
CUTS AND PARTITIONS IN GRAPHS/TREES WITH APPLICATIONS

A Dissertation

by

JIA-HAO FAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jianer Chen
Co-Chair of Committee, Sing-Hoi Sze
Committee Members, Donald Friesen

Sergiy Butenko
Department Head, Hank Walker

August 2013

Major Subject: Computer Science

Copyright 2013 Jia-Hao Fan

ABSTRACT

Graph cutting and partitioning problems are among the most interesting and impor-

tant topics in computational theory. In this thesis, we develop approximation algorithms,

parameterized algorithms, and kernelization algorithms for cut and partition problems in

graphs and trees, and study their applications. We are focused on three problems in this

thesis: the maximum agreement forest problem, the multicut on trees problem, and the

protein complex prediction problem.

Both the maximum agreement forest problem and the multicut on trees problem are

NP-hard, thus cannot be solved efficiently if P 6= NP. The maximum agreement forest

problem was motivated in the study of evolution trees in bioinformatics, in which we are

given two leaf-labeled trees and are asked to find a maximum forest that is a subgraph of

both trees. The multicut on trees problem has applications in networks, in which we are

given a forest and a set of pairs of termianls and are asked to find a cut that separates all

pairs of terminals.

We develop combinatorial and algorithmic techniques that lead to improved parame-

terized algorithms, approximation algorithms, and kernelization algorithms for these prob-

lems. For the maximum agreement forest problem, we proceed from the bottommost level

of trees and extend solutions to whole trees. With this technique, we show that the maxi-

mum agreement forest problem is fixed-parameterized tractable in general trees, resolving

an open problem in this area. We also provide the first constant ratio approximation al-

gorithm for the problem in general trees. For the multicut on trees problem, we take a

new look at the problem through the eyes of vertex cover problem. This connection allows

us to develop an kernelization algorithm for the problem, which gives an upper bound of

O(k3) on the kernel size, significantly improving the previous best upper bound O(k6). We

further exploit this connection to give a parameterized algorithm for the problem that runs

in time O∗(1.62k), thus improving the previous best algorithm of running time O∗(2k).

ii

In the protein complex prediction problem, which comes directly from the study of

bioinformatics, we are given a protein-protein interaction network, and are asked to find

dense regions in this graph. We formulate this problem as a graph clustering problem and

develop an algorithm to refine the results for identifying protein complexes. We test our

algorithm on yeast protein- protein interaction networks, and we show that our algorithm

is able to identify complexes more accurately than other existing algorithms.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete

this thesis. First, I would like to thank to Department of Computer Science of Texas A&M

for offerring me teaching assistantships that provided me an opportunity to finish my

degree without the concerns of finacial issues and offered me various kinds of resources

that facilitated the computatioal experiments in this thesis.

I am deeply indebted to my adviser, Jianer Chen whose sincerely suggestions and com-

ments helped me all the time for both doing researches and writing papers. In particular,

I am really grateful to his patience for going through the details of proofs with me.

I would also like to thank to my co-adviser, Sign-Hoi Sze who helps me to understand

fundamental knowledges in bioinformatics, and leads me to accomplish some projects in

this field.

I would also like to thank to my former colleagues, Yang Liu and Iyad whose view of

researches and writing skills help me to extend my mind in this field.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Maximum agreement forest problem . 2

1.2 Multicut on trees problem . 4

1.3 Protein complex prediction problem . 8

2. RELATED RESEARCH AND PROBLEM REFORMULATIONS 10

2.1 Maximum agreement forest problem . 10

2.1.1 Review on related research . 10

2.1.2 Definitions and problem reformulations 11

2.2 Multicut on trees problem . 16

2.2.1 Review on related research . 16

2.2.2 Definitions and problem reformulations 16

2.3 Protein complex prediction problem . 19

2.3.1 Review on related research . 19

2.3.2 Definitions and problem reformulations 20

3. ALGORITHMS TO MAXIMUM AGREEMENT FOREST PROBLEM 21

3.1 Bottommost sibling sets and reduction rules 21

3.2 maf is fixed-parameter tractable . 26

3.3 A constant-ratio approximation algorithm for max-maf 37

3.4 Conclusion . 47

4. ALGORITHMS TO MULTICUT ON TREES PROBLEM 48

v

4.1 A kernelization algorithm to multicut on trees problem 48

4.1.1 Basic reduction rules . 49

4.1.2 Three types of groups in forest . 51

4.1.3 Reduction rules to bad leaves, good leaves and internal nodes 53

4.2 A parameterized algorithm to multicut on trees problem 64

4.3 Conclusion . 73

5. METHODS AND RESULTS FOR PROTEIN COMPLEX PREDICTION 75

5.1 Methods to predict protein complex . 75

5.1.1 Neighborhood density for protein complex prediction 75

5.1.2 Cliques with low neighborhood density 75

5.1.3 Cliques with high neighborhood density 76

5.2 Experimental results . 77

5.2.1 Performance evaluation . 77

5.2.2 Performance comparisons . 78

5.2.3 Complex agreement measure . 80

5.2.4 Complex accuracy measure . 80

5.2.5 Protein pair agreement measure . 81

5.3 Discussion . 82

6. CONCLUSIONS AND FUTURE RESEARCH 90

REFERENCES . 92

vi

LIST OF FIGURES

FIGURE Page

3.1 (A) Situation for case 3, (B) Situation for subcase 4.2, (C) Situation for
subcase 4.3. 29

3.2 A parameterized algorithm for para-maf’ 35

3.3 Situations for Meta-Steps 2-4 . 40

3.4 An approximation algorithm for max-maf’ 44

4.1 Illustration for Definition 4.1.8 and Definition 4.1.9: v-offsetj(y) is w; v-
offsetj(x) is v; l-offsetj(y) is y′; l-offsetj(x) is x′. Therefore, we have x �vj y
and y �lj x. 55

4.2 Illustration for Reduction Rule 4.1.10 and the replacement of requests: v-
offsetj(x) is w; v-offsetj(y) is v. Replace the request (x, v-offsetj(x)) with
(ν(x), v-offsetj(x)). 55

4.3 Illustration of the different cases treated by the algorithm. The dashed
curved lines represent requests. 72

5.1 Algorithm NDComplexL is used to obtain predicted complexes from maxi-
mal cliques with low neighborhood density. 76

5.2 Algorithm NDComplexH is used to obtain predicted complexes from maxi-
mal cliques with high neighborhood density. 77

5.3 Performance of complex prediction algorithms on each protein interaction
network with respect to the complex agreement measure over different sim-
ilarity thresholds u between a true complex and a predicted complex. For
DECAFF, only steps 1 to 4 of Algorithm 1 in Li et al. [50] are included, while
the filtering steps 5 to 9 that are based on the use of functional information
are skipped. 81

5.4 Performance of complex prediction algorithms on each protein interaction
network with respect to the complex accuracy measure. 82

5.5 Performance of complex prediction algorithms on each protein interaction
network with respect to the protein pair agreement measure. 83

vii

5.6 Predicted complex from each algorithm on the protein interaction network
from the BioGRID database that has the highest similarity to the true com-
plex that contains the MAP kinase cascade of the pheromone response path-
way and the filamentation/invasion pathway from the MIPS database. No
predicted complexes from MCL or MCODE have overlap to the true complex
and are not shown. 85

5.7 Performance of our algorithm NDComplex on the protein interaction net-
work from the BioGRID database with respect to the complex accuracy
measure and the protein pair agreement measure over different parameter
settings (t, c, d), where t and c are the similarity threshold and the occurrence
threshold, respectively, during the computation of neighborhood density, and
d is the density threshold during the computation of predicted complexes
in regions with low neighborhood density. The similarity threshold during
the computation of predicted complexes in regions with high neighborhood
density is fixed to s = 0.2. The last set of parameters (0.3, 3, 0.7) is the one
we chose. 86

viii

LIST OF TABLES

TABLE Page

5.1 Distribution of True Complexes Used in the Evaluation 78

5.2 Protein Interaction Networks Used in the Evaluation 79

5.3 Running Time in Seconds During Different Stages of Our Algorithm ND-
Complex on Each Protein Interaction Network 84

5.4 Statistics of Predicted Complexes from Each Algorithm on Each Protein
Interaction Network . 88

5.5 Statistics of Maximal Cliques and Predicted Complexes During Different
Stages of Our Algorithm . 89

ix

1. INTRODUCTION ∗

In theoretical computer science, many practical problems are formulated as theoretical

problems on graphs or trees [68] such as flow network problem. In particular, with the

development of experimental technologies in biology, large amount of data have been col-

lected. These data are usually systematically represented as trees or graphs. For example,

a protein-protein interaction network is usually represented as an undirected graph [56]

[73] [66], and the evolutionary relationships among groups of species is usually visualized

as trees [2, 24, 28, 37, 40]. With the biological data that are presented as graphs or trees,

some bioinformatic problems are also formulated as problems on graphs or trees. For ex-

ample, in the protein complex prediction problem, a protein-protein interaction network is

given as a graph, and we are asked to find protein complexes, usually the dense regions

in the graph. In the maximum agreement forest problem, we are given two phylogenetic

trees, and we are asked to find a maximum forest that is a subgraph of both trees. For

the practical problems that are formulated as theoretical problems on graphs or trees,

well-developed graph theories provide a direction to solve them. In particular, some of

these problems are formulated as graph cutting or graph partitioning problems. In this

thesis, we focus on the algorithms for three cutting and partitioning problems in graphs or

trees, maximum agreement forest problem, multicut on trees problem and protein complex

prediction problem.

Graph cutting and graph partitioning problems present significant challenges. First,

most graph cutting problems and graph partitioning problems are NP-hard. It means that

these problems cannot be solved efficiently if P 6= NP. The two theoretical problems that we

studied in this thesis, maximum agreement forest problem and multicut on trees problem

∗Reprinted with permission from “Identifying Complexes from Protein Interaction Networks According
to Different Types of Neighborhood Density” by Jia-Hao Fan, Jianer Chen and Sing-Hoi Sze, 2012. Journal
of Computational Biology, 19(12): 1284-1294 (2012), Copyright [2012] by Mary Ann Liebert, Inc., and
Reprinted with permission from “Multicut in trees viewed through the eyes of vertex cover” by Jianer
Chen, Jia-Hao Fan, Iyad A. Kanj, Yang Liu and Fenghui Zhang, 2012. J. Comput. Syst. Sci., 78(5):
1637-1650 (2012), Copyright [2012] by Elsevier.

1

are NP-hard and MAX SNP-hard [2, 10, 8, 32]. In this thesis, we develop parameterized

algorithms, approximation algorithms and kernelization algorithms to these two theoretical

problems. Second, the optimal solutions that we obtained to the theoretical problems that

we formulated on graphs or trees could not always reflect the true solutions to the corre-

sponding practical problems. In protein complex prediction problem, it can be formulated

as a problem in graphs, in which we are given a graph that represents a protein-protein

interaction network, and we are asked to find dense regions of the given graph. However,

the known protein complexes (solutions to the practical problem) do not always correspond

to the dense regions (optimal solutions to the theoretical problem that we formulate) in

protein-protein interaction network. In this thesis, we improved our formulation with bi-

ological observation. We find that the protein complexes have two trends with respect to

the neighborhood density in the protein-protien interaction network. Thus, we devise an

algorithm to predict protein complexes based on the observations.

In the following sections, we briefly introduce the three problems that we study in this

thesis.

1.1 Maximum agreement forest problem

Evolutionary relationships among a set of species is usually modeled by phylogenetic

trees, in which each leaf is labeled by a distinct species, and the taxa in adjacent branches

are thought to have descended from a common ancestor. There are several methods to

construct phylogenetic trees (i.e. morphology, molecular biology, etc.). For a given set of

species, different methods often lead to different trees. Researchers believe that evolution-

ary relationships of a set of species should be identical. Thus, it makes sense to ask that for

a given set of species, how close are the phylogenetic trees that are constructed by different

methods.

Several distance metrics have been proposed for measuring the similarity of different

phylogenetic trees [2, 24, 28, 37, 40]. In particular, the tree-bisection-and-reconnection

(TBR) and the subtree-prune-and-regraft (SPR) distances [5, 36, 70] are directly corre-

sponding to the size of the maximum agreement forest (abbr. MAF) on unrooted trees [2]

2

and on rooted trees [11], respectively.

While most previous work on MAF is restricted to bifurcating (i.e., binary) trees, the

problem and related problems on multifurcating (i.e., general) trees have drawn attention

recently. Since there are often ambiguities in which the order of more than two branches

cannot be reliably resolved by phylogenetic tree construction algorithms, it is important

to allow the given trees to be multifurcating. There is also the possibility that some of

the nodes are truly multifurcating due to simultaneous divergence that results in multiple

descendants in a very narrow time frame [51], such as the case demonstrated in Kliman

et al. [46] for the three Drosophila species D. mauritiana, D. sechellia, and D. simulans. In

addition, the evolutionary mechanism of prokaryotes is different from eukaryotes [7], and

it is often more suitable to represent the species tree for prokaryotes as a multifurcating

tree. The NCBI taxonomy [69], which is an important source of species trees, has more

than half of its branches being multifurcating [51].

In this thesis, we focus on parameterized algorithms and approximation algorithms for

the MAF problem on unrooted general trees. Our method is based on a careful study of the

graph structures that takes advantage of special relationships among sibling leaves in the

given trees. We develop an O(3kn)-time parameterized algorithm for the MAF problem

on unrooted general trees, thus showing the fixed-parameter tractability of the problem

and resolving the open problem posed in [36, 70]. In fact, our algorithm is even faster

than the previous best parameterized algorithm for the problem on binary trees, which

runs in time O(4kn) [71]. We also present a polynomial-time approximation algorithm of

ratio 3 for the MAF problem on unrooted general trees. The ratio matches the best known

approximation ratio for the problem on unrooted binary trees [70, 71], but our algorithm

keeps the same constant ratio and works for general trees. The only previously known

approximation algorithm for the MAF problem on general trees [62] is on rooted trees

and has a ratio of d + 1, where d is the maximum number of children a node in the trees

may have. Our algorithm is the first constant-ratio approximation algorithm for the MAF

problem on general trees, which is on unrooted trees.

3

1.2 Multicut on trees problem

In graph theory, given an undirected graph G = (V,E), a cut is a partition of vertices

V into two disjoint subsets S and V \ S, which is denoted by (S, V \ S). The cut-set of a

cut (S, V \S) is the set of edges whose two ends are in different subsets S and V \S of the

partition. Edges in the cut-set of the cut are said to be crossing edges.

In an unweighted undirected graph, the size of a cut is defined by the number of the

crossing edges. In a weighted undirected graph, it is defined by the sum of the weights of

the crossing edges.

The definition of cuts in directed graphs is usually slightly different from the definition

of cuts to the same problems in undirected graphs. Now we give a most well-known and

simple graph cutting problem in directed graph as an example.

Minimum s-t cut problem is one of the most famous graph cutting problem in graph

theory, which is equivalent to maximum flow problem by max-flow min-cut theorem.

A flow network, G = (V,E) is a directed graph in which every edge e = (u, v) ∈ E

has a nonnegative capacity c(u, v) ≥ 0 [20]. A flow in a network G is a real-function

f : V × V → R with the following two properties:

For all u, v ∈ V, 0 ≤ f(u, v) ≤ c(u, v)

For all u ∈ V − {s, t},
∑
v∈V

f(v, u) =
∑
v∈V

f(u, v)

In the maximum flow problem, we are given a flow network G, a source s and a sink t, and

we are asked to find a flow of maximum volume.

This problem is polynomial time solvable by Edmonds-Karp algorithm [26]. In addition,

by the max-flow min-cut theorem, the maximum amount of flow passing from the source

to the sink is equal to the minimum capacity which when removed in a specific way that

there is no path from source to sink in the induced graph. Thus, minimum s-t cut problem

is also polynomial time solvable.

4

Undirected graphs are special cases of directed graphs. Given an undirected graph,

sometimes, we can obtain its corresponding directed graph by replacing every edge with two

opposite arrows. If the problem in the version to undirected graphs has these properties,

we always can solve it by the same approach to the problems in the version in directed

graphs. Fortunately, for s-t cut problem, we can extend it to undirected graphs.

The max-flow min-cut theorem describes the relations of minimum cut size and max-

imum flow size in directed graph. In undirected graphs, Menger’s theorem is the corre-

sponding theorem to describe the relations of minimum cut size and maximum number

of independent paths. It has two versions, edge-connectivity and vertex-connectivity. Let

G be an undirected graph and s and t be two distinct vertices (non-adjacent vertices in

the vertex version). The edge(resp. vertex)-connectivity version states that the maximum

number of pairwise edge(resp. vertex)-independent paths from s to t is the same as the

minimum edge(resp. vertex) cut for s and t. Clearly, the corresponding edge and vertex

connectivity problems are also polynomial time solvable using a similar approach.

The multiway cut problem generalizes the s-t cut problems with respect to the vertex-

connectivity. In the multiway cut problem, we are given a graph G = (V,E) and terminals

T ⊆ V , and we are asked to find vertices C ⊆ V such that in the induced graph, with C re-

moved from G, there is no path between any pair of terminals. Similarly, the multiterminal

cut problem generalizes the s-t cut problems with respect to the edge-connectivity.

Although the s-t cut problem is polynomial time solvable, multiterminal cut problem

was shown to be NP-hard by Dahlhaus et al. [23] (i.e. multiway cut problem is NP-

hard) even when the number of terminals is only 3 or the graph is planar. Additionally,

they showed that it is MAX SNP-hard(i.e. there is no polynomial-time approximation

scheme(PTAS) unless P=NP), and they gave the first approximation algorithm of constant

ratio 2(1− 1
p) to this problem where p is the number of terminals. Later, Calinescu et al.

[16] formulated this problem as a linear program. With the novel geometric relaxation to

this problem and a rounding scheme, they obtained an approximation algorithm of ratio

3
2 −

1
p . In addition, Karger et al. [43] showed that there exists a rounding scheme with

5

performance ratio equal to the integrality gap to improve the ratio to 1.3438.

In parameterized complexity, Marx [54] conducted a comprehensive study of the graph

separation problems, and they introduced the concept of important separators. Then, he

showed that the multiway cut problem is FPT when it is parameterized on the size of the

cut-set. Later, Chen et al. [18] improved the running time to O∗(4k) where k is the solution

size (size of the cut-set). For the multiterminal cut problem, Xiao [74] had a new measure

and further improved the running time to O∗(2k). Recently, Cygan et al. [22] studied

this problem from the perspective of reasonable lower bounds of the cut-set size. More

specifically, they looked for FPT algorithms that were parameterized on the difference of

the cut-set size and the maximum separating cut or on the difference of the cut-set size

and a natural LP-relaxation instead of the solution size (the size of the cut-set). They also

obtained an O∗(2k) algorithm to the multiway cut problem in standard setting. For the

kernerlization to this problem, Razgon [60] had a polynomial kernel for the multiway cut

problem in the restricted graph. He showed that when the difference between the size of

the cut-set k and the size of the smallest isolating cut is at most log(k), then there exists

a polynomial kernel for this problem. Note, the multiway cut problem is the simplest

graph separation problem; however, the question of the polynomial kernel for this problem

remains unanswered.

The multicut problem also generalizes the multiway cut problem. In the multicut

problem, we are given a graph G = (V,E), and a set of requests R ⊆ V (G) × V (G)

between pair of vertices in G, and we are asked to find edges C ⊆ E such that in the

induced graph, with C removed from G, there is no path between each pair of vertices in

R.

