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ABSTRACT 

 

The advantages of Multilevel Item Response Theory (MLIRT) model have been 

studied by several researchers, and even the impact of ignoring a higher level of data 

structure in multilevel analysis has been studied and discussed.  However, due to the 

technical complexity of modeling and the shortage in function of dealing with multilevel 

data in traditional IRT packages (e.g., BILOG and PARSCALE), researchers may not be 

able to analyze the multilevel IRT data accurately.  The impact of this type of 

misspecification, especially for MLIRT models, has not yet been thoughtfully examined. 

This dissertation consists of two studies: one is a Monte Carlo study that investigates the 

impact of this type of misspecification and the other one is a study with real-world data 

to validate the results obtaining from the simulation study.  

In Study One (the simulation study), we investigate the potential impact of 

several factors, including: intra-class correlation (ICC), sample size, cluster size and test 

length, on the parameter estimates and corresponding test of significance under two 

situations: when the higher level nesting structure is appropriately modeled (i.e., true 

model condition) versus inappropriately modeled (i.e., misspecified model condition).  

Three-level straightly hierarchical data (i.e., items are nested within students who are 

further nested within schools) were generated. Two person-related and school-related 

covariates were added at the second level (i.e., person-level) and the third level (i.e., 

school-level), respectively. The results of simulation studies showed that both parameter 
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estimates and their corresponding standard errors would be biased if the higher level 

nesting structure was ignored.  

In Study Two, a real data from the Programme for International Student 

Assessment with purely hierarchical structure were analyzed by comparing parameter 

estimates when inappropriate versus appropriate IRT models are specified.  The findings 

mirrored the results obtained from the first study.  

The implication of this dissertation to researchers is that it is important to model 

the multilevel data structure even in item response theory models. Researchers should 

interpret their results in caution when ignoring a higher level nesting structure in MLIRT 

models. What's more, the findings may help researchers determine when MLIRT should 

be used to get an unbiased result.   

Limitations concerning about some of the constraints of the simulation study 

could be relaxed. For instance, although this study used only dichotomous items, the 

MLIRT could also be used with polytomous items. The test length could be longer and 

more variability could be introduced into the item parameters’ values.  
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CHAPTER I 

INTRODUCTION 

 

Item Response Theory (IRT) or Latent Trait Theory (LTT) has been widely used 

in educational and other social science testing nowadays(e.g., Dillard, Salekin, & Barker, 

2013; Gilder, Gizer, & Ehlers, 2011; Lathrop & Cheng, 2013; Ruiz & Pincus, 2013; Van 

Dam, Earleywine, & Borders, 2010; Waiyavutti, Johnson, & Deary, 2012; Watson, et al, 

2012; Wu, et al, 2010).Ordinary IRT models do not consider a nested structure of the 

data.  However, data in social and behavioral science research frequently have such a 

cluster setting, especially when data are collected by multistage sampling (Kamata & 

Vaughn, 2011).  

Basically, there are two types of hierarchies for modeling the contextual effects 

more appropriately: one is hierarchical multilevel data and the other is cross-classified 

data.  In hierarchical multilevel data structure, the levels are purely or strictly nested, 

such as examinees are nested within one and the only one classroom, or students are 

nested within one and the only one school, or patients are nested within one and the only 

one hospital and so on.  However, in cross-classified multilevel data structure, the levels 

are not purely or strictly nested but cross-classified.  For example, students from a given 

high school may go to several different colleges, or students at a given college come 

from a variety of high schools.  If this is the case, students are nested within high schools 
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and within colleges, but there is no pure nesting of high schools within colleges or vice 

versa.  In other words, students are cross-classified by high schools and colleges.  

The most recent development in the field of item response theory has been the 

combination of IRT models with multilevel models, known as Multilevel IRT models 

(MLIRT).  This combination of the two models allows us to investigate and analyze the 

covariates and their interaction effects that affect the person abilities instead of simply 

estimating the latent traits (Maier, 2001).  Based on the research of Mislevy (1985), 

Adams, Wilson and Wu (1997), and Raudenbush and Sampson (1999), Kamata (1998, 

2001) developed 1-parameter multilevel IRT model estimation using HGLM for 

dichotomous data.  This has further been extended for cross-classified data (Beretvas, 

Meyers, & Rodriguez, 2005; Meyers & Beretvas, 2006), which is termed as cross-

classified multilevel measurement model (CCMMM).  

MLIRT models offer several statistical and practical advantages over traditional 

IRT models.  One of the advantages of using MLIRT is the ability to treat item 

parameters (Level-1) as fixed and person abilities (Level-2) as random parameters, 

thereby avoiding the Neyman-Scott problem.  Neyman and Scott (1948) defined the 

incidental parameter problem with data in which there are T observations per individual 

and unobservable individual-specific effects, the maximum likelihood of the common 

parameter is in general inconsistent. Under IRT techniques, the item and person 

parameters are estimated simultaneously which may increase the opportunity of the 

“Neyman-Scott problem” (Neyman & Scott, 1948).  This happens because the number 
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of person abilities or attitudes increases with increase in sample size.  Therefore, when 

the sample size increases, the estimates of item parameters become inconsistent due to 

insufficient statistics that are available for the person attitude/ability values (Kamata, 

2001).  

Moreover, the effects of the person characteristics variables can be evaluated in 

MLIRT.  In the two-level analysis, when person characteristics are taken into account, 

such as gender, age, and so on, the effect of those characteristics can be estimated in the 

MLIRT model. 

Another advantage includes being able to add a third level to the model, which 

allows one to accommodate the dependency among observations imposed by persons 

being nested within some setting.  For instance, Kamata (2001) used the 1-parameter 

HGLM, a Rasch formulation of an HGLM, with three levels to model the dependency 

among test scores imposed by students (Level-2) being nested within schools (Level-3) 

(for examples of using three levels, see Cheong & Raudenbush, 2000; Bacci & Caviezel, 

2011; Fox, 2004; Kamata & Cheong, 2007; Pastor & Beretvas, 2006).  The three-level 

analysis, when group membership and the hierarchical structure of the data are taken 

into account, estimates the effects of group-level and person-level abilities, the 

interaction effects of person characteristics and group membership, and the estimate of 

person-level effects across groups (Kamata, 2001; Williams, 2003).  This provides 

additional information about the parameter estimates at each level of the model, thereby 
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avoiding the need to perform separate analyses (Adams, Wilson, & Wu, 1997; Kamata, 

1998). 

 Although the advantages of MLIRT model have been studied by several  

researchers, and even the impact of ignoring a higher level of data structure in multilevel 

analysis has been studied and discussed, little research has been conducted to investigate 

the impact of misspecifying the higher level structure in MLIRT model.  The only 

introductory study to date was conducted by Beretvas, Meyers and Rodriguez (2005) in 

which they compared the results from CCMMM models’ analyses to the results from 

HGLM models’ analyses that had misspecified the cross-classified data structure.  It was 

found that fixed effect estimates and their associated standard error estimates were 

unaffected by the correct modeling of cross-classified data but the standard error 

estimates under the HGLM were typically smaller than under the CCMMM for random 

effect estimates at respondent level (Level-2).  The purpose of this dissertation is to first 

examine the impact of ignoring a higher nesting level structure in MLIRT models by 

considering the following factors: interclass correlations (ICCs), sample sizes, cluster 

sizes and test lengths. 

The dissertation consists of five chapters.  Chapter I introduces the background 

and states the purpose of the study.  Chapter II reviews the specification and 

parameterization of item response theory (IRT) models in the context of purely nested 

data structure.  Chapter III presents the Monte Carlo study that investigates the impact of 

misspecifying a higher level structure of IRT model in hierarchical generalized linear 
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modeling (HGLM) approach.  Chapter IV presents the study that investigates the 

misspecification of MLIRT model by using a real-world dataset.  Chapter V summarizes 

the findings, discusses the implications of the findings, and provides directions for future 

research. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Measurement Models for Item Response Theory (IRT) 

IRT models can be classified into two families determined by how items are 

scored.  One family consists of dichotomous IRT models, which are used when items 

contain dichotomous responses such as yes or no, correct or incorrect, or success or 

failure.  For example, multiple-choice and true-false items are typically scored 

dichotomously.  The other family consists of polytomous IRT models, which are used 

when items consist of multiple response categories, such as strongly agree, agree, 

neutral, disagree, or strongly degree.  For example, attitude surveys and personality 

assessment tests are typically scored polytomously.  

Further, the dichotomous IRT models consist of the one-parameter logistic (1PL; 

item difficulty) models, two-parameter logistic (2PL; item difficulty and item 

discrimination) models, and three-parameter logistic (3PL; item difficulty, item 

discrimination and guessing) models.  Given the primary purpose of this dissertation was 

to demonstrate how ignoring the nesting structure impacts parameter estimates and 

standard error when fitting within a multilevel IRT model, I focused solely on the 

dichotomous Rasch model for the sake of simplicity. 
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Dichotomous Rasch Models 

The one-parameter logistic model, also known as the Rasch model (Rasch, 1960) 

is a simplification of the three-parameter logistic model, with item discrimination values 

and guessing behavior constrained to be constant. The model is written as: 

                                         Pij (Xi = 1|θj) = 1
1+𝑒𝑥𝑝[−(𝜃𝑗−𝑏𝑖)]

                                                (1)                                               

where Pij is the probability that examinee j answers item i correctly (i.e., Xi =1).  θj is the 

trait level for examinee j.  Parameter bi is difficulty level for item i, which occurs at the 

point of the ability continuum where the probability of a correct response is .5.  The 

greater the value of bi, the greater the ability required to answer the item correctly. 

Hierarchical Generalized Linear Model (HGLM) 

The HGLM has been widely used by educational and other social science 

researchers for handling hierarchical multilevel data with dichotomous outcomes.  For 

example, an outcome of interest might be whether students pass an exam or not.  In 

context, students were nested within classrooms and schools.  This data structure 

consists of three levels: students at level one, classrooms at level two, and schools at 

level three (Raudenbush and Bryk, 2002).  Predictors of interest may be included in the 

equation at each level, and the use of multilevel modeling enables researchers to 

investigate potential interactions between variables characterizing individuals and 

variables characterizing higher levels of clustering (Hox, 2002). 
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Unconditional Model 

In the conventional hierarchical linear model (HLM), the level-1 random effect is 

assumed to be normally distributed with constant variance across level-2 units.  

