

CONTROL TECHNIQUES FOR UNCORE POWER MANAGEMENT IN CHIP-

MULTIPROCESSOR DESIGNS

A Thesis

by

ZHENG XU

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu

Co-Chair of Committee, Paul V.Gratz

Committee Member, Anxiao Jiang

Head of Department, Chanan Singh

August 2013

Major Subject: Computer Engineering

Copyright 2013 Zheng Xu

ii

ABSTRACT

In chip-multiprocessor (CMP) designs, when the number of core increases, the

size of on-chip communication fabric and data storage grows accordingly and therefore

the chip power challenge is exacerbated. This thesis work considers the power

management for networks-on-chip (NoC) and the last level cache, which constitute the

uncore in CMP designs. NoC is regarded as a scalable approach to cope with the

increasing demand for on-chip communication bandwidth. The last level cache is shared

among all cores. The focus of this work is on the control techniques for uncore dynamic

voltage and frequency scaling. A realistic but not well-studied scenario is investigated.

That is, the entire uncore shares a single voltage/frequency domain, as opposed to

separated domains in most of previous works. One appealing advantage here is that data

packets no longer experience the interfacing overhead across different voltage/frequency

domains. The classic PI (Proportional and Integral) control method is adopted due to its

simplicity, flexibility and low implementation overhead. This thesis research outcome

includes three parts. First, stability of the PI control is analyzed. Second, a model-

assisted PI control scheme is proposed and studied. The model assist is to address the

problem that no universally good reference point exists for the control. Third, the

windup issue for the PI control is investigated. Full architecture simulations are

performed on public benchmark suites to validate the proposed techniques. The result

show 76% energy reduction with less than 6% performance degradation compared to

constantly high voltage/frequency for uncore.

iii

DEDICATION

To my parents, my aunt, my uncle and grandparents.

iv

ACKNOWLEDGEMENTS

I would like to thank all those who encouraged me and helped me during my

study and research at Texas A&M University.

Especially, I would like to thank my family for their ceaseless support,

encouragement and endless love. Without which I would never able to complete my

master so smoothly.

Also, I would like to extend my heartfelt gratitude to my advisor, Dr. Jiang Hu,

who gave me constant guidance as well as warm encouragement throughout this

research project. He was always patient, kind and helpful whenever I had questions on

my academic life. I could not have completed this thesis and knew power management

wonder world without his guidance and generous support. I also would like to thank Dr.

Paul Gratz and Dr. Anxiao Jiang for being my committee members, and for their

suggestions on this research.

Last but not least, thanks to all my friends and colleagues who accompany with

me these years, and also the department faculty and staff for giving me a warm and kind

environment during my life at Texas A&M University.

v

NOMENCLATURE

DVFS Dynamic Voltage Frequency Scaling

V/F Voltage/Frequency

NoC Network-on-Chip

LLC Last Level Cache

CMP Chip Multiprocessor

AMAT Average Memory Access Time

PID Proportional Integral Derivative

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

1.INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK .. 4

2.1 CMP Uncore Basics………………………………………………………. 4

2.2. Uncore Performance Metric………………………………………………. 5

2.3 Uncore Status Monitoring………………………………………………… 8

2.4 PID Control Basics……………………………………………………… 10

2.5 Uncore Power and Performance Implications…………………………… 11

2.6 Related Works…………………………………………………………….. 12

3. PRELIMINARIES ... 14

3.1 Problem Description……………………………………………………… 14

3.2 Options for DVFS Control Policy………………………………………… 15

4. PID-BASED DVFS POLICY AND STABILITY ANALYSIS 17

5. MODEL ASSISTED PI CONTROLLER .. 24

6. ANTI WIND-UP ISSUE OF PI CONTROLLER .. 28

7. DESIGN IMPLEMENTATION .. 32

8. EVALUATION .. 36

vii

9. CONCLUSIONS .. 43

REFERENCES ... 44

viii

LIST OF FIGURES

 Page

Figure 1: Logical CMP diagrams highlighting Voltage/Frequency domain partitions. 3

Figure 2: Core, uncore and memory in a CMP system .. 4

Figure 3: Header flit bit fields ... 8

Figure 4: NoC layout; the monitor resides at tile 6 ... 9

Figure 5: Extrapolation for the rest of the interval ... 10

Figure 6: A multicore processor design where the uncore (NOC+LLC) forms a single

V/F domain ... 14

Figure 7: PID system diagram .. 17

Figure 8: Critical latency vs. uncore clock period ... 20

Figure 9: Mathematical PID system model .. 21

Figure 10: Unit circle in Z-plane .. 23

Figure 11: Loads fraction over control intervals. .. 37

Figure 12: The number of L1 misses over control intervals. ... 37

Figure 13: the number of LLC misses over control intervals ... 38

Figure 14: Normalized energy for PARSEC benchmarks... 39

Figure 15: Normalized system performance for PARSEC benchmarks. 40

ix

LIST OF TABLES

 Page

Table 1: Simulation setup .. 34

Table 2: Normalized energy-delay product on average for all PARSEC cases. 41

Table 3: Normalized energy and performance on average for all PARSEC cases

under different integral bound .. 42

1

1. INTRODUCTION

Modern chip-multiprocessor (CMP) designs face challenges at multiple fronts.

Power is a well-known one that has received a lot of research attention. At the same time,

on-chip communication and data storage are becoming a bottleneck to CMP

performance. This demands increasingly large bandwidth for the communication as well

as bigger on-chip storage size. Indeed, on-chip communication fabrics and cache

consume a large portion of chip estate. Evidently, such increase inevitably worsens the

power issue. This thesis research is an effort to address these intertwined challenges.

