
APPLICATION OF LOGIC SYNTHESIS TOWARD THE INFERENCE AND

CONTROL OF GENE REGULATORY NETWORKS

A Dissertation

by

PEY-CHANG KENT LIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sunil P. Khatri
Committee Members, Edward Dougherty

Paul Gratz
Tiffani Williams
Gabor Balazsi

Head of Department, Chanan Singh

August 2013

Major Subject: Electrical Engineering

Copyright 2013 Pey-Chang Kent Lin

ABSTRACT

In the quest to understand cell behavior and cure genetic diseases such as cancer, the funda-

mental approach being taken is undergoing a gradual change. It is becoming more accept-

able to view these diseases as an engineering problem, and systems engineering approaches

are being deployed to tackle genetic diseases. In this light, we believe that logic synthe-

sis techniques can play a very important role. Several techniques from the field of logic

synthesis can be adapted to assist in the arguably huge effort of modeling cell behavior,

inferring biological networks, and controlling genetic diseases. Genes interact with other

genes in a Gene Regulatory Network (GRN) and can be modeled as a Boolean Network

(BN) or equivalently as a Finite State Machine (FSM). As the expression of genes deter-

mine cell behavior, important problems include (i) inferring the GRN from observed gene

expression data from biological measurements, and (ii) using the inferred GRN to explain

how genetic diseases occur and determine the ”best” therapy towards treatment of disease.

We report results on the application of logic synthesis techniques that we have devel-

oped to address both these problems. In the first technique, we present Boolean Satisfi-

ability (SAT) based approaches to infer the predictor (logical support) of each gene that

regulates melanoma, using gene expression data from patients who are suffering from the

disease. From the output of such a tool, biologists can construct targeted experiments to

understand the logic functions that regulate a particular target gene. Our second technique

builds upon the first, in which we use a logic synthesis technique, implemented using SAT,

to determine gene regulating functions for predictors and gene expression data. This tech-

nique determines a BN (or family of BNs) to describe the GRN and is validated on a syn-

thetic network and the p53 network. The first two techniques assume binary valued gene

expression data. In the third technique, we utilize continuous (analog) expression data,

ii

and present an algorithm to infer and rank predictors using modified Zhegalkin polynomi-

als. We demonstrate our method to rank predictors for genes in the mutated mammalian

and melanoma networks. The final technique assumes that the GRN is known, and uses

weighted partial Max-SAT (WPMS) towards cancer therapy. In this technique, the GRN

is assumed to be known. Cancer is modeled using a stuck-at fault model, and ATPG tech-

niques are used to characterize genes leading to cancer and select drugs to treat cancer.

To steer the GRN state towards a desirable healthy state, the optimal selection of drugs is

formulated using WPMS. Our techniques can be used to find a set of drugs with the least

side-effects, and is demonstrated in the context of growth factor pathways for colon cancer.

iii

To my family

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I-A. Genomics . 1

I-B. Cell Biology . 2

I-B.1. Genome . 2

I-B.2. Gene Expression Regulation 5

I-B.3. Gene Expression Measurement 6

I-C. Gene Regulation Networks 9

I-C.1. Boolean Network 10

I-D. Genomics Overview . 15

I-E. Logic Synthesis . 17

I-E.1. Logic Functions and Representation 18

I-E.2. Boolean Satisfiability 22

I-E.3. SAT Solvers . 25

I-F. Chapter Summary . 29

II PREDICTOR SET INFERENCE USING SAT 31

II-A. Background . 31

II-B. Previous Work . 34

II-C. Background . 35

II-D. Problem Formulation and SAT Construction 36

II-D.1. Partial State Transition Table 37

II-D.2. SAT Formulation and GRN Constraints 38

II-D.3. All-SAT . 41

II-E. Experimental Results . 41

II-E.1. Method A . 45

II-E.2. Method B . 46

II-E.3. Method AB . 47

II-F. Chapter Summary . 49

III DETERMINING GENE FUNCTION IN BOOLEAN NETWORKS

USING SAT . 51

III-A. Background . 51

III-B. Previous Work . 53

v

III-C. Our Approach . 55

III-C.1. SAT-based Formulation for Gene Function As-

signment . 55

III-C.1.a. Circuit Construction from the Predictor Set . 55

III-C.1.b. Constraining SAT Solution Space Us-

ing Gene Expression States 58

III-C.1.c. Example 59

III-D. Experimental Results . 63

III-D.1. Model Implementation 63

III-D.2. Method Sensitivity to Input 65

III-D.3. Function and BN Results for p53 67

III-E. Chapter Summary . 68

IV PREDICTOR RANKING USING MODIFIED ZHEGALKIN FUNC-

TIONS . 69

IV-A. Background and Previous Work 69

IV-B. Approach . 71

IV-B.1. Network Model 71

IV-B.2. Zhegalkin Polynomial Function 71

IV-B.3. Sigmoid Function 75

IV-B.4. Predictor Ranking Algorithm 76

IV-C. Results . 78

IV-C.1. Mutated Mammalian Cell-Cycle Network 78

IV-C.2. Predictor Selection Method 89

IV-C.3. Melanoma Network 92

IV-D. Chapter Summary . 97

V ATPG FOR CANCER THERAPY 99

V-A. Background . 99

V-B. Previous work . 101

V-C. Method . 103

V-C.1. Fault Terminology 103

V-C.2. Stuck-at Fault Modeling 104

V-C.3. SAT-based Formulation for Stuck-at Fault Model . 106

V-C.4. Implementation of Fault and Drug Simulation . . . 107

V-C.4.a. Case 1: Single Stuck-at Fault Identification . 107

V-C.4.b. Case 2: Fault Rectification with Fewest Drugs 109

vi

V-C.4.c. Case 3: Fault Rectification with Mini-

mal Drug Cost 110

V-C.4.d. Case 4: Determining Therapy with Fewest

Drugs and Best Coverage 111

V-D. Results . 111

V-D.1. Model Implementation 111

V-D.2. Simulation Results 113

V-D.2.a. Case 1: Single Stuck-at Fault Identification . 113

V-D.2.b. Case 2: Fault Rectification with Fewest drugs 113

V-D.2.c. Case 3: Fault Rectification with Mini-

mal Drug Cost 116

V-D.2.d. Case 4: Determining Therapy with Fewest

Drugs and Best Coverage 117

V-E. Sequential and Feedback Circuits 119

V-F. Chapter Summary . 121

VI SUMMARY AND FUTURE WORK 123

VI-A. Summary . 123

VI-B. Future Work . 124

REFERENCES . 127

vii

LIST OF TABLES

TABLE Page

I.1 Boolean Regulating Functions for Example 4-Gene Network 11

I.2 Example 4-Gene State Transition Table 13

I.3 Truth Table for AND Function fAND with 2 Input Variables 20

II.1 Example 3-Gene Partial State Transition Table 38

II.2 Attractors for Melanoma Network . 42

II.3 Method B: Gene Occurrence for All Predictors (First Iteration) 47

II.4 Melanoma Network Predictor Set Selection 48

III.1 Example 3-Gene State Transition Table 59

III.2 Boolean Regulating Functions for Synthetic 5-Gene Network 64

III.3 Boolean Regulating Functions for p53 Network 65

III.4 Attractor Cycles and States for p53 Network [AT M, p53,Wip1,Mdm2] . . 67

IV.1 Possible Values for Coefficients of Zhegalkin Function 72

IV.2 Truth Table for f B = x1x2 . 73

IV.3 Truth Table for gB = x1 x2 + x1x2 . 73

IV.4 Boolean Regulating Functions for Mutated 9-Gene Mammalian Cell-

Cycle Network . 79

IV.5 Linear Predictor Ranking by MSE for Gene Rb(x2) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x1,x4,x5,x9 80

IV.6 Linear Predictor Ranking by MSE for Gene E2F(x3) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x2,x5,x9 81

IV.7 Linear Predictor Ranking by MSE for Gene CycE(x4) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x2,x3 81

viii

IV.8 Linear Predictor Ranking by MSE for Gene CycA(x5) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x2,x3,x6,x7,x8 . . . 82

IV.9 Linear Predictor Ranking by MSE for Gene Cdc20(x6) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x9 82

IV.10 Linear Predictor Ranking by MSE for Gene Cdh1(x7) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x5,x6,x9 83

IV.11 Linear Predictor Ranking by MSE for Gene UbcH10(x8) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x5,x6,x7,x9 . . . 83

IV.12 Linear Predictor Ranking by MSE for Gene CycB(x9) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x6,x7 84

IV.13 Sigmoid Predictor Ranking by MSE for Gene Rb(x2) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x1,x4,x5,x9 84

IV.14 Sigmoid Predictor Ranking by MSE for Gene E2F(x3) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x2,x5,x9 85

IV.15 Sigmoid Predictor Ranking by MSE for Gene CycE(x4) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x2,x3 85

IV.16 Sigmoid Predictor Ranking by MSE for Gene CycA(x5) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x2,x3,x6,x7,x8 . 86

IV.17 Sigmoid Predictor Ranking by MSE for Gene Cdc20(x6) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x9 86

IV.18 Sigmoid Predictor Ranking by MSE for Gene Cdh1(x7) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x5,x6,x9 87

IV.19 Sigmoid Predictor Ranking by MSE for Gene UbcH10(x8) in Mu-

tated Network (Top 10 Predictors Shown), Correct Predictor is x5,x6,x7,x9 87

IV.20 Sigmoid Predictor Ranking by MSE for Gene CycB(x9) in Mutated

Network (Top 10 Predictors Shown), Correct Predictor is x6,x7 88

IV.21 Resolution Ratio Ri for Top Rank Predictors from Mutated Network

(Linear Representation) . 90

ix

IV.22 Resolution Ratio Ri for Top Rank Predictors from Mutated Network

(Sigmoid Representation) . 91

IV.23 Comparison of Selected Predictors Using Highest Ri for Mutated Network 91

IV.24 Normalized Gene Expression Lines for Melanoma Network 92

IV.25 Predictor Ranking by MSE for Gene PIRIN(x1) in Melanoma Net-

work (Top 10 Predictors Shown) . 93

IV.26 Predictor Ranking by MSE for Gene S100P(x2) in Melanoma Net-

work (Top 10 Predictors Shown) . 93

IV.27 Predictor Ranking by MSE for Gene RET 1(x3) in Melanoma Net-

work (Top 10 Predictors Shown) . 94

IV.28 Predictor Ranking by MSE for Gene MART1(x4) in Melanoma Net-

work (Top 10 Predictors Shown) . 94

IV.29 Predictor Ranking by MSE for Gene HADHB(x5) in Melanoma Net-

work (Top 10 Predictors Shown) . 95

IV.30 Predictor Ranking by MSE for Gene STC2(x6) in Melanoma Network

(Top 10 Predictors Shown) . 95

IV.31 Predictor Ranking by MSE for Gene WNT 5A(x7) in Melanoma Net-

work (Top 10 Predictors Shown) . 96

IV.32 Predictor Selection for Melanoma Network 96

V.1 Drug Selection for Single Stuck-at Faults 115

V.2 Drug Selection for Multiple Stuck-at Faults 116

V.3 Drug Selection Count and Fault Coverage 118

x

LIST OF FIGURES

FIGURE Page

I.1 DNA structure . 3

I.2 Genes consist of short stretches of DNA 3

I.3 Transcription and translation of gene to RNA and protein 4

I.4 Gene expression repression example . 6

I.5 Microarray process flow for measuring gene expression 8

I.6 Example BN topology (each node represents a gene) 12

I.7 Example 4-gene state transition diagram 14

I.8 Block diagram of finite state machine 15

I.9 Overview of genomics research areas 16

I.10 Boolean n-cube Bn . 19

I.11 K-map for AND Function . 21

I.12 Implication graph for current assignment 29

II.1 Average predictor error difference on melanoma attractor data using

MiniSat without modification . 43

II.2 Average predictor error difference on melanoma attractor data using

MiniSat with random variable selection modification 44

II.3 Method A: Predictor occurrence for all valid attractor cycle orderings

(first iteration: no predictor selected) . 46

III.1 Circuit construction example: a) predictor set shown as connectivity

graph and b) function enumeration and MUX for gene a shown in detail . 61

III.2 p53 pathways . 64

III.3 Plot of # of mean solutions vs # of gene expressions observations (IO pairs) 66

xi

IV.1 Zhegalkin function f Z = x2 − x1x2 for Boolean function f B = x1x2 74

IV.2 Zhegalkin function gZ = 1−x1−x2+2x1x2 for Boolean function gB =

x1 x2 + x1x2 . 74

IV.3 Linear function x compared with sigmoid function s(x)= 1/1+e−12∗x+6

over the unit interval . 76

V.1 Circuit with stuck-at fault . 104

V.2 Fault modeling and injection . 105

V.3 Logic circuit stuck-at fault model for GF signaling pathways 107

V.4 Sequential ATPG by time-frame expansion method 120

xii

CHAPTER I

INTRODUCTION

I-A. Genomics

Recently, there have been many advances in biology towards our understanding of the

human genome. Improvements in DNA/RNA sequencing have allowed rapid and inexpen-

sive sequencing of a person’s genome and improvements in microarray technology have

allowed biologists and clinicians to rapidly measure tens of thousands of gene expressions

at once. These advances have brought new interest to the field of genomics, which aims

to study genes as a collective system in a Gene Regulatory Network (GRN), rather than

to study genes individually. Genomics is important to biology and medicine as both cel-

lular control and its failure – disease – is a result of the activity of many genes interacting

simultaneously.

Towards the treatment of genetic diseases, genomics has three main goals.

1. Understand how cells operate and the way the cellular system fails

2. Identify key genes for specific diseases

3. Use models to guide drug development and therapy for such diseases

There has been recent work in the genomics area from various researchers in the signal

processing, computational biology, and data-mining communities, in addition to the work

of biologists and medical practitioners. We recognize that genomics, or the system of gene

interactions, can be modeled as a Finite State Machine (FSM) in logic-speak, and thus is

amenable to many powerful logic synthesis techniques. The motivation for our research is

to determine how logic synthesis can be used in inferring and controlling the GRN, and to

increase the interest among the logic and CAD community towards the study of genomics.

1

I-B. Cell Biology

In this section, we present an engineering-centric view of the biological organism, with an

overview of some of the relevant terminology and domain information.

I-B.1. Genome

In an organism, the basic unit of life is the cell. Practically all cell function is carried out by

large molecules called proteins. There exist many types of proteins, and they provide most

of the cell structure and cell function. Some examples of proteins are enzymes to promote

chemical reactions, signaling molecules for communication across cells, and molecules

with moving parts [1, 2]. Proteins can have complex shapes, allowing for many functions.

Each protein is made up of a chain of amino acids as determined by its corresponding

gene, and the shape is determined by its amino acid sequence [1, 2]. The unique shape of a

protein allows it to chemically bind to other molecules, including other proteins, that match

its specific shape.

The genetic information of each living organism is encoded in DNA (Deoxyribonu-

cleic acid). DNA is a molecule consisting of a sequence of 4 nucleotide bases: adenine,

guanine, cytosine, and thymine (often shortened to the letters A, G, C, and T respec-

tively) [3]. The actual sequence of the bases is the property that encodes the genetic in-

formation. The structure of DNA consists of two strands, each providing a copy of the

sequence. The two strands run in parallel and are connected to each other through base

pairing, wherein each base on one strand bonds with only one type of base on the other

strand. There are two types of base pairs, A-T and G-C. An example of the DNA structure

is shown in Figure I.1.

2

. . .
A G T C C A T C

C A G G T A GT . . .

Fig. I.1. DNA structure

The DNA can be visualized as a string of characters, where each character is one of

the 4 nucelotide bases. Genes are short stretches (chunks) of DNA (Figure I.2) that produce

functional molecules proteins and RNA. The linear sequence of bases in a gene spells out

the sequence of amino acids in a protein.

Gene 2 Gene 4Gene 1 Gene 3
DNA

Fig. I.2. Genes consist of short stretches of DNA

When taken as a whole, the complete set of information in an organism’s DNA is

called the genome. Individual ”instances” of the same species have small variations in

their genome (which result in variations in characteristics of the human being for instance).

The entire genomes of several model organisms have been sequenced, yielding the entire

DNA sequence for those organisms. For instance, the human genome has been sequenced

and has been found to consist of approximately 3.2 billion base pairs in all and around

30,000 genes.

While DNA is comprised of 4 bases, proteins are an amino acid chain with 20 possi-

ble amino acids. The process of mapping a 4-letter alphabet (DNA) to 20-letter alphabet

(amino acid) takes place with the help of RNA in a process called transcription and transla-

tion (Figure I.3).

When a protein is needed by the cell, the nucleotide sequence of the gene is first copied

to another type of nucleic acid, RNA, which is similar to DNA but with the 4 nucleotide

3

bases: A, G, C, U. The RNA strand then serves as a template for protein synthesis. A

specific molecule called polymerase latches onto the start site of the gene and slides along

the DNA, synthesizing the complementary RNA at the same time. This process of copying

gene DNA into RNA strands is referred to as transcription. When a gene is being tran-

scribed, it is said to be expressed, or turned ON. If no transcription is taking place, then the

gene is said to be not expressed, or turned OFF.

After the RNA strand is produced, the RNA nucleotide sequence has to be decoded to

produce the appropriate protein. This translation process takes place with the use of other

functional molecules called ribosomes among others, which read the RNA strand and bind

the complementary amino acids to form a chain. The resulting amino acid chain folds to

create the final protein.

Promoter

Transcription
start site stop site

Transcription

Folding

Translation

Transcription

DNA

RNA

Amino acid chain

Protein

Gene

Fig. I.3. Transcription and translation of gene to RNA and protein

4

I-B.2. Gene Expression Regulation

While the genome of an organism encodes all functional molecules that are needed to

make and maintain its cells, not every gene needs to be expressed all the time. A cell can

regulate its genes and use its genes selectively, switching genes ON and OFF to produce

different proteins depending on the situation. Or in the case of multicellular organism, all

cells have the same genome and different genes can be expressed to create large variety

of cell types (i.e. skin cells, muscle cells, colon cells, etc.). One example to demonstrate

that the alteration of expression of single gene can trigger development of a different cell

is the study involving fruit flies and gene Ey [4], which is crucial for eye development.

In this study, Ey is expressed early in development (using artificial means) in cells that

normally go on to form legs. As a result, in these flies eyes developed in the middle of legs.

Another example of single gene expression affecting cell function is the β-globin gene,

which produces one of the hemo protein. Mutations in the β-globin gene [5] cause the

protein to have the wrong amino acid sequence and hence, different physical dimension.

When this protein binds with the other hemo protein groups, the resulting hemoglobin does

not have the correct shape to transport oxygen, leading to the disease sickle cell anemia.

Both these examples show how erroneous gene expression can affect normal cell operation

and disease.

Protein production can be controlled at different points throughout the transcription,

translation, and protein binding processes. Of interest to gene regulation and genomics

is the first type, transcription control. Each gene has a start site that indicates where tran-

scription will start. Upstream of the start site on the DNA is the promoter region (regulatory

DNA sequences as shown on Figure I.3) which are needed by the cell to switch the gene ON

or OFF [6]. These regulatory DNA sequences must be bound by gene regulatory proteins

which uniquely recognize these sequences. The gene regulatory proteins, when bounded,

5

can either suppress or enhance transcription. Those proteins which turn OFF genes are

called repressors, which proteins that turn ON genes are activators. For example, when the

a repressor binds to the gene regulatory sequence, the polymerase molecule cannot attach

to the starting site, thus transcription cannot begin and the gene expression is turned off.

As shown in Figure I.4, gene G1 produces protein P1, which is a repressor for gene G2. So

if G1 is expressed (P1 is present), then gene G2 cannot produce protein P2. Otherwise, if

gene G1 is not expressed, then gene G2 can produce protein P2. In this manner, a complex

gene expression network can be formed.

Polymerase

DNA
G2

P1 repressor P2

G2 Promoter

Fig. I.4. Gene expression repression example

I-B.3. Gene Expression Measurement

As described in the previous section, cell function and control results from the interaction of

genes and its products: RNA and proteins. All three components, DNA (and genes), RNA,

and proteins, are involved in gene expression regulation and have high level of interaction.

This interaction allows a significant amount of information about the gene activity to be

available in each of the components. In industry and research, the focus is measurement

at the RNA level, from which the gene expression value can be inferred. In particular,

high-throughput applications such as expression microarrays have been recently developed

which allow for measurement of tens of thousands of RNA simultaneously.

6

The expression microarray system is comprised of both biochemical and optical imag-

ing processes. A microarray is a slide plate with an array of thousands of different probes

attached to the surface in a grid pattern. Each probe is a single-stranded DNA correspond-

ing to a unique gene. The general steps (shown in Figure I.5) begin with extracting RNA

from cells, converting the RNA to single stranded cDNA (complementary DNA), attaching

fluorescent labels (markers) to the cDNAs, allowing the cDNAs to attach (bind) to their

complementary probes on the slide, washing the slide of any unbounded molecules, and

then detecting the fluorescence of the attached cDNA on the slide.

The principle of the microarray is that if a specific gene is expressed, then the corre-

sponding RNA is produced. The RNA is converted to cDNA and the fluorescent-marked

cDNA will attach to its complementary probe on the microarray. Those fluorescent-marked

cDNA that attach to probes will fluoresce (emit light when excited by a laser) and the in-

tensity of the fluorescence can be recorded as a digital image (for each probe on the mi-

croarray).

7

RNA

cDNA

gene expression

glass slide microarray

RNA extraction

cDNA conversion
and labeling

binding

laser and
imaging

Fig. I.5. Microarray process flow for measuring gene expression

Through analysis of the digital image, the intensities of fluorescence reflect RNA lev-

els, and in turn gene expression levels. The measurements of gene expression from mi-

croarrays can be expressed in the form of ratios or as raw intensity values, which can be

further processed with statistical software [7] to obtained normalized or binary expression

values. The development of microarrays and other measuring technologies have allowed

for snapshot measurements of the entire genome, driving research to focus on gene regula-

tion in the complete network, rather than just gene pair interactions.

8

I-C. Gene Regulation Networks

A main focus of genomics is the understanding of the manner in which cells execute and

control the number of operations required for normal cellular function, and the ways in

which cell systems fail, causing disease. While classical approaches in molecular biol-

ogy have identified specific processes and interactions in the cell, they have not been able

to produce an overall formalism for cell operation. Many cell processes, functions, and

diseases are a result of highly complex and multivariate gene interaction, necessitating a

system or network view of the genome.

The gene regulatory network (GRN) is one systematic approach to characterize the cell

behavior through gene-to-gene interaction among a set of genes (i.e. how the expression of

a subset of genes affects the expression of another gene in the set). Several GRN models

have been developed, but all models have the same properties, in that they all represent

systems which characterize an interaction among a group of components as a whole, and

they all model a dynamical, time-varying physical process.

In particular, a GRN model describes the 1) topology (connectivity structure) of the

genes, and 2) the regulating functions of the genes. Both these aspects together deter-

mine the dynamical behavior of system. With an accurate GRN model, an analysis of the

topology and regulation functions can provide deep insight in the long-term behavior of

the system, and identify how the system can fail and lead to disease. Several models have

been proposed for the GRN such as Markov Chains [8, 9], Differential equations [10, 11],

Boolean Networks (BNs) [12, 13], Continuous Networks [14], and Stochastic Gene Net-

works [15]. Our research focuses on Boolean networks due to its significant adoption by

the research community. A benefit of using BNs is that they lend themselves to analysis

using logic synthesis techniques. Boolean networks are described in detail in the following

subsection.

9

In addition to gene regulatory networks, RNA and protein regulatory networks are also

studied in genomics. RNA regulatory networks [16, 17] describe RNA interactions such as

splicing. After transcription, the RNA may undergo splicing where portions of the RNA are

kept, while other portions are removed. Some RNA have alternative splicing, which allows

RNA to produce different proteins. On the other hand, protein regulatory networks [18]

describe protein-protein interactions such as protein binding (for example, hemo protein

groups) or altering protein activity. Protein networks are also important to study as most

proteins perform various cell functions through interactions with other proteins.

I-C.1. Boolean Network

We utilize the Boolean Network (BN) model that was proposed by Kauffman in 1969 [12].

In a Boolean Network, the expression activity of a gene is represented as a binary value,

where 1 indicates the gene is ON (expressed) and producing gene-products, while 0 indi-

cates it is OFF (not expressed). Such a model cannot capture the continuous and stochastic

biochemical properties of protein and RNA production. However, it has been observed that

genes can typically be modeled as ON or OFF in any particular biochemical pathway [19].

A Boolean network is formally defined as a set of nodes {x1,x2, . . . ,xn} with Boolean

functions {g1,g2, . . . ,gn}. In the context of genomics, each node xi is a gene, and each gene

is associated with a logic function gi. The value of a gene is a binary variable, xi ∈ {0,1},

and is updated at the next time point t + 1 according to its associated function gi() and

the value of the genes (x1,x2, . . . ,xn) at the current time point t. The state of a gene xi

represents the expression of the gene, where xi = 1 indicates expressed, and xi = 0 indicates

not expressed. In the BN, all genes are assumed to updated synchronously, at each time

step.

In general, each function gi() depends on a subset of genes si ⊆ (x1,x2, . . . ,xn). In this

sense, this subset of genes determine or ”predict” the expression of a target gene xi. The

10

subset of genes si is referred to as a predictor for gene i. In essence, a predictor describes

which genes directly interact with each other. The complete set of all predictors in the GRN

(for each of the genes in the GRN) is the predictor set. The complete set of functions for

each gene in the GRN in turn determine the complete dynamic behavior of the GRN. The

predictor set of the GRN determines the structure or topology of the GRN.

Naturally, the Boolean network describes a dynamic system. The expression values of

all the genes (x1,x2, . . . ,xn) at a particular time t is the state in the network at t. At the next

time point t +1, the network transitions to a new state as determined by the functions and

expressions of the genes at the current time step. For a BN with n genes, there are 2n total

states, and the behavior of the BN can be described in a state transition table (truth table)

or a state transition diagram. The long-term behavior of the BN is such that absent any

external input and given any starting state, the network repeatedly visits a fixed sequence

of state(s), forming a cycle. The states in such a cycle are called attractor states, while

the cycle is called an attractor cycle. Since the BN is deterministic, after it has reached an

attractor state, it will stay in the attractor cycle absent any external perturbation.