However, this assumption is not met with dichotomous outcome data.  Thus, for 

hierarchical multilevel data with a binary dependent variable (i.e., pass/fail), HGLM 

with logit link should be used: 

                                                      ηij = log ( 𝑃𝑖𝑗
1−𝑃𝑖𝑗

)                                                           (2) 

where ηij is the log odds of pass and pij is the probability of pass for individual i in 

cluster j.  If, for instance, a researcher is interested in investigating the probability of 

students’ passing an achievement test for datasets entailing schools of students, Equation 

2 can be interpreted as the log odds of passing a test for student i in school j.  The 

unconditional model (without any predictor) is as follows: 

         Level-1 (student-level): ηij = log ( 𝑃𝑖𝑗
1−𝑃𝑖𝑗

) = β0j          (3) 

                               Level-2 (school-level): β0j= γ00 + μ0j                                                 (4) 

where γ00 is the average log-odds of passing across schools, μ0j is assumed to be 

normally distributed with mean of zero and variance of τ00, and τ00 is the variance among 

schools in the average log-odds of passing. 

Model with Level-1 Predictor 

The unconditional model can be extended to include explanatory variables at 
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each level of the model. In the current example, if the researcher intended to explore 

whether social economic status (SES) is associated with students’ achievement, the 

model Equation 3 would then becomes 

                      Level-1 (student-level): log ( 𝑃𝑖𝑗
1−𝑃𝑖𝑗

) = β0j + β1j * SESij                               (5) 

where β0j is the average log-odds of passing within school j, β1j is the expected change in 

log odds when SESij increases by one point.  The level-2 equations then can be modeled 

as follows: 

Level-2 (school-level): β0j = γ00 + μ0j 

                                                           β1j = γ10 + μ1j                                                                                       (6) 

where μ0j and μ1j are assumed to have a multivariate normal distribution with component 

mean of zero and variance-covariance matrix T = [τ00 τ01
τ10 τ11], where the diagonal 

entries τ00 and τ11 are the variance of residuals u0 j and u1 j, respectively; and τ01(=τ10) 

denotes the covariance between u0 j and u1 j . 

Equations 5 and 6 can be expressed as a single equation by substituting Equation 

6 into Equation 5 to obtain: 

                      log ( 𝑃𝑖𝑗
1−𝑃𝑖𝑗

) = γ00 + μ0j+ γ10* SESij + μ1j* SESij                                            (7) 

Typically, in real research, there are more than one level-1 variables added to the 

model; however, in this dissertation, all of the examples included only one variable in 
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each level for simplicities of calculation, which can also be easily extended to multiple 

predictors in the model. 

Model with Level-1 and Level-2 Predictors 

Level-two predictors can be added to Equation 6 so as to explain the residual 

variance in the intercept (τ00) and slope (τ11) across schools.  For example, if the 

researcher wants to know how school type (Public1j) effects average log-odds of passing 

and how effects the association between students’ SES and the log odds of passing, s/he 

can extend the model by including Public1j at level-two equation (i.e., Equation 6) with 

the level-1 model remaining the same: 

Level-2 (school-level): β0j = γ00 + γ01* Public1j+ μ0j 

                                                                         β1j = γ10 + γ11* Public1j+ μ1j                               (8) 

where u0 j and u1 j are assumed to have a multivariate normal distribution with means of 

zero and the variance-covariance matrix T = [τ00 τ01
τ10 τ11].  

Multilevel Measurement Model with Purely Nested Data Structure 

IRT models can be converted to hierarchical models in that repeated measures reflected 

as item scores are considered as nested within examinees.  As a result, the Rasch model 

or 1PL IRT model can be conceptualized as a multilevel model, which is termed as 

Rasch-equivalent model.  Using HGLM as a measurement model enables researchers to 
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estimate the effects of multilevel covariates (Maier, 2001) and model the additional level 

of clustering existed in data, which are ignored in traditional IRT (Kamata, 1998).  

The simplest way to combine IRT and HGLM is to consider items as nested 

within people (Adams, Wilson & Wu, 1997; Kamata, 1998, 2001) and people are nested 

within group.  In other words, the first level is an item level model, the second level is 

the person level model and the third level is the grouping level model.  

Two-level Rasch-equivalent Models 

According to Kamata’s demonstration (1998), the Rasch model can be expressed 

under HGLM model for item i and person j: 

Level-1 model:  

                log [Pij/ (1-Pij)] = β0j+ β1j *X1j + β2j *X2j+ ... +β(i-1)j *X(i-1)j                              (9) 

and Level-2 model: 

                              β0j = γ00 + u0j                                                                                                     (10.1) 

                            β1j = γ10                                                                                                                  (10.2) 

                                      . 
                    . 

                    . 

    β(i-1)j = γ(i-1)0                                                                                                         (10.i) 

where in the Level-1 model, Pij is the probability that person j answers item i correctly, 

β0j is the intercept term, β1j is the effect of Item 1 or the coefficient associated with Item 

1, β2j is the effect of Item 2, and so on.  Xij is the ith dummy variable for person j with a 
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value of 1 when the observation is the ith item and 0 otherwise.  The reason for coding 

the last item with a subscript of i-1 instead of i is that one of the items has to be dropped 

from the model (usually the last item but not necessarily the last item) to have a 

reference indicator.  

In the Level-2 model, u0j, the random component of β0j, is normally distributed 

with a mean of 0 and variance τ and denoting the latent trait (i.e., ability, attitude) of the 

person j.  The absence of the random component terms from Equations 10.2 through 10.i 

shows that the item parameters are fixed across persons.  Combining Equation 9 and 

10.1 to find out the probability of person j getting item i correctly: 

                            Pij = 1/ [1 + exp{-[u0j- (-γ00 – γi0)]}                                            (11) 

Recall that the equation for Rasch model is: 

                          Pij = 1/ [1 + exp{-( θj - δi)}]                                                         (12) 

Comparing Equation 11 and 12 we can conclude that Equation 11 is an 

equivalent of the Rasch model if conditions of u0j = θj and -γ00-γi0 = δi were satisfied. 

Here, u0j is the ability parameter of person j and -γ00-γi0 is the difficulty parameter of item 

i.  

The two-level Rasch-equivalent model can be easily extended to a model with 

Level-2 predictors if a researcher is interested in estimating the effect of person 

characteristics on the binary outcome.  For example, if a researcher would like to test 

whether there are gender differences in latent ability, the Level-2 predictor, Male,  
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being coded with a one for males and a zero for females, could be added to the Level-2 

model: 

                              β0j = γ00 + γ01*(Male)j + u0j                                                                   (13.1) 

                            β1j = γ10                                                                                                                  (13.2) 

                                      . 
                    . 

                    . 

    β(i-1)j = γ(i-1)0                                                                                                         (13.i) 

where (Male)j is the value of the gender variable for person j.  The only difference 

compared with the two-level Rasch-equivalent model (Equation 10) is the addition of a 

level-2 predictor Male for β0j. 

Three-level Rasch-equivalent Models 

 Consider the fact that the subjects are collected from different schools and the 

researcher is interested in examining the effect of the school characteristics on students’ 

latent trait and item parameter, a level that represents school is added to the two-level 

model.  Therefore, the first level model, the log-odds of the probability Pijm that person j 

in school m answers item i correctly becomes: 

       Level-1 model:  

             log [Pijm / (1-Pijm)] = β0jm + β1jm *X1jm + β2jm *X2jm + ... + β(i-1)jm *X(i-1)jm          (14)        

In contrast to the Equation 9 where Pij has only two subscripts, the additional 

subscript m indicates schools.  Xijm is now the ith dummy variable for person j in school 
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m. β0jm is the effect of the reference item and the βijm is the effect of the ith item 

compared to the reference item. 

The level-2 models for the item difficulty parameters, βijm, are person level 

models.  The person level models for person j in school m are written as: 

       Level-2 model: 

                              β0jm = γ00m  + u0jm                                                                                           (13.1) 

                            β1jm = γ10m                                                                                                             (13.2) 

                                      . 
                    . 

                    . 

    β(i-1)jm = γ(i-1)0m                                                                                                   (13.i) 

Once more, these models are almost identical to the level-2 equations in the two-level 

Rasch-equivalence model (Equation 18) except for the additional subscript m.  Here, 

u0jmrepresents how much the latent ability of person j at school m is deviated from the 

mean ability within school m, which is denoted as γ00m.  The variance of u0jm is assumed 

to be fixed across schools.  

Finally, in the third level or the school-level model, only the overall effect of 

items, γ00m would vary across schools. For school m, the model would be: 

       Level-3 model: 
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                                                γ00m = π000 + r00m                                                                                      (16.1) 

                                                γ10m = π100                                                                                                       (16.2) 

                        . 

                        . 

                        . 

        γ(i-1)0m = π(i-1)00                                                                                              (16.i) 

where π000 is the fixed component of γ00m and r00m is the random component of γ00m with 

a mean of 0 and variance τπ.  Combining Equations 15 and 16.1 through 16.i, we get 

                                    Pijm = 1/ [1 + exp{-( r00m + u0jm) –(-πi00 - π000)}]                       (17) 

Comparing Equation 17 and 12, we can conclude that Equation 17 is an equivalent of the 

Rasch model if r00m + u0jm = θj and –πi00 - π000 = δi.  Here r00m + u0jm represents the latent 

ability of person j at school m, which can be viewed as the random effect associated with 

school m (r00m) and the average ability of students in school m (u0jm) (Kamata, 2001).  

The item difficulty is -πi00 - π000 for the item i, and π000 is the item difficulty for the 

reference item i.  

Like the two-level Rasch-equivalent models, adding level-2 predictors (i.e., 

person characteristic variables) to the three-level model is quite straightforward.  For 

instance, if a study aims to investigate the gender difference in latent ability as in the 

demonstration of the two-level models, then the level-2 model becomes: 
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                                            β0jm = γ00m + γ01m * (Male)jm + u0jm                                                  (18.1) 

                          β1jm = γ10m                                                                                                            (18.2) 

                . 

                . 

                . 

                                            β(i-1)jm = γ(i-1)0m                                                                                                   (18.i) 

If the researcher is interested in finding out the variability of the effect of Male 

between schools, then the level-3 models can be written as: 

                             γ00m = π000 + r00m                                                                                             (19.1) 

                            γ01m = π010 + r01m                                                                                             (19.2) 

                            γ10m = π100  

                   . 

                   . 

                   . 

    γ(i-1)0m = π(i-1)00                                                                                                    (19.i) 

If one is studying the association between the school size (Size) and students’ 

ability, the level-3 variables can then be included in the models as below: 

                                          γ00m = π000 + π001 * (Size)m+ r00m                                                                (20) 

                γ01m = π010 + π011 * (Size)m + r01m 

                γ10m = π100  

               . 

