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ABSTRACT 

 

In chip-multiprocessor (CMP) designs, when the number of core increases, the 

size of on-chip communication fabric and data storage grows accordingly and therefore 

the chip power challenge is exacerbated. This thesis work considers the power 

management for networks-on-chip (NoC) and the last level cache, which constitute the 

uncore in CMP designs. NoC is regarded as a scalable approach to cope with the 

increasing demand for on-chip communication bandwidth. The last level cache is shared 

among all cores. The focus of this work is on the control techniques for uncore dynamic 

voltage and frequency scaling. A realistic but not well-studied scenario is investigated. 

That is, the entire uncore shares a single voltage/frequency domain, as opposed to 

separated domains in most of previous works. One appealing advantage here is that data 

packets no longer experience the interfacing overhead across different voltage/frequency 

domains. The classic PI (Proportional and Integral) control method is adopted due to its 

simplicity, flexibility and low implementation overhead. This thesis research outcome 

includes three parts. First, stability of the PI control is analyzed. Second, a model-

assisted PI control scheme is proposed and studied. The model assist is to address the 

problem that no universally good reference point exists for the control. Third, the 

windup issue for the PI control is investigated. Full architecture simulations are 

performed on public benchmark suites to validate the proposed techniques. The result 

show 76% energy reduction with less than 6% performance degradation compared to 

constantly high voltage/frequency for uncore. 
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1.  INTRODUCTION 

 

Modern chip-multiprocessor (CMP) designs face challenges at multiple fronts. 

Power is a well-known one that has received a lot of research attention. At the same time, 

on-chip communication and data storage are becoming a bottleneck to CMP 

performance. This demands increasingly large bandwidth for the communication as well 

as bigger on-chip storage size. Indeed, on-chip communication fabrics and cache 

consume a large portion of chip estate. Evidently, such increase inevitably worsens the 

power issue. This thesis research is an effort to address these intertwined challenges. 

 Network-on-chip is an approach for designing the communication subsystem in a 

CMP (Chip-multiprocessor) system.  NoCs apply networking theory and methods to on-

chip communication. It brings notable improvements over conventional bus and crossbar 

interconnections. NoC improves the scalability of CMP, and the power efficiency of 

complex CMP compared to other designs. Research shows that up to 82% energy 

savings can be achieved by using NoC compared to conventional bus design in a 16-core 

system [10]. One study shows that the NoC still takes up a notable proportion of the total 

chip power which is 36% in MIT RAW architecture [21]. In low power design 

techniques, when some cores are working in an idle state, they could be allowed to shut 

down to save power. However, the same idea cannot be used for NoC and LLC since 

these two parts must function normally even when the workload is low, otherwise the 

entire CMP could not work at all. Since we cannot shut down NoC and LLC completely,  

DVFS would be a practical and proper technique for low power design. The target 
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system will always run at the lowest supply voltage and frequency that meets the 

performance constraints. This technique has been intensively studied for individual 

microprocessor cores as well as the NoC [19, 13, 20, 16, 8, 14, 17, 3, 6]. Most of the 

prior works divide the clock domain based on cores. They put one or more than one core 

in a voltage/frequency domain along with the nearby distributed cache and 

interconnection. The divided V/F domains for NoC imply interfacing overhead between 

different domains as well as significant performance penalty for data communication. 

The overhead of crossing clock domains would be increased as the number of cores got 

increased. Our work targets at a realistic scenario where the entire NoC and LLC belong 

to a single V/F domain. With this architecture configuration, the overhead of crossing 

clock domain within LLC and NoC can be eliminated. So far, there are only two works 

[13,6] which are based on the same settings. Liang and Jantsch [13] proposed a rule-

based DVFS scheme for NoC using network load as performance metric. Chen et al.  [6], 

developed a PI control based DVFS method with AMAT (Average Memory Access 

Time) as the metric. They also introduced a low overhead technique for monitoring 

AMAT. 
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(a) CMP with V/F domains by tile                  (b)  Separate V/F domain  

Figure 1 [6]:  Logical CMP diagrams highlighting Voltage/Frequency domain 

partitions. 

 

  

This thesis research is focused on the control aspect of the uncore DVFS 

framework described in [5]. A formal stability analysis for the PI controller is provided. 

A model-assisted PI control technique is proposed and studied. Experimental results 

show that it can reduce uncore energy by 74% with no more than 6% performance 

penalty compared to constantly high uncore V/F level. Furthermore, the windup issue 

and anti-windup technique for the PI control are studied. 
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2. BACKGROUND AND RELATED WORK  

 

In this section, we will first introduce the concept of uncore which mainly 

includes the shared, distributed last level cache and network-on-chip. Next we will talk 

about the choice of uncore performance metric and the metric monitoring technique. 

Furthermore, we will also discuss power and performance constraint on uncore. At last, 

we will introduce the prior related work on DVFS for CMP.  