 Network-on-chip is an approach for designing the communication subsystem in a

CMP (Chip-multiprocessor) system. NoCs apply networking theory and methods to on-

chip communication. It brings notable improvements over conventional bus and crossbar

interconnections. NoC improves the scalability of CMP, and the power efficiency of

complex CMP compared to other designs. Research shows that up to 82% energy

savings can be achieved by using NoC compared to conventional bus design in a 16-core

system [10]. One study shows that the NoC still takes up a notable proportion of the total

chip power which is 36% in MIT RAW architecture [21]. In low power design

techniques, when some cores are working in an idle state, they could be allowed to shut

down to save power. However, the same idea cannot be used for NoC and LLC since

these two parts must function normally even when the workload is low, otherwise the

entire CMP could not work at all. Since we cannot shut down NoC and LLC completely,

DVFS would be a practical and proper technique for low power design. The target

2

system will always run at the lowest supply voltage and frequency that meets the

performance constraints. This technique has been intensively studied for individual

microprocessor cores as well as the NoC [19, 13, 20, 16, 8, 14, 17, 3, 6]. Most of the

prior works divide the clock domain based on cores. They put one or more than one core

in a voltage/frequency domain along with the nearby distributed cache and

interconnection. The divided V/F domains for NoC imply interfacing overhead between

different domains as well as significant performance penalty for data communication.

The overhead of crossing clock domains would be increased as the number of cores got

increased. Our work targets at a realistic scenario where the entire NoC and LLC belong

to a single V/F domain. With this architecture configuration, the overhead of crossing

clock domain within LLC and NoC can be eliminated. So far, there are only two works

[13,6] which are based on the same settings. Liang and Jantsch [13] proposed a rule-

based DVFS scheme for NoC using network load as performance metric. Chen et al. [6],

developed a PI control based DVFS method with AMAT (Average Memory Access

Time) as the metric. They also introduced a low overhead technique for monitoring

AMAT.

3

(a) CMP with V/F domains by tile (b) Separate V/F domain

Figure 1 [6]: Logical CMP diagrams highlighting Voltage/Frequency domain

partitions.

This thesis research is focused on the control aspect of the uncore DVFS

framework described in [5]. A formal stability analysis for the PI controller is provided.

A model-assisted PI control technique is proposed and studied. Experimental results

show that it can reduce uncore energy by 74% with no more than 6% performance

penalty compared to constantly high uncore V/F level. Furthermore, the windup issue

and anti-windup technique for the PI control are studied.

4

2. BACKGROUND AND RELATED WORK

In this section, we will first introduce the concept of uncore which mainly

includes the shared, distributed last level cache and network-on-chip. Next we will talk

about the choice of uncore performance metric and the metric monitoring technique.

Furthermore, we will also discuss power and performance constraint on uncore. At last,

we will introduce the prior related work on DVFS for CMP.

2.1 CMP Uncore Basics

Figure 2 [4]: Core, uncore and memory in a CMP system

5

In general, CMP contains multicores, private caches and uncore. The uncore

portion of the die refers to all the integrated subsystems on the chip except the cores. In

more detail, the uncore portion contains the last level cache, the routers and links of NoC,

integrated memory controller, integrated I/O controller etc. Uncore is mainly responsible

for the communication between core and LLC, on-chip and off-chip. In modern LLCs,

LLC is logically shared and spatially distributed. Each bank has an attached core which

issues read and write requests. The caches’ collective goal is to minimize the use of the

main memory.

In the system configuration, it is assumed that coherence between the private

caches in the cores is maintained via a distributed directory cache in the uncore. The

NoC would carry the memory request from core to LLC, the coherence messages

between LLC, the packets between on-chip and off-chip. It is also assumed that LLC

cache set indices are spread about the partitions of the LLC in a round robin fashion to

ensure that each partition receives approximately the same amount of traffic and no

single partition becomes a hotspot.

2.2. Uncore Performance Metric

Liang and Jantsch [13] poposed a DVFS controller which are trying to keep the

network workload around its saturation point. The workload here is defined as the

number of flits injected into the network. In this way, the V/F level would be adjusted

based on the workload of the entire network. If the network workload is considerably

higher or lower than the saturation point, the V/F level is adjusted as a respond to the

change of workload. There is one apparent drawback in their control mechanism that

6

their scope only focuses on the total workload of the entire network while neglecting

particular congested part of the network. Obviously, a congested part could be able to

impact the performance of the entire network. But even with the consideration of local

traffic condition of network, it is still not sufficient. The metric they choose to use is the

number of flying flits in network which is not appropriate sometimes. Suppose the

program contains a large amount of memory store instruction, this will cause a large

workload in the point view of number of flits. As we know, memory store instructions

are always not as critical as memory load instructions to the overall performance of

entire system because memory load instructions have bigger chance to block the

execution of following instructions. Thus network workload alone is not a good metric.

In Chen et al. [6], a PI control for uncore DVFS is proposed based on AMAT. AMAT is

a metric that indicates the memory access’s speed of the overall system including private

cache access, shared last level cache access, interconnection delay and memory access.

AMAT is a global system metric which does not indicate the traffic appropriately all the

time. Imagine a common situation, if the program’s memory access mostly goes to the

off-chip main memory, the AMAT will be very high while the network is actually not

busy and there is some room for power saving here. But with AMAT as their metric, the

power controller may increase the V/F level based on high AMAT instead of making

right decision of decreasing V/F level.