               . 

               . 

                γ(i-1)0m = π(i-1)00 
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Combining Equation 14, 18 and 20 to form a three-level Rasch-equivalent model 

with predictors in both level-2 and level-3: 

                                   Pij = 1/ [1 + exp{-[ψjm - (-πi00 – π000)]}                               (21) 

where ψjm = π010 (Male)jm + π001 (Size)m + π011 (Male * Size)jm + r01m (Male)jm + r00m + u0j.  

Again, comparing with the traditional Rasch model (Equation 12), ψjm corresponds to 

students’ ability under a function of students’ gender and the size of school that students 

are belonging to.  Here, π011 is the effect of the interaction between Male and Size, 

indicating whether the effect of gender is significant different across schools depending 

on school size.  Still, -πi00 - π000 is representing the item difficulty for the item i, and π000 

is the item difficulty for the reference item i.  
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CHAPTER III 

STUDY ONE: A MONTE CARLO SIMULATION STUDY FOR COMPARING TWO- 

LEVEL RASCH-EQUIVALENT MODELS VS. THREE-LEVEL RASCH- 

EQUIVALENT MODELS 

 

Kamata (1998, 2001) demonstrated how to transform the Rasch Model into a 

hierarchical generalized linear model (i.e., two-level Rasch-equivalent model) and a 

three-level Rasch-equivalent model (i.e., MLIRT) as well if contextual effects were 

considered. However, little research has been thoughtfully assessing when it is necessary 

to use multilevel measurement models.    

Natesan (2007) conducted a Monte Carlo study to test the performance of two-

parameter (2-PL) MLIRT models versus classical 2-PL IRT models.  The data were 

generated with predictors under various conditions that included 3 test lengths (15, 30, 

and 60 items), 4 sample sizes (200, 500, 1000, and 2000), 2 correlation conditions 

between the predictors and the person ability parameter (rpb=.35 and .8), and 4 binominal 

distributions of the predictors (p=.1, .25, .4 and.5).   

Natesan found out that test length and sample size played the most important 

roles on the accuracy of the parameter estimates. Additionally, the correlation between 

the predictors and ability parameter and the distribution of the predictor variables were 

tested having no effect on the estimates difference between the 2-PL MLIRT and 2PL 
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IRT models. However, she only examined the impacts of misspecification on parameter 

estimates but not on their corresponding standard errors. Standard errors are as important 

as parameter estimates so as to provide researchers with magnitude of statistical power.  

Beretvas, Meyers and Rodrigues (2005) conducted a simulation study to 

investigate the impact of ignoring a crossed factor in cross-classified data. The generated 

data were analyzed using two models: the correct model in which students were cross-

classified by middle schools and high schools. (i.e., cross-classified model) and the 

misspecified model (i.e., hierarchical linear model). A three-level measurement model 

data was generated with five items (i.e., Level-1) fully responded by 750 individuals (i.e., 

Level-2) who were coming from 28 middle schools and 21 high schools (i.e., Level-3). 

In addition, three dichotomous predictors were added into the model at each level. The 

item difficulty parameters for the five items were assigned to be .5, 1.0, .5 1.0 and 0, 

respectively. The variances of between-students, between-middle schools and between-

high schools were 1.0, .5, and .5, respectively. 

From the single dataset analyses, they found out that estimates of fixed effects 

and their corresponding standard errors seemed to be unaffected if the cross-classified 

data structure was misspecified. What's more, the estimates of the random effect 

variances were also tested to be unbiased but its associated standard errors were 

underestimated when data was inappropriately modeled.  

The purpose of Study One was to find out whether there were any differences 

between appropriate IRT models and inappropriate IRT models in terms of different 
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level of intra-class correlation (ICC), sample size, number of clusters and test length in 

the context of hierarchical data structure. 

Method 

Mplus  (version 7, Muthén & Muthén, 1998-2012) was used to conduct a 

simulation study to assess the parameter recovery of Kamata's (1998) two-level 1-PL 

item response theory model versus three-level Rasch model under various conditions on 

the basis of test length, sample size, cluster size and ICC.  

Research Questions 

1. How is the recovery of the item parameter estimates of the 1-PL MLIRT 

model for datasets with varying test lengths (5, 10, and 20 items)? 

2. How is the recovery of the item parameter estimates of the 1-PL MLIRT 

model for datasets with varying sample sizes (200, 500, and1000 students)? 

3. How is the recovery of the item parameter estimates of the 1-PL MLIRT 

model for datasets with varying numbers of clusters (20 and 40 schools)? 

4. How is the recovery of the item parameter estimates of the 1-PL MLIRT 

model for datasets with varying ICCs (0.10 and 0.40)? 

5. How do test length, sample size, number of clusters, and ICC interact to 

impact the accuracy of item parameter estimates of the 1-PL MLIRT model? 

6. Whether the corresponding standard errors of parameter estimates are biased if 
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the higher level nesting data structure is ignored? 

The following section summarizes the design of manipulating parameter 

estimates and procedures of generating data, followed by discussion of data analysis.  

Design Overview 

Estimation will be assessed for each of possible combinations of these factors: 

number of items (5, 10 and 20; Hulin, Lissak, & Drasgow, 1982), total number of 

students (200, 500 and 1000; Ree & Jensen, 1980), number of schools (20 and 40; Hox 

& Maas, 2001), and ICC (0.10 and 0.40; Hox & Maas, 2001; Snijder & Bosker, 1999). 

Table 1 details the possible combinations of conditions that will be manipulated in this 

simulation study.  

Number of Items 

Three levels of test length (5, 10 and 20) were used to represent tests in different 

possible lengths.  

Number of Students 

The numbers of students at level-2 have values of 200, 500 and 1000. 

Number of Schools 

The numbers of schools have two values: 20 and 40. The average school size is 

determined by dividing the total number of students by the number of schools.   
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Table 1 Design Conditions of Simulation Study 

Condition # of Items # of Students # of Schools 
 

ICC 
 

1 5 200 20 0.10 
2 5 200 20 0.40 
3 5 200 40 0.10 
4 5 200 40 0.40 
5 5 500 20 0.10 
6 5 500 20 0.40 
7 5 500 40 0.10 
8 5 500 40 0.40 
9 5 1000 20 0.10 
10 5 1000 20 0.40 
11 5 1000 40 0.10 
12 5 1000 40 0.40 
13 10 200 20 0.10 
14 10 200 20 0.40 
15 10 200 40 0.10 
16 10 200 40 0.40 
17 10 500 20 0.10 
18 10 500 20 0.40 
19 10 500 40 0.10 
20 10 500 40 0.40 
21 10 1000 20 0.10 
22 10 1000 20 0.40 
23 10 1000 40 0.10 
24 10 1000 40 0.40 
25 20 200 20 0.10 
26 20 200 20 0.40 
27 20 200 40 0.10 
28 20 200 40 0.40 
29 20 500 20 0.10 
30 20 500 20 0.40 
31 20 500 40 0.10 
32 20 500 40 0.40 
33 20 1000 20 0.10 
34 20 1000 20 0.40 
35 20 1000 40 0.10 
36 20 1000 40 0.40 
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Table 2 Parameter Values Used to Generate Data Across Test Length Conditions 

 5-item Test 10-item Test 
 

20-item Test 
 

Fixed Effect 
 
Overall Item γ000 -2.50 -2.50 -2.50 
       Item 1   γ100 -1.50 -1.50 -1.50 
       Item 2   γ200 0 0 0 
       Item 3   γ300 1.50 1.50 1.50 
       Item 4   γ400 2.50 2.50 2.50 
       Item 5   γ500 -- -2.50 -2.50 
       Item 6   γ600 -- -1.50 -1.50 
       Item 7   γ700 -- 0 0 
       Item 8   γ800 -- 1.50 1.50 
       Item 9   γ900 -- 2.50 2.50 
       Item 10   γ1000 -- -- -2.50 
       Item 11   γ1100 -- -- -1.50 
       Item 12   γ1200 -- -- 0 
       Item 13   γ1300 -- -- 1.50 
       Item 14   γ1400 -- -- 2.50 
       Item 15   γ1500 -- -- -2.50 
       Item 16   γ1600 -- -- -1.50 
       Item 17   γ1700 -- -- 0 
       Item 18   γ1800 -- -- 1.50 
       Item 19   γ1900 -- -- 2.50 
X1γ010 0.25 0.25 0.25 
X2γ001 0.25 0.25 0.25 
X2γ011 
 0.25 0.25 0.25 

Random Effect 
 
       Student τu0jm 1.00 1.00 1.00 
       School  τr00m .1111/.6667 .1111/.6667 .1111/.6667 
       School  τr01m 0 0 0 
Note. -- is not applicable. The first and second value of τr00m are for the ICC of 0.10 and 
0.40 conditions, respectively.  
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Intra-class Correlation (ICC) 

The higher the ICC, the more likelihood to lead to bias results if ignoring the 

higher level of nesting data structure. Two levels of ICC (0.10 and 0.40) were used to 

represent small and large intra-class correlations in multilevel models.   

Data Analysis 

Figure 1 depicted how data were analyzed by the appropriate modeling in Mplus.  

In the appropriate modeling, both within- and between-models were specified as having 

the same factor structure with items loaded on two latent factors (i.e., person's latent 

ability). While in the inappropriate modeling, the between-models were ignored. The 

relevant fixed- and random- effects were estimated based on a given set of prior values. 

According to the parameter estimates of the Rasch model, the slope values (i.e., item 

discrimination parameter) were set to be identical and equal to one. The threshold values 

(i.e., item difficulty parameter) were set to vary between -3 and 3 (Baker, 1992). To be 

specific, the item difficulty parameters were fixed to -2.50, -1.50, 0, 1.50, and 2.50. 

Table 2 showed the parameter values used to generate data across different test length 

conditions. After the data were generated, item difficulty parameters were estimated and 

compared between two situations. In addition, two goodness of recovery measures 

(Hoogland & Boomsma, 1998; Maris, 1999), bias and relative bias, were assessed for 

each estimated parameters. Biases of the parameter estimation were calculated by using 

the following equation: 

                                            B (γp') = γp' - γp                                                                                   (22)  
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Figure 1. An Example of MLIRT models in Mplus 
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where γp is the pth parameter and γp' is the average of pth parameter estimates across the 

500 iterations. Bias is the how the estimated parameter values is deviated from the true 

values. While, relative biases of the parameters were also summarized in this 

dissertation. It is given by the formula as below:  

                                            B (γp') = (γp' - γp)/γp                                                                        (23) 

Hoogland and Boomsma (1998) recommended a cutoff value of 0.05 for 

acceptable relative bias of coefficient parameter estimates. At meanwhile, the relative 

bias of estimated standard errors was also computed by using the following equation: 

                                            B (Sθ) = (Sθ_False - Sθ_True)/Sθ_True                                           (24) 

where Sθ_True was the average standard error estimates across 500 replications from 

specifying the true models in which the higher level nesting structure was considered. 