2.1 CMP Uncore Basics 

 

 

 

Figure 2 [4]: Core, uncore and memory in a CMP system 
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In general, CMP contains multicores, private caches and uncore. The uncore 

portion of the die refers to all the integrated subsystems on the chip except the cores. In 

more detail, the uncore portion contains the last level cache, the routers and links of NoC, 

integrated memory controller, integrated I/O controller etc. Uncore is mainly responsible 

for the communication between core and LLC, on-chip and off-chip. In modern LLCs, 

LLC is logically shared and spatially distributed. Each bank has an attached core which 

issues read and write requests. The caches’ collective goal is to minimize the use of the 

main memory.  

In the system configuration, it is assumed that coherence between the private 

caches in the cores is maintained via a distributed directory cache in the uncore. The 

NoC would carry the memory request from core to LLC, the coherence messages 

between LLC, the packets between on-chip and off-chip. It is also assumed that LLC 

cache set indices are spread about the partitions of the LLC in a round robin fashion to 

ensure that each partition receives approximately the same amount of traffic and no 

single partition becomes a hotspot. 

2.2. Uncore Performance Metric 

Liang and Jantsch [13] poposed a DVFS controller which are trying to keep the 

network workload around its saturation point. The workload here is defined as the 

number of flits injected into the network. In this way, the V/F level would be adjusted 

based on the workload of the entire network. If the network workload is considerably 

higher or lower than the saturation point, the V/F level is adjusted as a respond to the 

change of workload. There is one apparent drawback in their control mechanism that 
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their scope only focuses on the total workload of the entire network while neglecting 

particular congested part of the network. Obviously, a congested part could be able to 

impact the performance of the entire network. But even with the consideration of local 

traffic condition of network, it is still not sufficient. The metric they choose to use is the 

number of flying flits in network which is not appropriate sometimes. Suppose the 

program contains a large amount of memory store instruction, this will cause a large 

workload in the point view of number of flits. As we know, memory store instructions 

are always not as critical as memory load instructions to the overall performance of 

entire system because memory load instructions have bigger chance to block the 

execution of following instructions. Thus network workload alone is not a good metric. 

In Chen et al. [6], a PI control for uncore DVFS is proposed based on AMAT. AMAT is 

a metric that indicates the memory access’s speed of the overall system including private 

cache access, shared last level cache access, interconnection delay and memory access. 

AMAT is a global system metric which does not indicate the traffic appropriately all the 

time. Imagine a common situation, if the program’s memory access mostly goes to the 

off-chip main memory, the AMAT will be very high while the network is actually not 

busy and there is some room for power saving here. But with AMAT as their metric, the 

power controller may increase the V/F level based on high AMAT instead of making 

right decision of decreasing V/F level. 

Based on the summary of these two previous work, it is concluded that the ideal 

metric should reflect both the uncore performance and its criticality to the overall chip 
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performance. In this research work, the metric proposed in the work of Xi Chen et al. [5] 

is chosen to use. They proposed a new metric – critical latency which is expressed by  

                                                                    (1) 

where   is the criticality factor and    is the uncore latency. The uncore latency must 

consider the latency in both LLC and network. Meanwhile, it must exclude the off-chip 

main memory access time because it has no relationship with uncore DVFS. Just like the 

case given in above paragraph, sometimes increasing uncore V/F level does not help to 

improve the overall system’s performance especially when main memory access latency 

dominates the overall data access latency which is a waste of energy. The uncore latency 

can be described by  

   
(∑          
        
   

)                 

        
                           (2)  

where           is the total round-trip latency for packet j,     is the memory access 

latency,             is the number of LLC misses in a control interval and          is the 

number of packets in the same interval. 

 For memory access instructions, store and load are the two main types. But they 

have different criticality in terms of the overall system performance. Load instructions in 

most of the time have much higher priority than store instructions. A load instruction 

may potentially block the execution of following instructions, but store instruction may 

not affect the execution of following instruction by using the common techniques such 

as load bypassing, load forwarding and so on. Thus, the criticality factor of uncore 
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performance includes Loads_Fraction, which is the number of load instructions per 

cycle. It is expressed by 

                                                         (3) 

 2.3 Uncore Status Monitoring 

 

 

 

Figure 3 [6]:  Header flit bit fields 

 

 

In Chen et al.’s work [6], they also introduced the implementation of network 

monitor which has low overhead. Each core keeps their own status information and puts 

them into every packet header it released to the network. According to the 

communication policy, the packet header has a large amount of unused bits which make 

“piggyback” method possible. Xi Chen et al. [6] put a monitor with a central core and 

collect status information from the header flits passing through.  
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Figure 4 [6]:  NoC layout; the monitor resides at tile 6 

 

 

In the end of each control interval, the data stored in the monitor would be 

extrapolated based on the arrival time inside the current control interval and averaged 

across interval among all cores. Figure 5 shows an illustrative example.    and    stand 

for the data stored in the monitor while    and    stand for the arrival time inside the 

control interval. In the end of the control interval,    is doubled because the flit from 

Core 1 arrives in the middle of control interval. The data is averaged across interval 

among all cores by using the equation in Figure 5. After the extrapolation, the computed 

metric would be fed into their power controller as input. In this research work, the same 

method is used since this monitor is very efficient and induces low overhead.  
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Figure 5: Extrapolation for the rest of the interval 

 

 

In this thesis research work, we address DVFS for the uncore as a whole. We will 

show that there is a large opportunity for uncore power saving by using a simple but 

effective control algorithm to adjust uncore voltage and frequency based on the 

monitored results. 