Dahlhaus et al. [23] devised the first approximation algorithm to this problem of ratio 2

when the size of the cut-set k is fixed (i.e. the running time of this algorithm is O(nO(k))).

Later, Klein et al. [45] used their approximation algorithm on the sparsest cut problem

to devise an approximation algorithm of time O(logC log2 k) where C is the sum of the

capacity. In addition, Garg et al. [31] considered this minimization cutting problem in

6

association with the maximization multicommodity flow problem and established the max-

flow min-multicut theorem: M
log k ≤ f ≤ M where M is the minimum multicut, f is the

maximum multi-commodity flow, and k is the number of commodities. Then they gave an

O(log n) approximation algorithm to this problem.

In parameterized complexity, the question about whether the multicut problem is FPT

had been unanswered for so long until recently, Marx and Razgon [55] and Bousquet et al.

[12] separately provided the positive answer to this question.

If the multicut problem is restricted to trees, it is still NP-hard [8] and MAX-SNP

hard [32]. Tree is a special graph with no cycles; thus, problems on trees are easier than

problems in general graphs. Because there is no polynomial kernel so far to the above

NP-hard cutting problems, it becomes interesting to explore the parameterized complexity

and the kernelization of the multicut problem on trees.

In this thesis we take a new look at multicut on trees problem through the eyes of the

vertex cover problem. This connection allows us to give an upper bound of O(k3) on the

kernel size for multicut on trees problem, significantly improving the previous O(k6) upper

bound given by Bousquet et al. [13].

To obtain the O(k3) upper bound on the kernel size, we introduce a novel approach that

relies on a grouping of the vertices in the tree. This grouping allows us to derive tighter

upper bounds on the number of vertices in the tree after applying some new reduction

rules that we introduce in this thesis. Some of the reduction rules we apply exploit a

connection between vertex cover problem and multicut on trees problem that is observed

in this thesis. The novel approach can be summarized as follows. We first group the

vertices in the tree into O(k) groups. We then introduce an ordering that orders the leaves

in a group with respect to every other group. This ordering allows us to introduce a set

of reduction rules that limits the number of leaves in a group that have requests to the

vertices in another group. At the core of this set of reduction rules is a rule that utilizes

the crown kernelization algorithm for vertex cover problem [1]. All the above allows us to

upper bound the number of leaves in the reduced instance by O(k2), improving the O(k4)

7

upper bound on the number of leaves obtained in [13]. Finally, we show that the size of

the reduced instance is at most the number of leaves in the reduced instance multiplied by

a linear factor of k, thus yielding an upper bound of O(k3) on the size of the kernel.

To obtain the O∗(((
√

5 + 1)/2)k) time algorithm, we first establish new structural

connections between multicut on trees problem and vertex cover problem that allow us to

simplify the instance of multicut on trees problem. We then exploit the simplified structure

of the resulting instance to present a simple search-tree algorithm for multicut on trees

problem that runs in time O∗(((
√

5 + 1)/2)k). We note that, even though some connection

between multicut on trees problem and vertex cover problem was observed in [32, 34], this

connection was not developed or utilized in kernelization algorithms, nor in parameterized

algorithms for multicut on trees problem.

1.3 Protein complex prediction problem

In biology, large amount of experiments have been conducted to elucidate the protein-

protein interactions. These data are collected as protein-protein interaction (PPI) networks

[56] [73] [66]. PPI network is usually represented as an undirected graph G = (V,E) where

each protein is represented as a node, and each interaction is represented as an edge.

This structural data allows bioinformaticists to apply some known theoretical results in

graph theory to conduct computational experiments in the corresponding problems in

bioinformatics.

In this thesis, we observe that most complexes either reside in very dense regions, in

which most algorithms are able to identify, or they reside in regions with low neighborhood

density, in which most algorithms are less successful to identify. We investigate the following

algorithm to consider these two types of complexes separately. Given a protein interaction

network, we first identify all the maximal cliques. For each maximal clique, we count

the number of other maximal cliques that overlap significantly with it and use it to define

neighborhood density. We subdivide these cliques into two sets, with one containing cliques

with low neighborhood density and the other containing cliques with high neighborhood

density.

8

Since the maximal cliques with low neighborhood density are likely to correspond to

the core region of a complex, we extend each clique to include more proteins as long as

the density remains high. This allows each prediction to become a dense subgraph that

is not necessarily a clique. Since the maximal cliques with high neighborhood density

have overlap with many other maximal cliques, using these cliques directly, as predicted

complexes, will lead to significant overestimate of the number of complexes. We extract the

most shared sets of proteins from these cliques. We obtain the set of predicted complexes

by collecting the above two types of predictions.

We compare the performance of our algorithm to other complex prediction algorithms

on a few protein interaction networks and show that our algorithm is able to identify

complexes more accurately with respect to complex agreement, complex accuracy, and

protein pair agreement measures.

9

2. RELATED RESEARCH AND PROBLEM REFORMULATIONS ∗

2.1 Maximum agreement forest problem

In maximum agreement forest problem, we are given two leaf-labeled trees and are

asked to find a maximum forest that is a subgraph of both trees.

2.1.1 Review on related research

The problem of constructing an MAF for two unrooted trees is NP-hard and MAX

SNP-hard, even when it is restricted to binary trees [2, 10].

Approximation algorithms have been studied for the problem, mainly on binary trees.

An approximation algorithm of ratio 3 for the problem on rooted binary trees was claimed

by Hein et al. [37], who also claimed that the MAF problem on rooted binary trees cor-

respond to the SPR distance. Allen and Steel [2] showed that the claim in [37] on the

relationship between MAF and SPR was not true, and, on the other hand, proved that

the MAF problem on unrooted binary trees corresponds to the TBR distance. Rodrigues

et al. [61] found a subtle error in [37] and showed that the algorithm in [37] has ratio at

least 4. Rodrigues et al. [61] then presented a new approximation algorithm and claimed

that their algorithm have ratio 3. Bonet et al. [9] provided a counterexample and showed

that for the TBR distance, the algorithm in [37] has approximation ratio at least 5 while

the algorithm in [61] has approximation ratio at least 4. Using very different methods,

Chataigner [17] developed an approximation algorithm of ratio 8 for the TBR distance

for two or more binary trees. Recently, Whidden et al. [70, 71] presented a linear-time

approximation algorithm of ratio 3 for the TBR distance on unrooted binary trees. This is

the best known approximation algorithm for the TBR distance on binary trees. We note

∗Reprinted with permission from “Identifying Complexes from Protein Interaction Networks According
to Different Types of Neighborhood Density” by Jia-Hao Fan, Jianer Chen and Sing-Hoi Sze, 2012. Journal
of Computational Biology, 19(12): 1284-1294 (2012), Copyright [2012] by Mary Ann Liebert, Inc., and
Reprinted with permission from “Multicut in trees viewed through the eyes of vertex cover” by Jianer
Chen, Jia-Hao Fan, Iyad A. Kanj, Yang Liu and Fenghui Zhang, 2012. J. Comput. Syst. Sci., 78(5):
1637-1650 (2012), Copyright [2012] by Elsevier.

10

that there is also a line of research on another metric, the rSPR distance, on binary trees

[9, 71], for which the best approximation algorithm has ratio 3 and runs in linear time

[70, 71]. For general trees, to our knowledge, there are currently no known approximation

algorithms for the TBR distance on general trees. For the SPR distance on rooted general

trees, Rodrigues et al. [62] developed an approximation algorithm of ratio d + 1, where d

is the maximum number of children a node in the input trees may have. There is also a

line of research on the maximum acyclic agreement forest problem on general trees (see,

for example, [52]).

Parameterized algorithms for the MAF problem, parameterized by the number k of

trees in the MAF, have also been studied. Allen and Steel [2] showed that the MAF prob-

lem on unrooted binary trees, which corresponds to the TBR distance, is fixed-parameter

tractable. By branching based on inconsistent structures in quartets, Hallett and Mc-

Cartin [36] developed an algorithm of time O(4kk5 + nO(1)) for the problem. Whidden

and Zeh [71, 70] further improved the time complexity to O(4kn), which is currently the

best known parameterized algorithm for the MAF problem on unrooted binary trees. For

the MAF problem on rooted binary trees, Bordewich et al. [10] proposed a parameterized

algorithm of time O(4kk4 + n3), and Whidden et al. [70, 71] improved the time complex-

ity to O(2.42kn). While there has been significant work that shows the fixed-parameter

tractability for the MAF problem and related problems on binary trees, it was unknown

whether the MAF problem on general trees is fixed-parameter tractable or not. This had

been posed specifically as an open problem by a number of researchers [36, 70].

2.1.2 Definitions and problem reformulations

In this thesis, all graphs are undirected. For a vertex v, an edge e, and an edge subset

E′ in a graph G, denote by G− v, G− e, and G−E′ the graphs obtained from G with v,

e, and the edges in E′ removed, respectively. All trees in our discussion are unrooted. A

leaf of a tree is a vertex of degree less than 2. A forest is a collection of disjoint trees. A

nonempty forest F is leaf-labeled over a label-set L if there is a one-to-one mapping from

11

the leaves of F to the elements of L (and if all non-leaf vertices are unlabeled). The label

for a leaf v is denoted by `(v). More generally, for a subforest F ′ of F , denote by `(F ′) the

set of labels for the leaves in F ′.

Two leaf-labeled forests F1 and F2 over the same label-set L are isomorphic if there is

an isomorphism between F1 and F2 such that the corresponding leaves have the same label.

The forests F1 and F2 are homeomorphic if they become isomorphic after smoothing all

degree-2 vertices (smoothing a degree-2 vertex v is to replace the vertex v and its incident

edges with a new edge connecting the two neighbors of v). Note that if a leaf-labeled

forest F1 is homeomorphic to a subforest of a leaf-labeled forest F2, then there is a unique

subforest of F2 that is homeomorphic to F1. Therefore, in this case, without any confusion,

we can simply say that the forest F1 is a subforest of F2. An agreement forest for two

leaf-labeled forests F1 and F2 over the same label-set L is a leaf-labeled forest F ′ over the

label-set L such that F ′ is a subforest of both F1 and F2. A maximum agreement forest

F∗ (abbr. MAF) for F1 and F2 is an agreement forest for F1 and F2 such that the size of

(i.e., the number of trees in) F∗ is minimized over all agreement forests for F1 and F2 [36].

The two versions of the MAF problem studied in the current thesis are

para-maf. Given two leaf-labeled trees T1 and T2 over the same label-set L,

and a parameter k, is there an agreement forest of size at most k for T1 and

T2?

max-maf. Given two leaf-labeled trees T1 and T2 over the same label-set L,

construct an MAF for T1 and T2.

Our algorithms on a pair (T1, T2) of leaf-labeled trees will proceed by removing edges

in the tree T2 to construct a subforest of T2 that is an agreement forest for T1 and T2.

Removing edges in T2 will result in a forest consisting of more than one tree. Therefore,

our algorithms will really work on a pair of forests F1 and F2. However, the size of

an agreement forest F ′ for two forests may not properly reflect the complexity of the

construction of F ′: the size of F ′ also heavily depends on the sizes of the given forests F1

12

and F2. Thus, we need a careful reformulation of the problems that allows us to apply a

more accurate analysis on the problem complexity.

A partition P = {L1, . . . , Lr} of a label-set L, where Li 6= ∅,
⋃r
i=1 Li = L, and Li∩Lj =

∅, for all i and j, will be called an L-partition, in which each Li is called a label-subset. A

label-subset is unit if it consists of a single label. For a leaf-labeled forest F = {T1, . . . , Th}

over a label-set L, where each Ti is a leaf-labeled tree, the L-partition {`(T1), . . . , `(Th)}

will be called the label-partition for F . For a subset L′ of L, denote by F [L′] the subforest

of F induced by L′, that is, F [L′] consists of all paths in F that connect pairs of leaves

with labels in L′. For an L-partition P = {L1, . . . , Lr} where F [L1], . . ., F [Lr] are vertex-

disjoint trees in F , we say that the L-partition P induces the subforest {F [L1], . . . ,F [Lr]}

of F . An L-partition P is a c-cut label-partition for the forest F , where c ≥ 0 is an integer,

if there exists a minimum set Ec of c edges in F such that after removing the c edges in

Ec, the label-partition of the resulting forest is P. Note that the label-partition for the

forest F is a 0-cut label-partition for F .

An unlabeled vertex in a leaf-labeled forest F may have degree 2. Moreover, our

algorithms will delete edges that may make an unlabeled vertex to have degree even less

than 2. Contraction is an operation on an unlabeled vertex v of degree less than 3, defined

as follows: (1) if v has degree 2, then the contraction smooths the vertex v; and (2) if v

has degree less than 2, then the contraction simply removes the vertex (and the incident

edge if there is one). In particular, the contraction enables us in our process to keep the

leaves of our forests always labeled.

Contracting an unlabeled vertex of degree less than 2 does not change the label-partition

for a forest. For contracting a degree-2 vertex v, which replaces v and its two incident edges

by a new edge e′, it is easy to verify that the forest obtained by removing any one of the

two edges incident to v in the old forest and the forest obtained by removing the edge e′

in the new forest have the same label-partition. These observations give immediately the

following lemma.

Lemma 2.1.1. Let F be a leaf-labeled forest over a label-set L, and let F ′ be the forest

13

obtained from F by applying an arbitrary sequence of contractions on F . For any integer

c ≥ 0, an L-partition P is a c-cut label-partition for F if and only if P is a c-cut label-

partition for F ′.

The following lemma provides a simple relation between a c-cut label-partition for a

leaf-labeled forest F and the number of trees in F .

Lemma 2.1.2. Suppose that P = {L1, . . . , Lr} is a c-cut label-partition for a leaf-labeled

forest F consisting of h trees. Then r = h+ c.

Proof. We prove the lemma by induction on c. The lemma obviously holds true for the

case c = 0. Consider the case c > 0. Let Ec be a set of c edges in F whose removal results

in a forest whose label-partition is P. Let e be any edge in Ec. Then P is a (c − 1)-cut

label-partition for the forest F − e. The forest F − e consists of exactly h + 1 trees. By

the inductive hypothesis, r = (h + 1) + (c − 1) = h + c. This completes the proof of the

lemma.

Lemma 2.1.2 directly implies the following corollary, which allows us to characterize

agreement forests for two leaf-labeled forests F1 and F2 in terms of c-cut label-partitions

for F2.

Corollary 2.1.3. For an agreement forest F∗ = {T1, . . . , Tk} for two leaf-labeled forests F1

and F2 over the same label-set L, where F2 consists of c2 trees, the L-partition {`(T1), . . . , `(Tk)}

is a (k − c2)-cut label-partition for F2.

When a c-cut label-partition P for a forest is given, it is easy to find the c edges whose

removal results in a forest whose label-partition is P, as shown in the following lemma.

Lemma 2.1.4. Let L be the label-set for a forest F , and let P = {L1, . . . , Lr} be an

L-partition. Let e be an edge in F whose removal splits a leaf-labeled tree in F into two

leaf-labeled trees T1 and T2 such that no label-subset in P has labels in both T1 and T2. Then

for any integer c ≥ 1, P is a c-cut label-partition for F if and only if P is a (c − 1)-cut

label-partition for F − e.

14

Proof. Suppose that P is a c-cut label-partition for F . Then F [L1], . . ., F [Lr] are vertex-

disjoint trees in F . By the given condition, the edge e is not on a path connecting any

two leaves whose labels are in the same label-subset in P. Thus, F [L1], . . ., F [Lr] are still

vertex-disjoint trees in the forest F − e, so P is a d-cut label-partition for F − e for some

integer d. On the other hand, if P is a d-cut label-partition for F − e, then obviously P

is a c-cut label-partition for F for some integer c ≤ d + 1. The equality d = c − 1 follows

directly from Lemma 2.1.2 because the number of trees in F − e is exactly one larger than

that in F .

Corollary 2.1.3 and Lemma 2.1.4 suggest a formulation of the MAF problem in terms

of c-cut label-partitions. We say that an L-partition P induces an agreement forest for

F1 and F2 if the subforest induced by P in F1 and the subforest induced by P in F2 are

homeomorphic. By definition, if an L-partition P = {L1, . . . , Lk} induces an agreement

forest for F1 and F2, and if F2 consists of c2 trees, then P is a (k−c2)-cut label-partition for

F2. This characterization and Lemma 2.1.4 also provide a convenient way for a branch-and-

search process: once we know that an edge e is not on the path connecting any two leaves

whose labels are in the same label-subset in the desired (k − c2)-cut label-partition P for

the forest F2, we can simply remove e from F2, and recursively construct a (k− c2−1)-cut

label-partition in the forest F2 − e.

Our study will be based on the following problem formulations using the above char-

acterization.

para-maf’. Given two leaf-labeled forests F1 and F2 over the same label-set

L, and a parameter k, is there a k′-cut label-partition for the forest F2 that

induces an agreement forest for F1 and F2, where k′ ≤ k?

max-maf’. Given two leaf-labeled forests F1 and F2 over the same label-set L,

construct an L-partition P such that P is a k-cut label-partition for the forest

F2 and that P induces an agreement forest for F1 and F2, with k minimized.

An L-partition P will be called a solution for the pair (F1,F2) of leaf-labeled forests

15

over the label-set L if P induces an agreement forest for F1 and F2. The value of the

solution P is c if P is a c-cut label-partition for F2. By this definition, constructing a

solution of value c for (F1,F2) is to find c edges in F2 whose removal results in a subforest

that is an agreement forest for (F1,F2). In particular, by Lemma 2.1.2, a minimum-value

solution for (F1,F2) induces an MAF for F1 and F2.

2.2 Multicut on trees problem

In the multicut on trees problem we are given a tree T , a set of requests R ⊆ V (T)×

V (T) between pairs of vertices in T , and a nonnegative integer k, and we are asked to

decide if we can remove at most k edges from the tree to disconnect all the requests in R

(i.e., every path in the tree that corresponds to a request in R contains at least one of the

removed edges).

2.2.1 Review on related research

The multicut on trees problem has applications in networking [21]. The problem is

known to be NP-hard, and its optimization version can be approximated to within ratio

2 [32]. We consider the multicut on trees problem from the parameterized complexity

perspective. We mention that the parameterized complexity of several graph separation

problems, including variants of the multicut on trees problem, was studied with respect to

different parameters by Marx in [54]. Guo and Niedermeier [34] showed that the multicut

on trees problem is fixed-parameter tractable by giving an O∗(2k) time algorithm for the

problem. (The asymptotic notation O∗(f(k)) denotes time complexity of the form f(k) ·

p(n), where p(n) is a polynomial in the input length n.) They also showed that multicut on

trees has an exponential-size kernel. Recently, Bousquet, Daligault, Thomassé, and Yeo,

improved the upper bound on the kernel size for multicut on trees problem to O(k6) [13].

2.2.2 Definitions and problem reformulations

We assume familiarity with basic graph theory and parameterized complexity notation

and terminology. For more information, we refer the reader to [25, 29, 58, 68].

For a graph H we denote by V (H) and E(H) the set of vertices and edges of H,

16

respectively; n(H) = |V (H)| and e(H) = |E(H)| are the number of vertices and edges in

H. For a set of vertices S ⊆ V (H), we denote by H[S] the subgraph of H induced by

the vertices in S. For a vertex v ∈ H, H − v denotes H[V (H) \ {v}], and for a subset of

vertices S ⊆ V (H), H − S denotes H[V (H) \ S]. By removing a subgraph H ′ of H we

mean removing V (H ′) from H to obtain H−V (H ′). Two vertices u and v in H are said to

be adjacent or neighbors if uv ∈ E(H). For two vertices u, v ∈ V (H), we denote by H −uv

the graph (V (H), E(H) \ {uv}), and by H + uv the simple graph (V (H), E(H) ∪ {uv}).