Thus, it was treated as the "true" standard error. While, Sθ_False was the mean estimation 

of standard errors across the valid replications in the false models, in which the higher 

level nesting structure was ignored. The cutoff value for estimates of standard errors was 

suggested to be 0.10 by Hoogland and Boomsma (1998). A positive relative bias 

indicates an overestimation of the standard errors (i.e., Sθ_False > Sθ_True). Whereas a 

negative relative bias indicates an underestimation of the standard errors (i.e., Sθ_False < 

Sθ_True). Additionally, t-tests, ANOVA and factorial ANOVA were conducted with mean 

biases and standard errors as outcome variables and simulation conditions as the factors. 

Both main and interaction effects were investigated. 



27 
 

Table 3 Mean Bias, Relative Bias and Power for Item Difficulty Parameters for True 
and False Models Based on Test Length 

 Average Item Difficulty 
Conditions True Models False Models 

Test 
Length 

Sample 
size 

# of 
Schools ICC Bias Rel. 

Bias 
95% 

Coverage Bias Rel. 
Bias 

95% 
Coverage 

5 
10 
20 

200 
 
 

20 
 
 

0.10 
 
 

0.284 
0.086 
0.077 

0.142 
0.040 
0.036 

0.934 
0.947 
0.948 

0.641 
0.063 
0.049 

0.275 
0.028 
0.023 

0.920 
0.940 
0.934 

5 
10 
20 

500 
 
 

20 
 
 

0.10 
 
 

0.028 
0.031 
0.028 

0.015 
0.014 
0.012 

0.940 
0.934 
0.932 

0.040 
0.027 
0.024 

0.020 
0.012 
0.010 

0.913 
0.900 
0.903 

5 
10 
20 

1000 
 
 

20 
 
 

0.10 
 
 

0.020 
0.012 
0.012 

0.009 
0.006 
0.005 

0.930 
0.935 
0.936 

0.029 
0.016 
0.013 

0.013 
0.007 
0.005 

0.866 
0.868 
0.858 

5 
10 
20 

200 
 
 

20 
 
 

0.40 
 
 

0.303 
0.085 
0.075 

0.157 
0.041 
0.035 

0.948 
0.940 
0.945 

0.195 
0.076 
0.058 

0.095 
0.035 
0.026 

0.878 
0.870 
0.883 

5 
10 
20 

500 
 
 

20 
 
 

0.40 
 
 

0.041 
0.032 
0.024 

0.021 
0.014 
0.011 

0.944 
0.935 
0.938 

0.075 
0.041 
0.030 

0.035 
0.018 
0.013 

0.768 
0.775 
0.770 

5 
10 
20 

1000 
 
 

20 
 
 

0.40 
 
 

0.013 
0.015 
0.013 

0.007 
0.006 
0.006 

0.945 
0.940 
0.950 

0.063 
0.035 
0.024 

0.027 
0.014 
0.010 

0.690 
0.684 
0.707 

5 
10 
20 

200 
 
 

40 
 
 

0.10 
 
 

0.223 
0.095 
0.088 

0.115 
0.047 
0.412 

0.954 
0.960 
0.956 

0.248 
0.061 
0.051 

0.128 
0.030 
0.024 

0.942 
0.950 
0.946 

5 
10 
20 

500 
 
 

40 
 
 

0.10 
 
 

0.034 
0.029 
0.028 

0.017 
0.014 
0.014 

0.947 
0.944 
0.944 

0.042 
0.027 
0.021 

0.020 
0.012 
0.010 

0.923 
0.927 
0.923 

5 
10 
20 

1000 
 
 

40 
 
 

0.10 
 
 

0.017 
0.014 
0.013 

0.008 
0.006 
0.006 

0.942 
0.945 
0.943 

0.030 
0.015 
0.013 

0.014 
0.007 
0.005 

0.898 
0.907 
0.894 

5 
10 
20 

200 
 
 

40 
 
 

0.40 
 
 

0.607 
0.087 
0.079 

0.300 
0.041 
0.038 

0.958 
0.959 
0.963 

0.567 
0.068 
0.058 

0.239 
0.031 
0.026 

0.914 
0.922 
0.927 

5 
10 
20 

500 
 
 

40 
 
 

0.40 
 
 

0.044 
0.029 
0.028 

0.021 
0.014 
0.012 

0.956 
0.942 
0.947 

0.078 
0.041 
0.029 

0.035 
0.018 
0.012 

0.842 
0.827 
0.841 

5 
10 
20 

1000 
 
 

40 
 
 

0.40 
 
 

0.019 
0.016 
0.012 

0.010 
0.008 
0.005 

0.947 
0.948 
0.955 

0.060 
0.036 
0.019 

0.027 
0.015 
0.008 

0.737 
0.742 
0.760 
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Results 

Test Length 

Table 3 shows the results of average biases and relative biases on item difficulty 

parameter estimation for both appropriate and inappropriate models from 500 iterations. 

From the results, it can be seen that the magnitude of the bias and relative bias values 

decreased with an increase in test length for both true and false models. By doing post 

hoc tests (i.e., Tukey HSD; Table 4), the effects of test length were significantly 

associated to the estimate biases when comparing between 5 and 10 or 20 items, 

however, there is no significance between 10 and 20 items.  This finding may suggest us 

that 10 items could be a good length at minimum for a test. 

Sample Size 

Sample size had a strong effect on the bias of item difficulty parameters. Larger 

sample sizes yielded less estimate biases (see Table 5).  In general, the statistical power 

will be increasing with inclusion of more people in the test. As seen from Table 6, a host 

hoc test was also conducted to examine where the difference is located. It showed that 

having 200 students taking a test would yield greatest bias when comparing with 500 

and 1000 students. However, we couldn't find statistically significant difference between 

500 and 1000 scenario.  
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Table 4 Post Hoc Comparisons on Effect of Test Length on Parameter Recovery 

Dependent 
Variable 

(I) 
Item 

(J) 
Item 

Mean 
Difference 

(I-J) 

SE P 95% CI 

Bias 

5.00 
10.00 .130* .051 .038 .006 .254 
20.00 .140* .051 .025 .016 .264 

10.00 
5.00 -.130* .051 .038 -.254 -.006 
20.00 .010 .051 .980 -.115 .134 

20.00 
5.00 -.140* .051 .025 -.264 -.016 
10.00 -.010 .051 .980 -.134 .115 

RelBias 

5.00 
10.00 .059* .022 .029 .005 .112 
20.00 .063* .022 .017 .010 .116 

10.00 
5.00 -.059* .022 .029 -.112 -.005 
20.00 .004 .022 .977 -.049 .058 

20.00 
5.00 -.063* .022 .017 -.116 -.010 
10.00 -.004 .022 .977 -.058 .049 

 

 

 

Table 5 Mean Bias, Relative Bias and Power for Item Difficulty Parameters for True 
and False Models Based on Sample Size 

 Average Item Difficulty 
Conditions True Models False Models 

Sample 
Size 

Test 
Length 

# of 
Schools ICC Bias Rel. 

Bias 
95% 

Coverage Bias Rel. 
Bias 

95% 
Coverage 

200 
500 
1000 

5 
 
 

20 
 
 

0.10 
 
 

0.284 
0.028 
0.020 

0.142 
0.015 
0.009 

0.934 
0.940 
0.930 

0.641 
0.040 
0.029 

0.275 
0.020 
0.013 

0.920 
0.913 
0.866 

200 
500 
1000 

10 
 
 

20 
 
 

0.10 
 
 

0.086 
0.031 
0.012 

0.040 
0.014 
0.006 

0.947 
0.934 
0.935 

0.063 
0.027 
0.016 

0.023 
0.012 
0.007 

0.940 
0.900 
0.868 

200 
500 
1000 

20 
 
 

20 
 
 

0.10 
 
 

0.077 
0.028 
0.012 

0.036 
0.012 
0.005 

0.948 
0.932 
0.936 

0.049 
0.024 
0.013 

0.023 
0.010 
0.005 

0.934 
0.903 
0.858 

200 
500 
1000 

5 
 
 

40 
 
 

0.10 
 
 

0.223 
0.034 
0.017 

0.115 
0.017 
0.008 

0.954 
0.947 
0.942 

0.248 
0.042 
0.030 

0.128 
0.020 
0.014 

0.942 
0.923 
0.898 
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Table 5 Continued 

 Average Item Difficulty 
Conditions True Models False Models 

Sample 
Size 

Test 
Length 

# of 
Schools ICC Bias Rel. 

Bias 
95% 

Coverage Bias Rel. 
Bias 

95% 
Coverage 

200 
500 
1000 

10 
 
 

40 
 
 

0.10 
 
 

0.095 
0.029 
0.014 

0.047 
0.014 
0.006 

0.960 
0.944 
0.945 

0.061 
0.027 
0.015 

0.030 
0.012 
0.007 

0.950 
0.927 
0.907 

200 
500 
1000 

20 
 
 

40 
 
 

0.10 
 
 

0.088 
0.028 
0.013 

0.412 
0.014 
0.006 

0.956 
0.944 
0.943 

0.051 
0.021 
0.013 

0.024 
0.010 
0.005 

0.946 
0.923 
0.894 

200 
500 
1000 

5 
 
 

20 
 
 

0.40 
 
 

0.303 
0.041 
0.013 

0.157 
0.021 
0.007 

0.948 
0.944 
0.945 

0.195 
0.075 
0.063 

0.095 
0.035 
0.027 

0.878 
0.768 
0.690 

200 
500 
1000 

10 
 
 

20 
 
 

0.40 
 
 

0.085 
0.032 
0.015 

0.041 
0.014 
0.006 

0.940 
0.935 
0.940 

0.076 
0.041 
0.035 

0.035 
0.018 
0.014 

0.870 
0.775 
0.684 

200 
500 
1000 

20 
 
 

20 
 
 

0.40 
 
 

0.075 
0.024 
0.013 

0.035 
0.011 
0.006 

0.945 
0.938 
0.950 

0.058 
0.030 
0.024 

0.026 
0.013 
0.010 

0.883 
0.770 
0.707 

200 
500 
1000 

5 
 
 

40 
 
 

0.40 
 
 

0.607 
0.044 
0.019 

0.300 
0.021 
0.010 

0.958 
0.956 
0.947 

0.567 
0.078 
0.060 

0.239 
0.035 
0.027 

0.914 
0.842 
0.737 

200 
500 
1000 

10 
 
 

40 
 
 

0.40 
 
 

0.087 
0.029 
0.016 

0.041 
0.014 
0.008 

0.959 
0.942 
0.948 

0.068 
0.041 
0.036 

0.031 
0.018 
0.015 

0.922 
0.827 
0.742 

200 
500 
1000 

20 
 
 

40 
 
 

0.40 
 
 

0.079 
0.028 
0.012 

0.038 
0.012 
0.005 

0.963 
0.947 
0.955 

0.058 
0.029 
0.019 

0.026 
0.012 
0.008 

0.927 
0.814 
0.760 

 

 

Number of Clusters 

Number of schools at the third-level model had a weak effect on the bias of item 

difficulty parameters. As presented in Table 7, the bias values of the difficulty 

parameters decreased with increase in numbers of schools but no strong pattern was 
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detected. What's more, no significant impact of number of clusters on parameter 

estimates was found from the t-test (see Table 8). 

