. 

Table 2 shows the comparison on inserted buffer numbers and metal usage 

distribution between [1] and our approach while meeting the timing budget 0.5
max . In 

Table 2, the first two columns show the name of each interconnect tree, and the number 

of sinks. Columns seven to ten show the buffer numbers, the percentage of use on metal 
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1x, 2x and 4x out of total use in our approach. We also apply the algorithm of [1] to 

these 10 interconnect trees to obtain the values of these  items for comparison and 

record them in columns three to six, respectively. 

 

Table 2. Comparison on buffer numbers and layer distribution between previous work [1] and our 

complete approach under timing constraint = 0.5
max  

Timing Constraint 

= 0.5 max  
LADY Ours 

Net Sinks Buffer No. 

Layer Distribution 

Buffer No. 

Layer Distribution 

1x(%) 2x(%) 4x(%) 1x(%) 2x(%) 4x(%) 

Net5-1 5 14 0.585921325 0.398550725 0.015528 13 0.890269151 0.093167702 0.01656315 

Net5-2 5 15 0.522702104 0.471760797 0.0055371 11 0.838316722 0.136212625 0.02547065 

Net6-1 6 20 0.722391084 0.257345491 0.0202634 13 0.946301925 0.053698075 0 

Net6-2 6 24 0.775793651 0.194444444 0.0297619 17 0.932539683 0.064484127 0.00297619 

Net8 8 20 0.789473684 0.195488722 0.0150376 10 0.947368421 0.052631579 0 

Net10 10 20 0.577235772 0.297328688 0.1254355 10 0.832171893 0.151567944 0.01626016 

Net14 14 34 0.621916236 0.312679289 0.0654045 25 0.971313827 0.026965003 0.00172117 

Net17 17 36 0.675385647 0.300469484 0.0241449 21 0.955734406 0.042924212 0.00134138 

Net20 20 55 0.681428571 0.263333333 0.0552381 33 0.9519047619047 0.046190476 0.00190476 

Net25 25 59 0.71474359 0.267857143 0.0173993 27 0.913461538 0.082875458 0.003663 

Average  29.7 0.666699167 0.300212514 0.037375 18 0.914164174 0.07507172 0.00699005 

Normalization  1 1 1 1 0.606060606 1.371179416 0.250061928 0.18702456 

 

Take Net25 as an example, after running our approach, we totally inserted 27 

buffers along edges of Net25. Also, the use on metal 1x (thinnest layer) out of total use 

is 91%, 8% for metal 2x, and 1% for metal 4x. However, [1] uses 59 buffers in the 
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whole process, and distributes 71% of total metal use on metal 1x, 27% on metal 2x, and 

2% on metal 4x. 

Then we take the average among the 10 trials as shown in the second to the last row 

in Table 2. Moreover, we obtained values of normalization by dividing our obtained 

average by the corresponding average values in [1]. The experimental results show that 

compared with [1], our approach achieved around 39% less in buffer counts use and 

distribute 37% more on metal 1x use, and 81% less on metal 4x. The results show that 

our approach save more buffer usage to reduce the power dissipation and have more 

flexibility to use limited thicker layer for assigning the subnets of other critical nets. 

In Table 3, we set the timing constraint as 0.9
max which allows for more timing 

budget for interconnect optimization. We repeat the same process in Table 1 while 

meeting the loose timing constraint. The experimental results show that compared to [1], 

our approach achieved around 30.4% reduction in buffer + wire capacitance on average. 
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Table 3. Comparison between previous work [1] and our complete approach under timing 

constraint = 0.9
max  

Timing Constraint 

= 0.9 max  
LADY Ours 

Net Sinks Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) 

Net5-1 5 41.5496 0.080025 7.728571 7.808596 0.45 388.111 0.034608 5.019047 5.053655 3.4 

Net5-2 5 41.5496 0.080025 7.014285 7.09431 0.45 388.111 0.034608 4.5619047 4.5965127 3.58 

Net6-1 6 10380.6 0.116508 6.209523 6.326031 1.36 4925.81 0.032305 4.871429 4.903734 5.21 