We present a small example of a Boolean network. In this example, there are 4 genes

(x1,x2,x3,x4) with the corresponding functions listed in Table I.1.

Gene Regulating Function

x1 g1 = (x3 ⊕ x4)

x2 g2 = x4

x3 g3 = (x1x2x4)

x4 g4 = x1 + x2 + x3

Table I.1. Boolean Regulating Functions for Example 4-Gene Network

11

x4 x3

x2x1

Fig. I.6. Example BN topology (each node represents a gene)

From the functions in Table I.1, we can determine the topology (Figure I.6) and pre-

dictors of the BN. For example, the expression of gene x1 is predicted by genes x3 and x4.

Similarly, gene x2 is predicted by gene x4, and so on. The state space is [x1,x2,x3,x4] with

24 = 16 total states in the BN.

If at any time t, the BN has a state xt , then we can apply the gene regulating function

on xt (current state) to obtain xt+1 (next state). For example if the current state of the BN

is < x1,x2,x3,x4 >= 1010, then in the next time instant, xt+1
1 = (xt

3 ⊕ xt
4) = (1⊕ 0) = 1,

xt+1
2 = xt

4 = 0 = 1, xt+1
3 = (xt

1xt
2xt

4) = (1 ·0 ·0)= 1, and xt+1
4 = xt

1+xt
2+xt

3 = 1+0+1 = 1.

In this way, by enumerating over all the values of < x1,x2,x3,x4 > in the state space, we

obtain < x1,x2,x3,x4 >
t+1 and can populate the state transition table (Table I.2) and state

transition diagram (Figure I.7). From these we find the BN has two attractor cycles: a 3

state attractor cycle (1111) → (0001) → (1010) and a 1 state (singleton) attractor cycle

(0011)

12

Current state Next state

x1 x2 x3 x4 x1 x2 x3 x4

0 0 0 0 0 1 1 0

0 0 0 1 1 0 1 0

0 0 1 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 0 0 1 1 1

0 1 0 1 1 0 1 1

0 1 1 0 1 1 1 1

0 1 1 1 0 0 1 1

1 0 0 0 0 1 1 1

1 0 0 1 1 0 1 1

1 0 1 0 1 1 1 1

1 0 1 1 0 0 1 1

1 1 0 0 0 1 1 1

1 1 0 1 1 0 0 1

1 1 1 0 1 1 1 1

1 1 1 1 0 0 0 1

Table I.2. Example 4-Gene State Transition Table

13

1111

00011010

0000

0010 0110 1110

1101

0011

10010101110010000100

10110111

Fig. I.7. Example 4-gene state transition diagram

In logic-speak, the Boolean network introduced by Kauffman is equivalent to a Finite

State Machine (FSM). In an FSM, the machine can be in one state at a time (its current

state), which is stored in memory elements such as registers or flip-flops. The FSM can

change to another state (the next state), according to combinational logic function which

depends on its current state and inputs. These combinatorial logic functions are exemplified

by the gene regulating functions in Table I.1. Figure I.8 shows a block diagram of a typical

FSM. It can be seen that memory elements storing state at a particular time are the same

as the gene expression xt
i, and the combinational (next state) logic is the same as the gene

logic function gi, which operates on xt to produce xt+1
i (i.e. gi(x

t) = xt+1
i).

Similarly, the predictor of a gene is equivalent to the logical support of (gene regu-

lating) function. By modeling the GRN as a BN (FSM), this allows a rich set of logic

synthesis algorithms to be brought to bear to the problem of GRN inference and control.

14

Next state

Memory

Logic

Combinational

OutputsInputs

Current state

Fig. I.8. Block diagram of finite state machine

I-D. Genomics Overview

Before introducing some key ideas in logic synthesis, we first present an overall view of ge-

nomics and its key issues. In genomics, an accurate representation of the GRN is necessary

for understanding how genetic diseases occur and how we can treat these diseases. Over the

lifetime of an organism, mutations can occur in the genome, causing changes in its normal

biological behavior. Mutations are caused several environmental factors (radiation, drugs,

etc.). Once a genome is mutated, the GRN behavior may deviate from that of a healthy

organism. Cancer and gene-related diseases are often the result of a failure in the gene sig-

naling mechanisms, leading to incorrect gene regulation and its associated functions. With

a GRN-based view of the biological functioning of the organism, we can potentially target

specific gene(s) for drugs, and hence modify their genetic expression, thereby treating the

disease. This is a promising way to treat genetic diseases, and can yield the possibility of

”personalized medicine” - targeted and specific disease prevention and treatment based on

an individual’s genetic information [20, 21].

15

Biological
observations

− gene expression

− pathways
 manufacture
− custom drug

− clinical trials

TreatmentGRN

inference

− topology

− function

GRN

intervention

− disease gene
 identification

− drug selection

Fig. I.9. Overview of genomics research areas

We can divide genomics into four main areas, biological observations, GRN inference,

GRN intervention, and treatment, as outlined in Figured I.9. Biological observations refer

to measurement of the GRN including gene expression measurements, pathways, sequenc-

ing, biopsy, and so on. GRN inference aims to infer a model of the GRN from observations

of the biological system, for example, inferring gene predictors or topology, or gene reg-

ulating function from binary valued or continuous gene expression measurements. The

GRN must describe both the topology and interaction of the genes in the network. The

topology refers to the connectivity structure of the genes (predictors and predictor set).

The interaction describes the dynamical behavior or regulating function of all genes. GRN

intervention analyzes the inferred GRN model to determine which genes can fail, leading

to disease, and how to intervene in the GRN to treat disease. Treatment applies the in-

tervention results to drive new drug development and direct clinical studies. The research

presented in this thesis focuses on GRN inference and GRN intervention.

The task of inferring a GRN is an arduous one. Because of the complex interaction

of the genes, it is hard if not impossible to construct a single biological experiment that

will yield the complete GRN. Instead, several steps are employed. First, from biological

measurements such as expression microarrays, biologists statistically observe that a certain

subset of genes G are involved in the growth and spread of a genetic disease. Multiple sam-

ples of the gene expression of the genes in G (for several diseased and healthy individuals)

16

are taken for comparison. These can also be in the form of time course data (where expres-

sion of the genes in G are taken for the same individual, over a sufficiently long duration).

Time course data is generally not readily available, however. From the gene expression

data, logic techniques can be utilized to i) find the support or predictors for each gene

gi ∈ G, and ii) infer the function of the GRN. To validate the GRN obtained in this manner,

biologist can perform targeted experiments to verify specific gene interactions within the

GRN. Often, pathways (or portions) of the GRN are known, from targeted experiments that

have already been conducted by biologists in the past. By curating the results of several

such (often independently conducted) experiments, some GRNs have been inferred with

reasonable confidence. This information can be used to verify results, or used as additional

inputs to constrain the state space of our logic synthesis methods.

Once the GRN for a genetic disease is known, one main area of interest is to under-

stand how genetic disease arises from the GRN and how to intervene in the GRN to treat

diseases. In the case of genetic diseases, genes are mutated or damaged leading to signaling

failure in the GRN. The problem then becomes how to identify which genes are responsi-

ble for a particular disease and how to design drugs to correct the behavior of these genes.

If the specific effect of candidate drugs on particular genes is known, another problem of

interest is to find the best set of drugs which correct the GRN behavior of a diseased or-

ganism. Both problems can be cast as instances of another logic synthesis method called

automatic test pattern generation (ATPG).

I-E. Logic Synthesis

The Boolean Network [12] model for GRNs is a finite state machine (FSM), which pro-

vides the motivation for applying established and efficient techniques and algorithms from

the field of logic synthesis. In computer circuit design, logic synthesis is the process of

17

converting a high-level specification into an optimized logic gate representation. Logic

synthesis techniques can be further split into methods, which include simplification of the

logic, mapping the logic to specific technology or libraries, timing optimization, and testing

or verification of the design. Logic synthesis is an essential step in the process of digital

integrated circuit (IC) design, given the ever increasing complexity of modern digital ICs.

For example, state of the art micro-processors comprise millions of gates, and their design

is made possible only with the help of computer-aided design (CAD) tools 1, which include

logic synthesis tools as well.

Logic synthesis techniques can take gene expression observations as inputs and infer

and construct the GRN as a Boolean network (logic circuit), which represents the gi(x)

functions of all the genes of the GRN. The resulting circuit can be simulated using logic

synthesis tools to query the long term behavior of the GRN and analyze its attractor cycles.

This thesis employs several logic synthesis techniques, all of which are based on Boolean

Satisfiability (SAT). While SAT is an NP-complete problem, many Boolean logic problems

translate naturally to SAT. Furthermore, SAT is heavily used in logic synthesis algorithms

and in the EDA industry, and as such there are many efficient SAT solvers that are available

for public download. In the remainder of this chapter, we first present an overview of logic

synthesis and SAT, and later describe the operation of SAT solvers.

I-E.1. Logic Functions and Representation

Definition I.1: Suppose that B = {0,1}. The Boolean n-cube Bn is a representation of the

n-dimensional hyperspace constructed by combining n instances of B.

Some examples of Boolean n-cubes are shown below and in Figure I.10.

1Computer-Aided Design (CAD) tools for IC design are also often referred to as Electronic
Design Automation (EDA) tools

18

B1 = B = {0,1}

B2 = {0,1}X{0,1}= {00,01,10,11}

B3 = {0,1}X{0,1}X{0,1}= {000,001,010,011,100,101,110,111}

00 01

10 11

000

010 011

110 111

001

100 101

0 1

n = 3

n = 1

n = 2

Fig. I.10. Boolean n-cube Bn

Definition I.2: A Boolean function f is a mapping f (x1,x2, . . . ,xn) : Bn → B.

In other words, f maps each vertex of the Boolean n-cube (Bn) to 0 or 1.

19

There are several types of representations for Boolean functions. Some common repre-

sentation used in logic synthesis include the Boolean n-cube (where each vertex is mapped

to a 0 or 1 value), the truth table, the Karnaugh map, and the Boolean formula.

Definition I.3: A truth table of a function f (x) : Bn → B is a table of the values of

each the 2n vertices of Bn. Each vertex of the Boolean n-cube appears in a row of the truth

table. The truth table comprises of columns (one for each input variable) and a column for

the output. The input columns of the the truth table represent the vertex of Bn. If the output

column is a ’1’, the row is referred to as a minterm, and if the output column is a ’0’, the

row is called a maxterm. An example of truth table for a 2-input (x,y) AND function is

shown in Table I.3, where only the vertex {1,1} is assigned to a ’1’, value and all other

vertices are assigned ’0’.

x y fAND

0 0 0 maxterm

0 1 0 maxterm

1 0 0 maxterm

1 1 1 minterm

Table I.3. Truth Table for AND Function fAND with 2 Input Variables

Definition I.4: A Karnaugh map (K-map) is a graphical representation of the truth

table of a function. In a K-map, each square represents a vertex v of Bn, and the contents

of any vertex is the value. An example of a K-map is shown in Figure I.11. The K-map in

this figure is that of the AND function with two input variables.

20

1

0

0

0

1

0 1
x

y
0

Fig. I.11. K-map for AND Function

Definition I.5: A literal or a literal function is a binary variable x or its negation x.

For example, x1,x2, . . . are variables, while x1,x1,x2,x2, . . . are literals.

Definition I.6: A cube or a product is a conjunction (AND) of literals. For example,

the cube xy is a conjunction of two literals x and y. In the example x1x2x3, this cube is a

conjunction of the literals x1, x2, and x3.

Definition I.7: A clause is a disjunction (logical OR) containing literals. For example,

(x1 + x3) is a clause with two literals x1 and x3. Another example is (x+ y+ z) which is a

clause with three literals x, y, and z.

Definition I.8: A Sum of Products (SOP) expression is a canonical representation of

a function f , which consists of a disjunction (OR) of minterms. For example, the SOP of a

2-input AND gate is fAND = xy.

Definition I.9: A Product of Sums (POS) expression is a canonical representation of

a function f , which consists of a conjunction (AND) of maxterms. The POS is the dual of

the SOP. For example, the POS of a 2-input AND gate is fAND = (x+ y) · (x+ y) · (x+ y).

Definition I.10: A Conjunctive Normal Form (CNF) expression S consists of a con-

junction (AND) of m clauses c1 . . .cm. Each clause ci consists of disjunction (OR) of ki

literals. POS is a form of CNF.

Definition I.11: A Boolean formula is a formula that represents a function. The

formula is defined as catenations of:

• parentheses ()

21

• literals (x,y,x,y)

• Boolean operators (”+”) OR, (”·”) AND

• complementation (example: x+ y)

Following are three examples of Boolean formulas.

f = x1 · x2 + x1 + x2

g = (x1 + x2) · (x1 + x2)

h = a · (b+ c)

Often, the AND operator ”·” is replaced by catenation, for example a ·b is replaced by

ab.

For any Boolean function, there are an infinite number of Boolean formulas. Note

that in the previous examples of Boolean formulae above, both f and g are formulas that

represent the same Boolean function. The goal of logic synthesis is to find the ”best”

Boolean formula for a function. In chip design, the utility function for logic synthesis may

include minimizing number of gates (which may be selected from a standard gate (or cell)

library) or minimizing the estimated circuit’s delay or power.

I-E.2. Boolean Satisfiability

Boolean satisfiability (SAT) is an NP-complete decision problem. Given a Boolean formula

in CNF form, SAT determines if there is an assignment of the variables that will satisfy the

formula (make the formula evaluate true). Many algorithms in logic synthesis and elec-

tronic design automation (EDA) can be cast as an instance of Boolean satisfiability. Some

22

examples where SAT is used in logic synthesis and EDA include functional equivalence

checking, automatic test pattern generation (ATPG), and logic optimization. In addition,

the industry and research community have developed several efficient and scalable SAT

engines. In this thesis, we take advantage of these advancements in SAT solvers, and apply

them towards problems in genomics. We first define basic terms in Boolean satisfiability.

Definition I.12: Boolean satisfiability (SAT). Given a Boolean formula S (on a set of

binary variables X) expressed in CNF, the objective of SAT is to identify an assignment of

the binary variables in X that satisfies S, if such an assignment exists. If no such assignment

exists, S is concluded to be unsatisfiable (UNSAT).

In order to satisfy the formula S (i.e. make it evaluate to true), each clause of S must

have at least one literal evaluate to true. Satisfying S is equivalent to satisfying all ci ∈ S.

In general, there may exist many satisfying assignments for the formula in question.

For example, consider the formula:

S(a,b,c) = (a+b) · (a+b+ c)

This formula consists of 3 variables, 2 clauses, and 5 literals. To determine if the

formula is satisfiable, we attempt to satisfy all the individual clauses. If all clauses are

satisfied, then the formula S is also satisfied. We observe that the first clause (a+ b) is

satisfied (or evaluates to 1) if either a = 0 or b = 0. In that case, a = 1 or b = 1 respectively,

which satisfies the first clause. If a = 0 and b = 0, the second clause (a+b+c) is satisfied

only if c = 1.

Because all its clauses are satisfied, we conclude that S is satisfiable, and a satisfying

assignment is (a,b,c) = (0,0,1) or abc. Note, the cube (product) abc is logically the same

as stating that a = 0,b = 0, and c = 1.

An extension of the SAT problem, in which the goal is to find all satisfying assign-

ments is called All-SAT.

23

Definition I.13: All-SAT. Given a Boolean formula S (on a set of binary variables X)

expressed in CNF, the objective of All-SAT is to find all assignments of the binary variables

in X that satisfies S, if such an assignment exists.

One simple algorithm for All-SAT is to perform SAT on the formula S, express the

satisfying assignment as a cube k, complement k to get a clause c, add c as a new clause of

the formula S, and perform SAT again repeatedly until an UNSAT result is obtained. The

inclusion of c in S ensures that the same cube k cannot be found as a satisfying assignment

again. The process continues until no new solutions can be found.

To demonstrate All-SAT, we refer back to the previous example, S(a,b,c) = (a+b) ·

(a+ b+ c) where we found a satisfying cube k = abc. We perform an All-SAT by first

taking the satisfying cube and complementing it (using DeMorgan’s law) to form a new

clause c to be added to S:

c = k = (abc) = (a+b+ c)

The new clause c is then appended to the original formula to obtain S = S · c:

S = (a+b) · (a+b+ c) · (a+b+ c)

Note that the new clause c is unsatisfiable using the variables from k, ensuring that

the next iteration of SAT will find a different satisfying cube. The new CNF S is solved by

SAT again to obtain a new satisfying cube, for example abc. The steps are repeated until

no new satisfying assignments are found.

Another useful extension of SAT is Weighted partial Max-SAT (WPMS) which aims

to satisfy a subset of the clauses. In WPMS, each clause in the CNF is identified as a hard

clause or soft clause. Each soft clause is associated with a weight. The problem then is to

identify an assignment that satisfies all hard clauses while maximizing the total weight of

24

the satisfied soft clauses.

Definition I.14: Weighted partial Max-SAT (WPMS). Given a Boolean formula S

(on a set of binary variables X) expressed in CNF, where each clause is identified hard

clause or soft clause , the objective of WPMS is to identify an assignment of the binary

variables in X that satisfies all hard clauses in S and maximizes the total weigh of all

satisfied soft clauses, if such an assignment exists.

To give an example of WPMS, consider the following CNF:

S(x,y,z) = (x+ y) · (x+ z) · (y+ z) · (x) · (y) · (z)

In this CNF, we are given that the first three clauses (x+ y),(x+ z),(y+ z) are hard

clauses, while the last three clauses are soft clauses (x),(y),(z). Furthermore, the soft

clauses (x),(y),(z) are assigned weights of 3, 7, and 6 respectively.

For WPMS, an assignment of (x,y,z) must satisfy all the hard clauses and maximize

the total weight of the satisfied soft clauses. In this example, each soft clause contains a

single positive literal, and to satisfy any one of the soft clauses, its corresponding variable

needs to be set to its positive literal. However, no more than one of the three variables can

be assigned to their postive litera, while the other two variables must be assigned to their

negative literals in order to satisfy the hard clauses. Of the soft clauses, (y) has the highest

weight, so the satisfying solution with maximum weight is (x,y,z) = (0,1,0) or xyz, with

weight = 7.

I-E.3. SAT Solvers

While several high-performance algorithms exist for solving SAT, the most popular in logic

synthesis and electronic design are conflict driven methods based on the Davis-Putnam-

Logemann-Loveland or DPLL algorithm [22].

25

The DPLL algorithm is a complete2 search process for finding a satisfying assignment

by implicitly pruning of the exponentially sized search space. This algorithm searches for

a satisfying assignment through repeated branching and decision steps. In the branching

step, an unassigned variable x is selected in the CNF formula S. The decision step sets x

to 1 or 0, resulting in the CNF formulas Sx (which is S with x replaced by 1) or Sx (which

is S, with x replaced by 0). The branching and decision steps are recursively repeated for

all remaining unassigned variables in S until a solution is found, or the search space is

exhausted.

The DPLL algorithm performs a depth first traversal of the state space. During the

search, a partial variable assignment list p is recorded. If Sp contains an empty clause (0),

for example Sp = (. . .) ·(0) ·(. . .), then Sp is unsatisfiable. In this case, the DPLL algorithm

backtracks and then branches or decides on a different variable or value. If all variables

have been assigned in p and there are no empty clauses in Sp, then S is satisfiable and p is

the satisfying assignment.

For example, consider the CNF formula S(a,b,c) = (a+ b) · (a+ b+ c), where the

variable a is the first to be selected for branching. Also, let us assume that a is set to its

negative literal (a replaced by 0), and the assignment list is updated to p = a. We evaluate

Sa by setting a = 0 and simplifying the formula. We recall that a clause with a literal

evaluating to 1 means the clause is satisfied, and can be removed from the CNF.

S = (a+b) · (a+b+ c)

Sa = (0+b) · (0+b+ c) = (b+ c)

We continue the example by selecting variable b as the next variable for branching.

2A complete or exact algorithm is one that is guaranteed to find a solution if a solution exists.

26

Let us assume that b is set to its negative literal, and the assignment list is updated to p= ab.

We evaluate Sab by setting b = 0 and simplifying the formula.

Sab = (0+ c) = (c)

The last variable c is selected. Again, let us assume that c is set to its negative literal,

and p = abc. We evaluate Sabc.

Sabc = (0)

In this case, the partial assignment p = abc causes the formula evaluates to 0, and the

DPLL algorithm backtracks. Let us assume that the algorithm now sets c to its positive

literal (c = 1) and partial assignment is updated to p = abc. We evaluate Sabc.

Sabc = (1)

At this point, all clauses have been satisfied and all variables have been assigned. We

conclude that S is satisfiable and p = abc is a satisfying assignment.

Modern SAT solvers [23, 24, 25, 26] augment DPLL with techniques such as variable

selection heuristics, clause learning, and watched literals to greatly improve SAT solving

efficiency. In the following, we briefly describe each of these techniques.

Variable selection heuristics vary widely between SAT solvers. The next variable

to branch on has a key role to play in determining solver efficiency. Common strategies

include random selection of a variable, maximum occurrence of variable in clauses of min-

imum size, most frequent variable in unsatisfied clauses, or choose variables based on

weights from conflicts.

Watched literals [25] is an efficient method to identify variables for assignment that

are required to satisfy Si. For example, if a clause consists of one unassigned literal and

27

all other literals are set to 0 value, then the unassigned literal must be set to 1 value for

the clause to be satisfied. In this situation, the unassigned variable set to 1 value is an

implication. Any time a decision (variable branch or value set) is made in DPLL, this

generates new implications.

In [25], the method selects (watches) two literals for each clause not yet satisfied in the

partial assignment. The watched literals can be set to 1 or unassigned. With this method,

satisfiability of a clause can be tested by checking whether one of the watched literals is 1,

significantly reducing computation and memory requirements for SAT solving. So long as

both watched variables are not set to 0 value, the clause is not implied.

For example, during the DPLL process if a variable x is set 0, all clauses with watched

literal x must find another literal to watch as this implies that the other watched literal must

be set to 1 to be satisfied. Furthermore, for any clauses that are satisfied when x = 0, x

is set as a watched literal. If no other literals are available to watch, the algorithm must

backtrack, and the results of which can be used in clause learning.

Clause learning [25, 26] is a technique which improves efficiency of DPLL by avoid-

ing redundant computation on assignments that are unsatisfiable. The technique keeps

tracks of clauses that become empty, causing a conflict in the algorithm. The CNF leading

to a conflict is analyzed through its structure and implications to create a conflict clause to

learn. The DPLL algorithm then backtracks and the conflict clause is included in the CNF.

In [26], each decision in the DPLL algorithm is recorded with the time (or time step)

of the decision. For example, variable x1 was set to 1 value at time 6, or variable x9 was

set to 0 value at time 1. All decisions up to the current assignment can be shown on an

implication graph, for example Figure I.12.

28

conflict
c=1 @ 6

b=1 @ 6

d=1 @ 6a=1 @ 6

i=0 @ 1 k=0 @ 3

K

Fig. I.12. Implication graph for current assignment

When a conflict occurs at a decision K, the conflicting assignment A can be determined

by traversing the graph backwards from K. Only the assignments at previous assignments

of K are a sufficient condition for the conflict. For example, from Figure I.12, the conflict-

ing assignment is A = {a = 1@6, i = 0@1,k = 0@3}. The conflict assignment induces the

conflict clause C = (aik). The conflicting assignment and induced conflict clause enables

further implications which improves the search and backtracking in the SAT solver engine.

I-F. Chapter Summary

As we deepen our understanding of how cells operate and how genetic diseases occur, we

realize that many cell components are involved in cell function and that a systems engi-

neering approach is required. In this chapter, we described the key issues in genomics and

provided an introductory background to the genome and gene regulatory network. Our

work proposes to model the GRN as a Boolean network (FSM), from which we can use

logic synthesis techniques and Boolean Satisfiability to tackle several genomics problems.

We take advantage of improvements in modern SAT solvers to provide efficient and pow-

erful tools for research. The following chapters present our methods and application to

biological networks. In Chapter II, we present a method for inferring the gene predictor

set [27, 28] from gene expression data. Following in Chapter III, we use the predictor set

29

and gene expression data to determine gene function [29] to define a family of BNs. Chap-

ter IV presents a method for inferring and ranking gene predictors from continuous gene

expression data using modified Zhegalkin functions. Lastly, in Chapter V, we use ATPG

techniques on the BN [30, 31] to identify genes leading to cancer and to determine drug

selection for cancer therapy.

30

CHAPTER II

PREDICTOR SET INFERENCE USING SAT

The inference of gene predictors in the gene regulatory network (GRN) has become an

important research area in the genomics and medical disciplines. Accurate predictors are

necessary for constructing the GRN model and to enable targeted biological experiments

that attempt to validate or control the regulation process. In this chapter, we implement a

SAT-based algorithm to determine the gene predictor set from steady state gene expression

data (attractor states). Using the attractor states as input, the states are ordered into attrac-

tor cycles. For each attractor cycle ordering, all possible predictors are enumerated and

a conjunctive normal form (CNF) expression is generated which encodes these predictors

and their biological constraints. Each CNF is solved using a SAT solver to find candidate

predictor sets. Statistical analysis of the resulting predictor sets selects the most likely

predictor set of the GRN, corresponding to the attractor data. We demonstrate our algo-

rithm [27, 28] on attractor state data from a melanoma study [32] and present our predictor

set results.

1

II-A. Background

With increasing availability of gene expression data, the focus in computational biology

has shifted to the understanding of gene regulation and its inter-relation with the biological

system. The use of genome information has given rise to the possibility of ”personalized

medicine” – targeted and specific disease prevention and treatment based on individual gene

information [20, 21]. The urgent applications to cancer and gene-related diseases calls for

1Part of the data reported in this chapter is reprinted with permission from ”Inference of
Gene Predictor Set Using Boolean Satisfiability” by Pey-Chang Kent Lin, Sunil P. Khatri.
IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)
2010, Nov. 2010, pp. 1-4, Copyright 2010 by IEEE

31

the genomics field to significantly improve the algorithms used for accurate inference of

the gene regulatory network (GRN).