Based on the summary of these two previous work, it is concluded that the ideal

metric should reflect both the uncore performance and its criticality to the overall chip

7

performance. In this research work, the metric proposed in the work of Xi Chen et al. [5]

is chosen to use. They proposed a new metric – critical latency which is expressed by

 (1)

where is the criticality factor and is the uncore latency. The uncore latency must

consider the latency in both LLC and network. Meanwhile, it must exclude the off-chip

main memory access time because it has no relationship with uncore DVFS. Just like the

case given in above paragraph, sometimes increasing uncore V/F level does not help to

improve the overall system’s performance especially when main memory access latency

dominates the overall data access latency which is a waste of energy. The uncore latency

can be described by

(∑

)

 (2)

where is the total round-trip latency for packet j, is the memory access

latency, is the number of LLC misses in a control interval and is the

number of packets in the same interval.

 For memory access instructions, store and load are the two main types. But they

have different criticality in terms of the overall system performance. Load instructions in

most of the time have much higher priority than store instructions. A load instruction

may potentially block the execution of following instructions, but store instruction may

not affect the execution of following instruction by using the common techniques such

as load bypassing, load forwarding and so on. Thus, the criticality factor of uncore

8

performance includes Loads_Fraction, which is the number of load instructions per

cycle. It is expressed by

 (3)

 2.3 Uncore Status Monitoring

Figure 3 [6]: Header flit bit fields

In Chen et al.’s work [6], they also introduced the implementation of network

monitor which has low overhead. Each core keeps their own status information and puts

them into every packet header it released to the network. According to the

communication policy, the packet header has a large amount of unused bits which make

“piggyback” method possible. Xi Chen et al. [6] put a monitor with a central core and

collect status information from the header flits passing through.

9

Figure 4 [6]: NoC layout; the monitor resides at tile 6

In the end of each control interval, the data stored in the monitor would be

extrapolated based on the arrival time inside the current control interval and averaged

across interval among all cores. Figure 5 shows an illustrative example. and stand

for the data stored in the monitor while and stand for the arrival time inside the

control interval. In the end of the control interval, is doubled because the flit from

Core 1 arrives in the middle of control interval. The data is averaged across interval

among all cores by using the equation in Figure 5. After the extrapolation, the computed

metric would be fed into their power controller as input. In this research work, the same

method is used since this monitor is very efficient and induces low overhead.

10

Figure 5: Extrapolation for the rest of the interval

In this thesis research work, we address DVFS for the uncore as a whole. We will

show that there is a large opportunity for uncore power saving by using a simple but

effective control algorithm to adjust uncore voltage and frequency based on the

monitored results.

2.4 PID Control Basics

A proportional-integral-derivative controller (PID controller) is a widely used

controller in industrial control systems. It is also called three-term-controller. The

popularity is due to its simplicity and efficiency. Moreover, PID controller can keep its

performance relatively stable under different conditions of environments. The PID

controller contains three separate constant parameters: the proportional, the integral and

derivative values, denoted as P, I, and D. In more details, P term depends on the present

error, I term depends on the accumulation of past errors, and D term is based on current

rate of change of errors. The weighted sum of these three actions is used to adjust the

process via a control execution element such as the position of a control valve, a damper,

11

or the power supplied to a heating element. Sometimes only one or two actions to

provide the appropriate system control is sufficient for applications. This is achieved by

setting the other parameters to zero. For instance, PI controllers are very popular since

derivative term is sensitive to measurement noise. Integral term plays an important role

in PI controller because the absence of an integral term may prevent the system from

reaching its target value. Xi Chen et al [6] used PI controller in their work. Their

reference point in PI controller is a fixed value. This limits the adaptability of the

controller. The working condition is changed as the program phase changes so that a

more adaptive controller is required to further explore the power saving amount.

2.5 Uncore Power and Performance Implications

In modern chip design, the interconnection portion takes up larger and larger area

and power consumption. In the same way, uncore would consume a considerable amount

of power so that it is very important to do low power design targeting at uncore portion.

Power consumption includes two parts: one is dynamic power dissipation and the other

one is static power dissipation. Dynamic power dissipation for CMOS circuit is given by

 (4)

where P is the dynamic power dissipation, is the activity factor, C is the capacitance of

CMOS, V is the supply voltage and f is the frequency.

Although the activity factor () for uncore is not always high, its total area and

capacitance can be large. Static power dissipation for CMOS circuit are given by

 (5)

where is the supply voltage and is the leakage current in CMOS.

12

Although dynamic power takes up largest portion of power dissipation today,

static power is increasing very fast and will become a very large part in future VLSI

process technologies. From the equation of power calculation, apparently lowering

voltage and frequency will bring benefits to low power design directly and significantly.

Dynamic frequency and voltage scaling takes advantage of this basic concept and always

runs at the lowest supply voltage that meets the timing constraints. On the other hand,

lowering the frequency will bring performance degradation in some degrees. But with

very careful design of DVFS control policy, the performance degradation could be

controlled in a limited range which can be accepted by users. In this paper, a model

assisted control technique is proposed which can achieve significant power saving with

very limited performance loss.

2.6 Related Works

Several groups have explored DVFS in NoCs and /or CMPs. Shang et al. wrote a

pioneering work in the use of DVS for NoCs [19]. They performed DVFS for individual

links in NoCs. DVFS has also been studied for individual routers [14]. Mishar et al.

changed the V/F level of the upstream router based on the monitored information of

input queue occupancy of a router in downstream. Son et al. explored DVFS for specific

application in NoCs [20]. They used DVFS on both cores and network links in a parallel

linear system solver. V/F levels are picked based on the task criticality. In other

previous works, the voltage/frequency domains within the NoC are assumed to be

associated with individual processor cores. Guang et al. proposed a voltage island based

approach [8]. Individual island V/F levels are chosen according to monitored router

13

queue occupancies. In each of these works, the DVFS policy is determined by local

information. DVFS is also widely studied for processor cores or CMPs. A simple

appproach is rule-based DVFS [17] that changes voltage/frequency level when

monitored performance crosses certain threshold. Rule-based method is improved by

including hysteresis [18]. Control theoretic techniques are proposed in [16, 3]. Orgas et

al. [16] employed control theory for voltage island based designs by building state space

mathematical models. Furthermore, Bogdan et al. introduced an optimal control method

using a fractional state model [3]. In drowsy caches, DVS is employed to reduce the

static power by scaling V/F at certain cache lines at a time [7]. So far, there are only few

published works on DVFS targeting to shared caches in multicore chips.