Net6-2 6 12758.7 0.131022 8.017142 8.148164 1.38 6575.31 0.042245 6.131428 6.173673 5.57 

Net8 8 7849.72 0.114039 4.7619047 4.8759437 2.51 7341.56 0.043986 4.009523 4.053509 3.51 

Net10 10 4058.17 0.133309 7.071428 7.204737 4.95 27.3453 0.02982 4.342857 4.372677 8.43 

Net14 14 12805.8 0.172277 15.095238 15.267515 13.35 6679.09 0.062125 8.566666 8.628791 10.15 

Net17 17 7208.05 0.213639 10.2 10.413639 23.99 4856.29 0.0497 7.109523 7.159223 14.33 

Net20 20 5456.77 0.325375 13.990476 14.315851 39.49 2536.95 0.07455 10.223809 10.298359 28.28 

Net25 25 8927.29 0.341812 13.304761 13.646573 77.48 173.322 0.067095 10.914285 10.98138 25.93 

Average   6952.82 0.1708031 9.3393328  9.5101359  16.541 3389.19 0.0471042 6.5750471  6.6221513  10.839 

Normalization   1 1 1 1 1 0.487455 0.2757807  0.7040167  0.6963256  0.6552808  
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Table 4. Comparison on buffer numbers and layer distribution between previous work [1] and our 

complete approach under timing constraint = 0.9
max  

Timing Constraint 

= 0.9 max  
LADY Ours 

Net Sinks Buffer No. 

Layer Distribution 

Buffer No. 

Layer Distribution 

1x(%) 2x(%) 4x(%) 1x(%) 2x(%) 4x(%) 

Net5-1 5 13 0.5 0.409937888 0.0900621 12 0.921325052 0.072463768 0.00621118 

Net5-2 5 13 0.5393134 0.375415282 0.0852713 12 0.954595792 0.03765227 0.00775194 

Net6-1 6 20 0.709219858 0.275582573 0.0151976 13 0.973657548 0.021276596 0.00506586 

Net6-2 6 22 0.70734127 0.243055556 0.0496032 17 0.935515873 0.064484127 0 

Net8 8 19 0.746867168 0.253132832 0 10 0.944862155 0.055137845 0 

Net10 10 21 0.558652729 0.299651568 0.1416957 12 0.957026713 0.034843206 0.00813008 

Net14 14 29 0.387837063 0.508892714 0.1032702 25 0.971313827 0.026965003 0.00172117 

Net17 17 37 0.61167002 0.364185111 0.0241449 20 0.998658618 0.001341382 0 

Net20 20 57 0.691428571 0.263333333 0.0452381 30 0.977619048 0.022380952 0 

Net25 25 54 0.747252747 0.239468864 0.0132784 27 0.956959707 0.039835165 0.00320513 

Average  28.5 0.619958283 0.323265572 0.0567761 17.8 0.959153433 0.037638031 0.00320854 

Normalization  1 1 1 1 0.624561404 1.547125767 0.116430683 0.05651203 

 

In Table 4, we repeat the same process in Table 2 while meeting the timing 

constraint 0.9
max . The experimental results show that compared with [1], our approach 

achieved around 38% less in buffer counts use and distribute 55% more on metal 1x use, 

and 94% less on metal 4x. 
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In Table 5, we set the timing constraint as max30  which gives a more restrictive 

timing budget for each interconnect testcase. We repeat the same process in Table 1 and 3. 

The experimental results show that compared to [1], our approach achieved around 

22.4% reduction in buffer + wire capacitance on average. 

 

Table 5. Comparison between previous work [1] and our complete approach under timing 

constraint = max , 30     

Timing Constraint 

=
max30   

LADY Ours 

Net Sinks Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) Slack(ps) 
Buffer 

Cap(pf) 

Wire 

Cap(pf) 

Total 

Cap(pf) 

Time(sec.) 