In an organism, the genome is a highly complex control system wherein proteins and

RNA produced by genes and their products interact with and regulate the activity of other

genes [33]. A predictor for a target gene gi is the collection of genes directly participating

in the regulation of gene gi. As such, the predictor does not consider the type of regulation

(repression versus activation), and is analogous to the support of a function in logic syn-

thesis. Each gene has a single predictor (which is a collection of genes) and the predictor

set is the set consisting of predictors of each gene in the GRN.

There are several observations that impact the formulation of our GRN model and

predictor inference algorithm. First, the activity level (i.e. activation or repression) of

all genes at a particular time t represents the state of the GRN at that time t. From our

knowledge of biological systems, we observe that over time, cellular processes converge

to sequences of stable attractor states. Some of these attractor states represent normal

cellular phenomena in biology (i.e. cell cycle and division), while other attractor states

are consistent with disease (i.e. metastasis of cancer). Second, the GRN is often inferred

by observing microarray-based experimental data though which the activity level of genes

is measured. Both observations of gene activity (or state) can be used to infer the gene

regulation network. The disadvantage of using microarray data is that such studies do not

involve controlled time-series experimental data. Hence the measurements are assumed to

arise from cyclic sequences of gene expressions (attractor states) in steady state. Such a

sequence is referred to as an attractor cycle. The GRN is then inferred from this data, using

methods traditionally based on probabilistic transition models [34, 35].

As previously mentioned, it is necessary to determine the predictor set in order to

reconstruct the GRN. However, there may exist many possible predictors for any gene,

based on the attractor cycle data. Furthermore, only certain combinations of predictors may

32

form a valid predictor set, due to biological constraints. The issue addressed in this paper is

how to efficiently and deterministically select the predictors that form the predictor set. We

have implemented a Boolean satisfiability (SAT) based algorithm for the inference of gene

predictor sets. Satisfiability is a decision problem of determining whether the variables in

a Boolean formula (expressed in Conjunctive Normal Form or CNF) can be assigned to

make the formula evaluate to true. Although SAT is NP-complete, many SAT solvers have

been developed to quickly and efficiently solve large SAT problems. Our algorithm takes

advantage of a recent SAT solver to find the predictor set.

The basic outline of our SAT-based algorithm for predictor set inference is described

briefly below. First, all possible orderings of attractor states are enumerated, yielding all

possible attractor cycles. For each ordering, we enumerate all predictors that are logically

valid, and create a CNF expression which encodes all these predictors and biological con-

straints (such as cardinality bounds on the predictors). A SAT solver is then used to find the

valid candidate predictor sets. After this process is done iteratively for all attractor cycle

(orderings), statistical analysis provides the most likely predictor set. Note that this paper

does not claim to extract the GRN. Using the predictor set inferred by this paper, we plan

to infer the GRN in a subsequent research effort.

The key contributions of this chapter are:

• We develop a Boolean Satisfiability based approach to realize the gene predictor set

from attractor state data.

• We modify an existing SAT-solver (MiniSat [23]) for efficient all-SAT computation,

and further optimize the decision engine of MiniSat for improved predictor set infer-

ence.

• On gene expression data from a melanoma study [32], we apply our SAT-based al-

gorithm and present the predictor set, including the predictor for the cancer gene

33

WNT5a.

• Our approach can be used to find the predictor set for any gene related disease, pro-

vided attractor state data is available. The predictor set information obtained from our

algorithm can be used by biologists to fine tune their gene expression experiments.

II-B. Previous Work

In the context of predictor set inference, [36, 37] use dynamic Bayesian networks and

probabilistic Boolean networks (PBNs). The GRN is then inferred from this data, using

methods traditionally based on probabilistic transition models [34, 35] The method pro-

posed considers gene prediction using multinomial probit regression with Bayesian vari-

able selection. Genes are selected which satisfy multiple regression equations, of which

the strongest genes are used to construct the predictor set. The target gene is predicted

based on the strongest genes, using the coefficient of determination to measure predictor

accuracy.

Another method proposed by [38] also assumes a PBN model. A partial state transi-

tion table is constructed based on available attractor state data. From this state transition

table, predictors with 3 or less regulating genes are selected for each target gene. All un-

known values in the table are randomly set. The Boolean network is simulated for several

iterations using different starting states, observing whether the states eventually transition

to an attractor cycle. If the simulation successfully transitions to an attractor cycle, the

selected predictors are considered as a valid predictor set. This process is repeated, to build

a collection of Boolean Networks which are combined to form a Probabilistic Boolean

Network (PBN).

Our larger goal is to find a small number of deterministic GRNs, rather than a PBN.

Towards this, we need to first find ways to accurately find the predictor set. This is the

34

focus of this chapter. Philosophically, our aim is to invest effort into accurate predictor set

determination, so that the results can be used to find high quality deterministic GRNs.

II-C. Background

This section describes our background and problem definition for inference of predictor sets

using SAT. We begin with some GRN definitions and then explain some of the biological

constraints that will be used in our formation for the the next section.

Definition II.1: A predictor fi = {g j,gk, · · ·} lists the set {g j,gk, · · ·} of genes which

regulate the activity of gene gi.

Definition II.2: The predictor set is the complete set of predictors { f1, f2, · · · , fn} for

the GRN with n genes g1,g2, · · · ,gn.

Based on the gene products of one or more genes in a set fi, a gene gi can become

repressed or activated. in this case fi is said to be predictor of gene gi. A predictor for

target gene gi is the collection of genes directly participating in the regulation of gene gi.

As such, the predictor does not consider the type of regulation. Each gene has a single

predictor and the predictor set is the set consisting of predictors of each gene.

Note, we can relate these terms to logic synthesis: the predictor is identical to the

logical support of a logic node, while the predictor set is akin to the circuit netlist. The

Boolean network GRN then is the complete logic circuit including function for each node.

Definition II.3: Given a starting state, within a finite number of steps, the network will

transition as determined by the gene functions into a cycle of states, called an attractor

cycle. States in an attractor cycle are called attractor states. The attractor cycle repre-

sents the long term behavior of the network and absent perturbation, a network that has

transitioned to an attractor will continue to cycle thereafter.

There are several observations that impact the formulation of our GRN model and

35

predictor inference algorithm. First, the activity level (i.e. activation or repression) of

all genes at a particular time t represents the state of the GRN at that time t. From our

knowledge of biological systems, we observe that over time, cellular processes converge

to sequences of stable attractor states. Some of these attractor states represent normal

cellular phenomena in biology (i.e. cell cycle and division), while other attractor states are

consistent with disease (i.e. metastasis of cancer).

Second, the GRN is often inferred by observing microarray-based experimental data

though which the activity level of genes is measured. Both observations of gene activity

(or state) can be used to infer the gene regulation network. The disadvantage of using

microarray data is that such studies do not involve controlled time-series experimental data.

Hence the measurements are assumed to arise from cyclic sequences of gene expressions

(attractor states) in steady state. Such a sequence is referred to as an attractor cycle.

II-D. Problem Formulation and SAT Construction

Given gene expression data (a set of unordered attractor states) as input, we would like to

determine the best predictor set. We first present an outline of our SAT-based algorithm,

and then explain the steps through a simple example.

The algorithm has three main steps.

1. SAT Construction for Predictor Set: In this step, attractor states are ordered into

attractor cycles in all possible ways. For each possible ordering of attractor states into

attractor cycles, all possible predictors are found and a CNF is generated encoding

valid predictor sets.

2. All-SAT: Each attractor ordering from step 1 generates a CNF which is solved for

All-SAT. All satisfying cubes are recorded, where each satisfying cube corresponds

to a predictor set. The first two steps are repeated for all attractor cycle orderings.

36

3. Predictor Set Selection: Statistical analysis on the All-SAT results determines the

most frequent (likely) predictor set for the GRN. This step is explained in Section II-

E.

To illustrate the SAT-based algorithm, we apply it to a simple example with three genes

(g1,g2,g3) and gene expression data with three lines (010,110,111). The present state of

these genes is represented by the variables < x1,x2,x3 > and the next state is represented

by the variables < y1,y2,y3 >. We assume each line was measured in steady state and

therefore is an attractor state.

We order (or arrange) the attractor states into attractor cycles for which there are six

possibilities for our example. One ordering is with each attractor state transitioning to itself

with a self-edge, resulting in three singleton attractor cycles. Two possible orderings result

when all three attractor states form a single attractor cycle of length three. The last three

possible orderings have two attractor cycles, one cycle with length two and the other cycle

of length one. We focus our example on an ordering with two attractor cycles, as shown in

Table II.1.

II-D.1. Partial State Transition Table

For each valid attractor cycle ordering, a partial state transition table is constructed, con-

taining the attractor states. Table II.1 shows the partial state transition table for the example

attractor cycle ordering. To find all valid predictors of a gene, each next state column is

checked against all combinations of the current (present) state columns. For example, let

us explore gene g2 and g3 as a predictor for gene g1. For gene g1, the next state bit is y1,

while for gene g2 and g3, the current (present) state bits are x2 and x3. In the first two rows

of TableII.1, < x2,x3 >= 10. However, in row 1, y1 = 1, while in row 2, y1 = 0, which

forms a contradiction (since the same input cannot result in different outputs). Therefore,

37

gene g1 cannot be predicted by genes g2 and g3.

Now, consider genes g1 and g3 as a predictor for gene g1. There is no contradiction,

and the combination is logically valid. Thus one possible predictor for gene g1 is f1 =

{x1,x3}. All valid predictors with P (user-defined) or less inputs are exhaustively searched

and recorded for CNF formulation (which is done in the next step). In our example, gene

g1 has 2 possible predictors {x1,x3}, {x1,x2,x3} which we label v1
1,v

1
2 respectively. We

assume that a gene cannot self-regulate, so {x1} by itself is not a valid predictor.

Current state Next state

x1 x2 x3 y1 y2 y3

0 1 0 1 1 0

1 1 0 0 1 0

1 1 1 1 1 1

Table II.1. Example 3-Gene Partial State Transition Table

II-D.2. SAT Formulation and GRN Constraints

After all predictors are found for each gene, we generate the SAT formula which en-

codes logically valid predictor sets. The jth predictor for gene i is assigned a variable vi
j.

Gene g1 in our example will have two predictor variables v1
1 ≡ {x1,x3}, v1

2 ≡ {x1,x2,x3}.

Gene g2 and g3 will have their own corresponding predictor variables v2
1 ≡ {x1,x2}, v2

2 ≡

{x1,x3}, v2
3 ≡ {x2,x3}, v2

4 ≡ {x1,x2,x3} and v3
1 ≡ {x1,x3}, v3

2 ≡ {x2,x3}, v3
3 ≡ {x1,x2,x3}

respectively. There are three constraints that we incorporate while constructing the CNF

that encodes valid predictor sets. The conjunction of these constraints forms our final CNF.

1. The first constraint (S1) is that all genes in the GRN must have a predictor. In other

words, we assume that all genes are highly correlated and are ”participating” in the

GRN. For gene i, all of its associated predictor variables are written in a single clause

38

c1
i = (vi

1 + · · ·+ vi
j)

In our example, for g1, c1
1 = (v1

1+v1
2). For g2 and g3, we have c1

2 = (v2
1+v2

2+v2
3+v2

4)

and c1
3 = (v3

1 + v3
2 + v3

3) respectively.

To satisfy any c1
i clause, at least one predictor in the clause must be chosen. To ensure

that at least one predictor is chosen for all genes, we write the conjunction of all c1
i

clauses as S1 (Equation 2.1).

S1 = c1
1 · c

1
2 · c

1
3 (2.1)

2. The second constraint (S2) specifies that for each gene, exactly one predictor is cho-

sen. The assumption is that a gene cannot have multiple predictors. To formulate

the clauses c2
i for gene i, smaller clauses are formed from all pairs of combinations

of its predictors vi
1··· j. In each of these clauses of pairs of variables, both predictor

variables are complemented.

c2
1 = (v1

1 + v1
2)

c2
2 = (v2

1 + v2
2) · (v

2
1+ v2

3) · (v
2
1+ v2

4) · (v
2
2 + v2

3) · (v
2
2+ v2

4) · (v
2
3+ v2

4)

c2
3 = (v3

1 + v3
2) · (v

3
1+ v3

3) · (v
3
2+ v3

3)

Any selection of two or more predictors for gene i will result in the clauses of c2
i

becoming unsatisfiable. The c1
i clause ensures that at least one predictor will be

chosen for gene i, and c2
i forces the selection of exactly one predictor for gene i. The

39

conjunction of all c2
i clauses forms the constraint S2 (Equation 2.2), which forces

SAT to choose only one predictor per gene.

S2 = c2
1 · c

2
2 · c

2
3 (2.2)

3. The last constraint (S3) requires that each gene must be used as a predictor for at

least one other gene in the predictor set. A gene that is not used in any predictor does

not perform any regulation function and could be removed from the GRN. S3 ensures

that this does not occur. To ensure that gene gi is used in at least one predictor, we

form clauses c3
i which include all predictors that use gene gi as input. To specify that

gene gi must be used, we also include a single variable clause (xi) to c3
i . For gene g1,

g2, and g3, we create the following clauses c3
1, c3

2, and c3
13 respectively:

c3
1 = (x1) · (x1 + v1

1 + v1
2 + v2

1 + v2
2 + v2

4 + v3
1 + v3

3)

c3
2 = (x2) · (x2+ v1

2 + v2
1 + v2

3 + v2
4 + v3

2 + v3
3)

c3
3 = (x3) · (x3+ v1

1 + v1
2 + v2

2 + v2
3 + v2

4 + v3
1 + v3

2 + v3
3)

To satisfy these clauses, xi and at least one other predictor variable in the second

clause of c3
i must be selected. S3 is a conjunction of all the c3 clauses (Equation 2.3).

S3 = c3
1 · c

3
2 · c

3
3 (2.3)

The final SAT formula S as a conjunction of the Si formulas (Equation 2.4).

40

S = S1 ·S2 ·S3 (2.4)

II-D.3. All-SAT

The SAT solver performs an All-SAT on S. The satisfying cubes (each cube encodes a

candidate predictor set) from the All-SAT output are collected. The process is repeated for

the remaining attractor cycle orderings. From the results, we find the most likely predictors

based on the frequency of occurrence of the predictors across all orderings. Three methods

are used to analyze the statistical results, which will be described in the next section.

In general, the above algorithm can be applied to input data for N genes and A attractor

states. The total number of attractor state orderings is A!. For each ordering, there can

be up to O(N3) predictors per gene. The SAT search space per ordering is on the order

of O(2N3
), resulting in overall complexity of O(A!2N3

). Typically, the number of attractor

states A recorded through gene expression measurements is small. As such, A! is thus much

smaller than 2(N
3), so the runtime complexity is dominated by the All-SAT operation. For

pragmatic reasons, our algorithm stops each All-SAT after T minutes (or C cubes), where

T or C is defined by the user.

II-E. Experimental Results

To evaluate our SAT-based algorithm for inferring gene predictors, the algorithm was tested

on gene-expression data from a melanoma study done by Bittner and Weeraratna [32]. In

the melanoma study, it was observed that an abundance of RNA (expression) for gene

WNT 5A was associated with a high metastasis of melanoma. The study measured 587

genes with 31 gene expression patterns (lines). Seven genes are believed to be closely

knit: PIRIN,S100P,RET1,MART1,HADHB,STC2, and W NT 5A. There are 18 distinct

41

patterns, which were reduced to seven using Hamming-distance of one, in Table II.2. These

seven lines form the attractor states which are the input to our algorithm.

PIRIN S100P RET 1 MART 1 HADHB STC2 W NT 5A

x1 x2 x3 x4 x5 x6 x7

BAD 0 0 0 0 0 1 1

0 0 1 1 1 1 1

1 0 1 0 0 0 1

GOOD 0 1 0 0 0 0 0

0 1 1 1 0 0 0

1 0 1 1 1 1 0

1 1 0 1 1 0 0

Table II.2. Attractors for Melanoma Network

For the experiments, we assume two additional specifications. First, we divide at-

tractor states into good and bad states, based on the presence of WNT 5A. We allow good

attractor states to cycle only to other good attractor states, and bad attractor states can only

cycle to other bad attractor states. Second, we limit the maximum attractor cycle length

L to 3, and the maximum number of predictor inputs P to 3, because long attractor cy-

cles and large predictor inputs are highly complex and less likely to occur in biological

systems [39, 33].

Our algorithm utilizes a modified open-source and highly efficient exact SAT-solver

called MiniSAT v1.14 [40, 23]. All-SAT operations were limited to a 30 minute time-out.

On average, each All-SAT run yielded 10K satisfying cubes in this duration. Our algorithm

was implemented and run on a Pentium 4 Linux machine with 4GB RAM. MiniSat [23],

was originally designed to find a single satisfying assignment. We modified MiniSat to

perform All-SAT as MiniSat normally only returns one SAT result. We further modified

42

MiniSat to always randomly select decision variables during the solving process to increase

the activity of all variables.

The unaltered MiniSAT uses a heuristic for selecting the next decision variables. How-

ever, this heuristic results in many of the same variables being chosen over iterative runs of

MiniSat. To increase the activity of all variables, we change the random variable frequency

of MiniSat to 100% (from 2% in the unaltered MiniSat code). This forces MiniSAT to

always choose a random variable on every variable-branch decision. A random variable

frequency of f % means that MiniSat selects the next variable randomly f % of the time.

Fig. II.1. Average predictor error difference on melanoma attractor data using MiniSat with-

out modification

43

Fig. II.2. Average predictor error difference on melanoma attractor data using MiniSat with

random variable selection modification

To validate the quality of predictor selection using our modified All-SAT, our algo-

rithm was run on four selected attractor cycle orderings (labeled 10, 721, 744, and 849)

using melanoma data from [32]. The All-SAT operation was allowed to run for 12 hours

(which approximates a complete All-SAT). In the case of attractor cycle order 721, all

cubes were found. In Figures II.2 and II.1, we compare the average difference in all the

predictors’ occurrence frequency in the complete All-SAT result with the results obtained

with shorter All-SAT runtimes (10, 30, 60, and 120 minutes). Figure II.2 shows the av-

erage error difference of all predictors’ frequency for the four orderings, using MiniSat

with the random variable selection modification (100% random variable frequency), while

Figure II.1 shows the same results without random variable selection (2% random variable

frequency). Across the four orderings analyzed, the average error difference of all predic-

tors’ occurrence frequency (shown in Figures II.2 and II.1) is significantly lower using the

44

random variable selection modification than without. Furthermore, the average error differ-

ence decreases with increasing runtime when using random variable selection. From this

experiment, we determine that 30 minutes with random variable selection was sufficient to

achieve an average of ≤ 5% difference in the predictors’ occurrence frequency compared

to the full All-SAT results.

The following presents our results after collection of All-SAT results from all valid

attractor cycle orderings. In Figure II.3, we display a histogram of all logically valid pre-

dictors and their frequency of occurrence, across all attractor orderings. In the sequel, a

predictor label of 2367 means that gene g2 is predicted by genes g3,g6, and g7. From this

chart, we can observe that certain predictors occur with significantly higher frequency than

others. For example with gene g1, the predictor {x3,x5,x7} (PIRIN predicted by RET 1,

HADHB, WNT 5A) occurs with much higher frequency than all other predictors for gene

g1. This indicates that this predictor is most likely to be present in the final predictor set.

From this data, we propose three methods (A, B, AB) for selecting the predictor set.

II-E.1. Method A

In method A, a predictor histogram is created as in Figure II.3. From the histogram, for

each gene gi, we find its predictor pi
j such that pi

j is the most frequently occurring predictor

of gene gi and the resolution ratio Ri of this predictor (defined as the ratio of the occurrence

frequency of pi
j to the occurrence frequency of the next most frequently occurring predictor

of gene gi) is maximum. Among all genes, we choose the one with the highest resolution

ratio, and select its most frequently occurring predictor as its final predictor. After selecting

this final predictor, we regenerate the histogram, discarding any candidate predictor sets

that do not contain the final predictor(s) that have been selected in previous steps. The

process repeats until all genes have a single final predictor. The set of final predictors of

all genes forms the predictor set. The advantage of method A is that at every iteration,

45

we select real predictors that have a high overall occurrence in the solution. However the

method may have problems selecting final predictors if the resolution ratio is low (i.e. when

the frequencies of occurrence of the predictors are nearly identical).

Fig. II.3. Method A: Predictor occurrence for all valid attractor cycle orderings (first itera-

tion: no predictor selected)

II-E.2. Method B

As an alternative, method B is proposed, to determine for each gene i, how likely it is

that gene gi will predict the other genes in the GRN. In other words, we ask what is the

occurrence frequency of xi in the predictors of f j. Table II.3 shows in entry (i, j) how

frequently a gene gi is used to predict a gene g j. This table is populated by summing

the occurrence frequency of all predictors of g j that have gene gi as one of their inputs.

As such, any entry can be ≥1, and is a measure of the usefulness of gi as a predictor for

g j. The predictor of g j is determined by finding, for each column j of Table II.3, the

three largest entries and adding their values. Suppose we call this sum s j (the resolution

score of column j). We compute the resolution score for all columns and select the final

predictor for the column with the highest resolution score. This final predictor is formed

by listing the 3 input genes that correspond to the 3 entries that were used to compute the

46

highest resolution score. Similar to method A, we reiterate the process by regenerating the

table after discarding all predictor sets that do not contain predictors that were selected in

previous steps. Method B has the advantage of being more robust when no single predictor

has a significantly higher occurrence frequency than others. However, there is no guarantee

that the predictor selected by method B is a valid predictor. If this happens, we select the

column with the next highest resolution score.

f1 f2 f3 f4 f5 f6 f7

x1 0.59 0.68 0.57 0.69 0.60 1.00

x2 0.24 0.41 0.29 0.33 0.49 0.51

x3 0.65 0.48 0.76 0.58 0.56 0.17

x4 0.39 0.40 0.78 0.54 0.44 0.29

x5 0.56 0.30 0.27 0.44 0.39 0.36

x6 0.42 0.54 0.52 0.41 0.44 0.67

x7 0.64 0.63 0.24 0.48 0.32 0.45

Table II.3. Method B: Gene Occurrence for All Predictors (First Iteration)

II-E.3. Method AB

In our experiments, we also use a hybrid method AB which works in the following man-

ner. Both methods A and B are used to select their best predictor. If both methods produce

the same predictor fi, we select this predictor as a final predictor. If not, we list the best

predictors for each gene, for both methods. If multiple predictors match for both methods,

we choose the final predictor as the one with the highest weighted sum of the resolution

ratio and resolution score. The resolution ratio is weighted by 0.3 and the resolution score

is weighted by 0.7. The weighting factor for the resolution ratio is lower since the reso-

lution ratio values of any gene are often close to 1. In such a situation, we would like to

47

favor method B. If no predictor is produced by the previous step, we look at the top five

predictors of method A for each gene and calculate the weighted sum of their resolution

ratio and resolution score. The predictor with the highest weighted sum is selected as the

final predictor. The process is reiterated, regenerating the histogram and table at each step,

discarding any predictor sets that do not contain any of the previously selected final predic-

tors. With this combined approach, we are able to select predictors with a higher degree of

confidence and robustness.

We process our All-SAT data from melanoma attractor data of [32] using methods A,

B, and AB. Results are shown in Table II.4 and shows what predictor was selected for each

gene and the accompanying resolution ratio, resolution score, or weighted sum.

PIRIN S100P RET1 MART1 HADHB STC2 WNT 5A

x1 x2 x3 x4 x5 x6 x7

A Predictor set 1357 2137 3146 4357 5124 6124 7124

Resolution ratio 2.57 1.41 1.34 1.30 1.41 1.66 1.31

B Predictor set 1357 2137 3146 4137 5134 6137 7126

Resolution score 1.78 1.77 1.84 1.97 1.99 1.98 2.56

AB Predictor set 1357 2367 3146 4137 5137 6357 7124

Weighted sum 2.06 1.57 1.75 1.61 1.45 1.39 1.88

Table II.4. Melanoma Network Predictor Set Selection

From the results, we can draw several conclusions:

• The iterative steps in regenerating the histogram (or table) retain only cubes (predic-

tor sets) that contain previously selected final predictors. Hence the final predictor

set from each method is a valid satisfying cube of the SAT formula S.

• The final predictor set is present in a select number of attractor cycle orderings. For

48

example, the final predictor set selected by methods A, B, and AB are found in re-

spectively 8, 4, and 6 attractor cycle orderings out of the total 5040 possible order-

ings. Hence the algorithm will enable us to generate a few deterministic GRNs.

• Some predictors are common among the predictor sets between the three meth-

ods. For example, all three methods select f1 = {x3,x5,x7} (PIRIN predicted by

RET 1,HADHB,WNT 5A) as well as f3 = {x1,x4,x6}. We can conclude this pre-

dictor is highly likely to be a final predictor in the GRN. Also, a majority of the

predictors selected by the three method share common input genes. For example,

the predictor selected by all methods for gene x2 (S100P) contain 2 common genes

{x3,x7} (RET 1,WNT 5A), indicating these 2 genes are likely to be contained in the

final predictor of f2. Similarly f7 has two common genes x1 and x2 for all methods.

• Using the above results, biologists can target their research on gene regulation and

control, focusing on the gene relationships determined by the predictor set results.

II-F. Chapter Summary

Determining the predictor set for a gene regulatory network is important in many applica-

tions, particularly inference and control of the GRN which we discuss in subsequent chap-

ters. In this research, we formulate gene predictor set inference as an instance of Boolean

satisfiability. In our approach, we determine all possible orderings of attractor state data,

generate the CNF encapsulating predictor and biological constraints, and apply a highly-

efficient and modified SAT solver to find candidate predictor sets. The SAT results are

analyzed using three selection methods to produce the final predictor set. We have tested

our algorithm on attractor state data from a melanoma study, and determined the predictor

sets for this GRN.

The results of this research, however, only reveals the predictor set (topology) of the

49

GRN. Our next step is to determine the gene regulating function (logic) of the genes in the

GRN to fully define the BN. In the next chapter, we describe a logic synthesis method for

determine gene functions for a GRN using a SAT-based logic synthesis approach.