14

3. PRELIMINARIES

3.1 Problem Description

 In our system settings, we use a common case in chip multiprocessor design. We

simulate a 16-core CMP similar as shown in Figure 6. Each tile consists of a processor

with private caches. Each tile also includes a portion of LLC used for both private and

shared data depending on the policy implemented by the protocol. The interconnect is a

2D mesh network with routers and network interfaces co-located with every core. The

NoC and the LLC together are referred to as uncore system in this paper.

Figure 6 [5]: A multicore processor design where the uncore (NOC+LLC) forms a

single V/F domain

15

 The research goal of this paper is formulated as follows. Uncore Dynamic

Voltage and Frequency Scaling: for each control interval, use the best control technique

to adjust voltage/frequency level for the uncore such that the uncore energy dissipation

for both dynamic energy and static energy is minimized while the chip performance for

the overall system, in terms of total application runtime, has negligible or user-specified

degradation.

 3.2 Options for DVFS Control Policy

 Generally speaking, there are two main types of approaches for DVFS: open-

loop control and closed-loop control. Open loop control does not have a feedback loop,

the output is only based on the input signal. Open loop control for DVFS decides control

variables based on the current system state and a system model obtained either

theoretically or through machine learning. But the CMP system is so complex that the

model should depends on a lot of environmental elements. Without the feedback of the

controlled system, the reliability and predictability are fragile and tend to be questioned.

 Closed loop control compensates this disadvantage of open loop control while

brings a little overhead on implementation. Closed loop control compares the measured

output signal and the expected output signal and the difference signal would be used to

adjust the output signal as controller input. With this closed loop control mechanism, it

can be expected to have more accurate control to the system. In the world of closed-loop

control for DVFS, we also face a lot of choices such as rule-based, PID (Proportional-

Integral-Differential) control, linear control based on state-space model and optimal

control. For rule-based control, the uncore V/F level would be decided under a series of

16

artificial rules. For example, one level would correspond to a range of input variables.

For PID control, the decision would be made through the simple, low-overhead PID

controller which only relies on a simple mathematical equation. For linear control based

on state-space model, the control mechanism would require larger amount of calculation

of several matrices. For optimal control, it is the most complex one among control

policies. Large amount of calculations have to be executed to generate the final

optimized result. With systems get more complicated, the stability is harder to ensure.

 In this research, PID is chosen as controller due to its simplicity, flexibility, low

implementation overhead and guaranteed stability. But PID is so simple that sometimes

it could not achieve the best performance. To compensate this drawback, this thesis work

made modifications and proposed a new control mechanism named as model assisted

PID control. This new mechanism would not add a lot of complexity while achieved

significant performance enhancement. This will be introduced in detail later in

subsequent parts of this paper.

17

4. PID-BASED DVFS POLICY AND STABILITY ANALYSIS

We choose to implement a DVFS control scheme based on PID (Proportional-

Integral-Derivative) control. The reason is as follows: First, comparing to rule-based

control, the PID control apparently is more flexible to different applications while rule-

based control may only work well for some specific applications. Second, comparing to

linear control based on state-space model and optimization control, PID controller has

both lower computation cost and implementation overhead. Even though PID control is

very simple, it has strong theoretic grounds for stability analysis.

Figure 7: PID system diagram

The block diagram shown in Figure 7 is the PID control system. Let us take a

closer look at each part of the system. The controller takes two input signals: the

reference critical latency and the monitored critical latency in network. The reference

18

critical latency is obtained by empirical data. The error is generated by subtracting the

monitored critical latency from the reference critical latency which is written as

 (6)

where is the monitored critical latency for the control interval and is the

reference point for the PI controller. Although (critical latency) should correlate with

the overall chip performance, its target value is not obvious which need to be decided by

empirical data.

The PI controller takes the error as input and it is

 () () ∫ ()

 (7)

where is the proportional gain, is the integral gain, u(t) is the output control signal

of PI controller which also stands for the uncore clock period and e(t) is the difference

between two inputs. From equation (7), the PI controller consists of two items. The first

one is proportional control and the second one is integral control. The two control

actions in the PI controller are independent of each other. Increasing can result in

increasing dynamic response speed of the system and lowering the deviate error of

steady state. But if the controller does not contain integral action, proportional control

alone can not completely eliminate the steady state deviation. Integral control can

compensate this disadvantage and completely eliminate the steady state deviation. As

long as there is a deviation, the output of integral part will be accumulated to be larger

value and does not diminish until the deviation is totally eliminated to zero. Thus the

output will be kept as a constant value. On the other hand of integral control, it will also

produce a negative phase shift which means there would be a delay in the response. This

19

negative effect reduces the stability of the closed-loop system. In engineering

applications, according to the controlled object’s specific characteristics, workload

disturbance and the control performance requirements, the three terms in PID controller

can be combined in any way to constitute the necessary control policy. In our case, we

are using PI controller since this is simpler and often more robust than including the

Derivative (D) term.

Next, make a Laplace transformation to the above equation, we have

 ()
 ()

 ()

 (8)

where U(s) is the Laplace transform of u(t), E(s) is the Laplace transform of e(t) and D(s)

is the Laplace transform of the PI controller.