 

  

Table 6 Post Hoc Comparisons on Effect of Sample Size on Parameter Recovery 

Dependent 
Variable 

(I) 
Sample 

(J) 
Sample 

Mean 
Difference 

(I-J) 

SE P 95% CI 

Bias 

200.00 
500.00 .138* .050 .023 .016 .260 
1000.00 .149* .050 .014 .027 .271 

500.00 
200.00 -.138* .050 .023 -.260 -.016 
1000.00 .010 .050 .977 -.112 .132 

1000.00 
200.00 -.149* .050 .014 -.271 -.027 
500.00 -.010 .050 .977 -.132 .112 

RelBias 

200.00 
500.00 .062* .021 .017 .010 .114 
1000.00 .067* .021 .009 .015 .119 

500.00 
200.00 -.062* .021 .017 -.114 -.010 
1000.00 .005 .021 .967 -.047 .057 

1000.00 
200.00 -.067* .021 .009 -.119 -.015 
500.00 -.005 .021 .967 -.057 .047 

 

 

 

Intra-Class Correlations 

Based on the theory, the intra-class correlation coefficient (ICC) has a substantial 

effect on parameter recovery if the higher-level nesting data structure is misspecified. 

ICC is defined as the ratio between cluster-level variance and the sum of cluster- and 

individual-level variance (i.e., total variance) of a variable (Cohen, Cohen, West &  
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Table 7 Mean Bias, Relative Bias and Power for Item Difficulty Parameters for True 
and False Models Based on Number of Clusters (Schools) 

 Average Item Difficulty 
Conditions True Models False Models 

# of 
Schools 

Test 
Length 

Sample 
size ICC Bias Rel. 

Bias 
95% 

Coverage Bias Rel. 
Bias 

95% 
Coverage 

20 
40 5 200 0.10 0.284 

0.223 
0.142 
0.115 

0.934 
0.954 

0.641 
0.248 

0.275 
0.128 

0.920 
0.942 

20 
40 10 200 0.10 0.086 

0.095 
0.040 
0.047 

0.947 
0.960 

0.063 
0.061 

0.023 
0.030 

0.940 
0.950 

20 
40 20 200 0.10 0.077 

0.088 
0.036 
0.412 

0.948 
0.956 

0.049 
0.051 

0.023 
0.024 

0.934 
0.946 

20 
40 5 500 0.10 0.028 

0.034 
0.015 
0.017 

0.940 
0.947 

0.040 
0.042 

0.020 
0.020 

0.913 
0.923 

20 
40 10 500 0.10 0.031 

0.029 
0.014 
0.014 

0.934 
0.944 

0.027 
0.027 

0.012 
0.012 

0.900 
0.927 

20 
40 20 500 0.10 0.028 

0.028 
0.012 
0.014 

0.932 
0.944 

0.024 
0.021 

0.010 
0.010 

0.903 
0.923 

20 
40 5 1000 0.10 0.020 

0.017 
0.009 
0.008 

0.930 
0.942 

0.029 
0.030 

0.013 
0.014 

0.866 
0.898 

20 
40 10 1000 0.10 0.012 

0.014 
0.006 
0.006 

0.935 
0.945 

0.016 
0.015 

0.007 
0.007 

0.868 
0.907 

20 
40 20 1000 0.10 0.012 

0.013 
0.005 
0.006 

0.936 
0.943 

0.013 
0.013 

0.005 
0.005 

0.858 
0.894 

20 
40 5 200 0.40 0.303 

0.607 
0.157 
0.300 

0.948 
0.958 

0.195 
0.567 

0.095 
0.239 

0.878 
0.914 

20 
40 10 200 0.40 0.085 

0.087 
0.041 
0.041 

0.940 
0.959 

0.076 
0.068 

0.035 
0.031 

0.870 
0.922 

20 
40 20 200 0.40 0.075 

0.079 
0.035 
0.038 

0.945 
0.963 

0.058 
0.058 

0.026 
0.026 

0.883 
0.927 

20 
40 5 500 0.40 0.041 

0.044 
0.021 
0.021 

0.944 
0.956 

0.075 
0.078 

0.035 
0.035 

0.768 
0.842 

20 
40 10 500 0.40 0.032 

0.029 
0.014 
0.014 

0.935 
0.942 

0.041 
0.041 

0.018 
0.018 

0.775 
0.827 

20 
40 20 500 0.40 0.024 

0.028 
0.011 
0.012 

0.938 
0.947 

0.030 
0.029 

0.013 
0.012 

0.770 
0.814 

20 
40 5 1000 0.40 0.013 

0.019 
0.007 
0.010 

0.945 
0.947 

0.063 
0.060 

0.027 
0.027 

0.690 
0.737 

20 
40 10 1000 0.40 0.015 

0.016 
0.006 
0.008 

0.940 
0.948 

0.035 
0.036 

0.014 
0.015 

0.684 
0.742 

20 
40 20 1000 0.40 0.013 

0.012 
0.006 
0.005 

0.950 
0.955 

0.024 
0.019 

0.010 
0.008 

0.707 
0.760 
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Table 8 Independent T-Test on Effect of Number of Clusters on Parameter Recovery 

Levene's Test for Equality of 
Variances 

T-test for Equality of Means 

 F p t DF p Mean 
Difference 

SE 
Difference 

95% CI  

Bias 

Equal 
variances 
assumed 

.002 .962 .043 34 .966 .002 .046 -.092 .096 

Equal 
variances 

not 
assumed 

  

.043 33.704 .966 .002 .046 -.092 .096 

RelBias 

Equal 
variances 
assumed 

.000 .988 .010 34 .992 .000 .020 -.041 .041 

Equal 
variances 

not 
assumed 

  

.010 33.744 .992 .000 .020 -.041 .041 

 

 

 

Aiken, 2003; Muthén & Satorra, 1995). The larger the ICC in magnitude, the more 

between-level variance at highest level is ignored. However, in this study, although the 

pattern of higher ICC with greater biases was detected (see Table 9), it did not show any 

statistical significance on the effect of ICC (see Table 10).  

Main and Interaction Effects among Factors 

In order to further examine both the main and interaction effects of the 

simulation conditions on the estimates of bias and relative bias of threshold parameter, a  
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Table 9 Mean Bias, Relative Bias and Power for Item Difficulty Parameters for True 
and False Models Based on ICC 

 Average Item Difficulty 
Conditions True Models False Models 

ICC Test 
Length 

Sample 
size 

# of 
School Bias Rel. 

Bias 
95% 

Coverage Bias Rel. 
Bias 

95% 
Coverage 

0.10 
0.40 5 200 20 0.284 

0.303 
0.142 
0.157 

0.934 
0.948 

0.641 
0.195 

0.275 
0.095 

0.920 
0.878 

0.10 
0.40 10 200 20 0.086 

0.085 
0.040 
0.041 

0.947 
0.940 

0.063 
0.076 

0.023 
0.035 

0.940 
0.870 

0.10 
0.40 20 200 20 0.077 

0.075 
0.036 
0.035 

0.948 
0.945 

0.049 
0.058 

0.023 
0.026 

0.934 
0.883 

0.10 
0.40 5 500 20 0.028 

0.041 
0.015 
0.021 

0.940 
0.944 

0.040 
0.075 

0.020 
0.035 

0.913 
0.768 

0.10 
0.40 10 500 20 0.031 

0.032 
0.014 
0.014 

0.934 
0.935 

0.027 
0.041 

0.012 
0.018 

0.900 
0.775 

0.10 
0.40 20 500 20 0.028 

0.024 
0.012 
0.011 

0.932 
0.938 

0.024 
0.030 

0.010 
0.013 

0.903 
0.770 

0.10 
0.40 5 1000 20 0.020 

0.013 
0.009 
0.007 

0.930 
0.945 

0.029 
0.063 

0.013 
0.027 

0.866 
0.690 

0.10 
0.40 10 1000 20 0.012 

0.015 
0.006 
0.006 

0.935 
0.940 

0.016 
0.035 

0.007 
0.014 

0.868 
0.684 

0.10 
0.40 20 1000 20 0.012 

0.013 
0.005 
0.006 

0.936 
0.950 

0.013 
0.024 

0.005 
0.010 

0.858 
0.707 

0.10 
0.40 5 200 40 0.223 

0.607 
0.115 
0.300 

0.954 
0.958 

0.248 
0.567 

0.128 
0.239 

0.942 
0.914 

0.10 
0.40 10 200 40 0.095 

0.087 
0.047 
0.041 

0.960 
0.595 

0.061 
0.068 

0.030 
0.031 

0.950 
0.922 

0.10 
0.40 20 200 40 0.088 

0.079 
0.412 
0.038 

0.956 
0.963 

0.051 
0.058 

0.024 
0.026 

0.946 
0.927 

0.10 
0.40 5 500 40 0.034 

0.044 
0.017 
0.021 

0.947 
0.956 

0.042 
0.078 

0.020 
0.035 

0.923 
0.842 

0.10 
0.40 10 500 40 0.029 

0.029 
0.014 
0.014 

0.944 
0.942 

0.027 
0.041 

0.012 
0.018 

0.927 
0.827 

0.10 
0.40 20 500 40 0.028 

0.028 
0.014 
0.012 

0.944 
0.947 

0.021 
0.029 

0.010 
0.012 

0.923 
0.814 

0.10 
0.40 5 1000 40 0.017 

0.019 
0.008 
0.010 

0.942 
0.947 

0.030 
0.060 

0.014 
0.027 

0.898 
0.737 

0.10 
0.40 10 1000 40 0.014 

0.016 
0.006 
0.008 

0.945 
0.948 

0.015 
0.036 

0.007 
0.015 

0.907 
0.742 

0.10 
0.40 20 1000 40 0.013 

0.012 
0.006 
0.005 

0.943 
0.955 

0.013 
0.019 

0.005 
0.008 

0.894 
0.760 
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Table 10 Independent T-Test on Effect of ICC on Parameter Recovery 