By removing an edge uv from H we mean setting H = H − uv. For a subset of edges

E′ ⊆ E(H), we denote by H −E′ the graph (V (H), E(H) \E′). For a vertex v ∈ H, N(v)

denotes the set of neighbors of v in H. The degree of a vertex v in H, denoted degH(v), is

|N(v)|. The degree of H, denoted ∆(H), is ∆(H) = max{degH(v) : v ∈ H}. The length of

a path in a graph H is the number of edges in it. A matching in a graph is a set of edges

such that no two edges in the set share an endpoint. A vertex cover for a graph H is a set

of vertices such that each edge in H is incident to at least one vertex in this set. A vertex

cover for H is minimum if its cardinality is minimum among all vertex covers of H; we

denote by τ(H) the cardinality/size of a minimum vertex cover of H.

A tree is a connected acyclic graph. A leaf in a tree is a vertex of degree at most 1.

A nonleaf vertex in a tree is called an internal vertex. The internal degree of a vertex v

in a tree is the number of nonleaf vertices in N(v). For two vertices u and v, the distance

between u and v in T , denoted distT (u, v), is the length of the unique path between u and

v in T . A leaf x in a tree is said to be attached to vertex u if u is the unique neighbor of x

in the tree. A caterpillar is a tree consisting of a path with leaves attached to the vertices

on the path. A forest is a collection of disjoint trees.

Let T be a tree with root r. For a vertex u 6= r in V (T), we denote by π(u) the parent

of u in T . A sibling of u is a child v 6= u of π(u) (if exists), an uncle of u is a sibling of

π(u), and a cousin of u is a child of an uncle of u. A vertex v is a nephew of a vertex u if

u is an uncle of v. For a vertex u ∈ V (T), Tu denotes the subtree of T rooted at u. The

children of a vertex u in V (T), denoted children(u), are the vertices in N(u) if u = r, and

17

in N(u)− π(u) if u 6= r. A vertex u is a grandparent of a vertex v if π(v) is a child of u. A

vertex v is a grandchild of a vertex u if u is a grandparent of v.

Let F be a forest. A request is a pair (u, v), where u, v ∈ V (F). Let R be a set of

requests. A subset of edges E′ ⊆ E(F) is said to be an edge cut, or simply a cut, for R if

for every request (u, v) in R, there is no path between u and v in F −E′. The size of a cut

E′ is |E′|. A cut E′ is minimum if its cardinality is minimum among all cuts. The multicut

problem in trees is defined as follows: given a tree T , a set of requests R ⊆ V (T)× V (T),

and a nonnegative integer parameter k, decide if there exists a cut of size at most k for R.

Since some of the folklore operations performed on the tree end up cutting edges from the

tree, researchers who work on the multicut in trees problem consider a generalization of

the problem to forests. We follow suit and define the following problem:

MULTICUT. Given a forest F , a set of requests R ⊆ V (F) × V (F) and a

parameter k, is there a cut of size at most k for R?

Let (F , R, k) be an instance of multicut on trees problem, and let uv be an edge in

E(F). If we know that edge uv can be included in the solution sought, then we can remove

uv from F and decrement the parameter k by 1; we say in this case that we cut edge uv.

By cutting a leaf we mean cutting the unique edge incident to it. If T is a rooted tree in F

and u ∈ T is not the root, we say that we cut u to mean that we cut the edge uπ(u). On the

other hand, if we know that edge uv can be excluded from the solution sought, we say in

this case that edge uv is kept, and we can contract it by identifying the two vertices u and

v, i.e., removing u and v and creating a new vertex with neighbors (N(u)∪N(v))\{u, v}).

If edge uv is contracted and w is the new vertex, then any request in R of the form (u, x)

or (v, x) is replaced by the request (w, x).

A leaf x in F is said to be good if there exists another leaf y such that x and y are

attached to the same vertex in F and (x, y) is a request in R; otherwise, x is said to be a

bad leaf.1 We define an auxiliary graph for F , denoted G for simplicity, as follows. The

1We note that we differ from the terminology used in [13]. What we call good leaves are called bad

18

vertices of G are the good leaves in F , and two vertices x and y in G are adjacent (in G) if

and only if x and y are attached to the same vertex of F and there is a request between x

and y in R. Without loss of generality, we shall call the vertices in G with the same names

as their corresponding good leaves in F , and it will be clear from the context whether we

are referring to the good leaves in F or to their corresponding vertices in G. Note that

there is no edge in G between two good leaves that are attached to different vertices even

though there could be a request between them. Therefore, G consists of isolated subgraphs,

each is not necessarily connected and is induced by the set of good leaves that are attached

to the same vertex in F . For an internal vertex u ∈ F we denote by Gu the subgraph of G

induced by the good leaves that are attached to u (if any).

It is not difficult to see that if C is a vertex cover for G then the edge-set EC = {uw ∈

E(F) | w ∈ C}, which has the same cardinality as C, cuts every request between a pair

of good leaves attached to the same vertex in F . On the other hand, for any cut K for

R, the vertices in G corresponding to the leaves in F that are incident to the edges in K

form a vertex cover for G. It follows that the number of edges in any cut K for F that are

incident to the leaves corresponding to the vertices in G is at least the size of a minimum

vertex cover for G.

2.3 Protein complex prediction problem

2.3.1 Review on related research

In the cell, proteins usually do not act in isolation but rather work together with other

proteins to form protein complexes. Protein complexes are functional modulars in biology

which are the basis of biological processes and together they form molecular machinery that

perform a vast array of biological functions [48]. It is important to develop mechanisms to

identify protein complexes; however to identify protein complexes through experiments re-

mains expensive and difficult. Thus, computational techniques are used to predict protein

leaves in [13], and vice versa. The reason for calling them good leaves is that it is much easier to get an
upper bound on their number that is not worse than the upper bound obtained on the bad leaves, which
involves some quite sophisticated techniques.

19

complexes. While a common strategy is to predict complexes from given protein-protein

interaction networks [6] [44] [63] [4] [38] [50] [19] [59] [53] [57] [42] [64] [67], recent com-

bined experimental-computational strategies utilize these techniques to construct protein

complexes from purification data [33] [39] [47].

Apart from the general agreement that protein complexes form dense subgraphs in an

interaction network, Spirin and Mirny [65], which leads to the strategy of first generating

small dense subgraphs and either extending or merging these subgraphs to construct protein

complexes [6] [50], detailed understanding of the organization of protein complexes remains

inadequate. To improve the modeling of complexes, recent approaches separate the tasks

of predicting a core complex and its attachment proteins [49] [72].

2.3.2 Definitions and problem reformulations

Let G be a graph which represents a protein-protein interaction network. In the protein

complex prediction problem, we are supposed to find dense regions in graph G. We may

formulate the protein complex prediction problem (PCPrediction) as a graph clustering

problem.

PCPrediction. Given a graph G, find a set of dense subgraphs C′ of G.

The solutions to above problem depends on the definition to the dense subgraphs of G.

In fact, protein complex prediction problem is a practical problem in bioinformatics. The

performance to the predicted protein complexes depends on the measures of the similarity

between the known protein complexes and the predicted protein complexes. Thus, the

dense subgraphs that we mention in above problem is with respect to a kind of measure to

the similarity between two sets of subgraphs in G. Several measures (complex agreement

measure, complex accuracy measure and protein pair agreement measure) have been pro-

posed to evaluate the performances of predicted protein complexes. In this problem, we

are given a set of protein-protein interaction networks (MIPS [56], DIP [73] and BioGRID

[66]) , and for each protein-protein interaction network, we are asked to predict protein

complexes such that the prediction has good performances with respect to the measures.

20

3. ALGORITHMS TO MAXIMUM AGREEMENT FOREST PROBLEM

In this chapter, we present our reduction rules, parameterized algorithms and approx-

imation algorithms to maximum agreement forest problem.

3.1 Bottommost sibling sets and reduction rules

Because of Lemma 2.1.1, we will assume that there are no unlabeled vertices of degree

less than 3 in a leaf-labeled forest. Moreover, if our algorithms create unlabeled vertices of

degree less than 3 during their processing, then we will immediately contract these vertices

and work on the resulting forests without unlabeled vertices of degree less than 3.

A tree is a single-vertex tree if it consists of a single vertex, which is a leaf of the tree.

A tree is a single-edge tree if it consists of a single edge, which contains two leaves and no

non-leaf vertices. The parent of a leaf v in a tree with at least three vertices is the unique

non-leaf vertex adjacent to v.

Two leaves in a forest are siblings if they either share the same parent, or are the

two leaves of a single-edge tree. A sibling set is a set of leaves that are all siblings. A

bottommost sibling set (abbr. BSS) is a maximal sibling set X such that either the degree

of their parent is at most |X|+ 1, or X is the leaf set of a single-edge tree. By definition,

the leaf of a single-vertex tree is not a BSS. Moreover, by our assumption, an unlabeled

vertex has degree at least 3. Thus, a BSS contains at least two leaves, and a leaf-labeled

tree that is not single-vertex must contain a BSS.

In the rest of this section, we fix two leaf-labeled forests F1 and F2 over the same label-

set L, and consider their agreement forests. Note that if the contraction is not applicable

on an agreement forest F∗ for F1 and F2, then each vertex in F∗ corresponds to a unique

vertex in F1 as well as to a unique vertex in F2. Therefore, in this case, it makes sense to

say that two vertices in F∗ are “adjacent in F1,” or that a vertex v in F∗ is “the parent of

a leaf w in F2.” Moreover, because of the one-to-one mapping between the leaf set and the

label-set of a leaf-labeled forest, we can conveniently refer to a leaf by its label, without

21

any confusions. For example, we may say that “a label ` is in the tree T in the forest F ,”

or that “the parent of the label ` is the vertex v.”

If F1 consists of only single-vertex trees, then F1 itself is the only agreement forest for

F1 and F2. Therefore, in the following discussion, we assume that F1 contains at least one

tree that is not a single-vertex tree. Thus, F1 always contains a BSS.

Lemma 3.1.1. Let X1 be a BSS in F1, and let P be a solution for the pair (F1,F2). Then

P has at most one label-subset Li that intersects `(X1) and |Li| > 1.

Proof. Let F∗ be the agreement forest for F1 and F2 that is induced by P. Let x ∈ X1

such that `(x) ∈ Li and |Li| > 1 for a label-subset Li in P. If X1 is the leaf set of a

single-edge tree in F1, then we must have `(X1) = Li and the lemma is proved. If X1 is

not the leaf set of a single-edge tree in F1, then since |Li| > 1, the subset F1[Li] must

contain the parent of x in F1. Thus, the only way to make a sibling x′ ∈ X1 of x in F1 to

be in a disjoint subtree F1[Lj], where j 6= i, is to cut the edge between x′ and its parent,

i.e., Lj = {`(x′)} and |Lj | = 1.

Let P be an L-partition, and let Y be a set of leaves in F2. Denote by PY the L-partition

that consists of all label-subsets in P that do not intersect `(Y), plus a label-subset that

is the union of all label-subsets in P that intersect `(Y).

Lemma 3.1.2. Let X1 be a BSS in the forest F1, and let Y be a sibling set in the forest

F2 with `(Y) ⊆ `(X1). Let P be a solution for the pair (F1,F2) such that a label-subset in

P contains at least two labels in `(Y). Then, the L-partition PY is also a solution for the

pair (F1,F2).

Proof. If |Y | ≤ 2, then P = PY and the lemma is obvious. Thus, we can assume that

neither X1 nor Y is the leaf set of a single-edge tree. Suppose that the agreement forest

for F1 and F2 induced by P = {L1, . . . , Lk} is F∗ = {T1, . . . , Tk}, where `(Ti) = Li for all

i, and the tree T1 contains two labels `0 and `1 in `(Y). Then the parent of `0 and `1 in

F1 is in the subtree F1[L1], and the parent of `0 and `1 in F2 is in the subtree F2[L1]. By

22

Lemma 3.1.1, any other tree in F∗, say T2, that contains labels in `(Y) must be a single-

vertex tree whose unique label `2 is in `(Y). Thus, the label subset L1 ∪ L2 = L1 ∪ {`2}

induces a subtree T1+2, in both F1 and F2, which is the tree T1 plus a new leaf labeled `2

attached to the parent of `0 and `1. The tree T1+2 intersects no other trees F1[Li] and F2[Lj]

in F1 and F2, for i, j 6= 1, 2. Therefore, the L-partition P ′ = {L1 ∪L2, L3, . . . , Lk} induces

an agreement forest for F1 and F2. Repeating this process shows that the L-partition PY

induces an agreement forest for F1 and F2.

The following lemma shows that a solution for the pair (F1,F2) is symmetric with

respect to two labels when certain conditions are enforced.

Lemma 3.1.3. Let X1 be a BSS in F1, and let Y be a sibling set in F2 with `(Y) ⊆ `(X1).

For any solution P for (F1,F2), swapping two labels of `(Y) in P also results in a solution

for (F1,F2).

Proof. Let F∗ be the agreement forest for F1 and F2 induced by P. Let y and y′ be in Y

whose labels are in different label-subsets in P. By Lemma 3.1.1, at least one of `(y) and

`(y′), say `(y), is in a single-vertex tree Ti in F∗, where the tree Ti is obtained from F1 and

F2 by removing the edge incident to `(y). Since the labels `(y) and `(y′) are symmetric in

the forests F1 and F2 (`(y) and `(y′) are siblings in both F1 and F2), removing the edge

incident to `(y) and removing the edge incident to `(y′) in F1 or in F2 result in exactly

the same forest structure, with only the labels `(y) and `(y′) swapped. Therefore, if the

L-partition P induces the agreement forest F∗ for F1 and F2, then by swapping `(y) and

`(y′) in P, which corresponds to replacing the removal of the edge incident to `(y) with the

removal of the edge incident to `(y′), we get an L-partition that still induces an agreement

forest for F1 and F2.

Now we are able to state our main result in this section, which will play an important

role in our algorithms for the maximum agreement forest problems.

23

Theorem 3.1.4. Let X1 be a BSS in F1 and let Y be a sibling set in F2 with `(Y) ⊆ `(X1).

For any u0 ∈ Y , there is a maximum agreement forest F∗ for F1 and F2 such that either

(1) all labels in `(Y) are in a single tree in F∗, or (2) each label `(u) in `(Y), where u 6= u0,

is in a single-vertex tree in F∗.

Proof. Let P be the label-partition for a maximum agreement forest F ′ for F1 and F2. If a

tree in F ′ contains more than one label in `(Y), then by Lemma 3.1.2, the L-partition PY

also induces an agreement forest for F1 and F2, where PY is the L-partition that consists

of all label-subsets in P that do not intersect `(Y), plus a label-subset that is the union of

all label-subsets in P that intersect `(Y). The agreement forest induced by PY is obviously

maximum and satisfies the condition (1) in the theorem.

If each tree in F ′ contains at most one label in `(Y), then by Lemma 3.1.1, at least

|Y | − 1 labels in `(Y) are contained in unit label-subsets in P. If a leaf u 6= u0 in Y has

its label `(u) in a label-subset in P that is not a unit label-subset, then we simply swap

the labels `(u) and `(u0) in P. By Lemma 3.1.3, the resulting L-partition P ′ also induces

an agreement forest F∗ for F1 and F2, which is obviously also maximum, and satisfies the

condition (2) in the theorem.

In the following, we present two simple reduction rules on a given pair (F1,F2) of

leaf-labeled forests over the same label-set L.

Reduction Rule 1. If a label ` is in a single-vertex tree in one of the forests F1 and F2,

then remove the edge (if any) incident to the label ` in the other forest.

Lemma 3.1.5. Let (F ′1,F ′2) be the pair produced by Reduction Rule 1 on the pair (F1,F2),

then an L-partition P is a solution of value c for (F1,F2) if and only if P is a solution of

value c′ for (F ′1,F ′2), where c′ = c− 1 if an edge in F2 is removed, and c′ = c otherwise.

Proof. That the pairs (F1,F2) and (F ′1,F ′2) have the same collection of solutions follows

directly from the fact that if the label ` is in a single-vertex tree in one of the forests F1

24

and F2, then the label ` must be in a single-vertex tree in every agreement forest for F1

and F2. The relation between the values c and c′ follows from Lemma 2.1.4.

Let X be a sibling set in a forest. By shrinking X, we mean we delete all leaves in X,

and introduce a new leaf vX with a new label `X (e.g., we can use `(X) for `X), and let vX

be adjacent to the common neighbor of the leaves in X if such a common neighbor exists.

Note that if the sibling set X is the leaf set of a single-edge tree, then shrinking X gives

a single-vertex tree with the vertex vX . If X is the set of all leaves of a tree with a single

non-leaf (and unlabeled) vertex v, then shrinking X makes v a degree-1 vertex adjacent to

the new leaf vX , and v will be contracted so that the resulting tree becomes a single-vertex

tree with the leaf vX .

Reduction Rule 2. Let X1 be a BSS in F1, and let X2 be a set of leaves in F2 such

that `(X1) = `(X2). If X2 is the leaf set of a single-edge tree in F2, or if X2 is a sibling

set whose parent has degree at most |X2|+ 1, then shrink X1 in F1, and shrink X2 in F2.

Note that after applying Reduction Rule 2, if a vertex v in either F1 or F2 is adjacent

to the new leaf (there is at most one such vertex), then the degree of v is at most 2. In

particular, if v is unlabeled, then v will be contracted.

Lemma 3.1.6. Let (F ′1,F ′2) be the pair produced by Reduction Rule 2 on the pair (F1,F2),

then the pair (F1,F2) has a solution of value at most c if and only if the pair (F ′1,F ′2) has

a solution of value at most c.

Proof. Suppose that the pair (F ′1,F ′2) is obtained from the pair (F1,F2) by shrinking a

BSS X1 in F1 and the corresponding leaf set X2 in F2 into a single leaf labeled `X2 (= `X1).

If the pair (F ′1,F ′2) has a solution P ′ = {L′1, L′2, . . . , L′r} of value c, in which the label

`X2 is in the label-subset L′1, then obviously P = {L1, L2, . . . , Lr} is a solution of value c

for the pair (F1,F2), where Li = L′i for i 6= 1, and L1 = (L′1 \ {`X2}) ∪ `(X2).

For the other direction, suppose that the pair (F1,F2) has a solution of value c. Let

P = {L1, L2, . . . , Lr} be a solution of minimum value c′ for (F1,F2), where c′ ≤ c and P

25

induces a maximum agreement forest F∗ for F1 and F2. By Theorem 3.1.4, we can assume

that either (1) all labels in `(X2) are in the same tree in F∗, or (2) each tree in F∗ contains

at most one label in `(X2) and at most one tree T0 in F∗ containing a label `0 in `(X2) is

not a single-vertex tree. However, case (2) cannot happen: since |X2| ≥ 2, by adding all

labels except `0 in `(X2) to the tree T0, we would get an agreement forest for F1 and F2

that consists of fewer trees than F∗ does (note that this can always be done, no matter

if the tree T0 is a single-vertex tree or not), contradicting the assumption that F∗ is a

maximum agreement forest for F1 and F2.

Thus, all labels in `(X2) are in the same tree T in F∗. Moreover, by the conditions

enforced on the sets X1 and X2, all leaves in T with labels in `(X2) are siblings, and if they

have a common neighbor v, then v has degree at most |X2|+1. With all these observations,

we derive that if we shrink the leaves with labels in `(X2) in F∗, we will get a forest F∗∗

that is an agreement forest for F ′1 and F ′2, and the label-partition P ′′ of F∗∗ is a solution

of value c′ ≤ c for the pair (F ′1,F ′2).