2.4 PID Control Basics 

A proportional-integral-derivative controller (PID controller) is a widely used 

controller in industrial control systems. It is also called three-term-controller. The 

popularity is due to its simplicity and efficiency. Moreover, PID controller can keep its 

performance relatively stable under different conditions of environments. The PID 

controller contains three separate constant parameters: the proportional, the integral and 

derivative values, denoted as P, I, and D. In more details, P term depends on the present 

error, I term depends on the accumulation of past errors, and D term is based on current 

rate of change of errors. The weighted sum of these three actions is used to adjust the 

process via a control execution element such as the position of a control valve, a damper, 
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or the power supplied to a heating element. Sometimes only one or two actions to 

provide the appropriate system control is sufficient for applications. This is achieved by 

setting the other parameters to zero. For instance, PI controllers are very popular since 

derivative term is sensitive to measurement noise. Integral term plays an important role 

in PI controller because the absence of an integral term may prevent the system from 

reaching its target value. Xi Chen et al [6] used PI controller in their work. Their 

reference point in PI controller is a fixed value. This limits the adaptability of the 

controller. The working condition is changed as the program phase changes so that a 

more adaptive controller is required to further explore the power saving amount. 

2.5 Uncore Power and Performance Implications 

In modern chip design, the interconnection portion takes up larger and larger area 

and power consumption. In the same way, uncore would consume a considerable amount 

of power so that it is very important to do low power design targeting at uncore portion. 

Power consumption includes two parts: one is dynamic power dissipation and the other 

one is static power dissipation. Dynamic power dissipation for CMOS circuit is given by 

                                                                   (4) 

where P is the dynamic power dissipation,   is the activity factor, C is the capacitance of 

CMOS, V is the supply voltage and f is the frequency. 

Although the activity factor ( ) for uncore is not always high, its total area and 

capacitance can be large. Static power dissipation for CMOS circuit are given by 

                                                                        (5) 

where     is the supply voltage and          is the leakage current in CMOS. 
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Although dynamic power takes up largest portion of power dissipation today, 

static power is increasing very fast and will become a very large part in future VLSI 

process technologies. From the equation of power calculation, apparently lowering 

voltage and frequency will bring benefits to low power design directly and significantly. 

Dynamic frequency and voltage scaling takes advantage of this basic concept and always 

runs at the lowest supply voltage that meets the timing constraints. On the other hand, 

lowering the frequency will bring performance degradation in some degrees. But with 

very careful design of DVFS control policy, the performance degradation could be 

controlled in a limited range which can be accepted by users. In this paper, a model 

assisted control technique is proposed which can achieve significant power saving with 

very limited performance loss. 

2.6 Related Works 

Several groups have explored DVFS in NoCs and /or CMPs. Shang et al. wrote a 

pioneering work in the use of DVS for NoCs [19]. They performed DVFS for individual 

links in NoCs. DVFS has also been studied for individual routers [14]. Mishar et al. 

changed the V/F level of the upstream router based on the monitored information of 

input queue occupancy of a router in downstream. Son et al. explored DVFS for specific 

application in NoCs [20]. They used DVFS on both cores and network links in a parallel 

linear system solver. V/F levels are picked based on the task criticality.  In other 

previous works, the voltage/frequency domains within the NoC are assumed to be 

associated with individual processor cores. Guang et al. proposed a voltage island based 

approach [8].  Individual island V/F levels are chosen according to monitored router 
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queue occupancies. In each of these works, the DVFS policy is determined by local 

information. DVFS is also widely studied for processor cores or CMPs. A simple 

appproach is rule-based DVFS [17] that changes voltage/frequency level when 

monitored performance crosses certain threshold. Rule-based method is improved by 

including hysteresis [18]. Control theoretic techniques are proposed in [16, 3]. Orgas et 

al. [16] employed control theory for voltage island based designs by building state space 

mathematical models. Furthermore, Bogdan et al. introduced an optimal control method 

using a fractional state model [3]. In drowsy caches, DVS is employed to reduce the 

static power by scaling V/F at certain cache lines at a time [7]. So far, there are only few 

published works on DVFS targeting to shared caches in multicore chips. 
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3. PRELIMINARIES  

  

3.1 Problem Description 

 In our system settings, we use a common case in chip multiprocessor design. We 

simulate a 16-core CMP similar as shown in Figure 6. Each tile consists of a processor 

with private caches. Each tile also includes a portion of LLC used for both private and 

shared data depending on the policy implemented by the protocol. The interconnect is a 

2D mesh network with routers and network interfaces co-located with every core. The 

NoC and the LLC together are referred to as uncore system in this paper.  