 Equation (8) is in the form of continuous domain. Considering the reality of our

digital system, the ideal continuous integral cannot be achieved in a discrete system. As

a result, we have to turn the above equation into a form in digital discrete domain. We

will have

 () ()

 (9)

where z comes from Z-transform.

 Finally, performing an inverse Z-transform to equation (9), we have the equation

below in time domain

 () (10)

where is the output at control interval which stands for uncore clock period and

is the error at control interval.

20

 The control output need to be converted to the V/F level for the uncore system at

next. Since critical latency is a nonlinear function with respect to uncore frequency, we

perform a transformation of

 such that the critical latency is approximately a linear

function of uncore clock period u.

Figure 8 [5]: Critical latency vs. uncore clock period

 In order to analyze the stability of this control system, we need to obtain an

analytical form of the system function. We tried to obtain some supporting evidence

through experiments. For the PARSEC benchmark fluidanimate, we simulate with

different constant uncore V/F levels throughout the entire ROI (Region of Interest). The

21

average critical latency versus uncore clock period results are plotted in Figure 8. The

results confirm that critical latency has approximately linear dependence on the uncore

period.

Then, by curve fitting, we can obtain an approximated expression

 (11)

where which is the uncore clock period, and are two fitting coefficients.

Although the values of and are specific for each application, the subsequent analysis

is general, as long as the () relation conforms to above equation. We performed

many other simulations and all results follow similar trend as the above figure.

 For the monitor part, we simply use 1 to represent it as the monitored critical

latency is nearly equal to actual critical latency. This has been confirmed in Xi Chen, et

al. [6].

Figure 9: Mathematical PID system model

22

 Combining all the equations together, we have

 {
 () () (

)

 () () ()
 (12)

After substitute the second equation into the first equation, we have

 ()
(

)

 (

)
 () (13)

which can be converted to a simplified form

 ()
()

() ()
 () (14)

The characteristic equation for this system is

() () (15)

Stability analysis is a very important part of control theory. In our case, if the

PID controller parameters (the gains of the proportional, integral and derivative terms)

are chosen poorly, the controlled process can be unstable. The system stability is defined

for situations where its equilibrium state experiences external disturbance. When the

disturbance disappears after a period of time, if the system can go back to the original

equilibrium state, the system is called stable system. In contrast, if the system can not

return to the original state of equilibrium, the system is called unstable system. Linear

stability of the system is the inherent characteristic which only depends on the system

itself regardless of the presence and strength of the external input signal.

According to control theory, the system is stable if and only if the root of the

characteristic equation is inside the unit circle of the z-plane. In our case, this requires

that

23

()

 (16)

is within the unit circle. To satisfy this condition, we simply need to find PID

coefficients , .

Figure 10: Unit circle in Z-plane

 When there is no miss request issued into the network, the critical latency is not

affected by f and the above closed-loop based analysis does not hold. However, the

chance of no miss request to LLC is very small. Even when it happens, the monitored

critical latency is very low and the controlled frequency gradually decreases to its

minimum. Therefore, the system is still stable.

24

5. MODEL ASSISTED PI CONTROLLER

 Both Liang and Jantsch’s [13] and Chen et al.’s [6] work have a common

weakness which is that they have no systematic approach to decide the reference point

for their controllers. In Chen et al.’s work [6], the reference point is set empirically

based on offline simulations. However, it is very difficult, if not possible, for a fixed

reference point to work well for different applications.

 The error function in the critical latency based PI controller is

 (17)

where is the monitored critical latency for the control interval and is the

reference point for the PI controller. Although should correlate with the overall chip

performance. Its target value is not obvious. Of course, one may select one empirically

from offline simulations. However, the offline test cases might not behave the same as

online cases.

 To address this problem, we propose a model assisted PI control method. We can

see that is approximately a linear function of packet latency, which is in turn

proportional to the uncore clock period . Hence, we have

 (18)

where and are coefficients independent of . Within each program phase, the

program execution behaviors are generally consistent so that the variations of and

are often limited. Based on () of the previous interval, we can estimate the

values for and . Then, we can predict the () function of the next control interval.

25

This prediction can guide reference V/F to a more aggressive or more

conservative level. We first find three different reference points empirically, one is

normal, another one is aggressive and the other one is conservative. Then, we

dynamically choose among them at runtime according to the uncore frequency

computed from the predicted () function. By default, the normal reference point is

employed. If the model based frequency is significantly higher (lower), the reference

point is changed to the aggressive (conservative) one. If there is no frequency change in

two consecutive control intervals, we cannot obtain an update on and values. In this

case, we continue to use the reference of the previous control interval.

 To show more details about the new control mechanism, the complete algorithm

is listed below

 Step1: Record which are the clock period of current and

previous control intervals, which are the critical latency of current

and previous control intervals.

 Step2: Update the mathematical model coefficients of and in the model

 (19)

According to curve fitting, we can update the coefficients by using the following

equations

{

 (20)

 Step3: With the updated model, we can substitute with the minimum clock

period and calculate the estimated minimum critical latency as follows

26

 (21)

Then add an inflation coefficient to get the inflated critical latency,

 () (22)

where is a small number, e.g., 10% . One can use a greater value of to achieve more

energy savings but at the higher performance cost. By magnifying , the

controller moves the V/F level down to the lowest value without significantly hurting the

performance of the overall system. The value is set to 10% in our experiment for the

best energy-performance trade off.

Step4: In this step, we calculate four clock periods through different methods.

The first clock period is based on the and the model we built in

Step2.