The following theorem follows directly from the definitions of Reduction Rules 1-2.

Theorem 3.1.7. For a pair (F1,F2) of leaf-labeled forests on which Reduction Rules 1-2

are not applicable, (1) a label is in a single-vertex tree in F1 if and only if it is in a single-

vertex tree in F2; and (2) for any sibling set X2 in F2 such that the set X1 in F1 with

`(X1) = `(X2) is a BSS, the siblings in X2 must have a parent and the parent has degree

at least |X2|+ 2.

3.2 maf is fixed-parameter tractable

In this section, we present a parameterized algorithm for the para-maf’ problem, and

show that the problem, thus also the original para-maf problem, are fixed-parameter

tractable.

Let (F1,F2; k) be an instance of the para-maf’ problem, for which we look for a

solution of value not larger than k for the pair (F1,F2) of leaf-labeled forests. Because of

Lemmas 3.1.5 and 3.1.6, during our process, we will exhaustively apply Reduction Rules 1-

26

2 on the pair of forests whenever the rules are applicable, and work on the reduced instance

(note that by Lemma 3.1.5, in case we apply Reduction Rule 1 that removes an edge in

the forest F2, we will also decrease the parameter k by 1). An instance is strongly reduced

if these reduction rules are not applicable on the corresponding pair of forests. Therefore,

throughout the discussion, we will assume that our instance (F1,F2; k) is always a strongly

reduced instance.

If all trees in F1 are single-vertex, then by Theorem 3.1.7, all trees in F2 are also single-

vertex, and the problem becomes trivial: F1 = F2 is the unique agreement forest for F1

and F2.

Thus, we can assume that F1 contains a tree that is not single-vertex. As a consequence,

there is a BSS X1 in F1 such that |X1| ≥ 2. Let X2 be the leaf set in F2 such that

`(X2) = `(X1).

Our algorithm is based on a branch-and-bound process. We will introduce a set of

branching rules. A branching rule is safe if the branching rule applied on an instance I for

para-maf’ produces a set S of instances for para-maf’ such that I is a yes-instance if

and only if at least one of the instances in S is a yes-instance. We say that a branching rule

satisfies the recurrence relation T (k) = T (k1) + · · ·+ T (kr) if on an instance (F1,F2; k) of

para-maf’, the branching rule produces r instances (F1,1,F1,2; k1), . . ., (Fr,1,Fr,2; kr) for

the problem. Moreover, we assume that the function T (k) is non-decreasing. Therefore, if

k ≤ k′ then T (k) ≤ T (k′).

Case 1. Leaves in X2 are not in the same tree in F2.

Branching Rule 1. Let u2 and v2 be two leaves in X2 that are in different trees in F2,

then decrease k by 1, and branch into two ways: [W1] cut u2 in F2; and [W2] cut v2 in F2.

Lemma 3.2.1. Branching Rule 1 is safe, and satisfies the recurrence relation T (k) =

2T (k − 1).

Proof. That the branching rule satisfies the recurrence relation T (k) = 2T (k − 1) follows

directly from the rule. Let u1 and v1 be two leaves in F1 such that `(u1) = `(u2) and

27

`(v1) = `(v2). Since u2 and v2 are in different trees in F2, the two labels `(u2) and `(v2)

must be in different trees in an agreement forest for F1 and F2. Therefore, in order to

construct an agreement forest from F1 for F1 and F2, we must remove edges in F1 to

separate the leaves u1 and v1 into two different trees. Because u1 and v1 are siblings, the

only way to separate the leaves u1 and v1 into two different trees is to either remove the edge

incident to u1 or remove the edge incident to v1. Each of these edge removals makes one of

u1 and v1 in a single-vertex tree. Therefore, in an agreement forest for F1 and F2, either

u2 or v2 must be in a single-vertex tree. As a consequence, at least one of the branching

ways [W1] and [W2] in the branching rule must correctly remove an edge. Moreover, by

Lemma 2.1.4, a k′-cut label-partition for F2 that induces an agreement forest for F1 and

F2, where k′ ≤ k, will become a (k′− 1)-cut label-partition for the forest obtained from F2

by the correct branch of the branching rule.

Case 2. X2 is a sibling set in F2.

Because the instance (F1,F2; k) is strongly reduced, by Theorem 3.1.7, X2 has a parent

p2 and the degree of p2 is at least |X2|+ 2.

Branching Rule 2. If X2 is a sibling set, fix a leaf u2 in X2, and let E2 = {e1, . . . , eh}

be the set of edges that are incident to the parent p2 of X2 but not to any leaf in X2,

h ≥ 2. Then branch into h + 1 ways: [W (0)] remove all edges incident to X2 except the

one incident to u2 and decrease k by |X2| − 1; and, for each 1 ≤ i ≤ h, [W (i)] remove all

edges in E2 except ei and decrease k by h− 1.

Lemma 3.2.2. Branching Rule 2 is safe, and satisfies the recurrence relation T (k) =

T (k − (|X2| − 1)) + hT (k − (h− 1)).

Proof. Again that Branching Rule 2 satisfies the recurrence relation T (k) = T (k− (|X2| −

1)) + hT (k − (h− 1)) follows directly from the branching rule.

By Theorem 3.1.4, we can assume that for a maximum agreement forest F∗ for F1

and F2, either all labels in `(X2) are in the same tree in F∗, or each leaf in X2 \ {u2}

28

has its label in a single-vertex tree in F∗. In case each leaf in X2 \ {u2} has its label in a

single-vertex tree in F∗, the branching way [W (0)] correctly removes the edges.

Suppose that all labels in `(X2) are in the same tree in F∗. Then all labels in `(X2)

must be siblings in F∗. Because the parent p1 of X1 has degree at most |X1|+1, the parent

p∗ of the labels in `(X2) in the forest F∗ has its degree at most |X2| + 1. Therefore, in

the forest F2, all edges in E2 except at most one must be removed in order to construct

F∗ from F2. Thus, in this case, one of the branching ways [W (i)] correctly removes the

edges. Finally, it is easy to verify that Branching Rule 2 decreases the parameter value k

correctly.

Case 3. X2 contains a sibling set Y2 with |Y2| ≥ 2.

We consider this case when Cases 1-2 do not apply. Therefore, the set X2 contains a

leaf z2 that is not a sibling of the leaves in Y2, but z2 and Y2 are in the same tree. Fix a

leaf u2 in Y2. Let P be the path in F2 that connects the parent p2 of Y2 and the leaf z2.

Let E2 be the set of edges that are not on the path P but are adjacent to a vertex w 6= p2

on the path P . See Figure 3.1(A) for an illustration of this situation. Note that the edge

set E2 cannot be empty because the path P consists of at least three vertices and by our

assumption of the contraction operation, no unlabeled vertex has degree less than 3.

s
sss s s�

�
�

�
�

�

A
A
A

@
@
@︸ ︷︷ ︸

Y1︸ ︷︷ ︸
X1

z1

(in F1)

ss s s s s s�
�
A
A

L
L
�
�

L
L
�
�

L
L
�
�

A
A︸ ︷︷ ︸

Y2

z2
(in X2)

︷ ︸︸ ︷E2

(in F2)

p2

u2

(A)

ss s s�
�

A
A

A
A
�
�

A
A
�
�

u2 v2

w1 w2

︷ ︸︸ ︷E2

(in F2)

(B)

ss s s�
�

A
A

A
A

�
�

u2 v2

w1 w2

︷ ︸︸ ︷E2

(in F2)

e1 e2

(C)

Figure 3.1: (A) Situation for case 3, (B) Situation for subcase 4.2, (C) Situation for subcase
4.3.

29

Branching Rule 3. In the situation of Figure 3.1(A), branch into three ways: [W1] cut

all leaves in Y2 except u2 in F2 and decrease k by |Y2| − 1; [W2] cut z2 in F2 and decrease

k by 1; and [W3] cut all edges in E2 in F2 and decrease k by |E2|.

Lemma 3.2.3. Branching Rule 3 is safe, and satisfies the recurrence relation T (k) ≤

3T (k − 1).

Proof. Let Y1 be the subset of the leaf set X1 in F1 such that `(Y1) = `(Y2), and let z1 be

the leaf in X1 such that `(z1) = `(z2). See Figure 3.1.

By Theorem 3.1.4, there is a maximum agreement forest F∗ for F1 and F2 such that

either (3.1) all labels in `(Y2) are in the same tree in F∗, or (3.2) each leaf in Y2 \ {u2}

has its label in a single-vertex tree in F∗. The branching way [W1] correctly cuts edges

for subcase (3.2).

There are two different possibilities for subcase (3.1).

Subsubcase 3.1.1: The label `(z2) and the label set `(Y2) are not in the same tree in F∗.

Since the leaf z1 with `(z1) = `(z2) and the set Y1 with `(Y1) = `(Y2) in F1 are siblings, in

order to construct the agreement forest F∗ from the forest F1, we must separate the leaf

z1 from the set Y1 and keep the set Y1 in the same tree. The only way to do this is to cut

the leaf z1 (note that |Y1| ≥ 2), which makes the label `(z1) = `(z2) in a single-vertex tree

in F∗. Therefore, in this case, the branching way [W2] correctly cuts the edge.

Subsubcase 3.1.2: The label `(z2) and `(Y2) are in the same tree in F∗. Since Y1 and z1

are siblings in F1, if we want to keep the label `(z1) = `(z2) and the label set `(Y1) = `(Y2)

in the same tree in F∗, then `(z1) and `(Y1) must be siblings in F∗. Therefore, in order

to construct the agreement forest F∗ from the forest F2 and make `(z2) and `(Y2) become

siblings, we must cut all edges in E2. Thus, the branching way [W3] correctly handles this

case.

The recurrence relation for Branching Rule 3 is T (k) = T (k−(|Y2|−1))+T (k−1)+T (k−

|E2|). Since |Y2| ≥ 2, |E2| ≥ 1, and T (k) is a non-decreasing, we have T (k) ≤ 3T (k−1).

30

Case 4. No two leaves in X2 are siblings in F2.

If none of Cases 1-3 apply, then all leaves in the set X2 are in the same tree in the forest

F2 and no two leaves in X2 are siblings. We split this case into three subcases depending

on the size |X1| and the number of unlabeled vertices on a path connecting two leaves in

X2. Let u2 and v2 be two arbitrary leaves in X2, and let P be the path in F2 that connects

u2 and v2. Denote by int(P) = {w1, . . . , wh} the set of vertices on P that are unlabeled,

h ≥ 2.

Subcase 4.1: The path P consists of at least five vertices, i.e., h ≥ 3.

Branching Rule 4.1 Let u2 and v2 be leaves inX2 such that the path P = {u2, w1, . . . , wh, v2}

in F2 satisfies h ≥ 3. Then branch into (h+ 2) ways: [W1] cut u2 in F2 and decrease k by

1; [W2] cut v2 in F2 and decrease k by 1; and, for each 1 ≤ i ≤ h, [W (2 + i)] cut the edges

incident to int(P) \ {wi} but not on the path P , and decrease k by the number of edges

cut.

Lemma 3.2.4. Branching Rule 4.1 is safe, and satisfies the recurrence relation T (k) ≤

2T (k − 1) + hT (k − (h− 1)).

Proof. Let u1 and v1 be the leaves in the set X1 in the forest F1, with `(u1) = `(u2) and

`(v1) = `(v2). Let F∗ be a maximum agreement forest for F1 and F2.

If `(u2) and `(v2) are not in the same tree in F∗, then to construct F∗ from the forest

F1, we need to separate the leaves u1 and v1 in X1 into different trees. Since u1 and v1 are

siblings, the only way to separate u1 and v1 is to either cut the edge incident to u1 or cut

the edge incident to v1. Each of these makes one of u1 and v1 a single-vertex tree. Thus,

in this case, either label `(u2) = `(u1) or label `(v2) = `(v1) is in a single-vertex tree in F∗.

The branching ways [W1] and [W2] correctly handle these two cases in F2.

If the labels `(u2) and `(v2) are in the same tree in F∗, then since u1 and v1 are siblings

in F1, the labels `(u2) and `(v2) must also be siblings in F∗. Therefore, in this case, in

order to construct the agreement forest F∗ from the forest F2, for all unlabeled vertices

w′ in int(P), except at most one wi, we must cut all edges incident to w′ but not on the

31

path P , so that the labels `(u2) and `(v2) can become siblings in F∗. This case is correctly

handled by branching way [W (2 + i)] in the branching rule.

For each i for the branching way W (2 + i), we cut hi =
∑

j 6=i |E′j | edges, where E′j is

the set of edges in F2 that are incident to wj but not on the path P . Thus, the recurrence

relation for the branching rule is T (k) = 2T (k − 1) +
∑

i T (k − hi). Since no unlabeled

vertex has degree less than 3, |E′j | ≥ 1 for all j, and hi ≥ h − 1 for all i. Since T (k) is

non-decreasing, we have T (k) ≤ 2T (k − 1) + hT (k − (h− 1)).

Note that if |X2| ≥ 3 and no two leaves in X2 are siblings, then there are always two

leaves u2 and v2 in X2 such that the path connecting u2 and v2 in F2 consists of at least 5

vertices. In this case, Subcase 4.1 is always applicable. Therefore, in the following, we will

assume that the set X2 contains exactly two leaves u2 and v2, the path P connecting u2

and v2 consists of exactly 4 vertices, of which two are unlabeled, and int(P) = {w1, w2}.

Let E2 be the set of edges that are incident to either w1 or w2 but not on the path P .

Subcase 4.2: E2 = {e1, . . . , eh} with h ≥ 3, see Figure 3.1(B).

Branching Rule 4.2 Under the conditions of Subcase 4.2, branch into (2 + h) ways:

[W1] cut u2 in F2 and decrease k by 1; [W2] cut v2 in F2 and decrease k by 1; and, for

1 ≤ i ≤ h, [W (2 + i)] for the edge ei in E2, cut all edges in E2 except ei and decrease k by

h− 1.

Lemma 3.2.5. Branching Rule 4.2 is safe, and satisfies the recurrence relation T (k) =

2T (k − 1) + hT (k − (h− 1)).

Proof. Let u1 and v1 be the leaves in the set X1 in the forest F1, with `(u1) = `(u2) and

`(v1) = `(v2). Let F∗ be a maximum agreement forest for F1 and F2.

If the labels `(u2) and `(v2) are not in the same tree in F∗, then, similar to Subcase

4.1, since u1 and v1 are siblings in F1, at least one of the labels `(u2) and `(v2) must be

in a single-vertex tree in F∗. The branching ways [W1] and [W2] correctly handle these

cases in F2.

32

Suppose that `(u2) and `(v2) are in the same tree T in F∗. If T is a single-edge tree,

then all edges in E2 should be removed in F2 to make `(u2) and `(v2) induce a single-edge

tree in F∗. If `(u2) and `(v2) have a parent p∗ in F∗, then p∗ must correspond to the

parent p1 of u1 and v1 in F1. Since u1 and v1 are the only children of p1 and since X1

is a BSS, the vertex p1 has degree at most 3 in F1. As a consequence, the vertex p∗ has

degree at most 3 in F∗. Therefore, all edges in E2 except at most one must be removed

when we construct the agreement forest F∗ from F2. These cases are correctly handled by

branching ways [W (2 + i)].

Branching Rule 4.2 obviously satisfies the recurrence relation T (k) = 2T (k−1)+hT (k−

(h− 1)).

Since the leaves u2 and v2 in F2 are not siblings, the path P connecting u2 and v2 has

at least two unlabeled vertices. Since each unlabeled vertex has degree at least 3, we must

have |E2| ≥ 2. As a consequence, only the case where |E2| = 2 is not covered by the above

cases.

Subcase 4.3: E2 = {e1, e2}, see Figure 3.1(C).

Branching Rule 4.3 Under the conditions of Subcase 4.3, decrease k by 1, and branch

into three ways: [W0] cut u2 in F2; [W1] cut e1 in E2; and [W2] cut e2 in E2.

Lemma 3.2.6. Branching Rule 4.3 is safe, and satisfies the recurrence relation T (k) =

3T (k − 1).

Proof. Let u1 and v1 be the leaves in the set X1 in the forest F1, with `(u1) = `(u2) and

`(v1) = `(v2). Let F∗ be a maximum agreement forest for F1 and F2.

If `(u2) and `(v2) are in the same tree in F∗, then, as for Subcase 4.2, at least one of

the two edges e1 and e2 in E2 should be removed in order to construct the agreement forest

F∗ from F2. These cases are handled correctly by the branching ways [W1] and [W2].

If `(u2) and `(v2) are in different trees in F∗, then since u1 and v1 are siblings in F1,

at least one of `(u2) and `(v2) is in a single-vertex tree in F∗. If u2 is in a single-vertex

33

tree in F∗, then branching way [W0] removes the correct edge. If v2 is in a single-vertex

tree in F∗, then since the two internal vertices of the path P have degree exactly 3 (see

Figure 3.1(C)), cutting v2 and cutting u2 give two leaf-labeled forests that are almost

homeomorphic except that the labels `(u2) and `(v2) are swapped. Therefore, swapping

the labels `(u2) and `(v2) in the label-partition for F∗ gives an L-partition that also induces

a maximum agreement forest for F1 and F2, in which the label `(u2) is in a single-vertex

tree. In summary, in case `(u2) and `(v2) are in different trees in F∗, it is always safe to

cut the leaf u2 in F2 when we construct a maximum agreement forest for F1 and F2. The

branching way [W0] correctly handles this case.

Branching Rule 4.3 obviously satisfies the recurrence relation T (k) = 3T (k − 1).

An instance (F1,F2; k) of para-maf’ with k ≤ 0 can be easily handled: if k < 0 then

it is a no-instance; and if k = 0 then it is a yes-instance if and only if F2 is a subforest

of F1. Also, as we remarked before, if the forest F1 consists of only single-vertex trees,

then the maximum agreement forest for F1 and F2 is just F1 itself, and it is again easy to

decide if (F1,F2; k) is a yes-instance. On the other hand, if F1 contains a tree that is not a

single-vertex tree, then F1 contains a BSS X1 of at least two leaves. Under the assumptions

that the forest F1 contains a BSS X1 and that the contraction operation and reduction

rules are applied whenever they are applicable, Cases 1-4 above cover all possible cases

for a given instance (F1,F2; k) for the para-maf’ problem. Therefore, our parameterized

algorithm just proceeds each of the cases and applies the corresponding branching rule, as

given in Figure 3.2.

We need the following lemma for the recurrence relations for the analysis of our algo-

rithm.

Lemma 3.2.7. Let Th(k) be a non-decreasing and positive-valued function satisfying the

recurrence relation Th(k) = 2Th(k−1) +hTh(k− (h−1)), where h ≥ 3 is a constant. Then

2k ≤ Th(k) ≤ 3k.

Proof. Because hTh(k− (h− 1)) ≥ 0, we have Th(k) ≥ 2Th(k− 1), which gives Th(k) ≥ 2k.

34

Parameterized Algorithm Para-MAF
input: two leaf-labeled forests F1 and F2, and a parameter k
output: a solution of value at most k for (F1,F2).