 

 

 

Figure 6 [5]: A multicore processor design where the uncore (NOC+LLC) forms a 

single V/F domain 
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 The research goal of this paper is formulated as follows. Uncore Dynamic 

Voltage and Frequency Scaling: for each control interval, use the best control technique 

to adjust voltage/frequency level for the uncore such that the uncore energy dissipation 

for both dynamic energy and static energy is minimized while the chip performance for 

the overall system, in terms of total application runtime, has negligible or user-specified 

degradation.  

 3.2 Options for DVFS Control Policy 

 Generally speaking, there are two main types of approaches for DVFS: open-

loop control and closed-loop control. Open loop control does not have a feedback loop, 

the output is only based on the input signal. Open loop control for DVFS decides control 

variables based on the current system state and a system model obtained either 

theoretically or through machine learning. But the CMP system is so complex that the 

model should depends on a lot of environmental elements. Without the feedback of the 

controlled system, the reliability and predictability are fragile and tend to be questioned.  

 Closed loop control compensates this disadvantage of open loop control while 

brings a little overhead on implementation. Closed loop control compares the measured 

output signal and the expected output signal and the difference signal would be used to 

adjust the output signal as controller input. With this closed loop control mechanism, it 

can be expected to have more accurate control to the system. In the world of closed-loop 

control for DVFS, we also face a lot of choices such as rule-based, PID (Proportional-

Integral-Differential) control, linear control based on state-space model and optimal 

control. For rule-based control, the uncore V/F level would be decided under a series of 
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artificial rules. For example, one level would correspond to a range of input variables. 

For PID control, the decision would be made through the simple, low-overhead PID 

controller which only relies on a simple mathematical equation. For linear control based 

on state-space model, the control mechanism would require larger amount of calculation 

of several matrices. For optimal control, it is the most complex one among control 

policies. Large amount of calculations have to be executed to generate the final 

optimized result. With systems get more complicated, the stability is harder to ensure. 

 In this research, PID is chosen as controller due to its simplicity, flexibility, low 

implementation overhead and guaranteed stability. But PID is so simple that sometimes 

it could not achieve the best performance. To compensate this drawback, this thesis work 

made modifications and proposed a new control mechanism named as model assisted 

PID control. This new mechanism would not add a lot of complexity while achieved 

significant performance enhancement. This will be introduced in detail later in 

subsequent parts of this paper. 
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4. PID-BASED DVFS POLICY AND STABILITY ANALYSIS 

 

We choose to implement a DVFS control scheme based on PID (Proportional-

Integral-Derivative) control. The reason is as follows: First, comparing to rule-based 

control, the PID control apparently is more flexible to different applications while rule-

based control may only work well for some specific applications. Second, comparing to 

linear control based on state-space model and optimization control, PID controller has 

both lower computation cost and implementation overhead. Even though PID control is 

very simple, it has strong theoretic grounds for stability analysis. 

 

 

 

Figure 7: PID system diagram 

 

 

The block diagram shown in Figure 7 is the PID control system. Let us take a 

closer look at each part of the system. The controller takes two input signals: the 

reference critical latency and the monitored critical latency in network. The reference 
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critical latency is obtained by empirical data. The error is generated by subtracting the 

monitored critical latency from the reference critical latency which is written as  

                                                                     (6) 

where    is the monitored critical latency for the     control interval and      is the 

reference point for the PI controller. Although   (critical latency) should correlate with 

the overall chip performance, its target value is not obvious which need to be decided by 

empirical data. 

The PI controller takes the error as input and it is 

 ( )     ( )    ∫  ( )  
 

 
                                           (7) 

where    is the proportional gain,    is the integral gain, u(t) is the output control signal 

of PI controller which also stands for the uncore clock period and e(t) is the difference 

between two inputs. From equation (7), the PI controller consists of two items. The first 

one is proportional control and the second one is integral control. The two control 

actions in the PI controller are independent of each other. Increasing    can result in 

increasing dynamic response speed of the system and lowering the deviate error of 

steady state. But if the controller does not contain integral action, proportional control 

alone can not completely eliminate the steady state deviation. Integral control can 

compensate this disadvantage and completely eliminate the steady state deviation. As 

long as there is a deviation, the output of integral part will be accumulated to be larger 

value and does not diminish until the deviation is totally eliminated to zero. Thus the 

output will be kept as a constant value. On the other hand of integral control, it will also 

produce a negative phase shift which means there would be a delay in the response. This 
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negative effect reduces the stability of the closed-loop system. In engineering 

applications, according to the controlled object’s specific characteristics, workload 

disturbance and the control performance requirements, the three terms in PID controller 

can be combined in any way to constitute the necessary control policy. In our case, we 

are using PI controller since this is simpler and often more robust than including the 

Derivative (D) term. 