 (23)

The next three clock period are based on three

different reference critical latency and PI controller. As we talked in previous chapters,

PI controller take two inputs, one is reference critical latency, another one is monitored

critical latency. We have

{

 ()

 ()

 ()

 (24)

where the three different reference critical latency are chosen by empirical data from a

large amount of experiments.

27

Step5: this is the last step of the control mechanism. In this final step, we choose

the clock period from as three candidates based the

comparison result between and each of these three candidates. Generally

speaking, the final will be the one which is closest to .

The reason that we do not directly use is based on our practical

experiment. We discovered that with , the performance is not as good as we

expected. In the procedure of calculating , there are too much noise that the

predicted model sometimes deviates from the actual behavior very far. Hence, we bring

in generated by PI controller and pick one as the final

output control signal instead of directly using .

28

6. ANTI WIND-UP ISSUE OF PI CONTROLLER

 When error between the set point and the feedback value stays in one direction,

controller output keeps rising due to the cumulative effect of integral term. This may

causes the controller output to reach the upper limit of control actuator. If the direction

of the error changes at this moment, the controller output should gradually fall back and

the actuator should escape from its saturation; otherwise, the controller output should

continue to increase and the actuator should remain at its upper bound. Hence, the

actuator enters its saturation zone. The deeper it enters, the longer time it takes to exit. If

the error reverses its direction, the actuator would not immediately react. Instead,

controller output gradually decreases and the actuator responds with a certain amount of

delay. This situation makes control performance degraded and it is referred as integral

windup in PID control.

 In our research, we prevent the wind-up problem by limiting the integral term

between pre-determined lower and upper bounds.

All actuators have saturation limit, i.e. a maximum limit and a minimum limit.

For example, a power, and a valve can not have an infinitely large opening and can not

be more closed than closed. Under normal process operation the control variable should

not reach the saturation limits. In our uncore system, we also have our actuator’s

constraint. The upper limit and lower limit are the top and bottom V/F levels that we can

choose. In our case, the upper limit of frequency is as same as the core frequency and the

lower limit is 0.2 times of core frequency. The actuators mentioned in above theories

29

correspond to the V/F adjusters in our system such as voltage level converter, phase lock

loop and so on.

 Assume that in a time interval a large amount of memory requests flood into

uncore system so that the system’s output variable (critical latency) is increased

significantly. The control error which is the difference between reference critical latency

and monitored critical latency then becomes large and negative, and the control variable

which stands for the uncore clock period will decrease (because of the integral term of

the PID controller) until the control signal reaches at its minimum value. When the

uncore clock period as same as the core clock period, is still not small enough to

compensate for the large disturbance of uncore workload. Because of this, the control

error keeps going large, and the integral of the control error continues to increase, which

means that the calculated integral term continues to increase.

 Assume that the disturbance lasts for a moment and then disappears, i.e., the

uncore workload reduces to a low level. This causes the clock period to increase since

the workload is reduced (or the load is removed), and the error will now change sign (it

becomes positive). Consequently the integral term starts to integrate downwards (its

value is continuously being reduced). So that the calculated is reduced since the

smaller amount of workload requires a larger control signal which stands for larger clock

period (lower frequency of uncore system). However, the problem is that it may take a

long time until the large value of the calculated reduced (via the down-integration) to

a normal (reasonable) value. During this long time, the clock period is smaller than what

is required to serve the current amount of workload, causing the critical latency to be

30

lower than the set point during this time. This is counted as wasting energy since there is

room for us to lower frequency to achieve power saving. But due to wind-up, the system

reacts very slow and loses the opportunity to save power.

 To sum it up: a large and long-lasting process disturbance which forces the

control variable (via the controller) to one of its saturation limits, implies a long-lasting

error different from zero.

 A practical PID controller must be able to cope with the possibility of integrator

wind-up, that is, it must have some anti wind-up mechanism. The anti wind-up

mechanism is always simple by making rules. Since the problem is that the integral term

increases continuously during actuator saturation, the solution is to halt the integration

when the control signal reaches either its maximum or minimum limit. For the

implementation in our PI controller,

{

 (25)

where is an offset value and other values are defined as same as above paragraphs.

We set a range for the integral term as follows

 (26)

where th is a parameter we set for the PI controller. This bound decides the tolerable

range that the integral control part can accumulate its history values. Large bound value

will make the system react slowly because it will take longer time for the controller

output value to go back to the normal range out of which the actuator can only stay at its

upper or lower bounds without any change. On the other hand, low bound value may

31

make the system react very quickly due to the opposite reason. Over react may make

system’ steady state error to be raised which means the system may always oscillate

around the set point instead of settling down exactly onto the set point. Based on the

analysis above, we set different value for th and make our choice based on the

performance in actual benchmark. Finally, we picked 2 as our bound. The detail results

will be showed in later chapters.

32

7. DESIGN IMPLEMENTATION

The proposed implementation techniques mainly include three parts:

(1) All tiles keep their own status information and refresh them in the end of every

control interval

(2) It requires a central controller that stores the collected data from each tile and

performs computation based on the control algorithm

(3) The communication policy for information transportation from tiles to the central

controller

For the critical latency based DVFS control, each tile need to have several registers

to save relevant information. The bit-width of each register is decided by the range of

the data to be saved. Particularly, we show a design based on our experiment settings.

Three 16-bit registers are required to save the number of load instructions, private cache

hits and private cache misses, respectively. In addition, there is also a 20-bit register to

save the accumulation value of the total request latency which is the period of time from

the time of issuing request to the time of request served in network. Furthermore, to

count the number of LLC misses, we also require another 12-bit register. At last, there is

another 16-bit register required to keep track of control interval. In summary, 112 bits of

registers are required for each tile.