/** assume (F1,F2; k) is strongly reduced, and contraction is not applicable on F1 and F2.
1 if k ≤ 0 or F1 consists of only single-vertex trees then solve the problem directly;
2 Let X1 be a BSS in F1, and let X2 be the leaf set in F2 such that `(X1) = `(X2);
3 switch
3.1 Case 1: apply Branching Rule 1, and recursively work on the resulting instances;
3.2 Case 2: apply Branching Rule 2, and recursively work on the resulting instances;
3.3 Case 3: apply Branching Rule 3, and recursively work on the resulting instances;
3.4 Case 4.1: apply Branching Rule 4.1, and recursively work on the resulting instances;
3.5 Case 4.2: apply Branching Rule 4.2, and recursively work on the resulting instances;
3.6 Case 4.3: apply Branching Rule 4.3, and recursively work on the resulting instances.

Figure 3.2: A parameterized algorithm for para-maf’

We prove the other direction by induction on h. For the base case h = 3, the recur-

rence relation becomes T3(k) = 2T3(k − 1) + 3T3(k − 2). Using the standard technique in

parameterized computation [25], we get T3(k) = 3k.

For general h ≥ 3, let Th(k) = ckh. By the recurrence relation, ckh = 2ck−1h + hc
k−(h−1)
h .

Simplifying it gives (ch− 2)ch−2h = h. Replacing h by h+ 1, we get (ch+1− 2)ch−1h+1 = h+ 1.

From (ch − 2)ch−2h = h and the inductive hypothesis 2 ≤ ch ≤ 3, we get (ch − 2)ch−1h =

hch ≥ h+ 1. Therefore, (ch − 2)ch−1h ≥ (ch+1 − 2)ch−1h+1, which implies ch ≥ ch+1. Now the

inductive hypothesis ch ≤ 3 implies ch+1 ≤ 3, which shows Th+1(k) ≤ 3k and the induction

goes through.

Now we are ready to analyze the algorithm Para-MAF. For an instance (F1,F2; k)

of para-maf’, the execution of the algorithm is depicted by a search tree whose leaves

correspond to the conclusions of the algorithm. Each internal node of the search tree

corresponds to a branch based on the branching rules. Let T (k) be the number of leaves in

the search tree of the algorithm on the input (F1,F2; k). Then the function T (k) satisfies

the recurrence relations given for the branching rules (note that we can assume that the

function T (k) is non-decreasing):

35

(1) By Lemma 3.2.1, Branching Rule 1 satisfies the recurrence relation T (k) = 2T (k−

1) ≤ 3T (k − 1), which satisfies T (k) ≤ 3k;

(2) By Lemma 3.2.2, Branching Rule 2 satisfies the recurrence relation

T (k) = T (k − (|X2| − 1)) + hT (k − (h− 1)) ≤ T (k − 1) + hT (k − (h− 1)),

where |X2| ≥ 2 and h ≥ 2. For h = 2, the recurrence relation becomes T (k) ≤ 3T (k − 1),

which satisfies T (k) ≤ 3k. For h ≥ 3, the recurrence relation satisfies:

T (k) ≤ T (k − 1) + hT (k − (h− 1)) ≤ 2T (k − 1) + hT (k − (h− 1)).

By Lemma 3.2.7, the function T (k) also satisfies T (k) ≤ 3k;

(3) By Lemma 3.2.3, Branching Rule 3 satisfies the recurrence relation T (k) ≤ 3T (k−

1), which gives T (k) ≤ 3k;

(4.1-4.2) By Lemmas 3.2.4-3.2.5, Branching Rules 4.1 and 4.2 satisfy the recurrence

relation T (k) ≤ 2T (k− 1) + hT (k− (h− 1)), where h ≥ 3. By Lemma 3.2.7, T (k) satisfies

T (k) ≤ 3k;

(4.3) By Lemma 3.2.6, Branching Rule 4.3 satisfies the recurrence relation T (k) ≤

3T (k − 1), which again gives T (k) ≤ 3k.

Thus, each of the branching rules in the algorithm Para-MAF satisfies the relation

T (k) ≤ 3k, which implies, inductively, that the search tree of the algorithm has at most 3k

leaves. Finally, it is easy to verify that each of the contraction operation, Reduction Rules

1-2, and Branching Rules 1-3, 4.1-4.3 takes time O(n), where n is the number of leaves in

the input forests. This concludes our main result in this section:

Theorem 3.2.8. The parameterized problem para-maf’ can be solved in time O(3kn), so

the problem is fixed-parameter tractable.

It is straightforward to see how the original problem para-maf is solved using the

algorithm Para-MAF, where two leaf-labeled trees T1 and T2 and a parameter k are

36

given, asking if there is an agreement forest of at most k trees for T1 and T2. The problem

can be simply regarded as an instance (T1, T2; k − 1) of the para-maf’ problem where we

are looking for a solution of value at most k − 1 for (T1, T2), i.e., a k′-cut label-partition

for the forest (i.e., the tree) T2, where k′ ≤ k − 1, which induces an agreement forest (of

k′ + 1 ≤ k trees) for T1 and T2.

Corollary 3.2.9. The parameterized problem para-maf is fixed-parameter tractable.

Corollary 3.2.9 resolves an open problem posed in the literature [36, 71].

3.3 A constant-ratio approximation algorithm for max-maf

The analysis in previous sections based on BSS also motivates an approximation algo-

rithm for the max-maf’ problem, which is presented in this section.

Recall that the max-maf’ problem on a pair (F1,F2) of leaf-labeled forests over the

same label-set L looks for a solution of minimum value, i.e., an L-partition P that induces

an agreement forest for F1 and F2 and is a c-cut label-partition for F2 with the value c

minimized. A solution of the minimum value will be called an optimal solution, whose

value will be called the optimal value for the instance (F1,F2). Recall that a maximum

agreement forest for F1 and F2 is induced by an optimal solution for (F1,F2).

Similarly, we will say that an instance (F1,F2) of max-maf’ is strongly reduced if none

of the contraction operation and Reduction Rules 1-2 is applicable on the instance. We

will always assume that the instances in our discussion are strongly reduced.

An edge-removal meta-step of an algorithm is a collection of consecutive computational

steps in the algorithm that on an instance (F1,F2) of max-maf’ removes a set of edges in

F2.

Definition 3.3.1. An edge-removal meta-step M keeps ratio r if on an instance (F1,F2)

of max-maf’, M removes a set EM of edges in F2 such that |EM | ≤ r(c− c′), where c and

c′ are the optimal values for the instances (F1,F2) and (F1,F2 − EM), respectively.

For example, an application of Reduction Rule 1 that removes an edge e in F2 is an

edge-removal meta-step that keeps ratio 1 because |EM | = |{e}| = 1, and by Lemma 3.1.5,

37

the optimal value for (F1,F2 − e) is one less than that for (F1,F2). Also note that by

definition if a meta-step neither removes edges in F2 nor change the optimal value for the

forest pair (such as an application of Reduction Rule 1 that removes an edge in F1) keeps

ratio r for any r ≥ 0.

Before we present our algorithm, we observe the following simple fact:

Lemma 3.3.2. Let (F1,F2) be an instance of max-maf’ and let e2 be any edge in F2.

Then the optimal value for (F1,F2 − e2) is not larger than the optimal value for (F1,F2).

Proof. Let P be an optimal solution of value c for (F1,F2), where P is a c-cut label-partition

for F2. Then there is a set E2 of c edges in F2 such that after contraction, F2−E2 (whose

label-partition is P) is an agreement forest for (F1,F2). If e2 ∈ E2, then E′2 = E2 \ {e2}

is a set of c − 1 edges such that (F2 − e2) − E′2 is an agreement forest for (F1,F2 − e2).

That is, the optimal value for (F1,F2 − e2) is not larger than |E′2| = c − 1. On the other

hand, if e2 6∈ E2, then since F2−E2 is an agreement forest for (F1,F2), removing the edge

e2 in F2 − E2 also results in an agreement forest for (F1,F2). That is, (F2 − e2) − E2 is

an agreement forest for (F1,F2 − e2), and the optimal value for (F1,F2 − e2) is then not

larger than |E2| = c.

In the rest of this section, we fix an instance (F1,F2) of the max-maf’ problem. As

we examined in previous sections, we can assume that the instance is strongly reduced,

and that the forest F1 contains at least one BSS X1. Let X2 be the leaf set in F2 with

`(X2) = `(X1).

As we did in the parameterized algorithm, we consider different cases based on the

structure of the leaf set X2 in F2. For each case, we apply a meta-step that removes a set

of edges in F2 and we verify that the meta-step keeps a ratio bounded by 3.

Case 1. Leaves in X2 are not in the same tree in F2.

Meta-Step 1. Let u2 and v2 be two leaves in X2 that are in different trees in F2, then

remove the edges incident to u2 and v2.

38

Lemma 3.3.3. Meta-Step 1 keeps ratio 2.

Proof. Let P be an optimal solution of value c for the instance (F1,F2), which is a c-cut

label-partition for F2. As examined in Lemma 3.2.1, one of the labels `(u2) and `(v2) is

in a unit label-subset in P. Without loss of generality, suppose `(u2) is such a label, and

let eu and ev be the edges incident to u2 and v2 in F2, respectively. By Lemma 2.1.4, P

is a (c− 1)-cut label-partition for F2 − eu. Also, P is a solution for (F1,F2 − eu) because

u2 is in a unit label-subset in P. Therefore, the optimal value for (F1,F2 − eu) is at most

c− 1. Finally, by Lemma 3.3.2, the optimal vale c′ for (F1,F2 − {eu, ev}) is at most c− 1.

Therefore, Meta-Step 1 removes the edge set E1 = {eu, ev} that satisfies |E1| ≤ 2(c − c′),

where c and c′ are the optimal values for (F1,F2) and (F1,F2−E1), respectively. That is,

the meta-step keeps ratio 2.

Case 2. X2 is a sibling set in F2.

Because the instance (F1,F2) is strongly reduced, by Theorem 3.1.7, X2 has a parent

p2 and the degree of p2 is at least |X2| + 2. In the following two cases, let E′′ be the set

of edges that are incident to the parent p2 of X2 but not incident to the leaves in X2. We

apply the following meta-steps based on the difference between the sizes of X2 and E′′.

See Figure 3.3(A).

Subcase 2.1: |E′′| > |X2|.

Meta-Step 2.1. If |E′′| > |X2|, then pick any set E1 of |X2| − 1 edges incident to the

leaves in X2, and pick any set E2 of |X2| edges in E′′, remove all edges in E1 ∪ E2.

Lemma 3.3.4. Meta-Step 2.1 keeps ratio 3.

Proof. Let P be an optimal solution of value c for (F1,F2), which is a c-cut label-partition

for F2. Let E1,2 = E1 ∪ E2. Meta-Step 2.1 totally removes |E1,2| = 2|X2| − 1 edges from

F2.

By Theorem 3.1.4, we can assume that either each leaf incident to an edge in E1 is in

a unit label-subset in P or all labels in `(X2) are in the same label-subset in P.

39

If each of the |X2| − 1 leaves incident to the edges in E1 is in a unit label-subset in P,

then P is a solution for (F1,F2 − E1). Since removing each edge in E1 does not split a

label-subset in P into two trees, by Lemma 2.1.4, P is a (c− (|X2|− 1))-cut label-partition

for F2−E1. Therefore, the optimal value for (F1,F2−E1) is at most (c− (|X2| − 1)). By

Lemma 3.3.2, the optimal value c′ for (F1,F2−E1,2) is also not larger than (c−(|X2|−1)).

If all labels in `(X2) are in the same label-subset Li in P, then the degree of the parent

of X2 in the subtree F2[Li] is at most |X2| + 1 (because X1 is a BSS). This implies that

among the |X2| edges in E2, at least |X2|−1 must be removed in order to obtain the subtree

F2[Li]. Let the set of these |X2| − 1 edges be E′2, then P is a solution for (F1,F2 − E′2).

Note that removing any edge in E′2 would not split a label-subset in P into two trees. By

Lemma 2.1.4, P is a (c− (|X2|−1))-cut label-partition for F2−E′2. Therefore, the optimal

value for (F1,F2 − E′2) is at most (c− (|X2| − 1)). By Lemma 3.3.2, the optimal value c′

for (F1,F2 − E1,2) is also not larger than (c− (|X2| − 1)).

This shows that Meta-Step 2.1 keeps ratio

|E1,2|/(c− c′) ≤ (2|X2| − 1)/(c− (c− (|X2| − 1))) = (2|X2| − 1)/(|X2| − 1) ≤ 3,

where we have used the fact |X2| ≥ 2.

s
sss s s�

�
�

�
�

�

A
A
A

@
@
@︸ ︷︷ ︸

X1

in F1 ss s s s s�
�

@
@

�
�
A
A

L
L
�
�

@@ ��HH
H

��
�

︸ ︷︷ ︸
X2

︷ ︸︸ ︷E′′

in F2p2

(A) Meta-Step 2

ss s s s s s�
�
A
A

L
L
�
�

L
L
�
�

L
L
�
�

A
A︸ ︷︷ ︸

Y2

w2

ew

(in X2)

e

in F2

u2

eu

v2

(B) Meta-Step 3

ss s s s s s�
�
A
A

(in X2)

L
L
�
�

L
L
�
�

L
L
�
�

A
A
u2

eu

(in X2)

e

in F2p2

v2

ev

(C) Meta-Step 4

Figure 3.3: Situations for Meta-Steps 2-4

40

Subcase 2.2: |E′′| ≤ |X2|.

Meta-Step 2.2. If |E′′| ≤ |X2|, then pick any set E′1 of |E′′| − 1 edges incident to the

leaves in X2, and remove all edges in E′1 ∪ E′′.

Lemma 3.3.5. Meta-Step 2.2 keeps ratio 3.

Proof. The proof is similar to that for Lemma 3.3.4. Let E′1,2 = E′1 ∪ E′′. Meta-Step

2.2 totally removes 2|E′′| − 1 edges from F2. Let P be an optimal solution of value c for

(F1,F2). By Theorem 3.1.4, we can assume that either every leaf incident to an edge in

E′1 is in a unit label-subset in P (note |E′1| ≤ |X2| − 1) or all labels in `(X2) are in the

same label-subset in P.

If every leaf incident to an edge in E′1 is in a unit label-subset in P, then P is a solution

for (F1,F2 − E′1), and P is a (c − (|E′′| − 1))-cut label-partition for F2 − E′1. Thus, the

optimal value for (F1,F2 −E′1) is at most (c− (|E′′| − 1)), which implies that the optimal

value c′ for (F1,F2 − E′1,2) is not larger than (c− (|E′′| − 1)).

If all labels in `(X2) are in the same label-subset Li in P, then the degree of the parent

of X2 in the subtree F2[Li] is at most |X2|+1. Thus, in order to obtain the subtree F2[Li],

at least |E′′| − 1 of the edges in E′′ must be removed. Suppose E′′2 is the set of |E′′| − 1

edges in E′′ that must be removed in order to obtain F2[Li]. Then P is a solution for

(F1,F2 − E′′2), and is a (c − (|E′′| − 1))-cut label-partition for F2 − E′′2 . Therefore, the

optimal value for (F1,F2 −E′′2) is at most (c− (|E′′| − 1)), which implies that the optimal

value c′ for (F1,F2 − E′1,2) is also not larger than (c− (|E′′| − 1)).

For the above analysis, we derive immediately that Meta-Step 2.2 keeps a ratio not

larger than (2|E′′| − 1)/(|E′′| − 1) ≤ 3, using the fact |E′′| ≥ 2 because the instance is

strongly reduced.

Case 3. X2 contains a sibling set Y2 with |Y2| ≥ 2.

Because of Case 2, here we assume that X2 itself is not a sibling set.

41

Meta-Step 3 Let u2, v2 ∈ Y2, and let w2 be a leaf in X2 that is not a sibling of u2 and

v2. Let e be an edge incident to the parent of w2 but not on the path between u2 and w2.

Then remove the edge e, the edge eu incident to u2, and the edge ew incident to w2. See

Figure 3.3(B).

Lemma 3.3.6. Meta-Step 3 keeps ratio 3.

Proof. Let E3 = {e, eu, ew}. Let P be an optimal solution of value c for (F1,F2). By

Theorem 3.1.4, we can assume that either the label `(u2) is in a unit label-subset in P or

both labels `(u2) and `(v2) are in the same label-subset in P.

If `(u2) is in a unit label-subset in P, then P is a solution for (F1,F2 − eu). By

Lemma 2.1.4, P is a (c−1)-cut label-partition for F2−eu. This combined with Lemma 3.3.2

shows that the optimal value for (F1,F2 − E3) is at most c− 1.

Now suppose that `(u2) and `(v2) are in the same label-subset Li in P. If `(w2) is

also in Li then the edge e must be removed because `(u2), `(v2), and `(w2) are siblings

in F1, which implies that the optimal value for (F1,F2 − e) (thus the optimal value for

(F1,F2−E3)) is at most c−1. On the other hand, if `(w2) is not in Li, then `(w2) must be

in a unit label-subset in P because the only way to separate `(w2) from the tree containing

both `(u2) and `(v2) in the forest F1 is to remove the edge incident to w2. Therefore, in

this case, P is a solution for (F1,F2 − ew), and is a (c− 1)-cut label-partition for F2 − ew,

which implies again that the optimal value for (F1,F2 − E3) is at most c− 1.

Since Meta-Step 3 totally removes three edges, the above discussion implies directly

that the meta-step keeps ratio 3.

When none of the cases 1-3 hold true, all leaves in X2 are in the same tree in F2 but

no two are siblings. For this last case, we first prove the following lemma.

Lemma 3.3.7. If all leaves in X2 are in the same tree in F2 but no two are siblings, then

there is a leaf in X2 whose parent has degree 2 in the induced subforest F2[`(X2)].

Proof. The lemma obviously holds true if |X2| = 2 since the two leaves in X2 are not

42

siblings. For |X2| > 2, the tree F2[`(X2)] has at least three unlabeled vertices. Removing

all leaves in F2[`(X2)] results in a non-empty tree T ′. Any leaf in T ′ is a degree-2 vertex

in F2[`(X2)] that is a parent of a leaf in X2.

Case 4. All leaves in X2 are in the same tree in F2 but no two are siblings.

Meta-Step 4 Let u2, v2 ∈ X2 such that the parent p2 of u2 has degree 2 in F2[`(X2)].

Let e be an edge in F2 that is incident to p2 but not on the path Puv between u2 and

v2. Then, cut the edge e, the edge eu incident to u2, and the edge ev incident to v2. See

Figure 3.3(C).

Lemma 3.3.8. Meta-Step 4 keeps ratio 3.

Proof. Let E4 = {e, eu, ev}. Let P be an optimal solution of value c for (F1,F2). If

removing any e′ of the edges in E4 does not split any label-subset in P into two trees, then

P is a solution for (F1,F2 − e′). By Lemma 2.1.4, P is a (c − 1)-cut label-partition for

F2 − e′. This combined with Lemma 3.3.2 shows that the optimal value for (F1,F2 − E4)

is at most c− 1.

So we assume removing any edge in E4 will split some label-subsets in P. In particular,

`(u2) and `(v2) are not in unit label-subsets in P. Let F∗ be the maximum agreement

forest induced by P. Since `(u2) and `(v2) are siblings in F1, `(u2) and `(v2) must be

siblings in F∗. Since the edge e must remain in F∗, the vertex p2, which is the parent of

u2 in F2, must be the parent of `(u2) and `(v2) in F∗. By Lemma 3.3.7, p2 has degree 2 in

F2[`(X2)]. Since p2 corresponds to the parent of `(u2) and `(v2) in F1, which is incident

to at most one edge whose other end is not in X1, p2 must have degree exactly 3 in F∗

(the edge e does not lead to another vertex in X2).