Next, make a Laplace transformation to the above equation, we have 

 ( )  
 ( )

 ( )
      

 

 
                                                   (8) 

where U(s) is the Laplace transform of u(t), E(s) is the Laplace transform of e(t) and D(s) 

is the Laplace transform of the PI controller.  

 Equation (8) is in the form of continuous domain. Considering the reality of our 

digital system, the ideal continuous integral cannot be achieved in a discrete system. As 

a result, we have to turn the above equation into a form in digital discrete domain. We 

will have 

 ( )   ( )               
 

     
                                      (9) 

where z comes from Z-transform. 

 Finally, performing an inverse Z-transform to equation (9), we have the equation 

below in time domain 

                 (       )                                    (10) 

where    is the output at     control interval which stands for uncore clock period and    

is the error at     control interval. 
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 The control output need to be converted to the V/F level for the uncore system at 

next. Since critical latency is a nonlinear function with respect to uncore frequency, we 

perform a transformation of   
 

 
 such that the critical latency is approximately a linear 

function of uncore clock period u. 

 

 

 

Figure 8 [5]: Critical latency vs. uncore clock period 

 

 

 In order to analyze the stability of this control system,  we need to obtain an 

analytical form of the system function. We tried to obtain some supporting evidence 

through experiments. For the PARSEC benchmark fluidanimate, we simulate with 

different constant uncore V/F levels throughout the entire ROI (Region of Interest). The 
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average critical latency versus uncore clock period results are plotted in Figure 8. The 

results confirm that critical latency has approximately linear dependence on the uncore 

period. 

Then, by curve fitting, we can obtain an approximated expression 

                                                               (11) 

where       which is the uncore clock period,   and   are two fitting coefficients. 

Although the values of   and   are specific for each application, the subsequent analysis 

is general, as long as the  (  ) relation conforms to above equation.  We performed 

many other simulations and all results follow similar trend as the above figure. 

 For the monitor part, we simply use 1 to represent it as the monitored critical 

latency is nearly equal to actual critical latency. This has been confirmed in Xi Chen, et 

al. [6].  

 

 

 

Figure 9: Mathematical PID system model 

 



 

22 

 

 Combining all the equations together, we have  

 {
 ( )   ( )  (     

 

   
)   

 ( )      ( )   ( )
                               (12) 

After substitute the second equation into the first equation, we have 

 ( )  
(     

 

   
)  

  (     
 

   
)  
    ( )                                    (13) 

which can be converted to a simplified form 

 ( )  
(     )         

(           )   (    ) 
    ( )                               (14) 

The characteristic equation for this system is  

(           )    (    )                                      (15) 

Stability analysis is a very important part of control theory. In our case, if the 

PID controller parameters (the gains of the proportional, integral and derivative terms) 

are chosen poorly, the controlled process can be unstable. The system stability is defined 

for situations where its equilibrium state experiences external disturbance. When the 

disturbance disappears after a period of time, if the system can go back to the original 

equilibrium state, the system is called stable system. In contrast, if the system can not 

return to the original state of equilibrium, the system is called unstable system. Linear 

stability of the system is the inherent characteristic which only depends on the system 

itself regardless of the presence and strength of the external input signal.  

According to control theory, the system is stable if and only if the root of the 

characteristic equation is inside the unit circle of the z-plane. In our case, this requires 

that 
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(    )  

           
                                                       (16) 

is within the unit circle. To satisfy this condition, we simply need to find PID 

coefficients   ,     .  

 

 

 

Figure 10: Unit circle in Z-plane 

 

 

 When there is no miss request issued into the network, the critical latency is not 

affected by f and the above closed-loop based analysis does not hold. However, the 

chance of no miss request to LLC is very small. Even when it happens, the monitored 

critical latency is very low and the controlled frequency gradually decreases to its 

minimum. Therefore, the system is still stable. 
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5. MODEL ASSISTED PI CONTROLLER  

 

 Both Liang and Jantsch’s [13] and Chen et al.’s [6] work have a common 

weakness which is that they have no systematic approach to decide the reference point 

for their controllers. In Chen et al.’s work [6], the reference point is set empirically 

based on offline simulations. However, it is very difficult, if not possible, for a fixed 

reference point to work well for different applications.  

 The error function in the critical latency based PI controller is 

                                                                   (17) 

where    is the monitored critical latency for the     control interval and      is the 

reference point for the PI controller. Although   should correlate with the overall chip 

performance. Its target value is not obvious. Of course, one may select one empirically 

from offline simulations. However, the offline test cases might not behave the same as 

online cases. 

 To address this problem, we propose a model assisted PI control method. We can 

see that   is approximately a linear function of packet latency, which is in turn 

proportional to the uncore clock period   . Hence, we have 

                                                               (18) 

where    and   are coefficients independent of    . Within each program phase, the 

program execution behaviors are generally consistent so that the variations of   and   

are often limited. Based on (           ) of the previous interval, we can estimate the 

values for   and  . Then, we can predict the  (  ) function of the next control interval. 
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This prediction can guide reference V/F to a more aggressive or more 

conservative level. We first find three different reference points empirically, one is 

normal, another one is aggressive and the other one is conservative. Then, we 

dynamically choose among them at runtime according to the uncore frequency 
 

      
 

computed from the predicted  (  ) function. By default, the normal reference point is 

employed. If the model based frequency is significantly higher (lower), the reference 

point is changed to the aggressive (conservative) one. If there is no frequency change in 

two consecutive control intervals, we cannot obtain an update on   and   values. In this 

case, we continue to use the reference of the previous control interval. 