50

CHAPTER III

DETERMINING GENE FUNCTION IN BOOLEAN NETWORKS USING SAT

There are many instances where the circuit topology of the GRN is known, but the logic

function of each node in this topology is not. In addition, a number N of measurements

on the gene expression of the GRN are given or are known. Using this information, this

chapter will derive SAT based algorithms which yield the logic of every node in the GRN

so that the N gene expression measurements and topology are satisfied. If N is too small,

then a multitude of GRNs may satisfy the observed behavior, yielding a reduced certainty

in the final result due to lack of data. We will also study the behavior of the number of

satisfying GRNs with respect to the number of observations N.

1

III-A. Background

In the cell, genes interact and communicate using a complex interconnected network called

the gene regulatory network (GRN) [33]. The GRN and gene expression defines cell func-

tion and behavior. An accurate model of the GRN is necessary for understanding cell

behavior, for learning how genetic diseases arise and for developing intervention strategies

to treat such diseases.

In many situations, biologists can produce gene predictor sets or connectivity graphs,

denoting which genes act upon or regulate each other. While gene predictor sets or con-

nectivity graphs show how genes are interconnected, they do not provide any information

about the regulating function of the genes. Predictor sets are generally useful, but without

information about the regulating function, they cannot be used to simulate the dynamic in-

1Part of the data reported in this chapter is reprinted with permission from ”Determining
Gene Function in Boolean Networks using Boolean Satisfiability” by Pey-Chang Kent Lin,
Sunil P. Khatri. IEEE International Workshop on Genomic Signal Processing and Statistics
(GENSIPS) 2012, Dec. 2012, pp. 1-4, Copyright 2012 by IEEE

51

teraction between genes which is crucial for the intervention and control of the GRN. Thus,

a major goal for the genomics and the medical field is to determine the regulating function

of the genes in the GRN.

At the same time, biologists may have prior knowledge of the GRN, gained through

observations of gene expression or pathway information. These observations provide in-

sight into the GRN state and, in turn, the gene regulation function. Such observations can

be complete or partial, and may curated from different sources or databases.

The problem then is how to determine the gene function and create a complete and

functional GRN model that matches the predictor set and gene expression observations.

Assuming a Boolean network model [12] for the GRN, the gene expression for a single

gene is a binary value (expressed or not expressed) and the gene regulation function is

represented as a Boolean logic function. For each time step, all genes are assumed to

update at the same time, and the value of all genes at a particular time step represents a

state in the GRN at that time step. In this discussion, we present an efficient approach to

assign a logic function to each gene, given a predictor set, such that the gene expression

observation are matched.

In this work [29], we leverage mathematical tools from the field of logic synthesis in

digital circuit design. Logic synthesis techniques have been recently applied to genomics

in [41, 42, 27, 30, 28]. In order to determine gene function, [41] uses Karnaugh maps (K-

maps) to explicitly generate two-level logic functions based on pathway information for a

Boolean network.

In this chapter, we develop a general Boolean satisfiability (SAT) based implicit method

to select logic functions and generate BNs that match a predictor set and gene expression

observations. In our method, all possible logic functions are implicitly explored for each

gene, based on the predictor set, with a multiplexer (MUX) selecting one of these func-

tions for each gene. The resulting logical circuit is duplicated, and each copy is assigned

52

one of the observed gene expression observations. All copies (now represented as a SAT

formula) are then solved in parallel by linking the MUX selectors of each copy, and using

a SAT-solver to select a function for each gene, and generate a BN that satisfies all input

observations. Where more than one valid selection exists, our method generates a family

of satisfying Boolean networks.

III-B. Previous Work

One commonly used representation scheme for GRNs is the Boolean network (BN) [12]. In

this model, genes are binary valued (expressed or not expressed), and can act on (regulate)

other genes. Regulation is represented using Boolean functions. In the BN, each gene takes

its inputs (the values of its regulatory genes) and produces a new output value according

to its Boolean function. All genes in the BN update synchronously, and the values of the

genes at a given point of time represent the state of the BN at that time. In reality, gene ex-

pression is continuous; however a discrete model like BN is preferred because many genes

exhibit switch-like behavior [19] and the discrete model simplifies analysis. Furthermore,

the Boolean network is inherently a logic circuit, and a vast number of techniques from the

field of logic synthesis can be applied to BN.

One such logic synthesis technique is the Kaurnaugh Map (K-map) [43] which was

used in [41] to assign logic function to genes and generate Boolean networks from a priori

gene pathway information. The K-map is an explicit method to represent and to simplify

a Boolean function. Pathway information is used to create partially filled K-Maps which

describe the update functions (or the next state functions) for each of the genes in an incom-

pletely specified manner. Minimization of the functions in each K-map yields a family of

Boolean networks. One issue with this approach is that logical conflicts can arise between

different update functions obtained in this manner from the pathway information. The

53

paper attempts to resolve these conflicts by perturbing the pathway information, possibly

leading to a vastly different network.

One characteristic of assigning logic to the update function given a predictor set, is that

in a predictor set, the gene connections or ”wiring” is fixed. Hence, the problem is how to

determine the logic function of each gene, to obtain the GRN. Similar situations arise in

digital design (an example is the wire planning problem in which wires or communication

channels are placed before logic synthesis [44]). One method to approach this problem uses

SPFDs (sets of pairs of functions to be distinguished) [45] which expresses the functional

flexibility of nodes in a Boolean network. In [46, 47], SPFDs have been used to optimize

Boolean networks. One drawback is that SPFDs are usually implemented using Boolean

Decision Diagrams (BDDs), which do not scale well due to an exponential memory usage

for some classes of logic functions.

Other logic synthesis techniques [48, 49], which assign logic from state transition di-

agrams, start with state information about the circuit, and assign logic which optimally

minimizes the number of gates needed to implement the logic. As mentioned, the predic-

tor set (and hence the wiring) in our problem is fixed, and as such, these logic synthesis

methods cannot be used, since they may change the wiring to minimize the logic.

This method we present uses a Boolean satisfiability (SAT) based method to assign

logic. Many logic synthesis algorithms are based on SAT, and there are several efficient and

well-developed SAT solvers [23, 25]. In the context of genomics, SAT has been applied

to the analysis of GRNs. In [50], a method is presented for inferring GRN parameters by

expressing GRN constraints in a SAT formula. In [51], a model checking method (based

on SAT) is presented to find all attractors in a Boolean network. Boolean satisfiability

is also used in [28] to infer the predictor set of the GRN from attractors, and determine

optimal drug selection for cancer therapy. Our approach is fundamentally different in that

we generate a family of BNs for a predictor set given binary valued gene expression data.

54

III-C. Our Approach

III-C.1. SAT-based Formulation for Gene Function Assignment

In our approach, the problem of gene function assignment is transformed into an instance of

Boolean satisfiability, such that each satisfying solution is an assignment of gene functions

in accordance to the input predictor set and gene expression states. The SAT formulation is

done in two distinct steps – 1) circuit construction from the predictor set and 2) constraining

the solution space using the gene expression states.

III-C.1.a. Circuit Construction from the Predictor Set

The first step is to construct a SAT-based circuit that implicitly represents all possible BNs,

based on prior knowledge of the predictor set. From the predictor set, we can determine the

wiring of the genes. A predictor states which genes regulate the target gene, or in circuit

terms, which genes are wired to the input of a target gene.

To assign the function for a gene xi, our approach implicitly enumerates all possible

functions {gi1,gi2, . . .} and then selects one function as a solution. Thus in our circuit con-

struction, for each gene, all possible functions are enumerated, and a multiplexor (MUX)

is added to select exactly one output from all the functions. The inputs to the MUX are

the outputs of the functions, and a select signal si controls which function to select as the

output for gene i. As such, the MUX selection determines which function is assigned to

the gene.

The circuit is then converted into a CNF formula. Each function (including the MUX)

has a CNF formula associated with it. The formula is true if and only if the variables

representing the gate’s inputs and outputs take on values consistent with its truth table.

One method to write the corresponding CNF of a Boolean formula is using implica-

tions and Boolean transformations. The basic transformation of an implication a → b into

55

CNF is the single clause (a+b). The implication states that if a is true (1), then b is also

true (1). We can examine the clause (a+b) and see that if a = 1, then a = 0. As such, for

the clause to be satisfied (evaluate to 1), b must be set to 1.

For example, consider a 2-input OR gate (gi) with x and y as inputs and z as output.

For an OR gate, the output is 1 if and only if one of the inputs are 1. As such, we have the

following two implications:

z → x+ y (3.1)

x+ y → z (3.2)

For the first implication z → x+ y (Equation 3.1), we write the corresponding clause.

(z+ x+ y) (3.3)

This clause is already in CNF format, so no further transformation is needed.

For the second implication x+y → z (Equation 3.2), we again write the corresponding

clause.

(x+ y+ z) (3.4)

The clause (Equation 3.4) is not in CNF format, so we use transformations such as

DeMorgan’s laws to convert it into CNF.

(xy+ z) (3.5)

(x+ z)(y+ z) (3.6)

56

The CNF formula Gi is the conjunction of the above clauses (Equations 3.3, 3.6) and

is written as:

Gi = (z+ x+ y) · (x+ z) · (y+ z) (3.7)

The CNF for the entire circuit S obtained from steps 1) and 2) above is constructed

by forming the conjunction of all CNF formulas for all the gates in the circuit. If there are

n gates in the circuit, then the CNF formula for the entire circuit is written as shown in

Equation 3.8.

S =
n

∏
i=1

Gi (3.8)

In logic synthesis, the inputs to a predictor or a function are alo called the support. In

general, the total number of possible functions is 22N
for a gene with N inputs. However,

we consider only those functions that have a true support of N inputs. The true support of a

function are the inputs that a function is actually dependent on. In our method, we require

that a function must depend on all inputs specified by the predictor.

For example, with a gene x with 2 inputs y and z, and we are considering the function

x = yz+ yz. Since this function can be simplified to x = y, it depends on only one input,

and is not a true support of the two inputs and will be disregarded in our method. The

function x = yz does depend on both inputs, and thus would be considered in our method.

The total number of functions FN with true support of N inputs can be calculated as shown

in Equation 3.9.

FN = 22N

−

(

N

N −1

)

FN−1 −

(

N

N −2

)

FN−2 − . . .−

(

N

0

)

F0 (3.9)

F0 = 220
= 2 (3.10)

57

III-C.1.b. Constraining SAT Solution Space Using Gene Expression States

As is, the circuit of the previous step describes all possible BNs. To constrain the solution

space to obtain one or a subset of BNs for our GRN, we constrain the circuit to make it

satisfy gene expression states. A gene expression state is a measurement of the dynamic

behavior of the GRN, containing information of the gene state at a time point t, as well as

at the next time point t+1. In the state transition table (an example is shown in Table III.1),

a gene expression state is a minterm (row) on the truth table of the table, and consists of a

pair of states (S1,S2). This mandates that if the GRN is in state S1 at time t, it will transition

to state S2 at time t+1. Note that table III.1 shows all possible minterms or observations of

the GRN. However in practice, we may only have a limited number of observations. Our

method determines a SAT solution that satisfies the predictor set and limited number of

gene observations.

The overall goal of our approach is, for each gene, to select a function which matches

all gene expression states (minterms of the state transition table). In our approach, if there

are M minterms, we duplicate the circuit M times. Each circuit copy is assigned a minterm,

with the gene values fixed according to the minterm. The select signals for all the MUXes

for any gene xi are connected together in each of the M copies of the circuit, to ensure that

the same function for xi is selected in all the M circuit copies.

The solution is an assignment of the variables in S such that S is satisfied. The assign-

ment of the variables corresponding to the MUX select lines for any gene xi denote which

function was selected for the gene xi and hence specifies a Boolean network. Depending

on the gene expression states used, there may be more than one valid solution, in which

case performing an All-SAT will generate all possible BNs that match the gene expression

observations.

Alternatively, the method can be done on a single copy of the circuit. Each minterm is

58

tested in order, and the circuit is solved using All-SAT to find all results that satisfy the ith

minterm. The conjunction of these results and S form a new circuit S before the (i+ 1)th

minterm is processed. This computation was found to require significantly more runtime

than the circuit duplication method.

III-C.1.c. Example

To illustrate the method, we consider a small 3 gene example. Let us label the genes in our

example Boolean network as genes a,b, and c, with the following gene logic functions:

a′ = b+ c

b′ = ac

c′ = a+b

Current state Next state

a b c a′ b′ c′

0 0 0 1 1 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 1 1 0 1

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 0 0 1

1 1 1 1 0 1

Table III.1. Example 3-Gene State Transition Table

In the notation, a′,b′,c′ are the next state variables of a,b,c respectively. From these

functions, we can derive a state transition table (Table III.1) which describes the next state

59

in the BN given a present state. The predictors for each gene of our example are shown in

Figure III.1a), and listed as follows: pa = {b,c}, pb = {a,c}, and pc = {a,b}

A predictor pi = { j,k, . . .} lists the set of genes { j,k, . . .} which predicts (regulates)

the activity of gene i. Note that in our problem, the logic functions for a′,b′, and c′ are un-

known, and are to be determined from gene expression observations. The gene expression

observations that are provided are any subset of the 8 rows of Table III.1.

Figure III.1 demonstrates the circuit construction. Focusing on gene a, we note it has

2 inputs b and c, meaning there are F2 = 10 possible functions (ga1
,ga2

, . . . ,ga10
) with a

true support of 2 inputs. After enumerating the 10 functions, a MUX and select signal

sa is added to select exactly one of the function outputs, as shown in Figure III.1b). A

similar construction is performed for genes b and c, with MUXes and select signals sb and

sc respectively.

60

a. . .

c

b)

a

b

a)

s_a

c b

sa

b′

sb

a
c

ga1

ga2

ga10

a′

b
c

c′

sc

a
b

a

b

c c′

b′

a′

Fig. III.1. Circuit construction example: a) predictor set shown as connectivity graph and b)

function enumeration and MUX for gene a shown in detail

In the example, let us assume that we have the following 3 gene expression states

{a,b,c,a′,b′,c′} ∈ {(001110),(110001),(101101)}. We duplicate the circuit 3 times, as-

signing each copy one of the gene expression states. Accordingly, the MUX select signals

for gene a are connected together across all 3 copies of the circuit, as are the MUXes for

genes b and c.

Generally, we may have a limited number of gene expression states (in the example,

we had 3 out of a possible 8 states). In such situation, there can be several BNs which match

the observations as multiple sets of functions can be valid for the input. Using All-SAT will

implicitly generate all possible satisfying BNs. From the 3-gene example with only 3 gene

expression states, there are 4 possible solutions, of which one solution corresponds to the

61

correct BN. To narrow the search, the results can be pruned using curated, partial, or prior

biological information. For example, gene expressions or pathway information for some

genes may be known from other research or databases. Or biologists may want to reason

on the networks assuming the presence of specific gates or transitions on some genes (for

example, gene a represses gene b). This new information restricts the solution space by

providing our method additional logical constraints, and can be added to our algorithm

using the same exact steps as described in our approach.

Additionally, our method can detect logical problems in the input data. If the CNF S is

UNSAT (not satisfiable), there is no possible assignment of logic functions that satisfies the

gene expression observations and the predictor set. This result may occur if there is an error

in either the gene expression observations or predictor set. For example, if the predictor set

was inferred wrongly, the gene expressions were measured incorrectly, or gene expression

data from a different GRN were added, can produce an UNSAT result. In such situation,

our method can be rerun on a modified predictor set, or the gene expression data can be

analyzed to determine which genes is causing the logical error.

Let us examine an example with an UNSAT result. Consider that we have a gene a

which is predicted by b and c. Let us assume that we are given gene expression observa-

tions {a,b,c,a′,b′,c′} ∈ {(000000),(000100)}. We observe that in the first observations

(000000), b = 0 and c = 0, with a′ = 0. However, in the second observation (000100),

b = 0 and c = 0, with a′ = 1. Both b and c have the same values in these two observations,

but a′ has a different value. Logically, this cannot occur since a function cannot have two

different outputs for the same input. The CNF as constructed contains all valid Boolean

functions and since no such Boolean function exists for this logical conflict, the result is

UNSAT.

62

III-D. Experimental Results

III-D.1. Model Implementation

We evaluate the SAT-based method for determining the BN on two GRNs, one synthetic

(randomly generated) and one real (p53 network [41, 52]). We first investigate the senstivity

of our method regarding the number of available gene expression observations, and then

we demonstrate our method on attractor data from the p53 network.

The p53 network is well-studied in genomics and medicine, due to the involvement

of p53 gene in many human cancers. p53 is a tumor suppressor gene and is a transcrip-

tion factor for many downstream genes involved in controlling cell cycle, repairing DNA

damage, and inducing apoptosis (cell death) for example. The main pathways for p53 [53]

involve DNA damage in the form of breaks in the DNA strand, as shown in Figure III.2 In

the figure, forward arrows represents activation, while arrows with a line represents repres-

sion. The presence of the external signal dna dsb (DNA strand break damage) activates

AT M, which in turn represses Mdm2, allowing for activation of p53. The expression of

p53 blocks replication of DNA (a necessary response when DNA is damaged). From these

pathways, [41] obtained the corresponding Boolean functions.

63

Mdm2

dna_dsb

ATM

p53

Wip1

Fig. III.2. p53 pathways

In our experiments, the function of each gene in these networks is known, but hidden

from our algorithm. We extract both the predictor set and gene expression observations to

test our algorithm with. The regulating logic functions of the synthetic and p53 GRNs are

shown in Tables III.2 and III.3 respectively (these are kept hidden from our algorithm).

Gene Regulating Function

x1 x2 + x4 + x5

x2 x1x3x5

x3 x1x2x4

x4 x1(x3x5 + x3x5)+ x1(x3x5 + x3x5)

x5 (x1 + x2 + x3)

Table III.2. Boolean Regulating Functions for Synthetic 5-Gene Network

64

Gene Regulating Function

dna dsb (DNA damage is an external signal)

AT M Wip1(AT M+dna dsb)

p53 Mdm2(AT M+Wip1)

Wip1 p53

Mdm2 AT M(p53+Wip1)

Table III.3. Boolean Regulating Functions for p53 Network

Our method uses an open-source and efficient exact SAT-solver, MiniSAT v1.14 [23].

Shell scripts were created to invoke MiniSAT and to implement the All-SAT functionality.

All tests were implemented and run on a Core 2 Duo Mac OSX machine with 4 GB ram.

Runtimes depend on the input predictor set and number of gene expression observations,

but in our tests, each SAT operation is less than 1s. Accordingly, All-SAT runtime takes

approximately n seconds for n satisfying solutions.

III-D.2. Method Sensitivity to Input

To investigate how the number of solutions (the number of satisfying BNs) depends on the

number of available gene expression observations, we measure the sensitivity of our SAT

algorithm in the following manner. For a GRN with n genes, there are 2n gene expression

states in total, which completely determines the GRN. To test the sensitivity of the number

of solutions to the number of gene expressions observations i, we randomly select i gene

expressions from the 2n total, and run our algorithm to see how many surviving solutions

there are. Because the number of surviving solutions can change depending on the specific

gene expressions selected, we resample x times, and find the mean number of satisfying

solutions among the x samples. We repeat this process for different values of i between 1

and 2n.

65

Fig. III.3. Plot of # of mean solutions vs # of gene expressions observations (IO pairs)

In Figure III.3, we show the sensitivity of the algorithm by plotting of the average

number of satisfying solutions against i (the number of gene expression observations). For

each value of i, we re-sampled x = 100 times, and all satisfying solutions were recorded.

The mean number of solutions is plotted.

From the plot, we observe that as additional gene expressions are included in the

algorithm, the solution space reduces exponentially until only a few surviving solutions

remain. At this point, adding more gene expressions do not significantly change the size

of the solution space. In both examples, the inflection point appears to be i = 16 (roughly

half the total number of gene expression observations). These plots show the importance

of including additional gene expressions in reducing the size of the solution space.

These results show that our method works well for GRNs with fewer genes. For

a network with large number of genes, a corresponding large number of gene expression

observations is needed to reduce the solution space and keep the computation under control.

66

An advantage is that our method is inherently parallelizable. By cofactoring2 on x and x,

where x is a variable of S, we can partition S into 2 problems, Sx and Sx. Each of these can

run in parallel on separate machines. In general, we may partition S into 2k partitions (by

using k variables) and run each partition in parallel.

III-D.3. Function and BN Results for p53

We validate our SAT algorithm using the p53 network. Let us assume that we have the

attractor states as input to our algorithm. Using attractor states is a reasonable assumption

since in the long run, a BN would transition to these attractor states, thus these states are

most likely to be measured in practice. From the logic function of the p53 network, we

observe 2 attractor cycles containing 8 attractor states in total. We define the state space as

[AT M, p53,Wip1,Mdm2] and the attractor cycles are a singleton cycle if dna dsb = 0 and

a 7 state cycle if dna dsb = 1 as shown Table III.4.

dna dsb Attractor Cycle

0 (0000)

1 (1000)→ (1100)→ (1110)→ (0110)→ (0111)→ (0011)→ (0001)

Table III.4. Attractor Cycles and States for p53 Network [AT M, p53,Wip1,Mdm2]

These attractors become the 8 gene expressions used as input to our method and All-

SAT on the CNF results in 72 possible satisfying BNs out. Furthermore, we observe that

one of the 72 BNs has the correct logic function for the p53 network. If we count the num-

ber of selected functions per gene, we find that for AT M, p53,Wip, and Mdm2, there are 6,

4, 1, and 3 functions respectively. These results can help biologists tune their experiments

to understand gene regulatory function.

2The cofactor of S(x1, . . .xi . . .xn) wrt xi is Sxi
(x1, . . .xi . . .xn) = S(x1, . . .xi = 1 . . .xn)

67

III-E. Chapter Summary

In this chapter, we have presented an efficient and general SAT-based method for deter-

mining logic functions from gene expression data. Our approach implicitly explores all

possible logic functions for each gene based on the predictor set, and selects functions that

match the gene expression observations using a SAT formulation. Each SAT solution is a

Boolean network, and the results of our method generate a family of BNs that match the

predictor set and gene expressions. Our SAT-based method is validated on two GRNs and

demonstrates the importance of gene expression data with regards to constraining the space

of satisfying BNs. We also test the method on the p53 network and show how our results

can be used to select the gene functions. Due to its generality and efficiency, this algorithm

can easily be extended to large networks, and can be augmented to utilize gene expression

data from multiple sources.

Thus far, our inference of the GRN predictor set and regulating function has been done

using binary valued gene expression data. In practice, gene expressions are initially mea-

sured as continuous values, from which the values are converted to binary values. While

binary gene expressions simplify our analysis, continuos gene expression may provide a

richer and more detailed observation of the gene state and GRN. The next chapter explores

methods to infer the GRN from continuous gene expression data.

68

CHAPTER IV

PREDICTOR RANKING USING MODIFIED ZHEGALKIN FUNCTIONS

Inference of the underlying gene regulatory network structure (i.e. predictors and func-

tions) from gene expression is an important challenge in genomics. With continuing im-

provements in microarray technology, the ability to measure expression levels of many

genes has improved significantly, making available large amount of gene expression data

for analysis. In previous chapters, all gene expressions have been assumed to be digital in

nature. However, actual gene expressions (from microarrays for example) are continuous.

On the other hand, many genes have been observed to exhibit switch-like or Boolean be-

havior. In this chapter, we utilize Zhegalkin polynomials to express the Boolean behavior

of gene expression in an analog or continuous manner. Given gene expression data in the

form of microarray measurements normalized to the unit interval, we present a method

for ranking and selecting predictors which fits the data with the least mean square error

according to the Zhegalkin function. Our methods are validated on synthetic gene expres-

sions from a mutated mammalian cell-cycle network and then demonstrated on measured

gene expressions from a melanoma network study. The results of our approach can be used

to identify potential genes in future expression experiments or for possible targeted drug

development experiments.

IV-A. Background and Previous Work

Advances in microarray technology have allowed biologists the opportunity to measure the

expression of thousands, or even tens of thousands of genes simultaneously. This large

amount of gene expression data can be used for analysis for modeling and inferring the

gene regulatory network. Several methods have been proposed to model the expression

data, particularly Boolean networks which use binary (Boolean) representation for gene

69

expression. Boolean networks (BNs) [12] is commonly used for GRN inference [38, 41, 27]

and intervention [42, 30]. In the Boolean network, gene expression are binary valued, either

1 (ON) or 0 (OFF). Binary value representation is used as many genes have been observed

to exhibit switch-like behavior. In the Boolean network, gene expressions are updated at

the following time point according to Boolean functions at the current time point. The

deterministic nature of Boolean network allows for fast analysis and application of logic

synthesis tools. While Boolean networks exhibit many observed characteristics of gene

regulatory networks, Boolean networks cannot model continuous levels of gene expression

values.

In context of RNA and protein production, actual gene expression is more complex

and is measured as a continuous value from measurement techniques such as microarrays.

Other models have been proposed to model the GRN with continuous value gene expression

such as Differential Equations [10], Linear Equations [11], Continuous Networks [14], and

Stochastic Gene Networks [15]. While such models can determine continuous functions to

model the gene expresion data, continuous functions in general cannot capture the Boolean-

like behavior of genes.

In [54], a model was proposed to combine continuous gene expression and discrete

Boolean-like behavior. This combined model is based on Zhegalkin polynomial func-

tions [55]. Zhegalkin functions is an alternative representation of Boolean functions using

continuous values. These Zhegalkin functions can represent any Boolean function hav-

ing an output value within the unit interval [0,1] if input variables are also within the unit

interval. In [54], it was demonstrated how Zhegalkin function can be used to model the

next state equation for a given a predictor (target gene and input genes), and time-series

expression data for yeast model dataset.

Our approach uses Zhegalkin functions to infer gene predictors and functions from

normalized continuous gene expression data. As opposed to [54] which uses a linear ex-

70

pression function, our method uses a sigmoid expression function to more accurately rep-

resent the gene expression. Another key difference, [54] only finds a single regulating

function for a given predictor and gene expression data, while our methods finds the best

predictor and function for a target gene given just the gene expression data, by searching

across all possible predictors and functions in the GRN through a ranking of best fitting

predictors by mean-squared error.