Levene's Test for Equality of 
Variances 

T-test for Equality of Means 

 F p t DF p Mean 
Difference 

SE 
Difference 

95% CI  

Bias 

Equal 
variances 
assumed 

.169 .684 -.171 34 .865 -.008 .046 -.102 .086 

Equal 
variances 

not 
assumed 

  

-.171 33 .865 -.008 .046 -.102 .086 

RelBias 

Equal 
variances 
assumed 

.241 .627 -.120 34 .906 -.002 .020 -.043 .038 

Equal 
variances 

not 
assumed 

  

-.120 33 .906 -.002 .020 -.043 .038 

 

 

 

3x3x2x2 factorial ANOVAs were conducted (3 Test Lengths * 3 Sample Sizes * 2 

Number of Clusters * 2 ICC). The results of the factorial ANOVAs were shown in Table 

11.  The ANOVA results indicated that sample size had the strongest effect on the bias 

(η2  = 18.4%) and relative bias (η2  = 4.5%) of the threshold under the true models. In 

other words, the sample size explained about 20% of the variation of the bias under true 

models. The 2-way interaction effect between test length and sample size also explained 

about 12.4% of the variance in the bias and 3.2% of variance in relative bias of item  
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Table 11 Eta-Squares (η2) from Factorial ANOVAs for the Simulation Conditions with 
Bias and Relative Bias on Thresholds 

  
Thresholds 

 

Main & Interaction Effects  True Models  False Models 

 Bias Rel.Bias  Bias Rel.Bias 
Test Length (TL)  7.1% 1.9%  14.6% 3.0% 
Sample Size (SS)  18.4% 4.5%  16.5% 3.4% 

Number of Cluster (NC)  0.2% 0.1%  0.01% 0.01% 
ICC  0.4% 0.1%  0.1% 0.01% 

TL*SS  12.4% 3.2%  18.9% 3.7% 
TL*NC  0.3% 0.1%  0.01% 0.01% 
TL*ICC  0.1% 0.2%  0.00% 0.01% 
SS*NC  0.4% 0.1%  0.01% 0.01% 
SS*ICC  0.8% 0.2%  0.2% 0.1% 
NC*ICC  0.4% 0.1%  1.6% 0.2% 

TL*SS*NC  0.6% 0.1%  0.01% 0.01% 
TL*SS*ICC  1.8% 0.4%  0.4% 0.1% 
TL*NC*ICC  0.8% 0.2%  3.3% 0.5% 
SS*NC*ICC  0.7% 0.1%  3.2% 0.5% 

TL*SS*NC*ICC  1.5% 0.3%  6.6% 1.0% 
Overall η2  66.2% 16.2%  89.8% 17.2% 

Note. η2 = SSBetween/SSTotal as the effect size. The cutoff value for η2 is 1%. 

 

 

difficulty parameter under true models. In addition, the test-length * sample size 

interaction effect had the highest impact on the bias (η2  = 18.9%) and relative bias (η2  = 

3.7%) under the false models.  

Figure 2 - 5 showed that as the test length increased, the increased of the bias and 

relative bias was with smaller sample size under both true and false models. For 

conditions that had less test items with smaller sample size, the increase of bias was 

greater than ones with more items and larger sample size. The increase of the bias was 

the smallest when more test items was combined with larger sample size. 
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Figure 2. Effect of 2-way Interaction between Test Length and Sample Size on Bias 
under True Models 

 

 

Figure 3. Effect of 2-way Interaction between Test Length and Sample Size on Relative 
Bias under True Models 
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Figure 4. Effect of 2-way Interaction between Test Length and Sample Size on Bias 
under False Models 

 

 

Figure 5. Effect of 2-way Interaction between Test Length and Sample Size on Relative 
Bias under False Models 
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Table 12 Comparison of Mean Standard Errors between True Models and False Models 
Per Simulation Condition 

Condition # of 
Items 

# of 
Students 

# of 
Schools ICC 

Average Standard Errors 
True 

Models 
 False 

Models 
 Relative 

Bias 
1 5 200 20 0.10 0.537  0.443  -0.175 
2 5 200 20 0.40 0.562  0.412  -0.267 
3 5 200 40 0.10 0.572  0.514  -0.101 
4 5 200 40 0.40 0.834  0.413  -0.505 
5 5 500 20 0.10 0.202  0.196  -0.030 
6 5 500 20 0.40 0.271  0.202  -0.255 
7 5 500 40 0.10 0.201  0.203  0.010 
8 5 500 40 0.40 0.241  0.203  -0.158 
9 5 1000 20 0.10 0.145  0.132  -0.090 
10 5 1000 20 0.40 0.223  0.136  -0.390 
11 5 1000 40 0.10 0.139  0.133  -0.043 
12 5 1000 40 0.40 0.186  0.136  -0.269 
13 10 200 20 0.10 0.333  0.301  -0.096 
14 10 200 20 0.40 0.371  0.306  -0.175 
15 10 200 40 0.10 0.348  0.298  -0.144 
16 10 200 40 0.40 0.355  0.303  -0.146 
17 10 500 20 0.10 0.191  0.176  -0.079 
18 10 500 20 0.40 0.253  0.183  -0.277 
19 10 500 40 0.10 0.185  0.176  -0.049 
20 10 500 40 0.40 0.226  0.183  -0.190 
21 10 1000 20 0.10 0.139  0.122  -0.122 
22 10 1000 20 0.40 0.216  0.127  -0.412 
23 10 1000 40 0.10 0.132  0.122  -0.076 
24 10 1000 40 0.40 0.180  0.128  -0.289 
25 20 200 20 0.10 0.312  0.276  -0.115 
26 20 200 20 0.40 0.351  0.289  -0.177 
27 20 200 40 0.10 0.356  0.168  -0.528 
28 20 200 40 0.40 0.340  0.176  -0.482 
29 20 500 20 0.10 0.184  0.168  -0.087 
30 20 500 20 0.40 0.250  0.176  -0.296 
31 20 500 40 0.10 0.181  0.168  -0.072 
32 20 500 40 0.40 0.218  0.176  -0.193 
33 20 1000 20 0.10 0.136  0.118  -0.132 
34 20 1000 20 0.40 0.213  0.123  -0.423 
35 20 1000 40 0.10 0.129  0.118  -0.085 
36 20 1000 40 0.40 0.177  0.123  -0.305 
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Except the main effect of test length and sample size, the two-way interaction 

effect between test length and sample size, all other effects explained very limited 

variance in the estimates of the threshold parameters. For instance, the number of 

schools (η2  = 0.2%, 0.1%, 0.01%, and 0.01%) and ICC (η2  = 0.4%, 0.1%, 0.1%, and 

0.01%) had a very small effect on explaining the bias.  

Relative Bias on Standard Errors of Item Parameters 

Table 12 presents the average standard errors obtaining from both true false 

models, and relative bias by each simulation condition. Paired t-test was conducted to 

see whether the difference between "true" standards errors and "false" standard errors is 

statistically significant or not. Consistent with previous research, the standard errors of 

item difficulty parameters would be underestimated (t = 2.90, p≤ 0.01) if multilevel IRT 

model is misspecified (see Table 13).   

Additionally, the factorial ANOVA results that ICC (η2  = 28.4%) had the largest 

substantial effect on the relative bias on standard error estimation. As seen from Table 

14, when ICC was 0.10, the bias in the estimated standard error was acceptable. 

However, when ICC increased to 0.40, the bias in standard error estimations became 

larger. The second largest effect is the two-way interaction term between sample size 

and number of clusters, which explained about 10.0% of the variance in the bias.  
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Table 13 Paired T-Test on Significance Test of the Difference of Standard Errors 
between True and False Models 

 
 Paired Differences t df p 

Mean SD Std. 
Error 
Mean 

95% CI  
Lower Upper 

Pair 
1 

stderr - 
stderr_F 

.082 .169 .028 .024 .139 2.898 35.000 .006 

 
 

 

Table 14 Eta-Squares (η2) from Factorial ANOVAs for the Simulation Conditions with 
Relative Bias on Threshold Corresponding Standard Errors 

Main & Interaction Effects Thresholds Standard Errors 
Relative Bias 

Test Length (TL) 3.2% 
Sample Size (SS) 7.0% 

Number of Cluster (NC) 0.01% 
ICC 28.4% 

TL*SS 4.9% 
TL*NC 2.3% 
TL*ICC 1.5% 
SS*NC 10.0% 
SS*ICC 3.7% 
NC*ICC 0.2% 

TL*SS*NC 4.5% 
TL*SS*ICC 1.9% 
TL*NC*ICC 1.0% 
SS*NC*ICC 0.6% 

TL*SS*NC*ICC 1.8% 
Overall η2 71.0% 
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Figure 6 showed that when the sample size was 200, the relative bias would 

increase with larger number of clusters. For conditions that have less test items with 

smaller sample size, the increase of bias was greater than ones with more items and 

larger sample size. The increase of the bias was the smallest when more test items was 

combined with larger sample size. When the sample size increased to 500 and 1000, the 

relative bias in standard errors became smaller as the numbers of cluster increased.  

 

 

 
 

Figure 6. Effect of 2-way Interaction between Sample Size and Number of Clusters (i.e., 
School) on Relative Bias of Standard Errors 

 

 

Discussion 

The purpose of this study was to investigate the impact of ignoring a higher level 

nesting structure in 1PL MLIRT data. In previous studies, researchers concluded that 
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parameter estimates were unbiased but their corresponding standard errors would be 

underestimated if the highest-level data structure in multilevel models were 

misspecified. However, in this study, not only were estimated standard errors found to 

be biased, but also the item parameter themselves were estimated biased when ignoring 

the dependency among the second level (i.e., student-level).  The underestimation of 

threshold parameter standard errors would result in inflating Type I error in testing 

whether the item difficulty parameter is different from zero. One of important findings 

of this study was that the main effect of test length and sample size, together with the 

two-way interaction effect between these two factors accounted most for the estimation 

of item difficulty parameter. The intra-class correlation had the strongest effect on 

explaining the most variance in relative bias of standard errors. To be specific, the higher 

the ICC, the larger the probability to increase the bias in standard error estimations. 