 To show more details about the new control mechanism, the complete algorithm 

is listed below 

 Step1: Record                    which are the clock period of current and 

previous control intervals,                     which are the critical latency of current 

and previous control intervals. 

 Step2: Update the mathematical model coefficients of   and   in the model 

                                                                                                                                  (19) 

According to curve fitting, we can update the coefficients by using the following 

equations 

{
  

                   

                   

                                   

                                 (20) 

 Step3: With the updated model, we can substitute    with the minimum clock 

period and calculate the estimated minimum critical latency as follows 
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                                                               (21) 

Then add an inflation coefficient   to get the inflated critical latency,  

          (   )                                                  (22) 

where   is a small number, e.g., 10% . One can use a greater value of   to achieve more 

energy savings but at the higher performance cost. By magnifying         , the 

controller moves the V/F level down to the lowest value without significantly hurting the 

performance of the overall system. The value   is set to 10% in our experiment for the 

best energy-performance trade off. 

Step4: In this step, we calculate four clock periods through different methods. 

The first clock period               is based on the           and the model we built in 

Step2. 

              
           

 
                                               (23) 

The next three clock period                                    are based on three 

different reference critical latency and PI controller. As we talked in previous chapters, 

PI controller take two inputs, one is reference critical latency, another one is monitored 

critical latency. We have 

{

              (                                )

          (                            )

                (                                  )

                    (24) 

where the three different reference critical latency are chosen by empirical data from a 

large amount of experiments. 
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Step5: this is the last step of the control mechanism. In this final step, we choose 

the clock period from                                    as three candidates based the 

comparison result between               and each of these three candidates. Generally 

speaking, the final    will be the one which is closest to              .  

The reason that we do not directly use               is based on our practical 

experiment. We discovered that with              , the performance is not as good as we 

expected. In the procedure of calculating              , there are too much noise that the 

predicted model sometimes deviates from the actual behavior very far. Hence, we bring 

in                                    generated by PI controller and pick one as the final 

output control signal instead of directly using              .  
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6. ANTI WIND-UP ISSUE OF PI CONTROLLER 

 

 When error between the set point and the feedback value stays in one direction, 

controller output keeps rising due to the cumulative effect of integral term. This may 

causes the controller output to reach the upper limit of control actuator. If the direction 

of the error changes at this moment, the controller output should gradually fall back and 

the actuator should escape from its saturation; otherwise, the controller output should 

continue to increase and the actuator should remain at its upper bound. Hence, the 

actuator enters its saturation zone. The deeper it enters, the longer time it takes to exit. If 

the error reverses its direction, the actuator would not immediately react. Instead, 

controller output gradually decreases and the actuator responds with a certain amount of 

delay. This situation makes control performance degraded and it is referred as integral 

windup in PID control. 

 In our research, we prevent the wind-up problem by limiting the integral term 

between pre-determined lower and upper bounds.  

All actuators have saturation limit, i.e. a maximum limit and a minimum limit. 

For example, a power, and a valve can not have an infinitely large opening and can not 

be more closed than closed. Under normal process operation the control variable should 

not reach the saturation limits. In our uncore system, we also have our actuator’s 

constraint. The upper limit and lower limit are the top and bottom V/F levels that we can 

choose. In our case, the upper limit of frequency is as same as the core frequency and the 

lower limit is 0.2 times of core frequency. The actuators mentioned in above theories 
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correspond to the V/F adjusters in our system such as voltage level converter, phase lock 

loop and so on.  

 Assume that in a time interval a large amount of memory requests flood into 

uncore system so that the system’s output variable (critical latency) is increased 

significantly. The control error which is the difference between reference critical latency 

and monitored critical latency then becomes large and negative, and the control variable 

which stands for the uncore clock period will decrease (because of the integral term of 

the PID controller) until the control signal reaches at its minimum value. When the 

uncore clock period as same as the core clock period,      is still not small enough to 

compensate for the large disturbance of uncore workload. Because of this, the control 

error keeps going large, and the integral of the control error continues to increase, which 

means that the calculated integral term    continues to increase. 

 Assume that the disturbance lasts for a moment and then disappears, i.e., the 

uncore workload reduces to a low level. This causes the clock period to increase since 

the workload is reduced (or the load is removed), and the error will now change sign (it 

becomes positive). Consequently the integral term starts to integrate downwards (its 

value is continuously being reduced). So that the calculated    is reduced since the 

smaller amount of workload requires a larger control signal which stands for larger clock 

period (lower frequency of uncore system). However, the problem is that it may take a 

long time until the large value of the calculated     reduced (via the down-integration) to 

a normal (reasonable) value. During this long time, the clock period is smaller than what 

is required to serve the current amount of workload, causing the critical latency to be 
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lower than the set point during this time. This is counted as wasting energy since there is 

room for us to lower frequency to achieve power saving. But due to wind-up, the system 

reacts very slow and loses the opportunity to save power. 