 In modern multicore processor designs, e.g., Intel’s Nehalem architecture [11,

12], there is a Power Control Unit (PCU), which is a small processor dedicated to chip

power management. According to the structure of this architecture, we can use PCU to

33

implement our DVFS control policy without need of help from additional hardware. The

PCU retains a lookup table with each entry containing the data for each tile. In addition,

the reference critical latency values and parameters for PI controller are stored in PCU.

Typically, this PCU has plenty of storage space and sufficient speed of computation to

meet all the needs. At the end of each control interval, the PCU would compute the

critical latency and uncore V/F level. This computation takes several arithmetical

operations and thus can be finished very quickly.

 For the transportation of status information from each tile to the central controller

PCU, we use a method as same as [6]. When a packet is sent out from a tile, the 96-bit

information (by excluding the control interval counter) is scaled to 64 bits and is

embedded in the header flit. When the flits passing by the tile where the PCU is located,

the data is scaled back to 96 bits and extracted to the lookup table. Within each control

interval, new data from a tile overwrites the old data from the same interval. In the

procedure of data transmission, we do not use any extra hardware so that with this

communication protocol the overhead is fairly low. The work of [6] shows that a single

monitor tile can obtain sufficient sample data in a control interval of 50K clock cycles.

34

Table 1: Simulation setup

 The simulation setup is shown in Table 1. The baseline architecture in our

experiments is a chip multiprocessor which contains 16-tiles. Each tile is composed of a

processing core with 1-level of private cache, a network interface, an NOC router and a

partition of the shared L2 cache (LLC) and directory. Each core is an in-order processor

based on Alpha ISA. All the experimental configurations and parameters are listed in the

table above. We run our experiment on Gem5 [2] full system simulator with PARSEC

shared-memory multi-processor benchmarks [1]. For each benchmark, the entire

application runs in full-system mode; the results obtained are based upon statistics from

the region of interest (ROI), which is usually hundreds of million cycles long. Gem5

“Ruby” memory hierarchy (L1+LLC+directory) and “Garnet” network simulator are

also used inside the full system simulator. Frequency scaling for uncore is implemented

35

in the way of changing the latency of each uncore component. For example, the latencies

of each router pipeline stage, link traversal time and the LLC access time are doubled if

the frequency is reduced to 50% of core frequency. Since uncore DVFS has no impact

on off-chip memory access latency, its access latency is treated as a constant value. We

expect the proposed techniques should work well with core DVFS as this would be

expressed as decreased L1 demand and decreased the utility of the uncore. The control

interval for the uncore DVFS is set to be 50K core clock cycles and this choice is made

based on a large amount of experiment. According to our experience and existing

literature, such interval size allows enough time for the uncore V/F change to settle, and

is sufficiently small to capture fine-grain program phase behavior to make quick reaction.

Both dynamic and leakage power are considered in the experiments. ORION 2.0 [9] and

CACTI 6.0 [15] based on 65 nm technology are used as the power models of NoC and

LLC, respectively. The overall performance is evaluated as the execution time for the

ROI of each application.

 In this work, we compared the following methods:

Baseline: constantly high uncore V/F level

AMAT+PI: Chen, et al.’s method [6]

CL+PI: PI control based on the critical latency described in previous chapters

CL+ModelAssist: the critical latency-driven, model assisted PI control described in

previous chapters

36

 8. EVALUATION

 In previous chapters, I mentioned about the difficulty to estimate the system’s

behavior since it is too complex to analyze with accurate mathematical model. Figure 11,

Figure 12 and Figure 13 below show some simulation results for a segment of x264

which is one of the benchmarks in PARSEC suites. The horizontal axis stands for the

number of control intervals where each control interval is set to be 50K core cycles long,

i.e., each data point is an average over 50K clock cycles. The data shows drastic changes

from interval to interval from which it is hard to find the rules or regular characteristics.

Based on these detail simulation intermediate data, we can see it is very difficult to

accurately predict the behavior of a multicore system.

37

Figure 11: Loads fraction over control intervals.

Figure 12: The number of L1 misses over control intervals.

38

Figure 13: the number of LLC misses over control intervals

Figure 14 below displays the comparison for the different methods as mentioned

in previous chapter. From Figure 14, we can see that by using the critical latency

proposed in Chen et al.’s work [5], it leads to significantly more power saving compared

with using AMAT alone. Especially for the application Canneal, it is very oblivious that

the power saving is dramatically increased. Additionally, with the use of model-assist

control policy, the power dissipation can be further reduced significantly. It provides

about 50% power reduction over Chen et al.’s work [6].

39

Figure 14: Normalized energy for PARSEC benchmarks

Figure 15 below shows the comparison results of the performance impact under

different methods corresponding to the Figure 14. For the proposed approaches, the

performance degradation is limited. Dedup is the application which has the largest

degradation. If you take a closer look, model assist control actually improves the

performance comparing to Xi et al.’s work [6] . In general, the average performance

degradation for the proposed model assist control is around only 5%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 E

n
e

rg
y

AMAT+PI

CL+PI

CL+ModelAssist

40

Figure 15: Normalized system performance for PARSEC benchmarks.

Table 2 gives the normalized energy-delay product from all methods. The

progressive improvement from the right choice of metric and the benefit brought by

proposed new control policy can be obliviously seen through the table. Compared to

AMAT+PI [6], our best method reduces the energy-delay product by nearly 50%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

AMAT+PI

CL+PI

CL+ModelAssist

41

Method Energy Delay

Baseline 1.0

AMAT+PI 0.5

CL+PI 0.31

CL+ModelAssist 0.28

Table 2: Normalized energy-delay product on average for all PARSEC cases.