Net5-1 5 9.96337 0.096933 8.338095238 8.435028238 0.46 13.3173 0.068044 5.119047619 5.187091619 3.63 

Net5-2 5 9.96337 0.099311 7.519047619 7.618358619 0.46 13.3173 0.065559 5.095238095 5.160797095 2.74 

Net6-1 6 441.772 0.114023 8.485714286 8.599737286 1.39 272.556 0.060862 5.366666667 5.427528667 6.15 

Net6-2 6 608.145 0.133416 11.27428571 11.40770171 1.41 1616.57 0.099466 7.6 7.699466 6.03 

Net8 8 2702.73 0.118918 4.67619 4.795108 2.55 453.568 0.060557 5.10952381 5.17008081 8.56 

Net10 10 696.726 0.14296 6.733333333 6.876293333 4.94 998.002 0.063058 5.226190476 5.289248476 64.1 

Net14 14 1848.75 0.247364 12.2047619 12.4521259 13.55 1205.52 0.131161 10.34761905 10.47878005 24.96 

Net17 17 1154.46 0.24753 9.442857143 9.690387143 24.26 447.202 0.097377 7.947619048 8.044996048 91.47 

Net20 20 1574.98 0.303513 16.38571429 16.68922729 40.54 83.8894 0.160724 12.45238095 12.61310495 126.56 

Net25 25 754.041 0.395096 12.81428571 12.81428571 77.93 287.262 0.155647 11.8952381 12.0508851 90.65 

Average   980.1531 0.1899064 9.787428524 9.937825324 16.749 539.1204 0.0962455 7.615952381 7.712197881 42.485 

Normalization   1 1 1 1 1 0.550037 0.506804931 0.778136194 0.776044822 2.53656935 
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Table 6. Comparison on buffer numbers and layer distribution between previous work [1] and our 

complete approach under timing constraint = max , 30     

Timing Constraint 

=
max30   

LADY Ours 

Net Sinks Buffer No. 

Layer Distribution 

Buffer No. 

Layer Distribution 

1x(%) 2x(%) 4x(%) 1x(%) 2x(%) 4x(%) 

Net5-1 5 15 0.516563147 0.318840579 0.1645963 12 0.887163561 0.112836439 0 

Net5-2 5 15 0.523809524 0.339977852 0.1362126 11 0.830564784 0.161683278 0.00775194 

Net6-1 6 19 0.583586626 0.221884498 0.1945289 12 0.888551165 0.096251266 0.01519757 

Net6-2 6 22 0.578373016 0.153769841 0.2678571 16 0.688492063 0.307539683 0.00396825 

Net8 8 20 0.766917293 0.228070175 0.0050125 9 0.72556391 0.239348371 0.03508772 

Net10 10 22 0.594657375 0.286875726 0.1184669 10 0.799651568 0.163182346 0.03716609 

Net14 14 40 0.687894435 0.232931727 0.0791738 23 0.780837636 0.205393001 0.01376936 

Net17 17 42 0.718309859 0.257545272 0.0241449 19 0.883299799 0.11535882 0.00134138 

Net20 20 53 0.591904762 0.292857143 0.1152381 32 0.79 0.192380952 0.01761905 

Net25 25 62 0.77518315 0.221153846 0.003663 29 0.867216117 0.127289377 0.00549451 

Average  31 0.633719919 0.248340676 0.1108894 17.3 0.81413406 0.172126353 0.01373959 

Normalization  1 1 1 1 0.558064516 1.28469066 0.693105762 0.1239035 

 

In Table 6, we repeat the same process in Table 2 and 4 while meeting the timing 

constraint max30  . The experimental results show that compared with [1], our 

approach achieved around 44% less in buffer counts use and distribute 28% more on 

metal 1x use, and 88% less on metal 4x. 
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5. CONCLUSION 

 

In this thesis, we proposed a Lagrangian relaxation method to minimize the usage of 

buffers and metal resources while satisfying the timing constraints. As such we are able 

to reduce the total power consumption and save the limited thicker layer for assigning 

the subnets of other critical nets with futher timing improvement. 

Compared with the previous work [1] that used traditional Van Ginneken’s 

algorithm that allows for bumping up of thin to thick wire given significant delay 

improvment, our approach achieved around 25% reduction in buffer + wire capacitance. 
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