Moreover, the number of clusters had the minimal effect on the estimates of 

threshold parameters. The practical implication of this finding is that number of clusters 

need not be comparable to yield good estimates of threshold.  

Another important finding is that, when the sample sizes were high enough (500 

and 1000), the biases for longer tests were minimized. The bias and relative bias values 

for threshold parameters increased when shorter tests were combined with small sample 

sizes. The bias values of the threshold parameters were desirably low except when the 

test length was 10. 
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In general, the recommendations for test lengths of 10 to 20 items and minimum 

required sample sizes of 500 to 1000 based on the finding of this study seem reasonable. 

Here, test lengths of 10 items and sample sizes of 500 yield good estimates of threshold 

parameters given adequate iterations. 
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CHAPTER IV 

STUDY TWO: A MULTILEVEL ITEM RESPONSE THEORY ANALYSIS OF PISA 

2009 DATA 

 

Ordinary item response theory models allow researchers to link the item 

responses given by students with an underlying latent trait. A multilevel IRT model 

allows researchers to study the effects of covariates on the latent trait. Some researchers 

considered the higher level nesting data structure in their data analyses while applying 

the item response theory (e.g., Fox, 2007; Liu & Luo, 2008; Pastor, 2003; Pastor & 

Beretvas, 2006).  

In Study Two, a real data set with a pure hierarchical data structure was analyzed 

by comparing parameter estimates when ignoring versus modeling the higher level 

nesting data structure. To be specific, four IRT models were compared to assess the 

differences on the estimates and statistical significance of each fixed effects across 

models. 

Method 

Data Source 

Data for this study was drawn from the Programme for International Student 

Assessment (PISA) coordinated by the Organization for Economic Cooperation and 

Development (OECD). PISA was conducted to measure 15-year-old students' literacy on 
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reading, mathematics, and science, and as well as the general competency, such as 

students' ability of problem solving. PISA also included student survey and school 

survey on individual-level and school-level characteristics. PISA started in 2000 and was 

administrated every three years. The most recent assessment was completed in2012; 

however, the data will not be released until December, 2013. PISA 2009 was the fourth 

administration and it had the most recent data available at 

http://pisaweb.acer.edu.au/oecd_2009/oecd_pisa_data_s1.html (August, 2013).  

Sample 

In 2009, 65 countries and education systems, including the United States, 

participated in the survey covered mathematics, reading, science, and problem solving.  

An initial sample of 5,233 students from 165 schools participated in the United States. 

Variables of interested from student mathematics questionnaires, student survey and 

school survey were selected for this study.  

To assess students’ mathematics literacy, each student was given a test booklet 

with clusters of items. However, in this case, the number of students in each single test 

booklet was small, which may make it impossible to run a multilevel IRT model. 

Therefore, students responded the same items across booklets were collected for data 

analyses. Students are excluded from the sample if (a) no responses to either math or 

student survey items are available for the students, (b) the students attended a school that 

did not respond to school-level survey items.  After exclusions, the remaining sample in 

the data consists of 1,089 students from 165 schools with performance on 12 items. 
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Students were given credit for each item if they endorsed the correct answer. All item 

responses were coded as zero for incorrect answers or one for correct answers.  Student-

level predictor "Female (female = 1; male = 0)" and school-level predictor "Public 

(1=public schools; 0=private schools)" are included in the analysis. This design makes it 

possible using MLRT models given that both student-level and school-level predictors 

were presented in the data.  

Analysis 

To assess the differences on the estimates and their corresponding standard errors 

of each fixed and random effects, four models were fitted the data with four different 

scenarios: 1) Ordinary IRT model without covariates; 2)   Ordinary IRT model with 

student-level covariates; 3) MLIRT model without covariates; and 4) MLIRT model 

with student- and school-level covariates.   

Model 1: Unconditional Two-level Rasch-equivalent model 

For the unconditional two-level Rasch-equivalent model analyses, only item-

level and individual-level data are considered. According to Kamata’s demonstration 

(1998), the Rasch model can be expressed under HGLM model for item i and person j: 

Level-1 model:  

            log [Pij/ (1-Pij)] = β0j+ β1j *X1j + β2j *X2j+ ... + β(i-1)j *X(i-1)j                                               (25) 

and Level-2 model: 
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  β0j = γ00 + u0j                                                                                                                              (26.1) 

                           β1j = γ10                                                                                                                                            (26.2) 

                                                 . 

                                                 . 

                                                 . 

β(i-1)j = γ(i-1)0                                                                                                                                 (26.i) 

where in the Level-1 model, Pij is the probability that person j answers item i correctly, 

β0j is the intercept term, β1j is the effect of Item 1 or the coefficient associated with Item 

1, β2j is the effect of Item 2, and so on.  Xij is the ith dummy variable for person j with a 

value of 1 when the observation is the ith item and 0 otherwise.  The reason for coding 

the last item with a subscript of i-1 instead of i is that one of the items has to be dropped 

from the model (usually the last item but not necessarily the last item) to have a 

reference indicator.  

In the Level-2 model, u0j, the random component of β0j, is normally distributed 

with a mean of 0 and variance τ and denoting the latent trait (i.e., ability, attitude) of the 

person j.  The absence of the random component terms from Equations 26.2 through 26.i 

shows that the item parameters are fixed across persons.  Combining Equation 25 and 

26.1 to find out the probability of person j getting item i correctly: 

                                     Pij = 1/ [1 + exp{-[u0j- (-γ00 – γi0)]}                                   (27) 

Recall that the equation for Rasch model is: 

                                   Pij = 1/ [1 + exp{-( θj - δi)}]                                                (28) 
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Comparing Equation 27 and 28 we can conclude that Equation 27 is an 

equivalent of the Rasch model if conditions of u0j = θj and -γ00-γi0 = δi were satisfied. 

Here, u0j is the ability parameter of person j and -γ00-γi0 is the difficulty parameter of item 

i. The result of Model 1 is presented in Table 15.  

Model 2: Two-level Rasch-equivalent model with Covariate 

The two-level Rasch-equivalent model can be easily extended to a model with 

Level-2 predictors if the researcher is interested in estimating the effect of person 

characteristics on the binary outcome.  For example, if the researcher would like to test 

whether there are gender differences in latent ability, the Level-2 predictor, Female, 

being coded with a one for females and a zero for males, could be added to the Level-2 

model: 

                      β0j = γ00 +γ01*(Female)j+u0j                                                                                          (29.1) 

 β1j = γ10                                                                                                                                         (29.2) 

                                                    . 

                                                    . 

                                                    . 

 β(i-1)j = γ(i-1)0                                                                                                                                (29.i) 

where (Female)j is the value of the gender variable for person j.  The only difference 

compared with the two-level Rasch-equivalent model (Equation 26) is the addition of a 

level-2 predictor Female for β0j. The result of Model 2 is shown in Table 15.  
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Table 15 Results of Fixed and Random Effect Estimates from Real Data Analysis 

 Ordinary IRT  MLIRT 
 Model 1 

(Unconditional) 
Model 2 

(With 
Covariates) 

 Model 3 
(Unconditional) 

Model 4 
(With 

Covariates) 
Fixed 
Effects 
 

 
B 

 
SE 

 
B 

 
SE 

  
B 

 
SE 

 
B 

 
SE 

Item 1 -0.156 0.072 -0.169 0.073  -0.184 0.076 -0.195 0.081  
Item 2 0.353 0.066 0.356 0.086  0.517 0.100 0.624 0.091  
Item 3 -0.788 0.084 -0.800 0.097  -0.966 0.111 -1.089 0.106  
Item 4 -1.455 0.128 -1.514 0.135  -1.988 0.140 -2.256 0.157  
Item 5 2.721 0.341 2.762 0.359  3.564 0.366 3.789 0.462  
Item 6 -0.985 0.112 -0.988 0.117  -0.995 0.133 -1.230 0.165  
Item 7 1.119 0.087 1.151 0.142  2.097 0.181 2.309 0.187  
Item 8 -0.603 0.088 -0.646 0.088  -0.673 0.089 -0.779 0.125 
Item 9 -3.777 0.812 -3.792 0.847  -3.866 0.879 -3.895 0.991 
Item 10 0.448 0.073 0.498 0.078  0.565 0.098 0.725 0.086 
Item 11 -0.726 0.114 -0.732 0.114  -0.759 0.116 -0.787 0.203 
Item 12 0.754 0.091 0.789 0.093  0.853 0.099 0.882 0.115 
          
Random 
Effects 

         

Student-
level 

0.574 0.034 0.563 0.034  0.184 0.161 0.182 0.164 

School-
level 

-- -- -- --  0.052 0.039 0.046 0.044 

 Note. -- is not applicable. 
 

 

Model 3: Unconditional Three-level Rasch-equivalent model 

Consider the fact that the subjects were collected from different schools and the 

researcher was interested in examining the effect of the school characteristics on 

students’ latent trait and item parameter, a level that represents school is added to the 
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two-level model.  Therefore, the first level model, the log-odds of the probability Pijm 

that person j in school m answers item i correctly becomes: 

Level-1 model:  

            log [Pijm / (1-Pijm)] = β0jm + β1jm *X1jm + β2jm *X2jm + ... + β(i-1)jm *X(i-1)jm                (30) 

In contrast to the Equation 25 where Pij has only two subscripts, the additional subscript 

m indicates schools.  Xijm is now the ith dummy variable for person j in school m.  β0jm is 

the effect of the reference item and the βijm is the effect of the ith item compared to the 

reference item. 

The level-2 models for the item difficulty parameters, βijm, are person level 

models.  The person level models for person j in school m are written as: 

Level-2 model: 

                                  β0jm = γ00m + u0jm                                                                                                           (31.1) 

                                  β1jm = γ10m                                                                                                                           (31.2) 

                                                               . 

                                                               . 

                                                               . 

                                  β(i-1)jm = γ(i-1)0m                                                                                                                  (31.i) 

Once more, these models are almost identical to the level-2 equations in the two-level 

Rasch-equivalence model (Equation 26) except for the additional subscript m.  Here, 

u0jmrepresents how much the latent ability of person j at school m is deviated from the 
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mean ability within school m, which is denoted as γ00m.  The variance of u0jm is assumed 

to be fixed across schools.  