Thus, if we let Euv be the set of all edges, except e, that are incident to a vertex in Puv

but not on Puv, then in order to make F∗ from F2, all edges in Euv must be removed. Let

Ec be a set of c edges in F2 such that the label-partition for F2−Ec is P. Since removing

any edge in Euv does not split a label-subset in P, we can assume Euv ⊆ Ec. Now removing

the edge e in F2−Ec makes the path Puv become a component of the forest, and removing

43

the edge eu further makes `(u2) and `(v2) become single-vertex trees. Let the resulting

forest be F ′ whose label-partition is P ′. Then both `(u2) and `(v2) are in unit label-subsets

in P ′, and P ′ is a solution for (F1,F2 − E4), as well as a solution for (F1,F2). Moreover,

P ′ is a (c+ 2)-cut label-partition for F2.

On the other hand, if we cut the edges e, eu, and ev in F2, each cutting certainly does

not split a label-subset in P ′. Moreover, since `(u1) and `(v2) are not siblings in F2, cutting

each of these edges increases the number of leaf-labeled trees in the forest. Therefore, P ′

is a ((c + 2) − 3)-cut, i.e., a (c − 1)-cut label-partition for F2 − E4. This shows that the

optimal value for (F1,F2 − E4) is at most c− 1.

Since |E4| = 3, we conclude that Meta-Step 4 keeps ratio 3.

Now we are ready to present our approximation algorithm for the max-maf’ problem

in Figure 3.4.

Apx-MAF
input: two leaf-labeled forests F1 and F2 over the same label-set L
output: an L-partition P that is a solution for (F1,F2)

1. apply Reduction Rules 1-2 and contractions on (F1,F2) until they are not applicable;
2. repeat until F2 becomes a subgraph of F1

2.1 Let X1 be a BSS in F1, and let X2 be the leaf set in F2 with `(X1) = `(X2);
2.2 switch

case 1: apply Meta-Step 1;
case 2.1: apply Meta-Step 2.1;
case 2.2: apply Meta-Step 2.2;
case 3: apply Meta-Step 3;
case 4: apply Meta-Step 4;

2.3 apply Reduction Rules 1-2 and contractions on (F1,F2) until they are not applicable;
3. return the L-partition P constructed from the label-partition for F2.

Figure 3.4: An approximation algorithm for max-maf’

44

Theorem 3.3.9. Algorithm Apx-MAF is an approximation algorithm for the max-maf’

problem that runs in time O(n2) and has an approximation ratio at most 3.

Proof. We provide some explanations for the algorithm. Because of step 1 and step 2.3,

the pair (F1,F2) on step 2.1 is strongly reduced on which contraction is not applicable. In

particular, F1 cannot consist of only single-vertex trees: otherwise by Reduction Rule 1,

F2 should have also consisted of single-vertex trees and F2 would have been a subgraph of

F1, contradicting the condition given in step 2. Therefore, at step 2.1, the forest F1 must

has a BSS X1.

We also need to give some explanations on step 3. During the process of the algorithm,

each shrinking operation replaces a label subset `(X) with a “combined” new label `X .

Therefore, in order to get the L-partition P for the input instance, we need to restore each

label subset `(X) from the corresponding combined label `X in a straightforward way, in

reverse order.

The algorithm consists of a sequence of meta-steps, in which each meta-step is either

one of those given in step 2.2 of the algorithm, or a contraction operation, or an application

of Reduction Rules 1-2. Suppose that on an instance I = (F1,F2), a meta-step M produces

an instance I ′ = (F ′1,F ′2). Let c and c′ be the optimal values for the instances I and I ′,

respectively. Moreover, let P2 be the label-partition for the forest F2 and have d2 label-

subsets, and let P ′2 be the label-partition for the forest F ′2 and have d′2 label-subsets.

If the meta-step M is one of those in step 2.2 or is an application of Reduction Rule

1, then F ′1 and F ′2 are obtained from F1 and F2, respectively, by removing certain edges.

Thus, every solution for the instance I ′ is also a solution for the instance I. Suppose that

the meta-step M removes a set E2 of edges in F2, i.e., F ′2 = F2 − E2. Since removing an

edge in a leaf-labeled forest can increase the number of label-subsets in its corresponding

label-partition by at most one, the number d′2 of label-subsets in P ′2 is at most |E2| more

than that in P2, i.e., d′2 ≤ d2 + |E2|. By Lemmas 3.3.3-3.3.6 and 3.3.8, also noticing the

remark given before Lemma 3.3.2, we have |E2| ≤ 3(c− c′). Therefore, d′2 ≤ d2 + 3(c− c′).

If the meta-step M is a contraction or an application of Reduction Rule 2, then d2 = d′2,

45

and by Lemma 2.1.1 and Lemma 3.1.6, we also have c = c′. Therefore, the condition

d′2 ≤ d2 +3(c− c′) also holds true. Note that because of the shrinking operation, a solution

for I ′ may no longer be a solution for I. However, as explained above, from a solution with

c label-subsets for the instance I ′, we can easily construct a solution with c label-subsets

for the instance I.

Now suppose that the sequence of the meta-steps of the algorithm is {M1,M2, . . . ,Mh},

where for each i, 1 ≤ i ≤ h, the meta-step Mi on an instance Ii = (F1,i,F2,i) produces an

instance Ii+1 = (F1,i+1,F2,i+1), and let ci be the optimal value for the instances Ii, and

let Pi be the label-partition for the forest F2,i that consists of di label-subsets. By the

above, analysis, we have di+1 ≤ di + 3(ci − ci+1) for all i. From this, we get immediately

dh+1 ≤ d1 + 3(c1 − ch+1).

The instance I1 = (F1,1,F2,1) is the input (F1,F2) to the algorithm Apx-MAF, whose

optimal value is c1 and the label-partition P1 for F2,1 = F2 has d1 label-subsets. By the

condition in step 2, in the final instance Ih+1 = (F1,h+1,F2,h+1), F2,h+1 is a subgraph

of F1,h+1. Therefore, the optimal value ch+1 for Ih+1 is 0. This gives dh+1 ≤ d1 + 3c1.

Moreover, by step 3 and the above discussion, the solution P returned by the algorithm

is constructed from the solution for the instance Ih+1 (i.e., the label-partition for F2,h+1),

which consists of dh+1 label-subsets. Therefore, the solution P also consists of dh+1 label-

subsets. Since the label-partition P1 for F2 consists of d1 label-subsets, by Lemma 2.1.2,

the solution P is a (dh+1 − d1)-cut label-partition for F2, i.e., P is a solution of value

dh+1 − d1 ≤ 3c1 for the input (F1,F2). This shows that the approximation ratio of the

algorithm Apx-MAF is not larger than (dh+1 − d1)/c1 ≤ 3.

Finally, it is easy to see that the running time of the algorithm Apx-MAF is O(n2)

because each meta-step runs in time O(n) and decreases the number of edges in the instance

by at least one.

The original max-maf problem on two given leaf-labeled trees T1 and T2 over the

label-set L asks to construct a maximum agreement forest for T1 and T2. Suppose that

a maximum agreement forest for T1 and T2 consists of c leaf-labeled trees. Then the L-

46

partition that is an optimal solution for (T1, T2) consists of c label-subsets, i.e., the optimal

value for (T1, T2) is c−1. We can apply the Apx-MAF algorithm on the instance (T1, T2),

which will return an L-partition P that is a solution of value at most 3(c− 1) for (T1, T2).

Therefore, the solution P induces an agreement forest of at most 3c− 2 trees for (T1, T2).

The ratio (3c − 2)/c < 3 shows that Apx-MAF can also be used as an approximation

algorithm for the problem max-maf that has an approximation ratio bounded by 3.

When applied on binary trees, the algorithm Apx-MAF has its ratio of 3 matches

the best previous known ratio for the problem on binary trees [71]. The only previously

known approximation algorithm for the MAF problem on general trees is on rooted trees

and has ratio d+ 1, where d is the maximum number of children a node in the forests may

have [62]. Our algorithm is the first constant-ratio approximation algorithm for the MAF

problem on general trees, where the trees are unrooted.

3.4 Conclusion

We presented a parameterized algorithm and an approximation algorithm for the MAF

problem on unrooted general trees, which corresponds to the TBR distance on multi-

furcating phylogenetic trees. For general trees, our parameterized algorithm is the first

fixed-parameter tractable algorithm and our approximation algorithm is the first constant-

ratio approximation algorithm. Our algorithms are based on the concept of a bottommost

sibling set in one tree and the structure of the corresponding leaf set in the other tree.

The methods based on sibling sets have been used by other researchers [70] but the special

structure of the bottommost sibling set enables us to deal with operations on general trees

more effectively.

47

4. ALGORITHMS TO MULTICUT ON TREES PROBLEM ∗

In this chapter, we present our kernelization algorithm and parameterized algorithm to

multicut on trees problem.

4.1 A kernelization algorithm to multicut on trees problem

In this section we prove an upper bound of O(k3) on the kernel size for multicut on

trees problem. The approach can be summarized as follows. We group the vertices in the

forest into O(k) groups such that no request exists within the vertices of the same group.

We then define an order among the bad leaves of a group with respect to the bad leaves

and the internal vertices of another group. This ordering allows us to introduce a set of

reduction rules that replace the requests from the bad leaves of a group (except few), going

to the internal vertices and bad leaves of another group, allowing us to derive an O(k2)

upper bound on the total number of bad leaves that have requests to other bad leaves

or internal vertices. We then use the crown kernelization algorithm [1] for vertex cover

problem to upper bound the number of bad leaves in a group that have requests to good

leaves in another group, again obtaining an O(k2) upper bound on the total number of

bad leaves that have requests to good leaves. Combining the above allows us to upper

bound the number of leaves in the reduced instance by O(k2), improving on the O(k4)

upper bound obtained in [13]. Finally, we show that the size of the reduced instance is at

most the number of leaves in the reduced instance multiplied by a linear factor of k, thus

yielding an upper bound of O(k3) on the size of the reduced instance. We now proceed to

the details. Let (F , R, k) be an instance of multicut on trees problem, and let T be a tree

in F . Two requests (u, v) and (p, q) in R are said to be disjoint if the path between u and

v in F is edge-disjoint from the path between p and q in F . A request (p, q) dominates a

request (u, v) if the path from p to q in F is a subpath of the path from u to v in F . The

∗Reprinted with permission from “Multicut in trees viewed through the eyes of vertex cover” by Jianer
Chen, Jia-Hao Fan, Iyad A. Kanj, Yang Liu and Fenghui Zhang, 2012. J. Comput. Syst. Sci., 78(5):
1637-1650 (2012), Copyright [2012] by Elsevier.

48

following reduction rules for multicut on trees problem are folklore, easy to verify, and can

be implemented to run in polynomial time (see [13, 34] for proofs). Therefore, we omit

their proofs.

4.1.1 Basic reduction rules

Reduction Rule 4.1.1 (Useless edge). If no request in R is disconnected by the removal

of edge uv ∈ E(F), then remove edge uv from F .

Reduction Rule 4.1.2 (Useless pair). If (u, v) ∈ R where u, v are in two different trees

of F , then remove (u, v) from R.

Reduction Rule 4.1.3 (Unit request). If (u, v) ∈ R and uv ∈ E(F), then cut uv (i.e.,

remove uv from F and decrement k by 1).

Reduction Rule 4.1.4 (Disjoint requests). If there are k+ 1 pairwise disjoint requests

in R, then reject the instance (F , R, k).

Reduction Rule 4.1.5 (Unique direction). Let x be a leaf or an internal degree-2

vertex in F . Suppose that all the requests from x have the same direction, i.e., can be

disconnected by the removal of a single edge from F that is not incident to x in case x is a

leaf, and can be disconnected by the removal of a single edge in case x is an internal degree-

2 vertex. If x is a leaf then contract the edge incident to x, and if x is an internal degree-2

vertex then contract the edge incident to x that is not on any of the paths corresponding to

the requests from x.

Reduction Rule 4.1.6 (Domination/Inclusion). If a request (p, q) dominates another

request (u, v) then remove (u, v) from R.

It was shown in [13] that the number of good leaves (called bad leaves there) is O(k2).

We introduce a reduction rule next that allows us to derive the same upper bound on

the number of good leaves in F , and which uses Buss’ kernelization algorithm for the

vertex cover problem [15] (this reduction rule was implicitly observed in [34]). (The vertex

cover problem is: Given a graph H and a parameter k, decide if there is a vertex cover

49

for H of size at most k.) The reason for introducing this reduction is twofold: First to

emphasize the importance of vertex cover problem in kernelization algorithms for multicut

on trees problem, and second because we shall use a different kernelization algorithm (crown

reduction) later to bound the number of bad leaves that have requests to good leaves in the

reduced instance. (Recall that the graph G is the graph whose vertices are the good leaves

in F and whose edges correspond to the requests between good leaves that are attached to

the same vertex in F .)

Reduction Rule 4.1.7 (Bound on good leaves). Apply Buss’ kernelization algorithm

for vertex cover problem [15] to (G, k): for every vertex x in G whose degree (in G) is at

least k + 1, cut leaf x in F . If the number of good leaves in F after Buss’ algorithm is

applied is more than 2k2, then reject the input instance (F , R, k). (Note that a good leaf

may become bad after cutting some leaves in F .)

Proof. A leaf corresponding to a vertex x ∈ G of degree at least k+1 must be cut, otherwise,

at least k + 1 edges must be cut to disconnect all requests from x, and hence no solution

of size at most k exists.

By Buss’ algorithm, if the resulting graph contains more than 2k2 nonisolated vertices

(i.e., remaining good leaves) then G has no vertex cover of size at most k, and obviously

(F , R, k) is a no-instance of multicut on trees problem.

We shall assume henceforth that none of Reduction Rules 4.1.1 – 4.1.7 applies to

(F , R, k). We shall also assume that isolated vertices are removed from F at all times.

The statements in the following lemma were shown in [13]:

Lemma 4.1.1 ([13]). In the forest F , both the number of internal vertices of internal

degree 1 and the number of internal vertices of internal degree at least 3 are at most k.

(The number of internal vertices of internal degree 1 is at most k because at least two

good leaves must be attached to each such vertex by the unique direction reduction rule,

and by the disjoint requests rule, there can be at most k such vertices. The number of

50

internal vertices of internal degree at least 3 is at most k because the number of such

vertices is not more than the number of internal vertices of internal degree 1.)

We now define a partitioning of the vertices in F into three types of groups.

4.1.2 Three types of groups in forest

Type-I group. A type-I group consists of an internal vertex u of F that has at

least one good leaf attached to it, together with all the leaves (bad and good)

that are attached to u; we say that vertex u forms the type-I group. Note that

by the unique direction rule, every vertex in F of internal degree 1 forms a

type-I group.

Type-II group. A type-II group consists of an internal vertex u in F of

internal degree at least 3 that does not have any good leaves attached to it,

together with all the (bad) leaves attached to u (if any); we say that vertex u

forms the type-II group.

Type-III group. After removing all the vertices in the type-I and type-II

groups, each connected component of the resulting forest is a caterpillar in

which each internal vertex u has internal degree 2 in F , and all the leaves at-

tached to u (if any) are bad leaves. Now we further partition each caterpillar

in a greedy fashion into vertex-disjoint subcaterpillars such that the following

condition is satisfied: There is no request between any two vertices (internal-

internal, leaf-internal, nor leaf-leaf) of the same subcaterpillar. To partition a

caterpillar, we start from an internal vertex that is an endpoint of the cater-

pillar, and traverse the caterpillar towards the other endpoint as long as the

above condition is not violated. The first time a vertex v is reached such that

the condition is violated at v, or at one of the leaves attached to v, the sub-

caterpillar traversed so far up to the vertex before v forms a type-III group,

and the process is repeated starting from v; the process stops when the other

endpoint of the caterpillar is reached. Note that there is no request between

51

any two vertices of a type-III group, and that, for any two type-III groups in

the same caterpillar that were constructed consecutively in the above process,

there exists a request between some vertex of the first group and another vertex

in the other group.

It is clear that the above partitioning can be carried out in polynomial time.

Lemma 4.1.2. The number of groups obtained from the above partitioning of V (F) is

O(k).

Proof. There is at least one request between the leaves that are attached to a vertex that

forms a type-I group. By the disjoint requests rule, there can be at most k type-I groups.

The fact that the number of type-II groups is O(k) follows from Lemma 4.1.1.

Now we consider the type-III groups. For each tree T in the forest F , if we remove the

vertices in the type-I and type-II groups from T , we obtain a set of caterpillars. It is fairly

easy to see that the number of such caterpillars in T is bounded by the number of type-I

and type-II groups in T : if we remove from T all the leaves and replace each caterpillar

by an edge, we obtain a new tree in which each vertex corresponds to a group of type-I or

type-II, and each edge corresponds to a caterpillar. This, combined with the fact that there

are totally O(k) type-I and type-II groups in F , implies that there are O(k) caterpillars

after the vertices in the type-I and type-II groups are removed from F . For two type-III

groups that are consecutive subcaterpillars in the same caterpillar, there exists a request

between some vertex of the first group and another vertex in the other group. Therefore,

if a caterpillar C is partitioned into ` type-III groups, then there are at least b`/2c many

disjoint requests in C. It follows by the disjoint requests rule that there can be at most

2k (proper) subcaterpillars. This, in addition to the fact that the number of caterpillars is

O(k), implies that the total number of type-III groups is O(k).

Definition 4.1.3. Let γi be a type-I, type-II, or a type-III group. The intergroup edges of

γi are the edges in F with exactly one endpoint in γi; the intergroup degree of γi, denoted

di, is the number of intergroup edges of γi. Note that if γi is a type-I or a type-II group,

52

where u is the internal vertex in F that forms γi, then di is the internal degree of u in F .

On the other hand, if γi is a type-III group then di = 2 (each of the two endpoints of a

caterpillar forming a type-III group has internal degree 2, and has exactly one neighbor

that is not in the caterpillar). The internal vertices of γi are the internal vertices of F that

are in γi. The internal edges of γi are the edges between the internal vertices of γi. Note

that only type-III groups can have internal edges. The leaves (resp. good/bad leaves) of γi

are the leaves (resp. good/bad leaves) attached to the internal vertices of γi.

Lemma 4.1.4. ∑
γi is a group

di = O(k).

Proof. Since there are O(k) type-III groups by Lemma 4.1.2, each of intergroup degree 2,

it suffices to show that the sum of the internal degrees of the vertices forming the type-I

and type-II groups is O(k). There are at most O(k) type-I groups. Therefore, the sum of

the intergroup degree of type-I groups whose internal vertices have degree 1 or 2 is O(k).

It can be easily verified (by a standard inductive proof) that the sum of the intergroup

degrees of type-I and type-II groups whose internal vertices have degree at least 3 is at

most three times the number of internal vertices of internal degree 1 in F , which is O(k)

by Lemma 4.1.1.

4.1.3 Reduction rules to bad leaves, good leaves and internal nodes

We introduce next a reduction rule that is used to bound the number of bad leaves

that have requests to good leaves. We apply the crown reduction kernelization algorithm,

described in [1], to the instance (G, k) of vertex cover problem. This algorithm partitions

V (G) into three sets I,H, and O, such that: (1) I is an independent set of G, and no edge

exists between the vertices in I and those in O, (2) there exists a minimum vertex cover of

G containing H, (3) there exists a matching M that matches every vertex in H to a vertex

in I, and (4) |O| ≤ 3k if a solution to (G, k) exists [1].

Reduction Rule 4.1.8 (Crown reduction). Apply the crown reduction algorithm to

53

(G, k) to partition V (G) into the three sets H, I,O. If |O| > 3k or |H| > k, then reject the

instance (F , R, k).