IV-B. Approach

IV-B.1. Network Model

As described earlier, the Boolean network model can not be used with continuous gene ex-

pression values. Instead we use a modified model similar to BN but which uses continuous

expression values and Zhegalkin functions (subsection IV-B.2) in place of Boolean values

and Boolean functions. In the modified model, we define a set of nodes {x1,x2, . . . ,xn} and

Zhegalkin functions {z1,z2, . . . ,zn}. Each node xi is a gene, and each gene is associated

with a Zhegalkin function zi. The value of a gene is a continuous variable, xi ∈ [0,1] where

the value can be within the unit interval, and is updated according to the associated Zhe-

galkin function zi. Thus, the gene state xi can represent varying levels of expressions from

fully expressed (xi = 1), not expressed (xi = 0), and any expression level in between.

IV-B.2. Zhegalkin Polynomial Function

To model the dynamics of continuous gene expression values and provide a continuous

representation of Boolean function, our algorithm utilizes Zhegalkin polynomial func-

tions [56]. Following is a description of a Zhegalkin polynomial function.

Definition IV.1: A Zhegalkin polynomial function with n variables is given by Equa-

tion 4.1.

71

f (x1, . . . ,xn) = a0 +
n

∑
j=1

a jx j +
n

∑
k=2

k−1

∑
j=1

a jkx jxk +
n

∑
l=3

l−1

∑
k=2

k−1

∑
j=1

a jklx jxkxl + . . .+a1...nx1 . . .xn

(4.1)

The Zhegalkin function is a linear function consisting of coefficients and products of

the input variables. The first term, a0 is a constant. The second term ∑n
j=1 a jx j is weighted

sum of all possible single inputs. The third term ∑n
k=2 ∑

k−1
j=1 a jkx jxk is weighted sum of all

possible combinations of two inputs, and so on. The last term is a weighted product of all

inputs.

The coefficients or weights a0,a1, . . . ,a1...n of a Zhegalkin function are called Zhe-

galkin coefficients. In general, any Boolean function can be converted to a Zhegalkin func-

tion by selecting the appropriate Zhegalkin coefficients. In [56], it was determined that the

possible range of values for the Zhegalkin coefficients to define any Boolean function of

input size n are listed in Table IV.1.

Coefficient Set of Possible Values Notation

a0 0,1 A0

a j -1,0,1 A1

a jk -2,-1,0,1,2 A2

a jkl -4,-3,-2,0,1,2,3,4 A3

...
...

...

a123...n −2(n−1), . . . ,−1,0,1, . . . ,2(n−1) An

Table IV.1. Possible Values for Coefficients of Zhegalkin Function

To demonstrate how Zhegalkin function can represent a Boolean function, we show

two simple examples. Consider two Boolean functions:

f B = x1x2

72

gB = x1 x2 + x1x2

The truth tables for f B and gB are shown in Tables IV.2 and IV.3. We select the

appropriate coefficients to find the corresponding Zhegalkin functions are:

f Z = x2 − x1x2

gZ = 1− x1 − x2 +2x1x2

Plotting the Zhegalkin functions as a surface plot, we observe in Figures IV.1 and IV.2

that the corner points (where the inputs are 0 or 1) match the Boolean function output and

the surface confirms to expected values for continuous Boolean function in the unit interval.

x1 x2 f B

0 0 0

0 1 1

1 0 0

1 1 0

Table IV.2. Truth Table for f B = x1x2

x1 x2 gB

0 0 1

0 1 0

1 0 0

1 1 1

Table IV.3. Truth Table for gB = x1 x2 + x1x2

73

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f

x1

x2

f

Fig. IV.1. Zhegalkin function f Z = x2 − x1x2 for Boolean function f B = x1x2

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f

x1

x2

f

Fig. IV.2. Zhegalkin function gZ = 1 − x1 − x2 + 2x1x2 for Boolean function

gB = x1 x2 + x1x2

74

IV-B.3. Sigmoid Function

The inputs of the Zhegalkin function as used by [54] are continuous gene expression values

represented in a linear function. However, actual gene expression is more complex and

depends on several simultaneous and competing factors such as RNA/protein formation

or degradation, chemical reaction rates, and molecular transport. It has been observed

that the expression values tends to saturate at low and high gene activity and has been

suggested that a more accurate representation of continuous gene expression is a sigmoid

function [57, 58].

Definition IV.2: A sigmoid function has a ”S” shape curve defined by Equation 4.2.

s(t) = 1/(1+ e−t) (4.2)

Figure IV.3 plots the linear and sigmoid function to compare the two functions. Note,

the sigmoid function s(x) is shifted and scaled to the unit interval.

75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(
x
)

x

linear(x)
sigmoid(x)

Fig. IV.3. Linear function x compared with sigmoid function s(x) = 1/1+e−12∗x+6 over the

unit interval

In our approach, the Zhegalkin function can accept either the linear x or sigmoid s(x)

representation of gene expression. In section IV-C, we will compare the accuracy between

the two representations.

IV-B.4. Predictor Ranking Algorithm

Algorithm 1 describes the general procedure for our predictor ranking. The inputs to our

algorithm are gene expression observations X and Y with m observations or samples of

each. In detail, Xi is the observed current state of the network, and Yi is the resulting

next state of the network. X can be the linear representation or sigmoid representation as

specified at runtime. Given a target gene xi, our algorithm determines a ranking of the best

predictors for xi with minimal error in the expected output (best fitting Zhegalkin function

upon X) and the actual output Y .

76

In line 2 of the algorithm, the method iterates through all possible predictor combina-

tions p j ∈ p for the target gene xi. For each p j, the method considers all valid Zhegalkin

functions zk ∈ z (line 3) by iterating over all possible coefficient combinations correspond-

ing to Boolean functions. In line 4, the algorithm determines the mean squared error (MSE)

of the expected output and actual output for each Zhegalkin function zk. The MSE is used

to measure how well the Zhegalkin function fits or matches the actual output expression

values. In line 6, the minimum MSE of all Zhegalkin functions for predictor p j is chosen

as representative MSE for p j. After the MSEs for all predictors have been determined,

the predictors are sorted by their MSE (line 8), and the ranked predictors (as well as its

Zhegalkin function) and corresponding MSE are returned.

Algorithm 1 Pseudocode of Predictor Ranking

1: PRED RANK(X ,Y,xi)

2: for all predictor combinations p j ∈ p for xi do

3: for all valid Zhegalkin functions zk ∈ z for p j do

4: MSEzk
= 1/m∑m

l=1 (zk(Xl)−Yl)
2

5: end for

6: MSEp j
= min(MSEz)

7: end for

8: sort p by MSEp

9: return ranked (p,MSEp)

The algorithm returns a ranked list of predictors rather than a single predictor with

the lowest MSE for a several reasons. The main reason is the actual or correct predictor is

expected to be one the top ranked predictors as the actual predictor should best match the

input data resulting in low MSE. However, the ”correct” predictor may not have the lowest

MSE if the expression samples are not adequately distributed. Ideally, the samples should

77

be uniformly distributed throughout the state space. However, limited number of samples

may result in some areas in the state space not adequately represented. For example, if

none of the samples were represented in a particular region, several Zhegalkin functions

or predictors may match equally well. Second, the expression data may be noisy or may

contain errors, resulting in a higher MSE for the ”correct” predictor, and in turn potentially

decreasing its rank. The ranked list ensures that the ”correct” predictor is not prematurely

disqualified from the results.

In general, given adequately distributed expression samples, the top ranking predictor

can be selected as the inferred predictor, if the top ranked predictor has significantly lower

MSE than the second ranked predictor. In the next section, we describe one method for

selecting a predictor from the ranked list. Otherwise, if several predictors have similarly

low MSE (due to sample distribution or noisy data), the ranked list can be used to help

guide follow-up lab experiments to test and verify those particular predictors.

IV-C. Results

We demonstrate our predictor ranking method on two GRNs. To validate our method,

we use the mutated 9-gene mammalian cell-cycle network using synthetic gene expression

data. We use both linear and sigmoid representation for gene expression values. From these

results, we determine a predictor selection method and find the sigmoid representation is

more accurate. Lastly, we apply both ranking and selection method on melanoma study

data assuming a sigmoid representation.

IV-C.1. Mutated Mammalian Cell-Cycle Network

In this experiment, we use a mutated mammalian cell-cycle network to illustrate and val-

idae our approach. For a normal mammal, the cell cycle is tightly controlled through ex-

78

tracellular signals that indicate whether a cell should divide/grow or not. These signals

activate the gene CyclinD (CycD) which is a key gene in mammalian cell-cycle. Another

important gene is retinoblastoma (Rb) which is a tumor-suppressor when the other cyclin

genes are not expressed. Another key gene is p27, which when active, represses the cyclin

genes, stopping the cell cycle. In the mutated mammalian cell-cycle, p27 is mutated and

is always off, leading to possible cell cycle in the absence of extracelluar signals. For the

mutated 9-gene mammalian cell-cycle network, [59] determined the regulating functions

for genes to be those shown in Table IV.4. To validate our method, we will use the regu-

lating functions to create synthetic continuous gene expression values, on which we apply

our algorithm (linear and sigmoid) to determine predictor rankings for target genes in the

mutated network. In this setup, the actual functions and predictors are hidden from our

algorithm.

Gene Regulating Function

x1 CycD extracellular signal

x2 Rb CycD ·CycE ·CycA ·CycB

x3 E2F Rb ·CycA ·CycB

x4 CycE E2F ·Rb

x5 CycA (E2F ·Rb ·Cdc20 · (Cdh1 ·UbcH10))+ (CycA ·Rb ·Cdc20 · (Cdh1 ·UbcH10))
x6 Cdc20 CycB

x7 Cdh1 (CycA ·CycB)+Cdc20

x8 UbcH10 Cdh1+(Cdh1 ·UbcH10 · (Cdc20+CycA+CycB))

x9 CycB Cdc20 ·Cdh1

Table IV.4. Boolean Regulating Functions for Mutated 9-Gene Mammalian Cell-Cycle Net-

work

To synthesize normalized and continuous gene expression data similar to those mea-

sured in practice, we perform the following procedure. From the Boolean functions in

Table IV.4, we create a state transition (truth) table listing all current states and next states.

Each pair of current and next state forms a minterm (row) in the table. Since there are n = 9

genes in the mutated network, the state transition table contains 29 = 512 minterms. We

79

randomly sample m minterms and convert the binary values of each gene to a continuous

value. The conversion process takes a binary value (0,1) and uniformly and randomly per-

turbs the value up to p, resulting in a continuous value ([0, p], [1− p,1]). The value of p

can be from 0 to 0.5 and is proportional to the number of occurrences of a binary value for

a gene in the set of minterms. For example, if a gene xi has the value 1 occuring 75% in

the set of minterms, p = (0.75) ∗ (0.5) = 0.375, and as such the 1 value is perturbed from

[0.625,1] for gene xi. Each gene will have a different perturbation that is dependent on the

occurances of the binary values 1 and 0 in the the input set.

As an additional constraint to improve runtime, we limit our algorithm to search on

predictors with 4 or less inputs. In general, this is a reasonable assumption as most genes

have been observed to have relatively few inputs. We individually select genes x2 to x9 as

the target gene and then apply our method on the mutated network to determine predictor

rankings for each of these 8 genes. We exclude gene CycD(x1) as it is an extracellular

signal, and thus not predicted by any genes in the mutated cell-cycle network.

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x1 0.1626 x1,x4 0.0676 x1,x4,x9 0.0501 x1,x4,x8,x9 0.0365

2 x8 0.2268 x1,x3 0.0952 x1,x3,x4 0.0512 x1,x4,x6,x9 0.0377

3 x7 0.2323 x1,x6 0.1030 x1,x4,x5 0.0561 x1,x3,x4,x8 0.0385

4 x3 0.2398 x1,x9 0.1037 x3,x4,x7 0.0592 x1,x3,x4,x9 0.0397

5 x6 0.2425 x3,x4 0.1058 x1,x4,x6 0.0623 x1,x4,x5,x6 0.0405

6 x4 0.2482 x5,x6 0.1062 x3,x4,x5 0.0626 x1,x4,x5,x9 0.0415

7 x5 0.2517 x1,x8 0.1083 x1,x4,x7 0.0660 x1,x4,x5,x8 0.0445

8 x9 0.2572 x1,x7 0.1086 x3,x4,x9 0.0698 x1,x3,x4,x5 0.0446

9 x1,x5 0.1111 x1,x3,x5 0.0705 x1,x4,x7,x9 0.0450

10 x4,x7 0.1251 x3,x4,x8 0.0710 x1,x3,x4,x6 0.0454

Table IV.5. Linear Predictor Ranking by MSE for Gene Rb(x2) in Mutated Network (Top

10 Predictors Shown), Correct Predictor is x1,x4,x5,x9

80

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x7 0.1916 x2,x9 0.0770 x2,x5,x9 0.0532 x2,x5,x8,x9 0.0354

2 x2 0.2007 x2,x5 0.0778 x2,x5,x6 0.0672 x2,x5,x6,x7 0.0409

3 x5 0.2015 x5,x9 0.1127 x2,x4,x9 0.0677 x2,x5,x6,x9 0.0412

4 x1 0.2033 x5,x7 0.1158 x2,x4,x5 0.0699 x2,x5,x7,x9 0.0424

5 x9 0.2051 x2,x7 0.1184 x2,x5,x8 0.0717 x2,x4,x5,x9 0.0438

6 x4 0.2097 x7,x9 0.1210 x1,x2,x9 0.0731 x1,x2,x5,x9 0.0446

7 x8 0.2474 x5,x6 0.1217 x2,x5,x7 0.0755 x1,x2,x5,x7 0.0473

8 x6 0.2585 x5,x8 0.1263 x1,x2,x5 0.0770 x2,x4,x5,x7 0.0478

9 x1,x2 0.1291 x1,x2,x7 0.0788 x2,x5,x6,x8 0.0513

10 x1,x7 0.1308 x1,x4,x7 0.0792 x1,x2,x7,x9 0.0525

Table IV.6. Linear Predictor Ranking by MSE for Gene E2F(x3) in Mutated Network (Top

10 Predictors Shown), Correct Predictor is x2,x5,x9

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x3 0.0852 x2,x3 0.0222 x2,x3,x5 0.0258 x1,x2,x3,x7 0.0110

2 x2 0.1510 x3,x8 0.0851 x2,x3,x6 0.0316 x2,x3,x6,x9 0.0135

3 x6 0.1816 x2,x6 0.0863 x2,x3,x9 0.0322 x2,x3,x5,x6 0.0143

4 x5 0.2048 x3,x6 0.1000 x2,x3,x7 0.0342 x1,x2,x3,x5 0.0179

5 x7 0.2171 x1,x3 0.1002 x2,x3,x8 0.0387 x1,x2,x3,x9 0.0181

6 x1 0.2418 x3,x9 0.1028 x1,x2,x3 0.0416 x2,x3,x7,x8 0.0184

7 x9 0.2436 x3,x7 0.1188 x3,x7,x9 0.0614 x2,x3,x7,x9 0.0187

8 x8 0.2508 x3,x5 0.1197 x3,x7,x8 0.0628 x2,x3,x5,x8 0.0190

9 x1,x2 0.1220 x3,x5,x8 0.0657 x1,x2,x3,x6 0.0198

10 x7,x9 0.1224 x3,x6,x8 0.0657 x2,x3,x8,x9 0.0198

Table IV.7. Linear Predictor Ranking by MSE for Gene CycE(x4) in Mutated Network (Top

10 Predictors Shown), Correct Predictor is x2,x3

81

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x6 0.1425 x2,x6 0.0581 x2,x6,x7 0.0523 x2,x6,x8,x9 0.0336

2 x3 0.1434 x3,x6 0.0713 x2,x6,x9 0.0528 x2,x4,x6,x9 0.0343

3 x7 0.1651 x2,x3 0.0822 x3,x6,x8 0.0588 x2,x6,x7,x8 0.0360

4 x9 0.1943 x6,x8 0.0839 x2,x6,x8 0.0609 x2,x4,x6,x7 0.0369

5 x2 0.2072 x6,x7 0.0877 x2,x3,x6 0.0612 x2,x3,x6,x9 0.0370

6 x8 0.2281 x3,x7 0.0880 x6,x7,x9 0.0624 x1,x3,x6,x7 0.0376

7 x4 0.2368 x2,x7 0.0976 x3,x7,x8 0.0644 x1,x3,x6,x9 0.0381

8 x1 0.2439 x3,x8 0.0995 x3,x6,x9 0.0656 x3,x4,x6,x8 0.0410

9 x3,x9 0.1038 x2,x4,x6 0.0670 x3,x6,x8,x9 0.0424

10 x4,x7 0.1105 x6,x7,x8 0.0672 x1,x3,x4,x6 0.0425

Table IV.8. Linear Predictor Ranking by MSE for Gene CycA(x5) in Mutated Network (Top

10 Predictors Shown), Correct Predictor is x2,x3,x6,x7,x8

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x9 0.0126 x1,x9 0.0784 x1,x4,x9 0.0171 x3,x4,x7,x9 0.0106

2 x1 0.2219 x4,x9 0.0985 x7,x8,x9 0.0176 x3,x4,x8,x9 0.0109

3 x5 0.2279 x2,x9 0.1062 x2,x4,x9 0.0186 x4,x7,x8,x9 0.0112

4 x8 0.2416 x7,x9 0.1109 x4,x7,x9 0.0208 x1,x3,x7,x9 0.0127

5 x3 0.2434 x8,x9 0.1156 x3,x8,x9 0.0277 x2,x4,x8,x9 0.0128

6 x4 0.2608 x5,x9 0.1230 x2,x5,x9 0.0305 x4,x5,x8,x9 0.0129

7 x2 0.2653 x3,x7 0.1302 x1,x7,x9 0.0315 x3,x7,x8,x9 0.0131

8 x7 0.2689 x3,x9 0.1345 x1,x3,x9 0.0319 x1,x5,x8,x9 0.0131

9 x7,x8 0.1439 x1,x8,x9 0.0320 x1,x4,x5,x9 0.0133

10 x2,x7 0.1550 x1,x2,x9 0.0322 x1,x3,x5,x9 0.0133

Table IV.9. Linear Predictor Ranking by MSE for Gene Cdc20(x6) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x9

82

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x6 0.1231 x6,x9 0.0565 x5,x6,x9 0.0215 x5,x6,x8,x9 0.0173

2 x9 0.1310 x6,x8 0.0965 x1,x6,x9 0.0297 x1,x4,x6,x9 0.0244

3 x8 0.1821 x5,x9 0.1017 x4,x6,x9 0.0493 x1,x5,x6,x9 0.0245

4 x3 0.2088 x1,x6 0.1023 x5,x6,x8 0.0562 x4,x5,x6,x9 0.0252

5 x1 0.2390 x5,x6 0.1048 x6,x8,x9 0.0573 x1,x3,x6,x9 0.0257

6 x4 0.2486 x8,x9 0.1093 x1,x3,x6 0.0578 x3,x5,x6,x9 0.0272

7 x5 0.2520 x3,x8 0.1166 x4,x6,x8 0.0586 x2,x5,x6,x9 0.0286

8 x2 0.2797 x2,x6 0.1168 x2,x6,x9 0.0596 x1,x6,x8,x9 0.0309

9 x3,x6 0.1173 x1,x5,x6 0.0656 x4,x6,x8,x9 0.0358

10 x1,x3 0.1214 x3,x6,x9 0.0659 x2,x4,x6,x9 0.0362

Table IV.10. Linear Predictor Ranking by MSE for Gene Cdh1(x7) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x5,x6,x9

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x7 0.0981 x1,x7 0.1093 x1,x4,x7 0.0681 x1,x3,x6,x7 0.0597

2 x1 0.1924 x3,x4 0.1134 x1,x2,x7 0.0694 x3,x5,x6,x7 0.0619

3 x4 0.2168 x3,x5 0.1356 x1,x6,x7 0.0744 x4,x6,x7,x9 0.0620

4 x3 0.2476 x3,x6 0.1390 x1,x3,x7 0.0749 x1,x4,x6,x7 0.0622

5 x9 0.2487 x6,x7 0.1479 x1,x5,x7 0.0751 x1,x3,x4,x7 0.0623

6 x6 0.2546 x7,x9 0.1482 x3,x5,x7 0.0768 x1,x3,x5,x7 0.0625

7 x5 0.2559 x4,x5 0.1500 x1,x7,x9 0.0781 x1,x2,x5,x7 0.0626

8 x2 0.2565 x4,x7 0.1512 x2,x5,x7 0.0822 x2,x3,x4,x7 0.0647

9 x3,x9 0.1531 x3,x4,x7 0.0829 x2,x3,x6,x7 0.0650

10 x3,x7 0.1587 x5,x6,x7 0.0831 x3,x5,x7,x9 0.0653

Table IV.11. Linear Predictor Ranking by MSE for Gene UbcH10(x8) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x5,x6,x7,x9

83

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x7 0.1238 x6,x7 0.0241 x6,x7,x8 0.0202 x3,x6,x7,x8 0.0176

2 x6 0.1502 x5,x7 0.0813 x5,x6,x7 0.0401 x4,x6,x7,x8 0.0182

3 x3 0.2220 x1,x7 0.0957 x1,x6,x7 0.0429 x1,x6,x7,x8 0.0189

4 x8 0.2506 x7,x8 0.0995 x4,x6,x7 0.0494 x5,x6,x7,x8 0.0204

5 x4 0.2652 x3,x7 0.1002 x3,x6,x7 0.0520 x4,x5,x6,x7 0.0206

6 x5 0.2716 x4,x7 0.1064 x2,x6,x7 0.0531 x3,x5,x6,x7 0.0207

7 x2 0.2792 x3,x6 0.1096 x2,x3,x7 0.0605 x2,x6,x7,x8 0.0207

8 x1 0.2884 x6,x8 0.1165 x3,x4,x6 0.0634 x3,x4,x6,x7 0.0208

9 x4,x6 0.1211 x1,x7,x8 0.0657 x1,x5,x6,x7 0.0208

10 x2,x7 0.1264 x5,x7,x8 0.0660 x1,x3,x6,x7 0.0216

Table IV.12. Linear Predictor Ranking by MSE for Gene CycB(x9) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x6,x7

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x1 0.2722 x1,x4 0.1244 x1,x4,x9 0.0404 x1,x4,x7,x9 0.04035

2 x8 0.2815 x5,x8 0.1475 x1,x3,x4 0.0646 x1,x4,x8,x9 0.04050

3 x7 0.3732 x1,x3 0.1503 x1,x4,x5 0.0673 x1,x4,x5,x9 0.04076

4 x6 0.3899 x1,x5 0.1534 x1,x3,x6 0.0745 x1,x4,x6,x9 0.04073

5 x3 0.3901 x5,x6 0.1571 x1,x3,x5 0.0922 x1,x3,x4,x5 0.05836

6 x5 0.3923 x1,x6 0.1583 x1,x5,x9 0.0926 x1,x3,x4,x8 0.06408

7 x9 0.4013 x8,x9 0.1623 x1,x6,x9 0.0951 x1,x3,x4,x9 0.06436

8 x4 0.4068 x7,x8 0.1656 x1,x4,x8 0.0951 x1,x3,x4,x7 0.06441

9 x1,x8 0.1689 x3,x4,x9 0.0954 x1,x3,x4,x6 0.06525

10 x3,x6 0.1774 x1,x4,x6 0.0982 x1,x4,x5,x7 0.06658

Table IV.13. Sigmoid Predictor Ranking by MSE for Gene Rb(x2) in Mutated Network (Top

10 Predictors Shown), Correct Predictor is x1,x4,x5,x9

84

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x2 0.2993 x2,x5 0.0591 x2,x5,x9 0.0064 x2,x5,x7,x9 0.0058

2 x7 0.3034 x2,x9 0.1210 x2,x5,x6 0.0592 x2,x5,x8,x9 0.0060

3 x1 0.3600 x2,x7 0.1552 x2,x5,x8 0.0694 x2,x5,x6,x9 0.0060

4 x5 0.3627 x1,x2 0.1784 x2,x5,x7 0.0698 x1,x2,x5,x9 0.0061

5 x4 0.3699 x5,x7 0.1797 x1,x2,x5 0.0851 x2,x4,x5,x9 0.0261

6 x9 0.4052 x7,x9 0.1840 x2,x4,x5 0.0857 x1,x2,x5,x7 0.0291

7 x8 0.4236 x5,x6 0.1938 x1,x2,x7 0.0871 x2,x4,x5,x7 0.0555

8 x6 0.4286 x4,x7 0.1938 x5,x7,x9 0.0983 x2,x4,x5,x8 0.0572

9 x5,x8 0.1985 x1,x2,x6 0.1138 x2,x4,x5,x6 0.0580

10 x4,x5 0.2099 x2,x4,x9 0.1211 x1,x2,x5,x8 0.0588

Table IV.14. Sigmoid Predictor Ranking by MSE for Gene E2F(x3) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x2,x5,x9

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x3 0.1540 x2,x3 0.0014 x2,x3,x6 0.0252 x1,x2,x3,x7 0.0013

2 x2 0.2384 x2,x6 0.1191 x2,x3,x5 0.0329 x2,x3,x5,x8 0.0014

3 x6 0.3028 x3,x8 0.1287 x2,x3,x8 0.0350 x2,x3,x5,x6 0.0014

4 x5 0.3538 x1,x3 0.1542 x2,x3,x9 0.0597 x1,x2,x3,x5 0.0015

5 x9 0.3688 x3,x6 0.1549 x2,x3,x7 0.0606 x1,x2,x3,x9 0.0015

6 x7 0.3712 x3,x7 0.1852 x1,x2,x3 0.0615 x1,x2,x3,x6 0.0017

7 x8 0.4165 x3,x9 0.1872 x3,x7,x9 0.0915 x2,x3,x6,x8 0.0017

8 x1 0.4243 x1,x2 0.1873 x3,x5,x7 0.1111 x2,x3,x7,x9 0.0022

9 x5,x6 0.1913 x1,x3,x8 0.1131 x2,x3,x8,x9 0.0023

10 x3,x5 0.1915 x1,x3,x6 0.1176 x2,x3,x7,x8 0.0023

Table IV.15. Sigmoid Predictor Ranking by MSE for Gene CycE(x4) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x2,x3

85

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x3 0.2598 x2,x6 0.0683 x2,x6,x8 0.0376 x2,x3,x6,x8 0.0098