 To sum it up: a large and long-lasting process disturbance which forces the 

control variable (via the controller) to one of its saturation limits, implies a long-lasting 

error different from zero. 

 A practical PID controller must be able to cope with the possibility of integrator 

wind-up, that is, it must have some anti wind-up mechanism. The anti wind-up 

mechanism is always simple by making rules. Since the problem is that the integral term 

increases continuously during actuator saturation, the solution is to halt the integration 

when the control signal reaches either its maximum or minimum limit. For the 

implementation in our PI controller,  

{

           

              
                           

                                          (25) 

where      is an offset value and other values are defined as same as above paragraphs. 

We set a range for the integral term as follows 

                                                                  (26) 

where th is a parameter we set for the PI controller. This bound decides the tolerable 

range that the integral control part can accumulate its history values. Large bound value 

will make the system react slowly because it will take longer time for the controller 

output value to go back to the normal range out of which the actuator can only stay at its 

upper or lower bounds without any change. On the other hand, low bound value may 
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make the system react very quickly due to the opposite reason. Over react may make 

system’ steady state error to be raised which means the system may always oscillate 

around the set point instead of settling down exactly onto the set point. Based on the 

analysis above, we set different value for th and make our choice based on the 

performance in actual benchmark. Finally, we picked 2 as our bound. The detail results 

will be showed in later chapters. 
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7. DESIGN IMPLEMENTATION  

 

The proposed implementation techniques mainly include three parts: 

(1) All tiles keep their own status information and refresh them in the end of every 

control interval 

(2) It requires a central controller that stores the collected data from each tile and 

performs computation based on the control algorithm 

(3) The communication policy for information transportation from tiles to the central 

controller 

For the critical latency based DVFS control, each tile need to have several registers  

to save relevant information.  The bit-width of each register is decided by the range of 

the data to be saved. Particularly, we show a design based on our experiment settings. 

Three 16-bit registers are required to save the number of load instructions, private cache 

hits and private cache misses, respectively. In addition, there is also a 20-bit register to 

save the accumulation value of the total request latency which is the period of time from 

the time of issuing request to the time of request served in network. Furthermore, to 

count the number of LLC misses, we also require another 12-bit register. At last, there is 

another 16-bit register required to keep track of control interval. In summary, 112 bits of 

registers are required for each tile. 

 In modern multicore processor designs, e.g., Intel’s Nehalem architecture [11, 

12], there is a Power Control Unit (PCU), which is a small processor dedicated to chip 

power management. According to the structure of this architecture, we can use PCU to 
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implement our DVFS control policy without need of help from additional hardware. The 

PCU retains a lookup table with each entry containing the data for each tile. In addition, 

the reference critical latency values and parameters for PI controller are stored in PCU. 

Typically, this PCU has plenty of storage space and sufficient speed of computation to 

meet all the needs. At the end of each control interval, the PCU would compute the 

critical latency and uncore V/F level. This computation takes several arithmetical 

operations and thus can be finished very quickly. 

 For the transportation of status information from each tile to the central controller 

PCU, we use a method as same as [6]. When a packet is sent out from a tile, the 96-bit 

information (by excluding the control interval counter) is scaled to 64 bits and is 

embedded in the header flit. When the flits passing by the tile where the PCU is located, 

the data is scaled back to 96 bits and extracted to the lookup table. Within each control 

interval, new data from a tile overwrites the old data from the same interval. In the 

procedure of data transmission, we do not use any extra hardware so that with this 

communication protocol the overhead is fairly low. The work of [6] shows that a single 

monitor tile can obtain sufficient sample data in a control interval of 50K clock cycles. 
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Table 1: Simulation setup 

 

 

 The simulation setup is shown in Table 1. The baseline architecture in our 

experiments is a chip multiprocessor which contains 16-tiles. Each tile is composed of a 

processing core with 1-level of private cache, a network interface, an NOC router and a 

partition of the shared L2 cache (LLC) and directory. Each core is an in-order processor 

based on Alpha ISA. All the experimental configurations and parameters are listed in the 

table above. We run our experiment on Gem5 [2] full system simulator with PARSEC 

shared-memory multi-processor benchmarks [1]. For each benchmark, the entire 

application runs in full-system mode; the results obtained are based upon statistics from 

the region of interest (ROI), which is usually hundreds of million cycles long. Gem5 

“Ruby” memory hierarchy (L1+LLC+directory) and “Garnet” network simulator are 

also used inside the full system simulator. Frequency scaling for uncore is implemented 
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in the way of changing the latency of each uncore component. For example, the latencies 

of each router pipeline stage, link traversal time and the LLC access time are doubled if 

the frequency is reduced to 50% of core frequency.  Since uncore DVFS has no impact 

on off-chip memory access latency, its access latency is treated as a constant value. We 

expect the proposed techniques should work well with core DVFS as this would be 

expressed as decreased L1 demand and decreased the utility of the uncore. The control 

interval for the uncore DVFS is set to be 50K core clock cycles and this choice is made 

based on a large amount of experiment. According to our experience and existing 

literature, such interval size allows enough time for the uncore V/F change to settle, and 

is sufficiently small to capture fine-grain program phase behavior to make quick reaction. 