 Table 3 gives the normalized energy and performance under different integral

bound inside PI controller for preventing wind-up problem. The progressive

improvement for the energy saving, and the progressive worse performance loss can be

obliviously seen through the table. By comparing these results, we find that a desired

energy-performance tradeoff can be obtained when the bound equals 2.5. In that case, it

gives average performance degradation for the proposed model assist control around

only 5% while achieved a large amount of power saving.

42

 energy performance

Base 1 1

Th = 1 0.39 0.97

Th = 1.5 0.33 0.96

Th = 2 0.27 0.95

Th = 2.5 0.26 0.94

Th = 3 0.23 0.92

Th = 5 0.216 0.916

Th = 8 0.212 0.910

Th = 11 0.208 0.912

Th = infinite 0.17 0.88

Table 3: Normalized energy and performance on average for all PARSEC cases

under different integral bound

43

9. CONCLUSIONS

 In this thesis research work, we performed DVFS for shared resources

(NoC/LLC) in chip multiprocessor systems. The stability of the whole DVFS control

system is proved theoretically. The proposed techniques are evaluated on public

architecture benchmarks with full-system simulations. Furthermore, the wind up

problem in control system is also investigated from both theory and full-system

simulations to verify the effectiveness of our anti wind up techniques. In summary, the

results show quite large energy savings and improvement over recent previous work.

44

REFERENCES

[1] Bienia, C., Kumar, S., Singh, J.P., and Li, K. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In Parallel Architectures and

Compilation Techniques. 2008.

[2] Binkert, N., Beckmann, B. Black, G., Reinhardt, S.K., et al. The gem5 simulator.

ACM Computer Architecture News, 39(2):1-7, May 2011.

[3] Bogdan, P., Marculescu, R., Jain, S. and Gavila, R.T. An optimal control

approach to power management for multi-voltage and frequency islands

multiprocessor platforms under highly variable workloads. In Networks-on-Chip

Symposium, pages 43-50. 2012.

[4] Chen, X., Physical planning and uncore power management for multi-core

processors. Dissertation, Texas A&M University. 2013.

[5] Chen, X., Xu, Z., Kim, H., Gratz, P., et al. Dynamic voltage and frequency

scaling for shared resources in multicore processor designs. In Design

Automation Conference. 2013.

[6] Chen, X., Xu, Z., Kim, H., Gratz, P., et al. In-network monitoring and control

policy for dvfs of cmp networks-on-chip and last level caches. In Networks-on-

Chip Symposium, pages 43-50. 2012.

[7] Flautner, K., Kim, N.S., Martin, S., Blaauw, D., et al. Drowsy caches: simple

techniques for reducing leakage power. In International Symposium on

Computers Architecture, pages 148-157. 2002.

45

[8] Guang, L., Nigussie, E., Koskinen, L., and Tenhunen, H. Autonomous DVFS on

supply islands for energy constrained NoC communication. Lecture Notes in

Computer Science: Architecture of Computing Systems, 5455/2009:183-194,

2009.

[9] Kahng, A.B., Li, B., Peh, L.S., and Samadi, K. ORION 2.0: a power-area

simulator for interconnection networks. IEEE Transactions On Very Large

Scale Integration Systems, 20(1):191-196, January 2012.

[10] Konstantakopoulos, T., Eastep, J., Psota, J., and Agarwal, A. Energy scalability

of on-chip interconnection networks in multicore architetures. Technical report,

MIT Computer Science and Artificial Intelligence Laboratory, November 2007.

[11] Kowaliski, C. Gelsinger reveals details of Nehalem, Larrabee, Dunnington,

2008.

[12] Kumar, R. and Hinton, G. A family of 45nm IA processors. In International S

 olid-State Circuits Conference, pages 58-59. 2009.

[13] Liang, G. and Jantsch, A. Adaptive power management for the on-chip

communication network. In Proeedings of the Euromicro Conference on Digital

System Design. 2006.

[14] Mishra, A.K., Das, R., Eachempati, S., Iyer, R., et al. A case for dynamic

frequency tuning in on-chip networks. In International Symposium on

 Microarchitecture, pages 292-303. 2009.

[15] Muralimanohar, N., Balasubramonian, R., and Jouppi, N.P. CACTI 6.0: a tool to

model large caches. Technical report, HP Laboratories, 2009.

46

[16] Ogras, U.Y., Marculescu, R., and Marculescu, D. Variation-adaptive feedback

control for networks-on-chip with multiple clock domains. In Design Automation

Conference, pages 614-619. 2008.

[17] Rahimi, A., Salehi, M.E., Mohahmadi, S., and Fakhaie, S.M. Low-energy

GALS NoC with FIFO-monitoring dynamic voltage scaling. Microelectronics

Jounal, 42(6):889-896, June 2011.

[18] Semaeraro, G., Albonesi, D.H., Dropsho, S.G., Magklis, G., Dwarkadas, S., and

Scott, M.L.. Dynamic frequency and voltage control for a multiple clock domain

microarchitecture. In International Symposium on Microarchitecture, pages 356-

367. 2002.

[19] Shang, L., Peh, L., and Jha, N.K. Power-efficient interconnection networks:

dynamic voltage scaling with links. IEEE Computer Architecture Letters, 1(1),

2002.

[20] Son, S.W., Malkowski, K., Chen, G., Kandemir, M., et al. Integrated link/CPU

voltage scaling for reducing energy consumption of parallel sparse matrix

applications. In International Parallel & Distributed Processing Symposium.

2006.

[21] Wang, H., Peh, L.S., and Malik,S. Power-driven design of router

microarchitectures in on-chip networks. In International Symposium on

Microarchitecture, pages 105-116. 2003.