2 x6 0.2626 x6,x8 0.0948 x3,x6,x8 0.0388 x2,x6,x7,x8 0.0358

3 x7 0.3031 x3,x6 0.1008 x2,x3,x6 0.0397 x2,x6,x8,x9 0.0368

4 x2 0.3443 x3,x7 0.1256 x2,x6,x7 0.0408 x3,x6,x7,x8 0.0370

5 x9 0.3452 x4,x7 0.1287 x2,x6,x9 0.0417 x1,x2,x6,x8 0.0373

6 x4 0.3531 x2,x3 0.1300 x6,x7,x8 0.0657 x3,x6,x8,x9 0.0380

7 x8 0.4170 x4,x6 0.1319 x1,x2,x6 0.0693 x2,x4,x6,x9 0.0380

8 x1 0.4258 x6,x7 0.1348 x2,x3,x7 0.0694 x2,x4,x6,x7 0.0384

9 x2,x7 0.1439 x3,x6,x7 0.0703 x1,x3,x4,x6 0.0385

10 x3,x4 0.1591 x1,x3,x6 0.0714 x1,x3,x6,x8 0.0386

Table IV.16. Sigmoid Predictor Ranking by MSE for Gene CycA(x5) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x2,x3,x6,x7,x8

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x9 0.0011 x1,x9 0.0983 x2,x4,x9 0.0013 x1,x3,x5,x9 0.0008

2 x5 0.3335 x4,x9 0.0988 x1,x4,x9 0.0015 x2,x7,x8,x9 0.0009

3 x8 0.3757 x7,x9 0.1288 x4,x7,x9 0.0015 x2,x4,x8,x9 0.0009

4 x3 0.4063 x2,x9 0.1291 x7,x8,x9 0.0019 x3,x4,x5,x9 0.0009

5 x7 0.4199 x8,x9 0.1308 x1,x7,x9 0.0286 x2,x4,x7,x9 0.0010

6 x2 0.4220 x5,x9 0.1574 x1,x8,x9 0.0288 x1,x3,x7,x9 0.0010

7 x4 0.4262 x3,x9 0.1598 x2,x7,x9 0.0288 x1,x3,x4,x9 0.0010

8 x1 0.4345 x2,x7 0.2270 x3,x7,x9 0.0313 x1,x3,x8,x9 0.0011

9 x7,x8 0.2467 x2,x8,x9 0.0319 x3,x4,x7,x9 0.0011

10 x3,x7 0.2692 x5,x8,x9 0.0321 x2,x5,x8,x9 0.0011

Table IV.17. Sigmoid Predictor Ranking by MSE for Gene Cdc20(x6) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x9

86

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x6 0.1722 x6,x9 0.0370 x5,x6,x9 0.0069 x1,x3,x6,x9 0.0062

2 x9 0.1823 x5,x9 0.1009 x1,x6,x9 0.0346 x1,x4,x6,x9 0.0065

3 x8 0.2875 x2,x6 0.1198 x2,x6,x9 0.0557 x5,x6,x8,x9 0.0066

4 x3 0.3265 x8,x9 0.1282 x6,x8,x9 0.0611 x3,x5,x6,x9 0.0066

5 x1 0.3492 x1,x6 0.1310 x4,x6,x9 0.0677 x1,x5,x6,x9 0.0067

6 x2 0.3922 x5,x6 0.1322 x3,x6,x9 0.0769 x2,x5,x6,x9 0.0067

7 x5 0.3988 x1,x3 0.1352 x5,x6,x8 0.0922 x4,x5,x6,x9 0.0070

8 x4 0.4357 x3,x6 0.1417 x4,x6,x8 0.0954 x3,x4,x6,x9 0.0318

9 x4,x9 0.1511 x1,x5,x6 0.0966 x1,x6,x8,x9 0.0339

10 x1,x9 0.1569 x1,x3,x6 0.0986 x4,x6,x8,x9 0.0363

Table IV.18. Sigmoid Predictor Ranking by MSE for Gene Cdh1(x7) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x5,x6,x9

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x7 0.1799 x1,x7 0.1581 x3,x5,x7 0.1136 x3,x5,x6,x7 0.1126

2 x4 0.3708 x6,x7 0.2414 x1,x4,x7 0.1214 x1,x3,x5,x7 0.1129

3 x1 0.3714 x4,x7 0.2425 x1,x5,x7 0.1415 x3,x5,x7,x9 0.1133

4 x5 0.4013 x7,x9 0.2481 x1,x3,x7 0.1480 x2,x3,x5,x7 0.1152

5 x6 0.4340 x5,x7 0.2707 x1,x7,x9 0.1511 x1,x4,x5,x7 0.1204

6 x9 0.4369 x3,x7 0.2755 x1,x6,x7 0.1512 x1,x4,x7,x9 0.1209

7 x2 0.4431 x3,x4 0.2755 x1,x2,x7 0.1529 x1,x2,x5,x7 0.1215

8 x3 0.4668 x2,x7 0.2757 x4,x6,x7 0.1696 x1,x3,x4,x7 0.1220

9 x1,x5 0.2876 x2,x6,x7 0.1740 x1,x4,x6,x7 0.1225

10 x3,x5 0.2927 x4,x5,x7 0.1752 x1,x3,x6,x7 0.1237

Table IV.19. Sigmoid Predictor Ranking by MSE for Gene UbcH10(x8) in Mutated Net-

work (Top 10 Predictors Shown), Correct Predictor is x5,x6,x7,x9

87

Rank
1 input 2 inputs 3 inputs 4 inputs

Predictor MSE Predictor MSE Predictor MSE Predictor MSE

1 x6 0.1868 x6,x7 0.0073 x6,x7,x8 0.0071 x3,x4,x6,x7 0.0061

2 x7 0.1874 x5,x7 0.1219 x5,x6,x7 0.0385 x1,x3,x6,x7 0.0068

3 x3 0.3262 x7,x8 0.1259 x4,x6,x7 0.0617 x2,x6,x7,x8 0.0069

4 x8 0.3465 x3,x7 0.1288 x3,x6,x7 0.0640 x5,x6,x7,x8 0.0070

5 x1 0.4170 x1,x7 0.1481 x2,x6,x7 0.0656 x4,x6,x7,x8 0.0071

6 x4 0.4173 x6,x8 0.1562 x1,x6,x7 0.0671 x1,x6,x7,x8 0.0071

7 x2 0.4183 x3,x6 0.1607 x2,x4,x7 0.0853 x3,x6,x7,x8 0.0072

8 x5 0.4214 x2,x7 0.1624 x2,x3,x7 0.0884 x3,x5,x6,x7 0.0074

9 x5,x6 0.1747 x3,x7,x8 0.0911 x1,x5,x6,x7 0.0074

10 x4,x6 0.1851 x3,x4,x6 0.0984 x4,x5,x6,x7 0.0074

Table IV.20. Sigmoid Predictor Ranking by MSE for Gene CycB(x9) in Mutated Network

(Top 10 Predictors Shown), Correct Predictor is x6,x7

For the mutated mammal network, Table IV.5 through Table IV.12 (linear representa-

tion) and Table IV.13 through Table IV.20 (sigmoid representation) lists the top 10 predic-

tors for genes x2 through x9 respectively as determined by our algorithm. Gene CycD (x1)

not included as this gene is controlled by an extracellular signal and as such is not regu-

lated by any of the other 8 genes in the network. For each target gene, the correct (actual)

predictor is listed in the table captions. Each table shows predictors for a specific target

gene and is organized as follows. The 1 input column lists the 1 input predictors ranked by

their associated MSE from lowest MSE to highest MSE. The top ranked 1 input predictor

has the lowest MSE and therefore is the best fitting 1 input predictor. Similarly, the 2 input

column lists the 2 input predictors ranked by MSE. And so on for the 3 input column and

4 input columns. For example, Table IV.12 lists the predictors for CycB(x9). In the 1 input

column, the best (lowest MSE) 1 input predictor for CycB is x7 with a MSE of 0.123888.

Looking at the 2 input column, the best 2 input predictor is x6,x7 with a MSE of 0.024118.

For CycB, x6,x7 happens to be the actual or correct predictor.

In general, we find the correct predictor is identified as a top rank predictor in one

of the input columns for majority of genes (E2F(x3),CycE(x4),Cdc20(x6),Cdh1(x7), and

88

CycB(x9)) in the mutated mammal network. The exceptions are for gene Rb(x2) where

the correct predictor is the sixth ranked predictor in the list, and for genes CycA(x5) and

UbcH10(x8) which have more than 4 inputs, and thus not listed in the tables which only

show up to 4 input predictors.

For gene Rb(x2), the distribution of samples do not completely cover the 4-input state

space, hence several predictors and Zhelgakin functions can closely fit with low error. How-

ever, we observe that while the top rank predictor {x1,x4,x8,x9} is not the correct predictor

{x1,x4,x5,x9}, the top rank predictor does contains 3 of the 4 correct input genes. We make

similar observation with genes CycA(x5) and UbcH10(x8), in that the top rank predictors

contain many of the correct input genes in the actual predictors. This information can be

useful helpful in refining future tests for gene expression measurements.

IV-C.2. Predictor Selection Method

While the algorithm produces a ranked list of predictors for a gene, it may be desirable

to select a single best predictor. As observed from the predictor tables for the mutated

mammal network, the correct predictor is generally the top ranked predictor from either the

1, 2, 3, or 4-input predictor lists. To select which i-input predictor list to choose from, we

use a metric called the resolution ratio Ri, which measures the difference between the top

ranked predictor and second ranked predictor of a gene with i-inputs. The resolution ratio

is defined as the ratio between the second and top ranked gene as shown in Equation 4.3.

Ri = MSEi,second/MSEi,top (4.3)

A high resolution ratio Ri indicates the top rank predictor has significantly lower error

than all other predictors of the same input size, and thus likely to be the correct predictor.

While a low resolution ratio indicates that several predictors (including the top rank pre-

89

dictor) have similarly low error due to underfitting of the data (missing some of the input

genes), overfitting of the data (including additional or wrong input genes), or inadequate

sample distribution.

For example, let us assume for gene xi its predictor is x j,xk, or in other words the target

gene xi is regulated by two input genes x j and xk. Given adequate expression samples, we

expect the MSE of the 2-input predictor x j,xk will be low since this is the actual predictor,

while any other 2-input predictors for xi will have a high MSE. As such, the resolution ratio

for this 2-input predictor R2 will be expected to be high. Now let us consider the underfit

situation. For the target gene xi, we expect either the 1-input predictor x j or the 1-input

predictor xk will have low MSE as both predictors contain input genes from the actual

predictor x j,xk. However, as the MSE of these two predictors will be similar, the resolution

ratio for the 1-input predictor R1 will be low. Next, we consider the overfit situaton. For

the target gene xi, we expect any 3-input or larger predictor that contains x j,xk as a subset

will have low MSE since the that subset is the actual predicotr, while any additional input

genes add only noise. As a result, several predictors will have similarly low MSE and the

resolution ratio R3 will again be low.

Our selection method determines the resolution ratio of all top rank predictors for each

input size, and then selects the top rank predictor with the highest resolution ratio.

Gene p1,top R1 p2,top R2 p3,top R3 p4,top R4

x2 Rb x1 1.394 x1,x4 1.407 x1,x4,x9 1.021 x1,x4,x8,x9 1.034

x3 E2F x7 1.047 x2,x9 1.009 x2,x5,x9 1.262 x2,x5,x8,x9 1.156

x4 CycE x3 1.177 x2,x3 3.827 x2,x3,x5 1.222 x1,x2,x3,x7 1.227

x5 CycA x6 1.006 x2,x6 1.228 x2,x6,x7 1.009 x2,x6,x8,x9 1.019

x6 Cdc20 x9 17.494 x1,x9 1.255 x1,x4,x9 1.031 x3,x4,x7,x9 1.029

x7 Cdh1 x6 1.064 x6,x9 1.707 x5,x6,x9 1.384 x5,x6,x8,x9 1.408

x8 UbcH10 x7 1.959 x1,x7 1.037 x1,x4,x7 1.037 x1,x3,x6,x7 1.036

x9 CycB x7 1.212 x6,x7 3.373 x6,x7,x8 1.982 x3,x6,x7,x8 1.035

Table IV.21. Resolution Ratio Ri for Top Rank Predictors from Mutated Network (Linear

Representation)

90

Gene p1,top R1 p2,top R2 p3,top R3 p4,top R4

x2 Rb x1 1.034 x1,x4 1.185 x1,x4,x9 1.597 x1,x4,x7,x9 1.005

x3 E2F x2 1.013 x2,x5 2.046 x2,x5,x9 9.160 x2,x5,x7,x9 1.032

x4 CycE x3 1.547 x2,x3 81.104 x2,x3,x6 1.302 x1,x2,x3,x7 1.056

x5 CycA x3 1.010 x2,x6 1.388 x2,x6,x8 1.032 x2,x3,x6,x8 3.659

x6 Cdc20 x9 298.041 x1,x9 1.005 x2,x4,x9 1.112 x1,x3,x5,x9 1.080

x7 Cdh1 x6 1.058 x6,x9 2.720 x5,x6,x9 5.007 x1,x3,x6,x9 1.052

x8 UbcH10 x7 2.061 x1,x7 1.526 x3,x5,x7 1.058 x3,x5,x6,x7 1.002

x9 CycB x6 1.003 x6,x7 16.578 x6,x7,x8 5.424 x3,x4,x6,x7 1.114

Table IV.22. Resolution Ratio Ri for Top Rank Predictors from Mutated Network (Sigmoid

Representation)

Gene Correct Predictor Selected Predictor Selected Predictor

(linear) (sigmoid)

x2 Rb x1,x4,x5,x9 x1,x4 x1,x4,x9

x3 E2F x2,x5,x9 x2,x5,x9 x2,x5,x9

x4 CycE x2,x3 x2,x3 x2,x3

x5 CycA x2,x3,x6,x7,x8 x2,x6 x2,x3,x6,x8

x6 Cdc20 x9 x9 x9

x7 Cdh1 x5,x6,x9 x6,x9 x5,x6,x9

x8 UbcH10 x5,x6,x7,x9 x7 x7

x9 CycB x6,x7 x6,x7 x6,x7

correct 4 5

Table IV.23. Comparison of Selected Predictors Using Highest Ri for Mutated Network

Table IV.21 (linear) and Table IV.22 (sigmoid) lists all the resolution ratios and top

rank predictors for the mutated mammal cell cycle network. The selected predictors for

each gene as chosen by our method is shown in Table IV.23. In general, we find the ma-

jority of selected predictors are the correct predictors for genes with adequate expression

sampling. Also, we find higher number of correctly select predictors using the sigmoid

91

representation for gene expression values.

IV-C.3. Melanoma Network

Based on the results from the mutated mammal cell-cycle network using synthetic data, we

evaluate our predictor ranking and selection algorithms to the actual data from a melanoma

network study [32]. This study identified seven genes PIRIN, S100P, RET 1, MART1,

HADHB, STC2, and W NT 5A, to be closely related with the metastasis of melanoma.

From [32], 31 gene expression lines (states) were measured, and then reduced to seven

distinct lines (shown in Table IV.24).

PIRIN S100P RET 1 MART 1 HADHB STC2 WNT 5A

x1 x2 x3 x4 x5 x6 x7

0.002 0.020 0.275 0.010 0.227 1.000 1.000

0.056 0.000 0.239 0.011 0.430 0.583 0.318

0.387 0.006 0.440 0.008 0.070 0.055 0.511

0.137 0.147 0.156 0.005 0.227 0.014 0.026

0.222 0.168 0.532 0.141 0.395 0.000 0.000

0.751 0.016 0.349 0.152 0.564 0.197 0.005

0.401 0.411 0.028 0.778 0.663 0.016 0.018

Table IV.24. Normalized Gene Expression Lines for Melanoma Network

We apply our ranking algorithm on each gene x1 to x7 in the melanoma network and

show the results in Table IV.25 through Table IV.31 respectively. From [27] which inferred

the predictor set on the binary valued melanoma gene expression data, we observed that

one of the attractor cycle ordering is common to the majority of predictor selection results.

This attractor cycle ordering is used along with the normalized gene expression data in our

algorithm.

92

Due to the limited sample size of 7 states, we limit the algorithm to search predictors

up to 3 input genes. Similar to assumptions made in the mutated mammal network, this

is a reasonable constraint as most genes have been observed to be regulated by few input

genes.

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x4 0.012746 x2,x4 0.012406 x3,x4,x7 0.007550

2 x5 0.054450 x4,x6 0.012765 x3,x4,x5 0.010336

3 x2 0.082764 x4,x7 0.012824 x2,x4,x5 0.012355

4 x3 0.181548 x3,x4 0.012928 x2,x3,x4 0.012401

5 x7 0.294790 x4,x5 0.014873 x2,x4,x6 0.012401

6 x6 0.357402 x3,x5 0.037186 x2,x4,x7 0.012402

7 x5,x6 0.040313 x4,x5,x7 0.012740

8 x5,x7 0.051799 x4,x6,x7 0.012747

9 x2,x5 0.054959 x3,x4,x6 0.012750

10 x2,x6 0.082925 x4,x5,x6 0.012755

Table IV.25. Predictor Ranking by MSE for Gene PIRIN(x1) in Melanoma Network (Top

10 Predictors Shown)

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x3 0.066051 x1,x3 0.002817 x1,x5,x7 0.001633

2 x1 0.082764 x3,x5 0.005744 x1,x3,x6 0.002146

3 x4 0.140740 x1,x5 0.006163 x1,x3,x7 0.002355

4 x5 0.153993 x1,x6 0.007762 x1,x3,x5 0.002661

5 x7 0.191924 x3,x4 0.009302 x1,x3,x4 0.002848

6 x6 0.224416 x4,x6 0.009450 x3,x5,x7 0.005743

7 x4,x7 0.009475 x3,x4,x5 0.005754

8 x5,x7 0.009613 x3,x5,x6 0.005834

9 x3,x6 0.009832 x1,x4,x5 0.005978

10 x1,x7 0.010902 x1,x5,x6 0.006015

Table IV.26. Predictor Ranking by MSE for Gene S100P(x2) in Melanoma Network (Top

10 Predictors Shown)

93

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x2 0.066051 x6,x7 0.059060 x1,x6,x7 0.054525

2 x4 0.163481 x1,x7 0.061057 x2,x6,x7 0.055919

3 x1 0.181548 x1,x2 0.064650 x1,x2,x7 0.056163

4 x7 0.183881 x2,x5 0.065870 x5,x6,x7 0.058549

5 x5 0.218690 x1,x5 0.066056 x4,x6,x7 0.058892

6 x6 0.260163 x2,x6 0.066109 x1,x4,x7 0.059260

7 x4,x5 0.066131 x1,x5,x7 0.060139

8 x2,x7 0.066222 x1,x2,x5 0.062339

9 x2,x4 0.066566 x2,x4,x5 0.063420

10 x1,x4 0.067849 x1,x4,x5 0.063754

Table IV.27. Predictor Ranking by MSE for Gene RET 1(x3) in Melanoma Network (Top

10 Predictors Shown)

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x1 0.012746 x1,x7 0.008141 x1,x2,x7 0.004954

2 x5 0.137126 x1,x2 0.009512 x1,x6,x7 0.008154

3 x2 0.140740 x1,x3 0.012364 x1,x5,x7 0.008190

4 x3 0.163481 x1,x6 0.012821 x1,x2,x3 0.009267

5 x7 0.315267 x1,x5 0.019267 x1,x3,x7 0.009269

6 x6 0.343011 x2,x5 0.088936 x1,x2,x6 0.009520

7 x3,x5 0.110609 x1,x3,x5 0.009832

8 x5,x6 0.125847 x1,x2,x5 0.009886

9 x3,x6 0.132900 x1,x3,x6 0.012235

10 x5,x7 0.133036 x1,x5,x6 0.012721

Table IV.28. Predictor Ranking by MSE for Gene MART 1(x4) in Melanoma Network (Top

10 Predictors Shown)

94

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x1 0.054450 x1,x4 0.025557 x1,x4,x7 0.021039

2 x4 0.137126 x1,x2 0.033795 x1,x3,x4 0.022426

3 x2 0.153993 x1,x7 0.050079 x1,x2,x4 0.024602

4 x3 0.218690 x1,x3 0.051083 x1,x4,x6 0.025467

5 x7 0.315565 x1,x6 0.054356 x1,x2,x7 0.029309

6 x6 0.334355 x2,x4 0.124102 x1,x2,x3 0.030218

7 x4,x7 0.136953 x1,x2,x6 0.033643

8 x4,x6 0.137194 x1,x3,x6 0.048583

9 x3,x4 0.137458 x1,x3,x7 0.049295

10 x2,x7 0.154147 x1,x6,x7 0.049949

Table IV.29. Predictor Ranking by MSE for Gene HADHB(x5) in Melanoma Network (Top

10 Predictors Shown)

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x7 0.096190 x3,x7 0.075564 x1,x3,x7 0.069109

2 x2 0.224416 x1,x7 0.081605 x3,x5,x7 0.075394

3 x3 0.260163 x2,x7 0.096030 x2,x3,x7 0.075572

4 x5 0.334355 x4,x7 0.096044 x3,x4,x7 0.075572

5 x4 0.343011 x5,x7 0.101558 x1,x2,x7 0.081524

6 x1 0.357402 x2,x4 0.216856 x1,x4,x7 0.081537

7 x2,x5 0.216989 x1,x5,x7 0.081647

8 x3,x5 0.218127 x2,x4,x7 0.095690

9 x3,x4 0.218175 x2,x5,x7 0.095914

10 x2,x3 0.218195 x4,x5,x7 0.096012

Table IV.30. Predictor Ranking by MSE for Gene STC2(x6) in Melanoma Network (Top 10

Predictors Shown)

95

Rank
1 input 2 inputs 3 inputs

Predictor MSE Predictor MSE Predictor MSE

1 x6 0.096190 x5,x6 0.063681 x1,x5,x6 0.051371

2 x3 0.183881 x3,x6 0.091656 x3,x5,x6 0.060039

3 x2 0.191924 x1,x6 0.095633 x2,x5,x6 0.063405

4 x1 0.294790 x4,x6 0.095824 x4,x5,x6 0.063546

5 x4 0.315267 x2,x6 0.095870 x1,x3,x6 0.084099

6 x5 0.315565 x3,x5 0.162585 x3,x4,x6 0.091255

7 x1,x5 0.171238 x2,x3,x6 0.091303

8 x1,x3 0.176896 x1,x4,x6 0.095274

9 x2,x3 0.182140 x1,x2,x6 0.095318

10 x3,x4 0.182581 x2,x4,x6 0.095329

Table IV.31. Predictor Ranking by MSE for Gene WNT 5A(x7) in Melanoma Network (Top

10 Predictors Shown)

From the predictor rankings, we apply our selection method based on MSE and res-

olution ratio and find the best predictors for each gene. The selected predictors are shown

in Table IV.32 and these results can provide direction for further validation in lab experi-

ments. In addition, our algorithm also returns the associated Zhegalkin function along with

the selected predictor, also shown in Table IV.32.

Gene Selected Predictor Zhegalkin function

x1 PIRIN x3,x4,x7 x4 + x3x7 − x4x7

x2 S100P x1,x3 x1x3

x3 RET 1 x1,x6,x7 x7 − x1x7 − x6x7 +2x1x6x7

x4 MART 1 x1,x2,x7 x1 − x1x2 − x1x7 + x1x2x7

x5 HADHB x1,x4 x1 + x4 −2x1x4

x6 STC2 x1,x3,x7 x7 − x1x7 − x3x7 + x1x3x7

x7 W NT 5A x1,x5,x6 x1 + x6 − x1x5 −2x1x6 − x5x6 +2x1x5x6

Table IV.32. Predictor Selection for Melanoma Network

For example, let us examine the predictor selected for WNT5A. In [32], the expression

96

of WNT5A was observed to been associated with the metastasis of melanoma, so determin-

ing the predictors of WNT5A is of great interest for GRN control and intervention. Our

algorithm finds the best predictor (predictor containing Zhelgakin function with least er-

ror) for WNT5A to be x1,x5,x6, or in other words PIRIN, HADHB, and STC2, the results

of which appear consistent with literature [2, 60]. From our algorithm, the corresponding

Zhegalkin function for WNT5A is x1 + x6 − x1x5 −2x1x6 − x5x6 +2x1x5x6, which we can

convert to the Boolean function HADHB(PIRIN⊕STC2). These findings can be used by

biologists to develop drugs that target PIRIN, HADHB, and STC2 to modify the expression

of WNT 5A and control the metastasis of melanoma.

IV-D. Chapter Summary

In this chapter, we have presented a method for inferring and ranking predictors from nor-

malized continuous gene expression data using Zhegalkin functions. Our algorithm ex-

plores all possible predictor combinations for a target gene and measures the error of each

predictor based on its best fitting Boolean logic function (represented as a Zhegalkin func-

tion) upon the gene expression data (linear or sigmoid representation). The predictors are

then ranked by error to determine a list of top predictors for the target gene, from which

a single predictor can be chosen, or can be used to guide future expression measurement

experiments. We validate our Zhegalkin predictor inference method on synthetic data from

the mutated mammalian network and show how results can be used to rank and select pre-

dictors for genes. We also demonstrate our method on actual data from melanoma network.

Additionally, the ranked list can be used to improve predictor set inference (see Chap-

ter 2) by assigning weights to predictors relative to the MSE. The SAT formulation can

be modified to a Weighted Partial Max-SAT (WPMS) formulation to select predictors that

satisfy GRN constraints as well as minimizing the overall MSE weights.

97

The work presented in this and preceding chapters have focused on inferring the GRN

using logic synthesis tools. An accurate representation of the GRN is necessary to under-

stand how genes are regulated in a system, how regulation can fail leading to disease, and

more importantly, how to control the GRN to treat the disease. In the next chapter, we

look at applying logic synthesis to the problem of GRN control. In particular, cancer is

described in the stuck-at fault model, and weighted partial Max-SAT algorithms based on

ATPG techniques are used to determine optimum drug selection for cancer therapy.