Finally, in the third level or the school-level model, only the overall effect of 

items, γ00m would vary across schools. For school m, the model would be: 

Level-3 model: 

                      γ00m = π000 + r00m                                                                                                                 (32.1) 

                      γ10m = π100                                                                                                                                  (32.2) 

                                                         . 

                                                         . 

                                                         . 

                              γ(i-1)0m = π(i-1)00                                                                                                                         (32.i) 

where π000 is the fixed component of γ00m and r00m is the random component of γ00m with 

a mean of 0 and variance τπ.  Combining Equations 31 and 32.1 through 32.i, we get 

              Pijm = 1/ [1 + exp{-( r00m + u0jm) –(-πi00 - π000)}]                           (33) 

Comparing Equation 33 and 28, we can conclude that Equation 33 is an 

equivalent of the Rasch model if r00m + u0jm = θj and –πi00 - π000 = δi.  Here r00m + u0jm 

represents the latent ability of person j at school m, which can be viewed as the random 

effect associated with school m (r00m) and the average ability of students in school m 

(u0jm) (Kamata, 2001).  The item difficulty is -πi00 - π000 for the item i, and π000 is the 

item difficulty for the reference item i. The result of Model 3 is presented in Table 15.  
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Model 4: Three-level Rasch-equivalent model with Covariates 

Like the two-level Rasch-equivalent models, adding level-2 predictors (i.e., 

person characteristic variables) to the three-level model is quite straightforward.  For 

instance, if a study aims to investigate the gender difference in latent ability as in the 

demonstration of the two-level models, then the level-2 model becomes: 

                                   β0jm = γ00m + γ01m * (Female)jm + u0jm                                                          (34.1) 

                 β1jm = γ10m                                                                                                                         (34.2) 

                                                                 . 

                                                                 . 

                                                                 . 

                                   β(i-1)jm = γ(i-1)0m                                                                                                                 (34.i) 

If the researcher is interested in finding out the variability of the effect of Female 

between schools, then the level-3 models can be written as: 

                    γ00m = π000 + r00m                                                                                                               (35) 

                   γ01m = π010 + r01m 

                   γ10m = π100  

                                                                  . 

                                                                  . 

                                                                  . 

                   γ (i-1)0m = π(i-1)00 

If one is studying the relationship between the placement (Public) and students’ 

mathematics literacy, the level-3 variables can then be included in the models as below: 
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                                γ00m = π000 + π001 * (Public)m+ r00m                                                                         (36) 

      γ01m = π010 + π011 * (Public)m + r01m 

      γ10m = π100  

                                                             . 

                                                             . 

                                                             . 

                                γ(i-1)0m = π(i-1)00 

Combining Equation 30, 34 and 36 to form a three-level Rasch-equivalent model 

with predictors in both level-2 and level-3: 

                                    Pij = 1/ [1 + exp{-[ψjm - (-πi00 – π000)]}                              (37) 

where ψjm = π010 (Female)jm + π001 (Public)m + π011 (Female* Public)jm + r01m (Female)jm 

+ r00m + u0j.  Again, comparing with the traditional Rasch model (Equation 28), ψjm 

corresponds to students’ ability under a function of students’ gender and the replacement 

that students are belonging to.  Here, π011 is the effect of the interaction between Female 

and Public, indicating whether the effect of gender is significant different across schools 

depending on school size.  Still, -πi00 - π000 is representing the item difficulty for the item 

i, and π000 is the item difficulty for the reference item i.  The results of four models are 

shown in Table 15.  

Results 

As shown in Table 15, the four models resulted in similar estimates for the fixed-

effect parameters and standard errors as well, even if the higher level nesting data 

structure was not modeled in Model 1 and Model 2. However, the magnitudes of 
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threshold parameters for each item were underestimated in the inappropriate modeling 

scenarios. What's more, the standard errors of threshold parameters were also 

underestimated if the higher level data structure was ignored, which can lead to inflated 

Type I error rate. The variance of random effect in both student level (i.e., within 

schools) and school level (i.e., between schools) in ordinal IRT models were 

overestimated compared with the MLIRT models. What’s more, adding covariates 

would decrease the variance of random effects. This is reasonable because the covariates 

would explain some of variances in the outcome variable so that the residual variance 

would be smaller when covariates (i.e., female and public) were included in the model.  
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH 

 

In social science study, especially in educational research, it is very common that 

students are not independent but nested within schools. Multilevel data are often 

encountered in measurement models when students from different schools or institutions 

were administered by the same measurement or test. With the development of using 

computerized adopted tests (CAT), such as, SAT, TOFEL, GRE, and other licensure 

tests, individuals those from different classrooms, schools, states, or even various 

countries, could have taken the same examinations.  This type of designs makes it 

possible using multilevel item response theory models to appropriately fit the three-level 

data: items were responded (nested) by individuals, and individuals were nested within 

schools. However, it is very easy for researchers to ignore the higher level data structure 

due to several reasons. First, the commonly-used software for item response theory 

models (e.g. BILOG and PARSCALE) do not provide built-in functions of handling 

multilevel data. Second, the ID information of third-level data may not be available 

because of confidentiality. Third, the technical of parameterization and interpretation of 

MLIRT models are too complex to operate and understand.  

Although there were studies conducting MLIRT to fit the hierarchical data, it is 

still necessary for researchers to understand the impacts of ignoring the higher level data 

structure in measurement models. There is little literature on comparing the ordinary IRT 
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models with the MLIRT models. Therefore, the purpose of this dissertation is to fill the 

gap of literature on using MLIRT.  

Findings were revealed by doing two studies in this dissertation: one is the Monte 

Carlo simulation study and the other is a confirmatory study by using real world data.  

First, the Monte Carlo study has investigated the potential impact of a few design 

factors on the accuracy of estimates and the corresponding standard errors, including test 

length, sample size, numbers of clusters and intra-class correlation. The simulation 

results showed that test length, sample size, together with the two-way interaction effect 

between these two factors accounted for most of the estimation of item difficulty 

parameter. That is, when the sample sizes were high enough (500 and 1000), the bias for 

longer tests were minimized. The bias and relative bias values for threshold parameters 

increased when shorter tests (i.e., test length = 5) were combined with small sample sizes 

(i.e., n = 200).  

Secondly, the intra-class correlation had the strongest effect on explaining the 

most variance in relative bias of standard errors. To be specific, the higher the ICC, the 

larger the likelihood to increase the bias in standard error estimations. 

Thirdly, the number of clusters had the minimal effect on the estimates of 

threshold parameters. The practical implication of this finding is that number of clusters 

need not be comparable to yield good estimates of threshold.  

            The real-world data analyses confirmed the results from the simulation study,  



58 
 

showing the importance of correctly modeling hierarchical data in IRT models.  The 

estimates of threshold parameters and their corresponding standard errors could be 

underestimated when the higher level data structure was ignored. What's more, the 

variances of random effects would be overestimated but the standard errors of random 

effect variance could be underestimated when IRT models were used instead of MLIRT 

models.  

This dissertation was designed primarily to introduce a higher level data structure 

to ordinary IRT models. Only the ideal situation was discussed in which the individuals 

at level-2 were purely or strictly nested within the top level components. However, in 

reality, individuals were often from a cross-classified data structure rather than purely 

hierarchical structure. For example, students from a given high school may go to several 

different colleges.  If this is the case, students are nested within high schools and within 

colleges, but high schools and colleges are not nested but crossed with each other. 

Therefore, to represent real situations, a future study could assess the impact of 

misspecifying multilevel data structure when students are cross-classified by schools and 

neighborhoods.  

In addition, for the simplicity of study design, this study only used dichotomous 

items, the MLIRT models could also be used with polytomous items. Additionally, 1PL 

IRT parameterization was only considered in this study. The impact of ignoring a data 

structure in more complex models such as 2PL and 3PL IRT parameterization can be 

examined in future studies. 
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All in all, despite the fact that there are some limitations of this study, it still 

provides a general introduction of evaluating the performance of multilevel 

measurement model when the top-level data structure is modeled appropriately versus 

when the top-level data structure is ignored.   
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APPENDIX A 

MPLUS CODES FOR DATA GENERATION AND DATA ANALYSIS 

TITLE: dataset con1 

montecarlo: 

 names = u1-u5 x1 x2; 

 generate = u1-u5(1); 

 categorical = u1-u5; 

 nobs = 200; 

 ncsizes = 3; 

 csizes = 5(5) 10(10) 5(15); 

 seed = 48459; 

 nreps = 500; 

repsave=all; 

save=con1*.dat; 

 within = x1; 

 between = x2; 
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  ANALYSIS: TYPE IS TWOLEVEL; 

model population: 

      %Within% 

 [x1*0]; x1@1; 

 fw by u1@1 u2-u5*1; 

 fw*1; 

fw ON x1*.25; 

 %Between% 

 [x2*0]; x2@1; 

 fb by u1@1 u2-u5*1; 

 fb*.1111; 

fb ON x2*.25; 

 [u1$1*-2.5 u2$1*-1.5 u3$1*0 u4$1*1.5 u5$1*2.5]; 

output: 

 tech8 tech9; 

TITLE: true model_con1 
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data: file = con1list.dat; 

type = montecarlo; 

variable: 

 names = u1-u5 x2 x1 clus; 

 categorical = u1-u5; 

 within = x1; 

 between = x2; 

cluster = clus; 

Appropriate Model: 

ANALYSIS: TYPE IS TWOLEVEL; 

model: 

    %Within% 

 fw by u1@1 u2-u5*1; 

fw ON x1*.25; 

    fw@1; 
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 %Between% 

 fb by u1@1 u2-u5*1; 

 fb on x2*.25; 

    fb@.1111; 

    [u1$1*-2.5 u2$1*-1.5 u3$1*0 u4$1*1.5 u5$1*2.5]; 

output: 

 tech1 tech8; 

Inappropriate Model: 

TITLE: false model_con1 

data: file = con1list.dat; 

type = montecarlo; 

variable: 

 names are u1-u5 x2 x1 clus; 

usevariables are u1-u5; 

 categorical = u1-u5; 

ANALYSIS: ESTIMATOR = MLR; 
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model: 

f by u1@1 u2-u5*1; 

    f@1; 

    [u1$1*-2.5 u2$1*-1.5 u3$1*0 u4$1*1.5 u5$1*2.5]; 

output: 

 tech1 tech8 
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