Proof. If |O| > 3k or |H| > k, then there exists no vertex cover for G of size at most k,

and hence no cut for R of size at most k.

Consider Gu, the subgraph of G induced by the good leaves that are attached to u,

where u is a vertex in F that forms a type-I group. Denote by Hu, Iu, Ou the intersection

of H, I,O with V (Gu), respectively. Clearly, the matching M matching H into I in G

induces a matching Mu in Gu that matches Hu into Iu. Let OUTu be the set of vertices in

Iu that are not matched by Mu (i.e., Iu \ V (Mu)). We have the following lemma:

Lemma 4.1.5. Let u be a vertex in F that forms a type-I group. Any vertex cover of Gu

that contains ` vertices from OUTu has size at least τ(Gu) + `.

Proof. The above statement is true because (1) any vertex cover of Gu contains at least

|Hu| vertices from V (Mu), and (2) there is a minimum vertex cover of Gu that contains

Hu (and hence excludes all the vertices in Iu). Therefore, if a vertex cover of Gu contains

` vertices from OUTu, then it must contain at least |Hu| + ` vertices from Hu ∪ Iu, and

hence the size of such a vertex cover must be at least τ(Gu) + `.

Corollary 4.1.6. Let u be a vertex in F that forms a type-I group γi. If (F , R, k) has a

solution, then it has a solution that cuts at most di − 1 = du − 1 leaves from OUTu, where

du is the internal degree of u in F .

Proof. If S is a solution to (F , R, k) that cuts at least di = du leaves from OUTu, then by

Lemma 4.1.5, S cuts at least τ(Gu) + du edges that are incident to the leaves in γi. We

can then remove all the edges in S that are incident to the leaves in γi and replace them

with the edges that are incident to the leaves corresponding to a minimum vertex cover of

Gu plus the di intergroup edges of γi.

54

γjγi

y x

u v w

y′ x′

Figure 4.1: Illustration for Definition 4.1.8 and Definition 4.1.9: v-offsetj(y) is w; v-
offsetj(x) is v; l-offsetj(y) is y′; l-offsetj(x) is x′. Therefore, we have x �vj y and y �lj x.

γjγi

ν(x)

x y

v w

Figure 4.2: Illustration for Reduction Rule 4.1.10 and the replacement of requests: v-
offsetj(x) is w; v-offsetj(y) is v. Replace the request (x, v-offsetj(x)) with (ν(x), v-
offsetj(x)).

55

Lemma 4.1.7. If there exists a solution to the instance (F , R, k), then there exists a

solution S to (F , R, k) such that, for any group γi: if γi is a type-I or a type-II group then

S cuts at most di − 1 bad leaves of γi, and if γi is a type-III group then the number of bad

leaves and internal edges of γi that are cut by S is at most di − 1 = 1.

Proof. Suppose that the instance (F , R, k) has a solution S, and let γi be a group. If γi

is a type-I or a type-II group such that S cuts at least di bad leaves from γi, then the

edges in S that are incident to all the bad leaves of γi can be replaced with the intergroup

edges of γi. Similarly, if γi is a type-III group such that the number of edges in S that are

incident to bad leaves, or are internal edges of γi, is at least di = 2, then those edges in S

can be replaced with the two intergroup edges of γi. By performing the above replacement

for every group γi, we obtain a solution S that satisfies the statement of the lemma.

Next, we introduce reduction rules to bound the number of bad leaves in (F , R, k). The

main idea behind these reduction rules is to use several orderings (defined later) on the set

of bad leaves of a group γi with respect to another group γj , to limit the number of bad

leaves of γi that have requests to bad leaves or vertices of γj to at most di × dj . For a leaf

x of a group γi, we shall refer to the internal vertex in γi that x is attached to by ν(x).

Reduction Rule 4.1.9. (Bound on the number of bad leaves in a group that

have requests to a certain vertex)

Let x be a vertex, and let γi be a group. If there are at least di bad leaves in γi that have

requests to x, then let Lx be the list containing the bad leaves in γi that have requests to

x sorted in a nondecreasing order of their distance to x, where ties are broken arbitrarily.

For every bad leaf z in γi whose rank in Lx is at least di, replace the request (z, x) in R

with the request (ν(z), x).

Proof. Suppose that the above reduction rule applies to a group γi in (F , R, k) and some

vertex x, and let (F , R′, k) be the resulting instance. Clearly, any solution to (F , R′, k) is

also a solution to (F , R, k). Therefore, it suffices to prove that if there exists a solution for

(F , R, k) then there also exists a solution for (F , R′, k). Suppose that there is a solution

56

to (F , R, k). By Lemma 4.1.7, we can assume that there is a solution S that cuts at most

di − 1 bad leaves from γi. Let z be a bad leaf in Lx whose rank is larger than di − 1. If S

does not cut z, then S must cut an edge on the path from ν(z) to x. On the other hand,

if S cuts z, then because S cuts at most di − 1 bad leaves in γi, there is a bad leaf z′ in

Lx whose rank is smaller than that of z such that S does not cut z′ but cuts an edge e′

on the path from ν(z′) to x. By the way we rank the bad leaves in Lx, cutting the edge

e′ will also cut the path from ν(z) to x. Therefore, in any case, the solution S will also

cut the request (ν(z), x) in (F , R′, k) that replaces the request (z, x) in (F , R, k). As a

consequence, S is also a solution to the instance (F , R′, k).

Definition 4.1.8. Let γi and γj be two distinct groups, and let x be a bad leaf in γi.

If x has a request to an internal vertex w in γj (by the domination reduction rule, such

internal vertex is unique), then call w the vertex-offset of x with respect to γj , denoted

v-offsetj(x).

If x has a request to bad leaves in γj , then define the leaf-offset of x with respect to γj ,

denoted l-offsetj(x), to be any such leaf with the minimum distance to x.

Definition 4.1.9. (orders �vj and �lj in γi) Let γi and γj be two distinct groups, and let

u be the vertex in γj that has the minimum distance to the vertices in γi. For any two bad

leaves x and y in γi we say:

x �vj y if the distance from v-offsetj(x) to u is not larger than that from v-offsetj(y) to

u; and

x �lj y if the distance from l-offsetj(x) to u is not larger than that from l-offsetj(y) to

u.1

See Figure 4.1 for an illustration of vertex-offsets, leaf-offsets, and the orders �lj ,�vj .

Reduction Rule 4.1.10. (Bound on the number of bad leaves in a group that

have requests to internal vertices in another group)

Let γi and γj be two distinct groups. If there are at least di bad leaves in γi that have

1Clearly �v
j and �l

j are well-defined orders because they are defined based on the ≤ order.

57

requests to internal vertices of γj, then consider all bad leaves in γi that have requests to

internal vertices of γj, and sort them in a non-decreasing order with respect to the order �vj ;

let Li be the sorted list. For every bad leaf x in Li whose rank in Li is at least di, replace

every request (x, p) in R from x to an internal vertex p of γj with the request (ν(x), p).

Refer to Figure 4.2 for illustration.

Proof. Suppose that the above reduction rule applies to two groups γi and γj in (F , R, k),

and let (F , R′, k) be the resulting instance. Clearly, any solution to (F , R′, k) is also a

solution to (F , R, k). Therefore, it suffices to prove that if there exists a solution for

(F , R, k) then there also exists a solution for (F , R′, k). Suppose that there is a solution

to (F , R, k). By Lemma 4.1.7, we can assume that there is a solution S such that if γi is a

type-I or a type-II group then S cuts at most di− 1 bad leaves of γi, and if γi is a type-III

group then the number of bad leaves and internal edges of γi that are cut by S is at most

1.

Let x be a bad leaf in Li whose rank in Li is at least di. If S does not cut x, then S

must cut an edge on the path between ν(x) and the vertex-offset p of x with respect to γj ,

p = v-offsetj(x), and hence, the request from x to p that was replaced with (ν(x), p) is cut

by S. Suppose now that S cuts x, and note that if γi is a type-III group then because S

cuts x, S does not cut any bad leaf of γi other than x, nor does it cut an internal edge of

γi. Therefore, if γi is a type-III group, then we may contract all the internal edges of γi to

obtain a single internal vertex, say w, such that the leaves attached to w are precisely the

leaves of γi. If γi is a type-I or a type-II group, also denote by w the internal vertex that

forms group γi. By our assumption, S cuts at most di − 1 bad leaves that are attached

to w. We claim that S must cut an edge on the path between w and p. Suppose not,

then since there are di − 1 leaves that appear before x in Li, S must cut the first di − 1

leaves that appear before x in Li; this is true because the vertex-offsets of these leaves with

respect to γj appear no later than p. Since S cuts x, it follows that S cuts di bad leaves of

γi, contradicting our assumption. It follows that S must cut an edge on the path between

w and p. Since S does not cut any internal edge from γi in case γi is a type-III group, it

58

follows that the request between (ν(x), p) in (F , R′, k) that replaces the request (x, p) in

(F , R′, k) is also cut by S. Since x was arbitrarily chosen to be a leaf whose rank in Li is

at least di, this shows that S is also a solution to (F , R′, k).

Reduction Rule 4.1.11. (Bound on the number of bad leaves in a group that

have requests to bad leaves in another group)

Suppose that Reduction Rule 4.1.9 does not apply to (F , R, k). Let γi and γj be two distinct

groups. If there are at least (di−1)×dj +1 bad leaves in γi that have requests to bad leaves

in γj, then consider all the bad leaves in γi that have requests to bad leaves of γj, and sort

them in a non-decreasing order with respect to the order �lj; let Li be the sorted list. For

every bad leaf x in γi whose rank in Li is at least (di − 1) × dj + 1, replace every request

(x, y) in R from x to a bad leaf y of γj with the request (ν(x), y).

Proof. Suppose that the above reduction rule applies to two groups γi and γj in (F , R, k),

and let (F , R′, k) be the resulting instance. Clearly, any solution to (F , R′, k) is also a

solution to (F , R, k). Therefore, it suffices to prove that if there exists a solution for

(F , R, k) then there also exists a solution for (F , R′, k). Suppose that there is a solution S

to (F , R, k). By Lemma 4.1.7, we can assume that S cuts at most di−1 bad leaves from γi

and at most dj − 1 bad leaves from γj , and that if γi is a type-III group then the number

of bad leaves and internal edges of γi that are cut by S is at most 1.

Therefore, by cutting bad leaves in γi, S can cut requests from at most di−1 bad leaves

in γi to bad leaves in γj . Since Reduction Rule 4.1.9 is not applicable, each bad leaf z in

γj has at most di− 1 requests to bad leaves in γi. Thus, cutting z can cut requests from at

most di − 1 bad leaves in γi to z. Since S cuts at most dj − 1 bad leaves in γj , by cutting

bad leaves in γj , S can cut requests from at most (di − 1) × (dj − 1) bad leaves in γi to

bad leaves in γj . Putting these together, we conclude that by cutting bad leaves in γi and

γj , S can cut requests from at most (di− 1) + (di− 1)× (dj − 1) = (di− 1)× dj bad leaves

in γi to bad leaves in γj .

Now let x be a bad leaf in γi whose rank in Li is at least (di − 1) × dj + 1. If S does

59

not cut x, then for any request (x, y) in (F , R, k) where y is a bad leaf in γj , S must cut

an edge on the path between ν(x) and y. Hence, the request (ν(x), y) in (F , R′, k) that

replaces the request (x, y) in (F , R, k) is also cut by S. If S cuts x, then by the analysis

in the previous paragraph, there must be a bad leaf x′ in Li whose rank is smaller than

x, and a request (x′, y′), where y′ = l-offsetj(x
′), such that S neither cuts x′ nor y′. Since

x′ �lj x, the edge in S that cuts the request (x′, y′) must also cut the request from ν(x)

to bad leaves in γj (note that in case γi is a type-III group, since S cuts x, S would not

cut any internal edges in γi). Thus, again S cuts any request (ν(x), y) in (F , R′, k) that

replaces the request (x, y) in (F , R, k), i.e., S is also a solution to (F , R′, k).

Reduction Rule 4.1.12. (Bound on the number of bad leaves in a group that

have requests to good leaves in OUTu for a type-I group γj formed by vertex u)

Suppose that Reduction Rule 4.1.9 does not apply to (F , R, k). Let u be a vertex such that

u forms a type-I group γj, and let γi 6= γj be a group. If there are at least dj × (di− 1) + 1

many bad leaves in γi that have requests to leaves in OUTu, let Li be the list of bad leaves in

γi that have requests to vertices in OUTu sorted in a non-decreasing order of their distance

from u. For each bad leaf x in Li whose rank is at least dj × (di − 1) + 1, replace every

request (x, y) in R from x to a leaf y in OUTu with the request (ν(x), y).

Proof. Suppose that the above reduction rule applies to a group γi and a type-I group γj ,

formed by vertex u, in (F , R, k), and let (F , R′, k) be the resulting instance. Clearly, any

solution to (F , R′, k) is also a solution to (F , R, k). Therefore, it suffices to prove that if

there exists a solution for (F , R, k) then there also exists a solution for (F , R′, k). Suppose

that there is a solution S to (F , R, k). By Corollary 4.1.6, we can assume that S cuts at

most du− 1 = dj − 1 leaves from OUTu. By Lemma 4.1.7, we can also assume that S cuts

at most di − 1 bad leaves from γi. Since Reduction Rule 4.1.9 is not applicable, every leaf

in OUTu has requests to at most di− 1 bad leaves in γi. It follows from the above that the

edges in S that are incident to leaves in OUTu cut the requests of at most (dj−1)×(di−1)

bad leaves in Li. Since at most di − 1 bad leaves in γi are cut by S, it follows that there

60

exists a bad leaf z in Li of rank at most dj × (di − 1) + 1 that is not cut by S, and such

that z has a request to a leaf in OUTu that is not cut by S either. Therefore, S must cut

an edge that is on the path from u to the internal vertex of γi that the leaf in Li of rank

dj × (di − 1) + 1 is attached to, and consequently, S is a solution to (F , R′, k).

Definition 4.1.10. The instance (F , R, k) is said to be reduced if none of Reduction

Rules 4.1.1 – 4.1.12 is applicable to it.

Lemma 4.1.11. Let (F , R, k) be a reduced instance. The number of bad leaves in F that

have requests to good leaves in F is O(k2).

Proof. Let γi be a group with bad leaves. By Reduction Rule 4.1.9, every good leaf in G

has requests to at most di − 1 bad leaves in γi. Therefore, the number of bad leaves in γi

that have requests to good leaves in O ∪V (M) is at most |O ∪V (M)| × (di− 1) < 5k× di,

after noting that |V (M)| = 2|H| ≤ 2k and that |O| ≤ 3k (Reduction Rule 4.1.8). Thus,

the number of bad leaves in F that have requests to good leaves in O ∪ V (M) is at most

5k ×
∑

γi
di = O(k2) (by Lemma 4.1.4). Therefore, it suffices to show that the number

of bad leaves in F that have requests to good leaves in OUTu, over all type-I groups γj

formed by some vertex u, is O(k2).

In effect, let γj be a type-I group formed by a vertex u. For every group γi 6= γj , by

Reduction Rule 4.1.12, the number of bad leaves in γi that have requests to good leaves

in OUTu is at most (di − 1) × dj < di × dj . Therefore, the total number of bad leaves

in F that have requests to good leaves in OUTu is at most dj ×
∑

γi
di = dj × O(k) (by

Lemma 4.1.4). By summing over all type-I groups γj , the number of bad leaves that have

requests to good leaves is O(k)×
∑

γj is of type-I dj = O(k)×O(k) = O(k2).

Lemma 4.1.12. Let (F , R, k) be a reduced instance. The number of leaves in F is O(k2).

Proof. By Reduction Rule 4.1.7, the number of good leaves in F is O(k2). Therefore, it

suffices to show that the number of bad leaves in F is O(k2) as well.

Every bad leaf appears in some group γi, and must have a request to a good leaf, an

internal vertex, or a bad leaf of another group γj . By Lemma 4.1.11, the number of bad

61

leaves in F that have requests to good leaves is O(k2). Next, we bound the number of bad

leaves in γi that have requests to an internal vertex or to a bad leaf in another group γj .

Fix a group γj 6= γi. By Reduction Rule 4.1.10, the number of bad leaves in γi that have

requests to internal vertices of γj is less than di. Therefore, the total number of bad leaves in

γi that have requests to internal vertices in F is O(k)×di since by Lemma 4.1.2 the number

of groups isO(k). Summing over all groups γi, we obtain that the total number of bad leaves

in F that have requests to internal vertices in F is O(k)×
∑

γi
di = O(k)×O(k) = O(k2).

By Reduction Rule 4.1.11, the number of bad leaves in γi that have requests to bad leaves

in γj is at most di × dj . Therefore, the number of bad leaves in F that have requests

to bad leaves in γi is at most di ×
∑

γj 6=γi dj = di × O(k). Summing over all groups γi,

we obtain that the number of bad leaves in F that have requests to bad leaves in F is

O(k)×
∑

γi
di = O(k)×O(k) = O(k2).

Lemma 4.1.13. Let (F , R, k) be a reduced instance. The number of vertices in F whose

internal degree is not equal to 2 is O(k2).

Proof. Let Y be the set of vertices in F that are not internal degree-2 vertices. A vertex in

Y is either a leaf, a vertex with leaves attached to it, or an internal vertex of internal degree

at least 3 (note that every vertex in F with internal degree 1 must have leaves attached

to it). By Lemma 4.1.12, the number of leaves in F is O(k2), which also implies that the

number of vertices in F that have leaves attached to them is O(k2). By Lemma 4.1.1,

the number of internal vertices in F of internal degree at least 3 is O(k). It follows that

|Y | = O(k2).

Lemma 4.1.14. Let (F , R, k) be a reduced instance. The number of internal degree-2

vertices in F is O(k3).

Proof. Let Z be the set of internal degree-2 vertices in F , and let Y = V (F) − Z. By

Lemma 4.1.13, we have |Y | = O(k2); this will be used to show that |Z| = O(k3).

For every tree T in F , pick an internal vertex rT in T of internal degree 1 and root the

tree T at rT . The ancestor/descendant relationship in the tree T of F becomes defined.

62

We define the following auxiliary digraph D. The set of vertices of D is Z. We add edges

to D as follows. For every two vertices u and v in D, add a directed edge from u to v in D

if: (1) the current outdegree of u in D is 0, v is a descendant of u in the tree T in F , and

there is a request between u and v. It is clear from the definition that the outdegree of

every vertex in D is at most 1. We show next that the indegree of every vertex in D is at

most 1 as well. In effect, suppose that there exists a vertex v in D such that the indegree

of v is at least 2, and let u and w be two vertices in D that have outgoing edges to v. From

the definition of D, v is a descendant of both u and w, and hence, the three vertices u,w, v

are on the same root-leaf path from the root of the tree T containing them; without loss

of generality, suppose that u appears before w on this path (starting from the root rT).

Since (u, v) and (w, v) are requests in R, and since u, v, w are all internal degree-2 vertices,

request (w, v) must dominate request (u, v). This contradicts the fact that the domination

reduction rule does not apply to F .

By the definition of D, edges of D go from ancestors to descendants in the trees of F .