98

CHAPTER V

ATPG FOR CANCER THERAPY

Cancer and other gene related diseases are usually caused by a failure in the signaling

pathway between genes and cells. These failures can occur in different areas of the gene

regulatory network, but can be abstracted as faults in the regulatory function. For effective

cancer treatment, it is imperative to identify faults and select appropriate drugs to treat

the faults. In this chapter, we present an extensible Max-SAT based automatic test pattern

generation (ATPG) algorithm for cancer therapy [30, 31]. This ATPG algorithm is based on

Boolean Satisfiability (SAT) and utilizes the stuck-at fault model for representing signaling

faults. A weighted partial Max-SAT formulation is used to enable efficient selection of the

most effective drug.

Several usage cases are presented for fault identification and drug selection. These

cases include the identification of testable faults, optimal drug selection for single/multiple

known faults, and optimal drug selection for overall fault coverage. Experimental results

on growth factor (GF) signaling pathways demonstrate that our algorithm is flexible, and

can yield an exact solution for each feature in much less than 1 second.

1

V-A. Background

In all organisms, cell function is supported by the interaction of genes and protein products,

forming an interconnected network called the gene regulatory network (GRN) [33]. The

interaction or communication between genes and cells is highly complex and multivariate.

Cancer and gene-related diseases are often the result of a failure in the signaling, leading

1Part of the data reported in this chapter is reprinted with permission from ”Efficient Cancer
Therapy using Boolean Networks and Max-SAT-based ATPG” by Pey-Chang Kent Lin,
Sunil P. Khatri. IEEE International Workshop on Genomic Signal Processing and Statistics
(GENSIPS) 2011, Dec. 2011, pp. 97-90, Copyright 2011 by IEEE

99

to incorrect gene regulation and its associated functions.

The modeling of the gene interactions is thus highly important for understanding the

mechanism and therapy of cancer. Because genes are observed to have a switch-like expres-

sion (active or inactive), the Boolean network model [12] has become popular for represent-

ing the GRN. In the Boolean network, the genes and biochemical pathways are represented

as logic functions, much like logic gates in an integrated circuit (IC). This network can be

extended to include signaling failures and defects in the GRN, which are represented as

faulty lines in the circuit [42].

The issue of faults in circuits is well understood in electronic testing. For example, in

chip manufacturing, circuits are typically tested to check that the IC is defect free before

shipment to vendors. Manufacturing defects manifest themselves as logical faults modeled

as lines (wires) stuck-at ‘1‘ or ‘0‘. Using this stuck-at fault model, automatic test pattern

generation (ATPG) algorithms determine a set of tests (bit vectors on the inputs of the

circuit) to test for stuck-at faults in the circuit.

In this chapter, we use the stuck-at fault model for the GRN [42] and employ ATPG

techniques to determine a drug vector (set of drugs) to rectify the fault. The ATPG al-

gorithm is developed as a Boolean satisfiability (SAT) based method, where the Boolean

network is transformed into a conjunctive normal form (CNF) expression and solved for

satisfiability to find the drug vector. In therapy, the goal is to treat the cancer (represented

by one or more faults) using drugs with the least negative impact on the patient, ideally

by prescribing the fewest number of drugs necessary to avoid unnecessary side-effects and

cost. The SAT method is further extended by assigning weights to the circuit outputs and

drug vectors, and solved with a weighted partial Max-SAT to find the optimal set of drugs

to fix or rectify the fault.

The key contributions of this chapter are:

100

• In contrast to previous approaches [42] which performs an explicit search, we de-

velop an implicit SAT-based ATPG approach to model and identify detectable faults

(single and multiple) in a Boolean network.

• By assigning weights to model output and drug vectors, we use a weighted partial

Max-SAT formulation to determine the optimum selection of drugs to rectify a spe-

cific fault.

• Our approach can be trivially extended to handle multiple faults.

• We utilize the above techniques for drug therapy to select the minimum set of drugs

to provide the best coverage across all single/multiple faults.

V-B. Previous work

In the actual GRN, the gene expression or protein concentration is continuous. However, in

our method, the Boolean network (BN) [12] is chosen as preferred network for modeling

the GRN. There are several reasons for this choice. First, it has been observed that many

genes exhibit a switch-like ON/OFF activity in terms of their expression [19]. Second, a

discrete model like the BN is relatively simple and easy to analyze and simulate. And lastly,

there are many logic synthesis and test algorithms already developed in circuit design and

testing that can be applied to the Boolean network.

In [42], the authors proposed modeling cancer as faults in the signaling network and

applied fault analysis for drug intervention to control the GRN. Cancer is a disease that

arise from fault(s) in the network leading to loss of cell cycle control and uncontrolled

cell proliferation. Therapy involves both identification of the fault and a suitable drug

combination to target the fault. To test our method, we focused on the growth factor (GF)

signaling pathways, which are often associated with proliferation of cancer. The GRN

101

is modeled using Boolean logic gates and all possible single faults are enumerated. All

drug combinations were also simulated to determine the effectiveness of drug combinations

towards each fault.

The method proposed in [42] is an ATPG technique in principle. Our approach is

similar to [42] in that it uses the BN and models cancer as faults in the network. However,

the differences are several. Instead of explicit enumeration of the BN, we use an extensible,

implicit SAT-based ATPG approach to efficiently model and identify faults, and perform

drug selection. Further, unlike [42], we include weighted clauses for outputs and drugs in

the SAT formulation. Using this, the algorithm can implicitly and efficiently determine the

drug combination which is maximally effective. Finally, our approach can handle multiple

faults easily. The runtimes of our approach are typically much less than a second per set of

faults.

In the past, ATPG has been extensively studied in research and industry. One such

ATPG technique is the SAT-based ATPG [61, 62, 63] which translates the testing condition

into a SAT instance that retains the circuit structure. A test for the fault can then be found by

invoking a SAT solver. In the context of cancer therapy, we extend the SAT based approach

to handle drugs and multiple faults.

SAT-based approaches have been applied to the analysis of GRNs and Boolean net-

works. In [27, 31], SAT-based approaches are presented to infer gene predictors and de-

termine gene function from gene expression data using a BN model. Another SAT-based

approach for GRN inference is presented in [50]. Assuming an asynchronous logical de-

scription of the GRN, [50] expresses GRN constraints into a Boolean formula, from which

they infer parameters of the GRN. While in [51], an algorithm is presented to find all attrac-

tors in a Boolean network based on a SAT-based bounded model checking. This algorithm

uses a SAT-solver to identify paths of a particular length in the state-transition graph of a

Boolean network. In these previous works, SAT has been used to infer the GRN. This fun-

102

damentally differs from our work which uses SAT to simulate the faulty GRN and control

the GRN using drugs.

Control of Boolean networks has been studied from a theoretical standpoint in [64]

and using a model checking algorithm in [65]. In these papers, a BN with control nodes is

given, and the control strategy denotes a sequence of control signals that deterministically

drive the BN from a given initial state, to a desired final state, in t time steps. Conceptually,

our SAT-based ATPG approach is similar to these methods of Boolean network control, in

that we construct a SAT formula to check whether a selection of drugs can drive the system

to a desired state. However we differ in a few key areas. First, our approach considers the

BN under a stuck-at fault model, in that one or more of the genes can be faulty. This model

allows us to apply ATPG techniques to identify faulty genes in the BN which can lead

to undesired GRN behavior. And secondly, our approach weighs the drugs and outputs

in the ATPG formulation, allowing for different control strategies depending on desired

specifications (i.e. selection with fewest drugs or fewest side effects). Unlike [64, 65], our

method can also determine the best drug selection on a BN where the faulty gene location

is unknown.

V-C. Method

In this section, we present our SAT-based ATPG method. Before the method is described

in detail, we first provide definitions for fault modeling and Boolean Satisfiability.

V-C.1. Fault Terminology

Definition V.1: A manifestation of a defect at the abstracted function level is called a fault.

In an IC, the difference between a defect and a fault can be explained as imperfections

in the hardware and function, respectively. While in genomics, examples of biological de-

103

fects can include mutations in the gene activation site, malformation of the protein folding,

and problems in the gene product transport. Likewise, an example of a biological fault is a

modification of the logical function representing a gene, producing the incorrect output.

Definition V.2: A stuck-at fault is modeled by assigning a fixed (0 or 1) value to a

signal line (input or output of a logic gate) in the circuit.

Definition V.3: An untestable fault is a fault which no test can detect. Untestable

faults appear in two situations.

• Faults that are redundant, whose presence does not change the output behavior of the

circuit.

• Faults that change the output behavior of the circuit, but no test (drug vector in the

context of cancer therapy) can be generated to propagate or rectify the fault.

V-C.2. Stuck-at Fault Modeling

In the Boolean network model for a GRN, the activity of genes is modeled as a Boolean

circuit. We assume the circuit is modeled as an interconnection of Boolean gates. A stuck-

at fault is assumed to only affect interconnections (wires or nets) between gates. Each net

can have one of two types of faults: stuck-at-1 or stuck-at-0 (s-a-1 and s-a-0, respectively).

Thus, a net with a stuck-at-0 fault will always have a logic value 0, irrespective of the

correct logic output of the gate (gene) driving the net.

c

a

b

s−a−1

1

0

0

0/1

0/1

Fig. V.1. Circuit with stuck-at fault

104

As an example, consider the circuit of Figure V.1 comprising of an OR gate driving

an AND gate. Also consider a stuck-at-1 fault at the output of the OR gate, which means

that the faulty line remains 1 irrespective of the input state of the OR gate. If the normal

(good) output of the OR gate is 1 (in the case where its inputs were < bc >= 01,10,11),

then this fault will not affect any signal in the circuit. However, the input < bc >= 00 to

the OR gate should produce a 0 output in the good circuit. The good (faulty) value 0 (1) is

applied to the AND gate. If the input vector < abc >= 100, the good circuit output (true

response) and faulty output would differ. Hence < abc >= 100 is called a test for the s-a-1

fault on the output of the OR gate.

s−a−1

s−a−0

s−a−00

s−a−11

Fig. V.2. Fault modeling and injection

A stuck-at-0 fault is modeled by inserting a two-input AND gate at the fault site as

shown in Figure V.2. The side input of the gate is driven by a signal which is set to 1 to

simulate a fault-free site, or set to 0 to inject the s-a-0 fault. Similarly, the circuit with a

s-a-1 fault is modeled by inserting an OR gate at the site. The side input of this OR gate

is set to 0 to simulate a fault-free site, or set to 1 to inject the s-a-1 fault. These gates are

inserted at every net (wire), allowing the simulator to inject faults at any site.

Note that drugs are modeled the same as stuck-at faults, wherein a drug that inhibits

a gene is modeled as a s-a-0 ”fault”, while a drug that activates a gene is modeled as s-a-1

”fault”. The gates for drug injection are inserted at the nets of the genes that they target.

105

V-C.3. SAT-based Formulation for Stuck-at Fault Model

In the SAT based ATPG method, we first generate a formula in CNF to represent tests for

the fault. To do so, the circuit from the stuck-at fault model must be converted to a CNF.

Every gate (gi) of the circuit has CNF formula (Gi) associated with it, which represent the

function performed by the gate. The formula is true if and only if the variables representing

the gate’s inputs and outputs take on values consistent with its truth table.

For example, consider a 2-input AND gate (g j) with the lines x and y as inputs and z

as output. The CNF formula (G j) for the AND gate is written as:

G j = (z+ x) · (z+ y) · (z+ x+ y)

A CNF formula for the entire circuit S is obtained by forming the conjunction of the

CNF formulas for all the gates of the circuit. If there are n gates in the circuit, then the

CNF formula S for the entire circuit is written as:

S =
n

∏
i=1

Gi

When all the s-a-0 and s-a-1 variables are set to false (0), the CNF formula S describes

the good (fault-free) circuit behavior. The faulty circuit is a copy of the fault-free circuit,

with faults (s-a-0 or s-a-1 variables) injected at the gates to be affected by faults.

We explain our approach using a simple example. Assume we are given the BN net-

work from Figure V.1, which has two gates g1 and g2, primary inputs a,b,c, and primary

output z. Also assume and we want to model a stuck-at 1 fault on the output of gate g1 as

shown in the figure. From our stuck at model, we insert an OR gate g3 at that location. We

label the output of g3 as e, which is now an input to gate g2. The gate g3 has two inputs,

d (the output of gate g1) and a side input f . With all inputs and outputs labeled, we obtain

the CNF formula for each gates and the entire circuit.

106

G1 = (d+b+ c) · (d+b) · (d+ c)

G2 = (z+a) · (z+ e) · (z+a+ e)

G3 = (e+d + f) · (e+d) · (e+ f)

S = G1 ·G2 ·G3

The value of f , the side input to gate g3, determines whether the stuck-at 1 fault is

activated or now. To activate the fault, f is set true by adding a clause (f) to the CNF, thus

S = G1 ·G2 ·G3 · (f). Likewise, to deactivate the fault, f is set false by adding the clause

(f) to the CNF, thus S = G1 ·G2 ·G3 · (f). With our CNF formula for the circuit, we now

describe several usage cases employing this CNF in SAT.

NRG1

IGF

EGF

HBEGF

EGFR ERBB2

IGFRIA/B

ERBB2/3

IRS1

GRB2/

PIK3CA*

SOS

Ras*

Raf

MEKK1

MEK1

PIP3

MKK4/7

ERK1/2

JNK1

AKT

GSK3

RHEBTSC1/2 mTOR

PDPK1

RP6SKB1

BAD

(x_4)

(x_3)

(x_2)

CCND1 (z_7)

BCL2L1 (z_6)

BCL2 (z_5)

SRF−ELK4 (z_4)

SRF−ELK1 (z_3)

SP1 (z_2)

POS−JUN (z_1)

(4)

(3)

EGFR

(2)

(1)

(7)

(8)

(5)
(6)

(9)

(16) (17) (18)

(13) (14) (15)

(10) (11) (12)

(19)

(20) (21) (22)

(23)

(24)

AG1024 (d_3)AG825 (d_2)

U0126 (d_4)

LY294002 (d_5)

Temsirolimus (d_6)

PTEN

lapatinib (d_1)

(x_5)

(x_1)

(x4)

(x3)

(x2)

CCND1 (z7)

BCL2L1 (z6)

BCL2 (z5)

SRF-ELK4 (z4)

SRF-ELK1 (z3)

SP1 (z2)

POS-JUN (z1)

AG1024 (d3) AG825 (d2)

U0126 (d4)

LY294002 (d5)

Temsirolimus (d6)

lapatinib (d1)

(x5)

(x1)

Fig. V.3. Logic circuit stuck-at fault model for GF signaling pathways

V-C.4. Implementation of Fault and Drug Simulation

V-C.4.a. Case 1: Single Stuck-at Fault Identification

In this method, we find all single stuck-at faults which are non-redundant, as well as the

faulty outputs that they generate. To proceed with this method, we first simulate the original

107

circuit to determine the correct fault-free output. The circuit is simulated using our SAT

formulation in the fault-free and drug-free model for a specified primary input value, and

the resulting primary output value for the true response is saved as Z0.

The next step is to find all faults which are non-redundant. To avoid having to do

an exhaustive search on all single stuck-at faults, we perform an All-SAT on the circuit S

where we constrain the output to be not Z0. Assuming n output signals, this constraint is

formed as the clause C1 shown in Equation 5.1.

C1 = (Z0
0 +Z0

1 + · · ·Z0
n) (5.1)

Here Z0
i is the variable corresponding to the ith output bit.

Furthermore, we also add a constraint to S that the circuit contains only one fault that

is injected at a time. This second constraint C2 (Equation 5.2) is formed by writing clauses

of all pairwise combinations of faults, where k is the number of stuck-at faults and fi is the

ith fault.

C2 = (f1 + f2) · (f1+ f3) · · ·(fk−1 + fk) (5.2)

We now form a new CNF S1 = S ·C1 ·C2 which is a conjunction of (Equation 5.1

and 5.2). The resulting All-SAT on S1 is a list of all non-redundant single stuck-at faults

and their faulty output. These faults are flagged for drug simulation using any of the next

three cases.

The results from this case can also be used immediately in several ways. For exam-

ple, this method classifies for each single stuck-at fault whether it is redundant or non-

redundant. That is, any fault which is redundant does not produce an incorrect output, and

can be ignored from a therapy standpoint. In a second example, the faulty output from the

stuck-at model can be compared to a previously measured output from expression data, in

108

order to identify which genes are potentially faulty. This information can be used to target

genes for potential drug development, avoiding genes that are untestable.

V-C.4.b. Case 2: Fault Rectification with Fewest Drugs

In the presence of a particular fault, the problem is determining whether a selection of

drugs can rectify the circuit, i.e. change the faulty output to the correct output. If this is not

possible, we want to obtain the ”best” or ”closest” output to the correct output, by using

drugs. To do this, we guide the WPMS solver by assigning weights to the output states. For

example, in the GF network used in our experiments, the fault-free output Z0 is assigned the

highest weight (80) and remaining output states are assigned decreasing weights (70, 60,

50, etc.) based on increasing Hamming distance (1, 2, 3, etc.) from the fault-free output.

We assume that faulty states that have a larger Hamming-distance have a more pronounced

cancer proliferative effect.

Additionally, the selection of drugs to achieve the best output should use the least

number of drugs to minimize the side-effects on the patient. To incorporate this in the

WPMS solver, each drug that is not selected is given a weight of 1. The GF network

example has 6 drugs, thus if no drugs are selected, then the cumulative drug weight is 6.

Likewise, if all drugs are selected, the drug weight is 0.

Note that the output and drug weights are assigned in such a way as to avoid the

situation where a less-desirable output (with few drugs) is chosen over a higher weight

output with more drugs. We assume that from a clinical standpoint, the priority is to first

produce the best possible output, and secondarily to use the fewest drugs required for that

output.

All faulty circuits with non-redundant faults from Case 1 are augmented with the out-

put and drug weights and simulated using WPMS. The WPMS solver will implicitly and de-

terministically find the assignment of drugs that achieves the best possible output and with

109

the fewest drugs. The output values, selected drugs, and highest weight of the fault+drug

circuits are recorded and compared with the drug-free circuits. An immediate result from

this method is that a fault where the fault+drug circuit which obtains its best output with

zero drugs is in fact an untestable fault, wherein no drug combination can improve the

output.

In general, several stuck-at faults can be simultaneously present in the circuit. A circuit

with n lines can have 3n−1 possible stuck line combinations. This is because each line can

be in one of the three states: s-a-1, s-a-0, or fault-free. All combinations (except one which

has all lines in their fault-free state) are counted as faulty. In our implementation, multiple

stuck-at faults can easily be modeled for rectification, by setting one or more lines to their

faulty state.

V-C.4.c. Case 3: Fault Rectification with Minimal Drug Cost

In the previous case, all drugs are equal in terms of their weight. However, there may be

a situation where we would want to differentiate the drugs based on some cost function

based on characteristics such as price, number of side-effects, or ease of availability. For

example, two drugs with few side-effects may be more desirable than one drug with many

side-effects, if both drug selections produce the same output. As such, in the presence of a

particular faulty circuit and desired output, the problem is determining a selection of drugs

with lowest total cost.

Each drug that is not selected is given a weight proportional to its cost. In our example,

we use the number of side-effects as the drug’s cost. All faulty circuits with detectable

faults from Case 2 are modified with the new drug weights. In addition, the output of the

circuit is fixed to the best output as determined in Case 2. These circuits are then solved

using WPMS to obtain the selected drugs with lowest cost.

110

V-C.4.d. Case 4: Determining Therapy with Fewest Drugs and Best Coverage

From Case 2, we identify the drug selection that best rectifies a certain fault. However, in

drug therapy, the fault location may be unknown. In this situation, a drug selection that

rectifies all faults (or as many faults as possible) with the fewest drugs, is desirable.

For each faulty circuit (with a single fault), we find all combinations of 1, 2, and 3

drugs that yield the best output from Case 2. This is done by performing a WPMS All-SAT

to find all satisfying drug selections with drug weight greater than or equal to d −3, where

d is the total number of drugs. Each drug selection (or vector) is analyzed to see how many

testable faults are rectified or covered by it. The drug vector with the highest coverage and

fewest drugs is recorded as a best candidate for therapy.

V-D. Results

V-D.1. Model Implementation

We evaluate the WPMS-based ATPG methods on the GRN that models growth factor (GF)

pathways [42]. In multicellular organisms, cell growth and replication is tightly controlled

by the cell cycle control. This system receives signals from other cells which are used to

decide whether the cell should grow. A failure in these signals can lead to unwanted or

unregulated cell growth, leading to cancer. These signaling pathways are well studied, and

several drugs have been developed to target different pathways for cancer therapy.

We begin with a BN model of the GF pathways as derived in [42]. In this model,

pathways are converted to an equivalent BN logic gate. Each interconnection (net) between

logic gates is then assigned a numerical label.

As stated in our approach section,

defects in the GRN are represented as stuck-at faults that permanently set a signal net

to 1 or 0. At each net, the logic gates for injecting a s-a-0 or s-a-1 are inserted. If there is

111

a drug that targets the net, the appropriate logic gates are also inserted. The conversion of

the faults and drug locations to a logic netlist is shown in Figure V.3. The final circuit is

then converted to CNF for further analysis.

In the results, stuck-at faults are referred by the net numbers that are affected (i.e. net

7 s-a-0, means that the signal corresponding to net 7 is stuck-at 0). The network has 5

primary input (PI) signals and 7 primary output (PO) signals. The PIs will be defined as a

5-bit binary vector:

X = [EGF,HBEGF, IGF,NRG1,PTEN]

The POs will be defined as a 7-bit binary vector:

Z = [FOS− JUN,SP1,SRF −ELK1,SRF −ELK4,BCL2,BCL2L1,CCND1]

In all tests, the PIs are fixed to X = 00001 as this input leads to the non-proliferative

output in the fault-free case.

For this network, six drugs are available, defined as a 6-bit vector. Each bit corre-

sponds to a drug, such that a value of 1 on the ith bit indicates that drug i is selected, and a

value of 0 indicates that drug i is not selected. The drug vector is:

D = [lapatinib,AG825,AG1024,U0126,LY249002,Temsirolimus]

All the methods (Case 1 through 4) were implemented using an open-source weighted

partial Max-SAT solver called Maxsatz [66, 67]. Our procedure consists of scripts which

take the initial CNF, selects desired fault variables, sets output and drug weights, and solves

the CNF using Maxsatz. The satisfying assignments are then parsed for the output and drug

vectors, and reported in the results. In all examples listed in this section, the WPMS runtime

was significantly less than 1 second per CNF.

112

V-D.2. Simulation Results

V-D.2.a. Case 1: Single Stuck-at Fault Identification

In the single stuck-at fault model, each net was simulated for s-a-0 and s-a-1 with no drugs,

and results compared with the fault-free circuit. For fault-free circuit with X = 00001,

the output vector is Z0 = 0000000. All single nonredundant stuck-at faults, which have

an output different from the fault-free circuit, are recorded and shown in Table V.1. In this

table, the first three columns show the affected net, the stuck-at value, and the faulty output,

respectively.

From this table, we observe that nets 13, 14, and 15 are not listed. The presence of a

fault (s-a-0 or s-a-1) on these nets does not generate an incorrect PO, and as such, these are

redundant faults. From a therapy standpoint, the genes corresponding to these faults can be

ignored.

V-D.2.b. Case 2: Fault Rectification with Fewest drugs

From the results in Case 1, all non-redundant faults are simulated with drugs. The outputs

are first weighted where the fault-free output Z0 = 0000000 has a maximum weight of 80

as it represents a non-proliferative output. All remaining output vectors are given weights

of 80−10h, where h is their Hamming distance from the fault-free output. The drugs are

also given weights where the non-selection of a drug has a weight of 1. With six drugs, the

maximum score is therefore 80+6 = 86.

Table V.1 shows for each non-redundant stuck-at fault, the best output (Column 4),

the drug vector to achieve such output (Column 5), and the weight score (Column 6). We

observe that for many faults, there exists a drug vector that can completely rectify the

fault, and produce a fault-free circuit. Additionally, the corresponding reported drug vector

is minimal in the number of drugs used, which is desirable in therapy usage. We also

113

determine that faults on nets 7, 10-15, 18, 19, 23, and 24 are untestable, as no combination

of drugs can produce a change in the output. This can be explained as there are no drugs

on the fan-out (downstream) of these genes to rectify the fault.

To demonstrate the adaptability of our algorithm, we test it on a few examples of

multiple stuck-at faults. Table V.2 shows for a circuit with multiple stuck-at faults, the best

drug selection for fault rectification (when possible). The columns of Table V.2 have the

same meaning as in Table V.1.

114

Net s-a Faulty PO Best PO Drug Vector Score

1 1 1111111 0000000 010000 85

2 1 1111111 0000000 100000 85

3 1 1111111 0000000 001000 85

4 1 1111111 0000000 010000 85

5 1 1111111 0000000 000110 84

6 1 0000111 0000000 000110 84

7 1 0000111 0000111 000000 56

8 1 1111111 0000000 000010 85

9 1 0000111 0000000 000010 85

10 1 0000111 0000111 000000 56

11 1 0000111 0000111 000000 56

12 1 0000111 0000111 000000 56

16 1 0111110 0000000 000100 85

17 1 0111110 0000000 000100 85

18 1 0111110 0111110 000000 36

19 0 0000001 0000001 000000 76

20 0 0000110 0000000 000001 85

21 1 0000110 0000000 000001 85

22 1 0000110 0000000 000001 85

23 1 0000110 0000110 000000 66

24 0 0000110 0000110 000000 66

Table V.1. Drug Selection for Single Stuck-at Faults

115

Net s-a Faulty PO Best PO Drug Vector Score

1,21 1,1 1111111 0000000 010001 84

4,9 1,1 1111111 0000000 000001 85

5,19 1,0 1111111 0000001 000110 74

6,8 1,1 1111111 0000000 000110 84

7,20 1,1 0000111 0000111 000000 56

8,21 1,0 0000111 0000000 000010 85

13,16 1,1 1111110 0000000 000100 85

1,3,6 1,0,1 1111111 0000000 000110 84

2,14,20 1,1,0 1111111 0000000 100001 84

4,7,17 1,1,1 1111111 0000111 010100 54

4,12,23 1,1,1 1111111 0000111 010000 55

8,9,11 1,1,1 0000111 0000111 000000 56

8,9,21 1,1,0 0000111 0000000 000010 85

12,18,20 0,0,0 0000110 0000000 000001 85

15,17,21 0,0,1 0000110 0000000 000001 85

Table V.2. Drug Selection for Multiple Stuck-at Faults

V-D.2.c. Case 3: Fault Rectification with Minimal Drug Cost

When selecting drugs, there may be multiple drug combinations that may rectify a fault, but

where each drug has a different associated cost. We first assign weights to drugs, according

to their cost. For this case, we use the number of side-effects as the drug’s cost. Drugs

AG825, lapatinib, Temsirolimus are assigned weights of 10, 15, and 35, respectively, which

correspond to their approximate number of side-effects [68, 69]. However, drugs AG1024,

U0126, and LY294002 have yet to under go clinical trial and the number of side-effects

116

is unknown. As such, these drugs are assigned a weight 20, which is an average of the 3

previous weights.