Both dynamic and leakage power are considered in the experiments. ORION 2.0 [9] and 

CACTI 6.0 [15] based on 65 nm technology are used as the power models of NoC and 

LLC, respectively. The overall performance is evaluated as the execution time for the 

ROI of each application. 

 In this work, we compared the following methods: 

Baseline: constantly high uncore V/F level 

AMAT+PI: Chen, et al.’s method [6] 

CL+PI: PI control based on the critical latency described in previous chapters 

CL+ModelAssist: the critical latency-driven, model assisted PI control described in 

previous chapters 
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 8. EVALUATION  

 

 In previous chapters, I mentioned about the difficulty to estimate the system’s 

behavior since it is too complex to analyze with accurate mathematical model. Figure 11, 

Figure 12 and Figure 13 below show some simulation results for a segment of x264 

which is one of the benchmarks in PARSEC suites. The horizontal axis stands for the 

number of control intervals where each control interval is set to be 50K core cycles long, 

i.e., each data point is an average over 50K clock cycles. The data shows drastic changes 

from interval to interval from which it is hard to find the rules or regular characteristics. 

Based on these detail simulation intermediate data, we can see it is very difficult to 

accurately predict the behavior of a multicore system. 
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Figure 11:  Loads fraction over control intervals. 

 

 

 

Figure 12:   The number of L1 misses over control intervals. 
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Figure 13:  the number of LLC misses over control intervals 

 

  

Figure 14 below displays the comparison for the different methods as mentioned 

in previous chapter. From Figure 14, we can see that by using the critical latency 

proposed in Chen et al.’s work [5], it leads to significantly more power saving compared 

with using AMAT alone. Especially for the application Canneal, it is very oblivious that 

the power saving is dramatically increased. Additionally, with the use of model-assist 

control policy, the power dissipation can be further reduced significantly. It provides 

about 50% power reduction over Chen et al.’s work [6]. 



 

39 

 

 

Figure 14:  Normalized energy for PARSEC benchmarks 

 

  

Figure 15 below shows the comparison results of the performance impact under   

different methods corresponding to the Figure 14.  For the proposed approaches, the 

performance degradation is limited. Dedup is the application which has the largest 

degradation. If you take a closer look, model assist control actually improves the 

performance comparing to Xi et al.’s work [6] . In general, the average performance 

degradation for the proposed model assist control is around only 5%. 
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Figure 15:  Normalized system performance for PARSEC benchmarks. 

 

  

Table 2 gives the normalized energy-delay product from all methods. The 

progressive improvement from the right choice of metric and the benefit brought by 

proposed new control policy can be obliviously seen through the table. Compared to 

AMAT+PI [6], our best method reduces the energy-delay product by nearly 50%. 
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Method Energy   Delay 

Baseline 1.0 

AMAT+PI 0.5 

CL+PI 0.31 

CL+ModelAssist 0.28 

 

Table 2: Normalized energy-delay product on average for all PARSEC cases. 

 

 

 Table 3 gives the normalized energy and performance under different integral 

bound inside PI controller for preventing wind-up problem. The progressive 

improvement for the energy saving, and the progressive worse performance loss can be 

obliviously seen through the table. By comparing these results, we find that a desired 

energy-performance tradeoff can be obtained when the bound equals 2.5. In that case, it 

gives average performance degradation for the proposed model assist control around 

only 5% while achieved a large amount of power saving. 
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 energy performance 

Base 1 1 

Th = 1 0.39 0.97 

Th = 1.5 0.33 0.96 

Th = 2 0.27 0.95 

Th = 2.5 0.26 0.94 

Th = 3 0.23 0.92 

Th = 5 0.216 0.916 

Th = 8 0.212 0.910 

Th = 11 0.208 0.912 

Th = infinite 0.17 0.88 

 

Table 3: Normalized energy and performance on average for all PARSEC cases 

under different integral bound 
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9. CONCLUSIONS 

 

 In this thesis research work, we performed DVFS for shared resources 

(NoC/LLC) in chip multiprocessor systems. The stability of the whole DVFS control 

system is proved theoretically. The proposed techniques are evaluated on public 

architecture benchmarks with full-system simulations. Furthermore, the wind up 

problem in control system is also investigated from both theory and full-system 

simulations to verify the effectiveness of our anti wind up techniques. In summary, the 

results show quite large energy savings and improvement over recent previous work. 
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