In this GF example, Case 3 simulation provides the same results as in Case 2. This is

due to a lack of drugs that share paths in the circuit. In fact, for almost every non-redundant

fault, the best output state can only be achieved through one drug vector.

V-D.2.d. Case 4: Determining Therapy with Fewest Drugs and Best Coverage

Using the results from Case 2, we observe that the GF network has 13 testable faults. For

these 13 faults, we perform an All-SAT to find the top three scoring drug combinations

yielding the best output. All drug combinations are analyzed across all single faults and

presented in Table V.3 showing drug vector, count of faults rectified, and fault coverage.

Drug vectors are ordered in increasing number of drugs selected.

From these results, we observe that with only 1 drug selected, the best coverage is

only 23% of faults using lapatinib (d1) or Temsirolimus (d6). When allowing for 2 drugs,

coverage increases to 77% using the drug combination of U0126 (d4) and LY294002 (d5).

Finally, we achieve 100% coverage of all testable faults when using the 3 drug combination

of U0126 (d4), LY294002 (d5), and Temsirolimus (d6). When the single stuck-at fault

location is unknown, these selected drug combinations will be the most effective for therapy

and for preventing the proliferation of cancer.

117

Drug Vector Count Coverage Drug Vector Count Coverage

000001 3 23% 000111 13 100%

000010 2 15% 001011 6 46%

000100 2 15% 001101 6 46%

001000 1 8% 001110 10 77%

010000 2 15% 010011 7 54%

100000 3 23% 010101 7 54%

000011 5 38% 010110 10 77%

000101 3 23% 011001 6 46%

000110 10 77% 011010 5 38%

001001 4 31% 011100 5 38%

001010 3 23% 100011 8 62%

001100 3 23% 100101 8 62%

010001 5 38% 100110 10 77%

010010 4 31% 101001 7 54%

010100 4 31% 101010 6 46%

011000 3 23% 101100 6 46%

100001 6 46% 110001 6 46%

100010 5 38% 110010 5 38%

100100 5 38% 110100 5 38%

101000 4 31% 111000 4 31%

110000 3 23%

Table V.3. Drug Selection Count and Fault Coverage

118

V-E. Sequential and Feedback Circuits

In this section, we discuss the generalization of our approach to sequential circuits. Thus

far, the SAT-based ATPG algorithm has been described for and performed on purely combi-

national circuits, wherein the primary output of the circuit is dependent only on the primary

inputs. We observe that the output of the GF signaling pathway from the experiment is fixed

based on the primary inputs, where the drug vector is technically also an input. In general

though, the circuit representation of the BN can be sequential, where the primary output is

determined by current state in addition to the input. The local GRN for mammalian cell-

cycle [59] is one such example of a sequential circuit where gene expression updates based

on the current gene state. If we consider a directed graph where the genes are nodes and

edges are regulations upon other genes, then a combinational circuit (such as the GF sig-

naling pathway) is acyclic. However, for a directed graph of a sequential circuit, a subset of

genes will be inter-regulated forming directed cycles. As such, in the BN, a gene takes its

current input (state of its regulatory genes and/or external inputs) and outputs a new state or

value for the next time point. We assume in the BN that all genes update synchronously. In

other words, for each primary input and current state, the resulting primary output and next

state are determined for all genes, and that the next state becomes the new current state.

While a synchronous update is biologically unrealistic, it allows us to have deterministic

state transitions and simplifies the analysis for our ATPG algorithm.

119

Time−frame 2

s−a−1

ba

z

Time−frame m

s−a−1

ba

z

s−a−1

ba

z

combinational logic

s−a−1

ba

z

Time−frame 1

(b) Test generated with time−frame expansion

(a) Sequential circuit

Fig. V.4. Sequential ATPG by time-frame expansion method

There are several methods for performing sequential ATPG, the most common of

which is Time-Frame expansion [70]. As shown in Figure 4 V.4, the sequential circuit is

replicated m times into a combinational circuit, which models m time steps of the sequen-

tial circuit behavior. The ith copy is connected to the (i+1)th copy such that the regulating

genes from the ith copy are connected to their target genes in the (i+1)th copy. Each copy

is called a frame, and additional frames can be added to the circuit for any length m. In

this way, the sequential circuit is converted to a combinational circuit. After the conversion

of the sequential circuit to a combinational m step expansion, we can apply our SAT-based

ATPG algorithm. When we consider the fault-model of the circuit, we must assume the

fault is persistent (i.e. the fault exists in all frames). The corresponding ATPG method

must target multiple faults, or in other words, the same fault, but in different time frames.

One consideration for the sequential ATPG is the initialization of state in the first

120

time frame. Ideally a known state should be used, such as one obtained from a previous

microarray expression measurement. An alternative is to use an attractor state. In the long-

term behavior, the dynamics of the BN transition to the attractors (attractor cycles), thus

using an attractor state is a reasonable starting state for therapy.

The complexity of applying SAT-based ATPG to sequential circuits depends on the

length of time-frame expansion. For a circuit with k variables in its SAT formulation, each

frame increases the number of variables by k. The SAT search space is then 2km for an

expanded circuit with m frames. The number of frames for expansion can be bounded. If a

subsequence of states has the same first and last state, then the sequence can be stopped. For

a BN, the number of frames m can be bounded by the sum of the number of steps it takes to

reach an attractor cycle and the maximum length of the attractor cycles for all combinations

of drugs under consideration. In the worst case, the number of frames required would equal

to the number of possible states, which is 2n+d for a BN with n target genes and d drugs.

V-F. Chapter Summary

In this chapter, we have presented an efficient and extensible SAT-based ATPG methodol-

ogy for cancer therapy. We approach this problem by representing the BN and cancer as

a logic circuit stuck-at fault model. This circuit, along with the testing conditions, is con-

verted into a CNF. The CNF is then augmented with output and drug vectors weights and

solved using a weighted partial Max-SAT solver for four different usage cases: (1) single

stuck-at fault identification, (2) fault rectification with fewest drugs, (3) fault rectification

with minimum drug cost, and (4) determining therapy with fewest drugs and best coverage.

We demonstrate these methods on the growth factor signaling pathway, and have presented

results that are applicable to cancer therapy. While the GF network example in the case

study is a combinational network, our algorithm can easily be extended to address sequen-

121

tial networks, like those found in transcriptional GRNs, by simply unrolling the sequential

circuit in time and applying the same methods. Furthermore, all nets, inputs, outputs, and

drugs can be assigned weights, which can be made variable, allowing the user to fine-tune

the network or design therapies for any number of test situations.

122

CHAPTER VI

SUMMARY AND FUTURE WORK

VI-A. Summary

With more diseases and health related issues being attributed to genetics, it is imperative to

improve our knowledge of gene regulation within the biological system. While single-point

measurement of gene expression/detection is relatively simple using micro-arrays or gene

chips, measuring or determining the dynamic characteristics of genes in lab is time and

labor intensive. Understanding the dynamic interaction of genes is essential in the medical

field to study and control cancer and other genetic diseases. As a result, in recent times

genomics has become a popular field of research within computational and molecular biol-

ogy, for modeling and analyzing gene networks and regulation. While biological systems

have been observed to exhibit circuit-like properties, there has been little existing work that

exploits logic synthesis to model such systems.

Systems engineering approaches are gradually becoming more accepted and neces-

sary as a means to tackle gene regulatory networks and genetic diseases. In our research,

we show how several techniques from the field of logic synthesis can be used to model,

infer, and control the GRN related to cancer. In particular, this thesis present logic synthe-

sis and SAT based approaches to help infer the predictor sets for GRNs, to determine gene

regulating function, and to determine the ”best” set of drugs for cancer therapy. The results

from these algorithms can be used by clinicians to determine an optimal drug therapy, by

drug developers to target drugs for specific genes, and by biologists to design experiments

to extract specific gene interactions. Our research have applied our approaches and pre-

sented results for gene networks involving melanoma, p53, mammalian, and growth factor

pathways.

123

VI-B. Future Work

Our work in applying logic synthesis to GRNs only touches the surface of research in

genomics. But by presenting our interdisciplinary work as part of this PhD effort, we

hope to inspire several additional lines of research using logic synthesis to fundamentally

improve and expand our understanding of gene regulation and control.

The following discussion introduces several genomics research ideas for exploration

using logic synthesis.

1. A key issue in genomics is handling data with error and noise, particularly in mea-

surement of gene expression. One topic is to analyze the GRN behavior which can

lead to measurement of incorrect gene expression. Using the ATPG method dis-

cussed in Chapter 5, we can quantify the sensitivity of a GRN to N ”faults” in the

GRN (where faults represent incorrectly measured data).

2. Another topic of value is to check the logical equivalence of two GRNs (or subsets

of the GRN), using functional equivalence techniques [71]. Such a method may be

useful to identify subsets of GRN between two organisms with the same cellular or

genetic function, or to compare GRNs of patients to determine effective treatment

strategies.

3. Model checking [72], a technique to verify the temporal behavior of logical systems,

can be utilized to query the temporal properties of a GRN in a very efficient manner.

Given the GRN, and given a state that it is currently in, questions such as ”Is there a

way to reach state X in k steps” or ”Is there a way in which state Y is visited infinitely

often in the future” can be answered automatically by model checking systems. This

approach can be useful in cancer therapy to ask questions about a patients prognosis

or determine drug effect on the GRN.

124

4. Also in the context of uncertainty modeling, probabilistic Boolean Networks (PBNs) [13]

are used to model the GRN. Suppose there are k BNs which match some observed

data. Then each edge in the PBN has a probability, which is the average of the cor-

responding k edges in the BNs. This can result in the allowing of behaviors that are

not present in any of the k BNs. To avert this issue, Non-Deterministic Finite State

Machine (NDFSM) [73] models of the GRN can be developed. Many techniques

from the field of automata theory can be brought to bear to develop such an NDFSM.

5. Another possible research direction is to perform ATPG on the state transition graph

rather than the logic circuit as we have shown in Chapter 5. Such methods are used

in sequential ATPG and present an a method for drug selection given a GRN with

feedback or sequential properties.

6. As discussed in Chapter 4, gene expression values are initially measured as contin-

uous values. Gene expressions values can then be thresholded to binary value for

use in Boolean logic synthesis algorithms. While Chapter 4 explores using continu-

ous expression values with Zhelgakin function, other alternate logic representations

such as asynchronous logic and multi-valued logic may be valuable in the context of

genomics as well to more accurately represent gene expression values and regulation.

7. The majority of our algorithms utilizes SAT, and as a consequence, the run time of

our approaches is dominated by the SAT solver. Although our algorithms utilize effi-

cient SAT solvers, these solvers are optimized for general or circuit SAT instances. A

possible research topic is understanding and improving SAT solving for GRN prob-

lems. One interesting observation from our SAT implementation in Chapter 2 and 3,

is that the predictor or functions of each gene are encoded in one-hot fashion. A gene

will have many possible predictors or functions, each represented by a Boolean vari-

able, however only one per gene can be selected in the SAT solution. This one-hot

125

encoding is a natural fit for accelerating the SAT process on GPU. The implication

for this method of accelerating SAT on GPU extends beyond our algorithm, possibly

lending to SAT research in one-hot and/or multi-valued variables.

126

REFERENCES

[1] B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Es-

sential Cell Biology: An Introduction to the Moleuclar Biology of the Cell, Garland

Publishing Inc., 1997.

[2] A. Datta and E.R. Dougherty, Introduction to Genomic Signal Processing with Con-

trol, CRC Press, 2007.

[3] W. Saenger, Principles of nucleic acid structure, Springer-Verlag, 1983.

[4] W.J. Gehring, “The master control gene for morphogenesis and evolution of the eye,”

Genes to Cells, vol. 1, pp. 11–15, January 1996.

[5] A. Ashley-Koch, Q. Yang, and R.R. Olney, “Sickle hemoglobin (hb s) allele and

sickle cell disease: A huGe review,” American Journal of Epidemiology, vol. 151,

no. 9, pp. 839–845, 2000.

[6] P. Mitchell and R. Tjian, “Transcriptional regulation in mammalian cells by sequence-

specific dna binding proteins,” Science, vol. 245, pp. 371–378, July 1989.

[7] B.D. Ripley, “The R project in statistical computing,” MSOR Connections. The

newsletter of the LTSN Maths, Stats & OR Network, vol. 1, no. 1, pp. 23–25, 2001.

[8] Seungchan Kim, Huai Li, Edward R. Dougherty, Nanwei Cao, Yidong Chen, Michael

Bittner, and Edward B. Suh, “Can Markov chain models mimic biological regula-

tion?,” Journal of Biological Systems, vol. 10, no. 4, pp. 337–357, 2002.

[9] G. Vahedi, B. Faryabi, J.-F. Chamberland, A. Datta, and E.R. Dougherty, “Inter-

vention in gene regulatory networks via a stationary mean-first-passage-time control

127

policy,” Biomedical Engineering, IEEE Transactions on, vol. 55, no. 10, pp. 2319

–2331, oct. 2008.

[10] T. Chen, H.L. He, G.M. Church, et al., “Modeling gene expression with differential

equations,” in Pacific Symposium on Biocomputing, 1999, vol. 4, p. 4.

[11] F.X. Wu, W.J. Zhang, and A.J. Kusalik, “Modeling gene expression from microarray

expression data with state-space equations,” in Pacific Symposium on Biocomputing,

2004, vol. 9, pp. 581–592.

[12] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic

nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp. 437 – 467, 1969.

[13] Ilya Shmulevich and Edward R. Dougherty, Probabilistic Boolean Networks: The

Modeling and Control of Gene Regulatory Networks, SIAM – Society for Industrial

and Applied Mathematics, Philadelphia, PA, 2009.

[14] Nicholas Geard and Janet Wiles, “A gene network model for developing cell lin-

eages,” Artif. Life, vol. 11, no. 3, pp. 249–268, 2005.

[15] Adam Arkin, John Ross, and Harley H. McAdams, “Stochastic kinetic analysis of

developmental pathway bifurcation in phage lambda-infected escherichia coli cells,”

Genetics, vol. 149, pp. 1633–1648, 1998.

[16] R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel, “Global and local architecture of the

mammalian microRNA–transcription factor regulatory network,” PLoS Computa-

tional Biology, vol. 3, no. 7, pp. e131, 2007.

[17] O. Voinnet, “Origin, biogenesis, and activity of plant microRNAs,” Cell, vol. 136,

no. 4, pp. 669–687, 2009.

128

[18] S. Maslov and K. Sneppen, “Specificity and stability in topology of protein net-

works,” Science Signalling, vol. 296, no. 5569, pp. 910, 2002.

[19] Francois Jacob and Jacques Monod, “Genetic regulatory mechanisms in the synthesis

of proteins,” Journal of Molecular Biology, vol. 3, no. 3, pp. 318–356, 1961.

[20] Wylie Burke and Bruce M. Psaty, “Personalized Medicine in the Era of Genomics,”

JAMA, vol. 298, no. 14, pp. 1682–1684, 2007.

[21] M. Teutsch et al., “The evaluation of genomic applications in practice and prevention

(EGAPP) initiative: methods of the EGAPP working group,” Genetics in Medicine,

vol. 11, no. 1, pp. 3–14, 2009.

[22] Martin Davis, George Logemann, and Donald Loveland, “A machine program for

theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[23] Niklas Een and Niklas Sorensson, “The minisat page,” http://minisat.se/, Ac-

cessed April 6, 2010.

[24] Bart Selman and Henry Kautz, “Gsat-users-guide,” http://www.cs.rochester.

edu/u/kautz/papers/, Accessed September 27, 2010.

[25] M Moskewicz, C Madigan, Y Zhao, L Zhang, and S Malik, “Chaff: Engineering

an efficient SAT solver,” in Proceedings of the Design Automation Conference, July

2001.

[26] M Silva and J Sakallah, “GRASP-a new search algorithm for satisfiability,” in

Proceedings of the International Conference on Computer-Aided Design (ICCAD),

November 1996, pp. 220–7.

129

[27] Pey-Chang Kent Lin and S.P. Khatri, “Inference of gene predictor set using Boolean

satisfiability,” in Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE

International Workshop on, Nov. 2010, pp. 1 –4.

[28] Pey-Chang Kent Lin and Sunil P. Khatri, “Application of logic synthesis to the un-

derstanding and cure of genetic diseases,” Proceedings of the 49th Annual Design

Automation Conference, pp. 734–740, 2012.

[29] Pey-Chang Kent Lin and S.P. Khatri, “Determining gene function in Boolean net-

works using Boolean satisfiability,” in Genomic Signal Processing and Statistics

(GENSIPS), 2012 IEEE International Workshop on. IEEE, 2012, pp. 1–4.

[30] Pey-Chang Kent Lin and S.P. Khatri, “Efficient cancer therapy using Boolean net-

works and Max-SAT-based ATPG,” in Genomic Signal Processing and Statistics

(GENSIPS), 2011 IEEE International Workshop on. IEEE, 2011, pp. 87–90.

[31] Pey-Chang Kent Lin and S. Khatri, “Application of Max-SAT-based ATPG to optimal

cancer therapy design,” BMC Genomics, vol. 13, no. Suppl 6, pp. S5, 2012.

[32] M. Bittner et al., “Molecular classification of cutaneous malignant melanoma by gene

expression profiling,” Nature, vol. 406, no. 3, pp. 536–540, 2000.

[33] Nabil Guelzim et al., “Topological and causal structure of the yeast transcriptional

regulatory network,” Nature Genetics, vol. 31, pp. 60–63, 2002.

[34] Edward R. Dougherty, Seungchan Kim, and Yidong Chen, “Coefficient of determi-

nation in nonlinear signal processing,” Signal Processing, vol. 80, no. 10, pp. 2219 –

2235, 2000.

[35] Wentao Zhao, Erchin Serpedin, and Edward R. Dougherty, “Inferring connectivity of

genetic regulatory networks using information-theoretic criteria,” IEEE/ACM Trans.

130

Comput. Biol. Bioinformatics, vol. 5, no. 2, pp. 262–274, 2008.

[36] Xiaobo Zhou, Xiaodong Wang, and Edward R. Dougherty, “Gene prediction using

multinomial probit regression with Bayesian gene selection,” EURASIP Journal on

Applied Signal Processing, pp. 115–124, 2004.

[37] Wentao Zhou, Erchin Serpedin, and Edward R. Dougherty, “Inferring gene regula-

tory networks from time series data using the minimum description length principle,”

Bioinformatics, vol. 17, pp. 2129–2135, 2006.

[38] Ranadip Pal, Ivan Ivanov, Aniruddha Datta, Michael L. Bittner, and Edward R.

Dougherty, “Generating Boolean networks with a prescribed attractor structure,”

Bioinformatics, vol. 21, no. 21, pp. 4021–4025, 2005.

[39] Stuart A. Kauffman, The Origins of Order: Self-Organization and Selection in Evo-

lution, Oxford University Press, USA, 1 edition, June 1993.

[40] Niklas. Een and Niklas Sorensson, An Extensible SAT-solver, Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2004.

[41] R. Layek, A. Datta, and E.R. Dougherty, “From biological pathways to regulatory

networks,” Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 5781

–5786, dec. 2010.

[42] Ritwik Layek, Aniruddha Datta, Michael Bittner, and E.R. Dougherty, “Cancer ther-

apy design based on pathway logic,” Bioinformatics, vol. 27, no. 4, pp. 548–555,

2011.

[43] M. Karnaugh, “The map method for synthesis of combinational logic circuits,” Trans.

AIEE. pt. I, vol. 72, no. 9, pp. 593–599, 1953.

131

[44] W. Gosti, S.P. Khatri, and A.L. Sangiovanni-Vincentelli, “Addressing the timing clo-

sure problem by integrating logic optimization and placement,” in Proceedings of the

2001 IEEE/ACM International Conference on Computer-Aided Design, Piscataway,

NJ, USA, 2001, ICCAD ’01, pp. 224–231, IEEE Press.

[45] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express functional

permissibilities for LUT based FPGAs and its applications,” in Proceedings of the

International Conference on Computer-Aided Design, Nov. 1996, pp. 254–61.

[46] R. Brayton, “Understanding SPFDs: A new method for specifying flexibility,” in

Workshop Notes, International Workshop on Logic Synthesis, Tahoe City, CA, May

1997.

[47] S. Sinha and R. Brayton, “Implementation and use of SPFDs in optimizing Boolean

networks,” in Proceedings of the International Conference on Computer-Aided De-

sign, Nov 1998, pp. 103–10.

[48] B. Lin and A. R. Newton, “Synthesis of Multiple Level Logic from Symbolic High-

Level Description Languages,” in Proc. of the Intl. Conf. on VLSI, Aug. 1989, pp.

187–196.

[49] T. Villa and A. L. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finite State

Machines for Optimal Two-Level Logic Implementations,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits, vol. 9, no. 9, pp. 905–924, Sept. 1990.

[50] F. Corbin, L. Bordeaux, Y. Hamadi, E. Fanchon, and L. Trilling, “A SAT-based

approach to decipher gene regulatory networks,” Integrative Post-Genomics, RIAMS,

Lyon, 2007.

132

[51] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attractors in syn-

chronous Boolean networks,” IEEE/ACM Trans. Computational Biology and Bioin-

formatics, vol. 8, no. 5, pp. 1393–1399, Sept. 2011.

[52] R.A. Weinberg, The Biology of Cancer, Garland Science, Princeton, 2006.

[53] Eric Batchelor, Alexander Loewer, and Galit Lahav, “The ups and downs of p53:

understanding protein dynamics in single cells,” Nature Reviews Cancer, vol. 9, no.

5, pp. 371–377, 2009.

[54] S. Faisal, G. Lichtenberg, and H. Werner, “Canalizing zhegalkin polynomials as

models for gene expression time series data,” in Engineering of Intelligent Systems,

2006 IEEE International Conference on. IEEE, pp. 1–6.

[55] S. Faisal, G. Lichtenberg, and H. Werner, “An approach using shegalkin polynomials

for modelling microarray timeseries data of eucaryotes,” in Proceedings of Interna-

tional Conference on Systems Biology, 2004, p. 312.

[56] Marshall H Stone, “The theory of representation for boolean algebras,” Transactions

of the American Mathematical Society, vol. 40, no. 1, pp. 37–111, 1936.

[57] Patrik Dhaeseleer, Shoudan Liang, and Roland Somogyi, “Gene expression data anal-

ysis and modeling,” in Pacific Symposium on Biocomputing, 1999, vol. 99.

[58] Alexander Zien, Thomas Aigner, Ralf Zimmer, and Thomas Lengauer, “Centraliza-

tion: a new method for the normalization of gene expression data,” Bioinformatics,

vol. 17, no. suppl 1, pp. S323–S331, 2001.

[59] B. Faryabi, J.-F. Chamberland, G. Vahedi, A. Datta, and E.R. Dougherty, “Optimal

intervention in asynchronous genetic regulatory networks,” IEEE Journal of Selected

Topics in Signal Processing, vol. 2, no. 3, pp. 412–423, June 2008.

133

[60] Yufei Xiao and Edward R Dougherty, “The impact of function perturbations in

boolean networks,” Bioinformatics, vol. 23, no. 10, pp. 1265–1273, 2007.

[61] T. Larrabee, “Efficient Generation of Test Patterns Using Boolean Difference,” in

Proc. of the Intl. Test Conf., 1989, pp. 795–801.

[62] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli, “Combinational test

generation using satisfiability,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 15, no. 9, pp. 1167–1176, Sept. 1996.

[63] N.S. Saluja, K. Gulati, and S.P. Khatri, “SAT-based ATPG using multilevel compat-

ible don’t-cares,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, pp. 24:1–24:18,

April 2008.

[64] T. Akutsu, M. Hayashida, W.K. Ching, and M.K. Ng, “Control of Boolean networks:

Hardness results and algorithms for tree structured networks,” Journal of Theoretical

Biology, vol. 244, no. 4, pp. 670–679, 2007.

[65] C.J. Langmead and S.K. Jha, “Symbolic approaches for finding control strategies

in Boolean networks,” Journal of Bioinformatics and Computational Biology, pp.

323–338, April 2009.

[66] Chu Min Li, Felip Manya, and Jordi Planes, “Maxsatz,” http://home.mis.

u-picardie.fr/\textasciitildecli/EnglishPage.html/, Accessed July 10,

2011.

[67] Chu Li, Felip Manya, Nouredine Mohamedou, and Jordi Planes, “Exploiting cycle

structures in Max-SAT,” in Theory and Applications of Satisfiability Testing - SAT

2009, Oliver Kullmann, Ed., vol. 5584 of Lecture Notes in Computer Science, pp.

467–480. Springer Berlin / Heidelberg, 2009.

134

[68] Santa Cruz Biotechnology Inc, “Santa cruz biotechnology, inc home,” http://www.

scbt.com/, Accessed August 15, 2011.

[69] National Center for Biotechnology Information, “Pubmed health - national library of

medicine,” http://www.ncbi.nlm.nih.gov/pubmedhealth/, Accessed August

15, 2011.

[70] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, Computer Science Press, 1990.

[71] G. Hachtel and R. Jacoby, “Verification algorithms for vlsi synthesis,” in IEEE

Transactions on Computer-Aided Design, May 1988, pp. 616–640.

[72] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Symbolic Model Check-

ing: 1020 States and Beyond,” Information and Computation, vol. 98, no. 2, pp.

142–170, 1992.

[73] M. Damiani, “Nondeterministic finite-state machines and sequential don’t cares,”

in European Design and Test Conference, 1994. EDAC, The European Conference

on Design Automation. ETC European Test Conference. EUROASIC, The European

Event in ASIC Design, Proceedings., feb-3 mar 1994, pp. 192 –198.

135