Therefore, D is acyclic. Since the indegree and outdegree of every vertex in D is at most

1, D consists of a collection of disjoint paths (possibly of length 0, i.e., single vertices). We

now bound the number of vertices in D, and hence in Z.2 For a path P in D, we call the

endpoint of P with outdegree 0 the head of P . Let P be the set of all paths in D. Define

the function φ from P to Y as follows. For every path P ∈ P, let hP be the head of P ,

and let T be the tree in F containing hP . Since hP is an internal degree-2 vertex in T , and

since the unique direction reduction rule does not apply, hP must have a request to at least

one of its descendants in T . Moreover, no descendant of hP that hP has a request to could

be in D; otherwise, because the outdegree of hP in D is 0, a directed edge from hP to such

a descendant would exist in D. Therefore, hP must have a request to some descendant

vertex in Y ; fix any such vertex h′P ∈ Y , and define h′P to be the image of hP under φ.

Clearly, φ is a well-defined function. We show next that φ is injective. First note that for

2We note that a similar graph to D was defined in [13]. However, the upper bound on the number of
vertices in that graph derived in [13] had a multiplicative factor of O(k2) over the number of vertices in Y ,
which was upper bounded by O(k4), thus resulting in an upper bound of O(k6) on the kernel size. Here we
improve the multiplicative factor to O(k).

63

any head hP of a path P in a tree T of F , h′P is on the root-leaf path from rT going through

hP . Let P1 and P2 be two distinct paths in P, and let hP1 and hP2 be their head vertices,

respectively. Then hP1 6= hP2 (because D is a collection of disjoint paths). Suppose, to get

a contradiction, that φ(P1) = φ(P2) = y. Then y must appear on the root-leaf path (in T)

from rT passing through hP1 , and y must also appear on the root-leaf path from rT passing

through hP2 . It follows that hP1 , hP2 , y all belong to the same root-leaf path in T starting

at rT . Assume, without loss of generality, that hP1 appears before hP2 on this path that

starts at rT . Since (hP1 , y) and (hP2 , y) are both requests in R and hP1 , hP2 are internal

degree-2 vertices, request (hP2 , y) dominates request (hP1 , y), contradicting the fact that

the domination reduction rule is not applicable to F . We conclude that φ is injective, and

hence |P| ≤ |Y | = O(k2). Each path P ∈ P has length at most k since its edges correspond

to disjoint requests in R. Therefore, the number of vertices on each path in P is O(k).

Since |P| = O(k2), the number of vertices on the paths in P, and hence, the number of

vertices in Z is O(k3). This completes the proof.

Theorem 4.1.15. Let (F , R, k) be a reduced instance of multicut on trees problem. Then

the number of vertices in F is O(k3).

Proof. The theorem follows directly from Lemma 4.1.13 and Lemma 4.1.14.

Corollary 4.1.16. The multicut on trees problem has a kernel of at most O(k3) vertices.

Proof. This follows from Theorem 4.1.15 and the fact that Reduction Rules 4.1.1 – 4.1.12

can be implemented to run in polynomial time.

4.2 A parameterized algorithm to multicut on trees problem

In this section, we present our parameterized algorithm to multicut on trees problem.

Let (F , R, k) be a reduced instance of multicut on trees problem. Since (F , R, k) is

reduced, we can assume that every tree in F is nontrivial (contains at least three vertices).

We shall assume that every tree in F is rooted at some internal vertex in the tree (chosen

arbitrarily). Let T be a tree in F rooted at a vertex r. A vertex u ∈ V (T) is important if

64

all the children of u are leaves. For a set of vertices V ′ ⊆ V (T) and a vertex u ∈ V ′, u is

farthest from r with respect to V ′ if distT (u, r) = max{distT (w, r) | w ∈ V ′}.

Before we proceed further, we try to give the reader an intuitive idea about how the

algorithm works. The algorithm uses a branch-and-search strategy. Before the branching

is performed, more reduction rules, which further exploit the connection between multicut

on trees problem and vertex cover problem, are applied. The algorithm then applies a

general branching rule (BranchRule 4.2.5) to simplify the structure further. After this

branching rule is applied, it can be assumed that, for any important vertex w in a tree

of F , the degree of every leaf in Gw is at most 2. (Recall that Gw is the subgraph of

G induced by the vertices in G that correspond to the good leaves attached to w.) This

aforementioned property allows for efficient branching. By choosing an important vertex

w properly, it is shown that there must be a request from w, or from a child of w, to a

vertex in the subtree of F rooted at the parent of w. Based on this request, the algorithm

distinguishes four possible branching cases (the different cases are illustrated in Figure 4.3),

and branches accordingly.

The following lemma, which again emphasizes the importance of vertex cover problem

for both kernelization and parameterized algorithms for multicut on trees problem, will be

pivotal:

Lemma 4.2.1. Let (F , R, k) be a reduced instance of multicut on trees problem. Let T be

a tree in F rooted at r. There exists a minimum cut Emin for the requests of R in T such

that, for every important vertex u ∈ V (T), the subset of edges in Emin that are incident to

the children of u corresponds to a minimum vertex cover of Gu.

Proof. Among all minimum cuts of T , let Emin be one that minimizes the number of

important vertices u in T such that the subset of edges in Emin between u and children of

u does not correspond to a minimum vertex cover of Gu; let nmin be the number of such

vertices. We claim that nmin = 0. Suppose not, then there exists an important vertex u

in T such that the subset of edges in Emin that are incident to the children of u does not

correspond to a minimum vertex cover of Gu. Let E′ be the subset of edges in Emin that

65

are incident to the children of u and note that E′ is a vertex cover of Gu, and let Eu be a

subset of edges that are incident to the children of u and that corresponds to a minimum

vertex cover of Gu. By the choice of u, we have |E′| ≥ |Eu|+ 1.

If u = r, then E′ = Emin is not a minimum cut (since Eu is a smaller cut in this case),

contradicting the optimality of Emin. On the other hand, if u 6= r, then (Emin \E′)∪Eu ∪

{uπ(u)} is a cut whose size is not larger than that of Emin, contradicting the choice of

Emin since this cut contains Eu which corresponds to a minimum vertex cover of Gu.

We introduce the following new reduction rules:

Reduction Rule 4.2.1. Let (F , R, k) be a reduced instance of multicut on trees problem,

let T be a tree in F rooted at r, and let u 6= r be a vertex in T . If there exists no request

between a vertex in V (Tu) and a vertex in V (Tπ(u)) \ V (Tu) then contract the edge uπ(u).

Proof. By the hypothesis, there is no request between any vertex in V (Tu) and a vertex

in V (Tπ(u)) \ V (Tu). If π(u) = r, then no minimum cut can contain uπ(u), since removing

uπ(u) from the cut would still yield a cut. On the other hand, if π(u) 6= r, then since there

is no request between any vertex in V (Tu) and a vertex in V (Tπ(u)) \V (Tu), from any edge

cut containing uπ(u) we can obtain an edge cut of the same size by replacing edge uπ(u)

with edge π(u)π(π(u)).

Reduction Rule 4.2.2. Let (F , R, k) be a reduced instance of multicut on trees problem,

let T be a tree in F rooted at r, and let u be an important vertex in T such that ∆(Gu) ≤ 2.

If there exists a (leaf) child l of u that is not in any minimum vertex cover of Gu, then

contract the edge ul.

Proof. First note that the existence of such a child can be determined in polynomial time

since ∆(Gu) ≤ 2. By Lemma 4.2.1, there exists a minimum cut that does not include the

edge ul. Therefore, edge ul can be contracted.

Noting that a path of even length in a graph has a unique minimum vertex cover, we

have the following reduction rule:

66

Reduction Rule 4.2.3. Let (F , R, k) be a reduced instance of multicut on trees problem,

let T be a tree of F rooted at r, and let w be an important vertex in T such that ∆(Gw) ≤ 2.

For every path in Gw of even length, cut the leaves in children(w) that correspond to the

unique minimum vertex cover of P .

Proof. Since a path of even length has a unique minimum vertex cover, which can be

computed in polynomial time since ∆(Gw) ≤ 2, if Gw contains a path P of even length,

then by Lemma 4.2.1, we can cut the vertices in children(w) that correspond to the

minimum vertex cover of P .

Definition 4.2.2. Let (F , R, k) be a reduced instance of multicut on trees problem, let T

be a tree of F rooted at r, and let w 6= r be an important vertex in T . A request between

a vertex in V (Tw) and a vertex in V (Tπ(w)) \ V (Tw) is called a cross request.

Reduction Rule 4.2.4. Let (F , R, k) be a reduced instance of multicut on trees problem,

let T be a tree rooted at r in F , and let w 6= r be an important vertex in T such that

∆(Gw) ≤ 2. If there is a minimum vertex cover of Gw such that cutting the leaves in this

minimum vertex cover cuts all the cross requests from the vertices in V (Tw) then contract

wπ(w).

Proof. First note that the existence of such a minimum vertex cover can be determined in

polynomial time since ∆(Gw) ≤ 2. Suppose that there exists a minimum vertex cover Cmin

of Gw such that cutting the leaves in Cmin cuts all the cross requests from the vertices in

V (Tw). Consider a minimum cut C, and suppose that C contains wπ(w). If π(w) = r,

then since there is no cross request from V (Tw), C−wπ(w) is still a cut, contradicting the

optimality of C. On the other hand, if π(w) 6= r, then replacing wπ(w) in C with the edge

between π(w) and its parent (i.e., π(π(w))), and replacing the edges in C that are incident

to the children of w with the edges that are incident to the leaves in Cmin, yields a cut of

size at most |C|, and hence, a minimum cut that does not contain the edge wπ(w).

67

Definition 4.2.3. The instance (F , R, k) of multicut on trees problem is said to be strongly

reduced if (F , R, k) is reduced and none of Reduction Rules 4.2.1 – 4.2.4 is applicable to

the instance.

Proposition 4.2.4. Let (F , R, k) be a strongly reduced instance, and let T be a tree in F

rooted at a vertex r. Then the following are true:

(i) For any vertex u ∈ V (T), there exists no request between u and π(u).

(ii) For any vertex u 6= r in V (T), there exists a request between some vertex in V (Tu)

and some vertex in V (Tπ(u)) \ V (Tu).

(iii) For any internal vertex u ∈ V (T), there exists at least one request between the vertices

in V (Tu)− u.

(iv) For any important vertex w ∈ V (T) such that ∆(Gw) ≤ 2 and any child u of w,

there exists a request between u and a sibling of u, and hence all the children of an

important vertex are good leaves.

(v) For any important vertex w ∈ V (T) such that ∆(Gw) ≤ 2, Gw contains no path of

even length.

(vi) For any important vertex w 6= r in V (T) such that ∆(Gw) ≤ 2, there is no minimum

vertex cover of Gw such that cutting the leaves in this minimum vertex cover cuts all

the cross requests from the vertices in V (Tw).

Proof. (i) This follows directly from the fact that the unit request reduction rule (Re-

duction Rule 4.1.3) is not applicable to T .

(ii) This follows directly from the fact that Reduction Rule 4.2.1 is not applicable to T .

(iii) Proceed by contradiction. Let u be an internal vertex in V (T), and assume that

there is no request between any two vertices in V (Tu)−u. Since Reduction Rule 4.2.1

is not applicable, u does not have any grandchildren (otherwise the reduction rule

68

would apply to any grandchild of u), and hence all the children of u must be leaves.

Moreover, u cannot have any children either, otherwise, since all the children of u

must be leaves, by Reduction Rule 4.2.1, if u has a child x then there must exist a

request between x and u. This, however, contradicts part (i) above.

(iv) This follows directly from the fact that Reduction Rule 4.2.2 is not applicable to T

since such a child of w would be an isolated vertex in Gw.

(v) This follows directly from the fact that Reduction Rule 4.2.3 is not applicable to T .

(vi) This follows directly from the fact that Reduction Rule 4.2.4 is not applicable to T .

We are now ready to present the algorithm. Let (F , R, k) be an instance of multicut on

trees problem. Clearly, in polynomial time we can either reject the instance or transform it

into an equivalent strongly reduced instance. Therefore, we shall assume that (F , R, k) is

strongly reduced. The algorithm is a branch-and-search algorithm, and its execution can be

depicted by a search tree. The running time of the algorithm is proportional to the number

of root-leaf paths, or equivalently, to the number of leaves in the search tree, multiplied

by the time spent along each such path, which will be polynomial in k. Therefore, the

main step in the analysis of the algorithm is to derive an upper bound on the number

of leaves L(k) in the search tree. We shall assume that the instance (F , R, k) is strongly

reduced before every branch of the algorithm. We shall also assume that the branches

are considered in the listed order. In particular, when a branch is considered, (F , R, k) is

strongly reduced and none of the preceding branches applies. We first make the following

observations.

Observations. Let T be a tree in F rooted at r, let w 6= r be an important vertex in

T , and let u be a child of w such that u is contained in some minimum vertex cover of

Gw. If edge wπ(w) is in some minimum cut of T , then the edges incident to the leaves of

any minimum vertex cover of Gw are contained in some minimum cut: simply replace all

the edges that are incident to the children of w in a minimum cut that contains wπ(w)

69

with the edges incident to the leaves corresponding to the desired minimum vertex cover

of Gw. Since u is contained in some minimum vertex cover of Gw, there is a minimum cut

that contains the edge wu. Therefore, if we choose edge wπ(w) to be in the solution, then

we can choose the edge wu to be in the solution as well. If when we branch we choose to

cut uw whenever we cut wπ(w) then we say that we favor vertex u. Note that if we favor

a vertex u, then by contrapositivity, if we decide not to cut u in a branch, then we can

assume that w will not be cut as well in the same branch. This observation will be very

useful when branching.

Let T be a tree in F and let w ∈ V (T) be an important vertex. Let v ∈ Gw, and recall

that degG(v) denotes the degree of v in Gw. By Lemma 4.2.1, we can assume that the set

of edges in Tw that are contained in the solution that we are looking for corresponds to

a minimum vertex cover of Gw. Since any minimum vertex cover of Gw either contains

v, or excludes v and contains its neighbors, we can branch by cutting v in the first side

of the branch, and by cutting the neighbors of v in Gw in the second side of the branch.

Note that by part (iv) of Proposition 4.2.4, and the fact that there is no request between a

child and its parent (unit request rule), there must be at least one request between v and

another child of w, and hence, degG(v) ≥ 1.

The above observations lead to the following branching rule:

BranchRule 4.2.5. Let T be a tree in F , and let w ∈ V (T) be an important vertex. If

there exists a vertex v ∈ Gw such that degG(v) ≥ 3, then branch by cutting v in the first

side of the branch, and by cutting the neighbors of v in Gw in the second side of the branch.

Cutting v reduces the parameter k by 1, and cutting the neighbors of v in Gw reduces k

by at least 3. Therefore, the number of leaves in the search tree of the algorithm, L(k),

satisfies the recurrence relation: L(k) ≤ L(k − 1) + L(k − 3).3

3For the sake of obtaining an algorithm with the running time described in this thesis, it is sufficient
to branch on vertices of degree ≥ 2 (rather than ≥ 3). However, we would like to present Reduction
Rules 4.2.1 – 4.2.4 and Proposition 4.2.4 in a more general form to possibly make it easier to obtain
algorithms with improved running time. As a matter of fact, as mentioned in section 4.3, we can obtain an
algorithm with an improved running time over the algorithm presented in the current thesis at the expense
of performing a complicated case-by-case analysis. The improved algorithm first branches on vertices of
degree at least 3, and makes use of the reduction rules in the current thesis in addition to other reduction

70

After BranchRule 4.2.5, we can now assume that for any important vertex w in a tree

of F , we have ∆(Gw) ≤ 2, and hence, Gw consists of a collection of disjoint paths and

cycles.

Let T be a tree in F rooted at r. Among all important vertices in T , let w be a vertex

that is farthest from r. We can assume that w 6= r; otherwise, by Branching Rule 4.2.5, we

have ∆(Gw) ≤ 2, and the problem can be solved in polynomial time. Since every subtree of

T contains an important vertex, w must be a farthest vertex among all internal vertices of

T . By part (ii) of Proposition 4.2.4, there exists a cross request between a vertex in V (Tw)

and a vertex in V (Tπ(w)) \ V (Tw). Since w is farthest from r, the cross request between a

vertex in V (Tw) and a vertex in V (Tπ(w)) \ V (Tw) can be either a request: (1) between w

and a sibling of w, (2) between a child of w and its grandparent π(w), (3) between a child

of w and an uncle, (4) between a child of w and a cousin, or (5) between w and a nephew

of w. By symmetry (and by the choice of w), the case when there is a request between w

and a nephew is identical to the case when there is a request between a child of w and an

uncle. Therefore, we shall only treat the latter case. We refer the reader to Figure 4.3 for

an illustration of the different cases.

Case 1. Vertex w has a cross request to a sibling w′.

In this case at least one of w,w′ must be cut. We branch by cutting w in the first side

of the branch, and cutting w′ in the second side of the branch. Note that by part (iii)

of Proposition 4.2.4, the size of a minimum vertex cover in Gw is at least 1. Moreover,

a minimum vertex cover for Gw can be computed in polynomial time since ∆(Gw) ≤ 2.

Therefore, in the first side of the branch we end up cutting the edges corresponding to a

minimum vertex cover of Gw, which reduces the parameter further by at least 1. Therefore,

we have L(k) ≤ L(k − 2) + L(k − 1) in this case.

rules.

71

π(w)

w w′

π(w)

w

u

π(w)

w w′

u

π(w)

w w′

u u′

Case 1 Case 2 Case 3 Case 4

Figure 4.3: Illustration of the different cases treated by the algorithm. The dashed curved
lines represent requests.

Case 2. There exists a child u of w such that u has a cross request to its grandparent π(w).

In this case we can cut u. This can be justified as follows. Any minimum cut of T

either cuts wπ(w) or does not cut it. If the minimum cut cuts wπ(w), then we can assume

that it cuts edge wu as well because by Reduction Rule 4.2.2, u is in some minimum vertex

cover of Gw. On the other hand, if the minimum cut does not cut wπ(w), then it must

cut edge wu since (u, π(w)) ∈ R. It follows that in both cases there is a minimum cut that

cuts wu. We have L(k) ≤ L(k − 1) in this case.

Case 3. There exists a child u of w such that u has a cross request to an uncle w′.

We favor u and branch as follows. In the first side of the branch we cut u. In the second

side of the branch we keep edge uw, and cut the neighbor(s) of u in Gw. Since u is not

cut in the second side of the branch and u is favored, w is not cut as well, and hence w′

must be cut. Noting that u has at least one neighbor in Gw, L(k) satisfies the recurrence

relation L(k) ≤ L(k − 1) + L(k − 2).

72

Case 4. There exists a child u of w such that u has a cross request to a cousin u′.

Let w′ = π(u′) and note that π(w) = π(w′). We favor u and u′ (thus if u′ is not cut

then w′ is not cut as well). We branch as follows. In the first side of the branch we cut u.

In the second side of the branch uw is kept and we cut the neighbor(s) of u in Gw. Since

in the second side of the branch uw is kept and u is favored, wπ(w) is kept as well, and

u′ must be cut (otherwise, w′ is not cut as well because u′ is favored) since (u, u′) ∈ R.

Therefore, L(k) in this case satisfies the recurrence relation L(k) ≤ L(k − 1) + L(k − 2).

Theorem 4.2.6. The multicut on trees problem can be solved in time O∗(ρk), where ρ =

(
√

5 + 1)/2 ≈ 1.618 is the positive root of the polynomial x2 − x− 1.

Proof. From the above branching it follows that the number of leaves in the search tree

corresponding to the algorithm satisfies the recurrence relation L(k) ≤ L(k−1)+L(k−2),

whose characteristic polynomial is x2 − x − 1. It follows that L(k) ∈ O∗(ρk), where

ρ = (
√

5 + 1)/2 ≈ 1.618 is the positive root of the polynomial x2 − x − 1 (for example,

see [25, 29, 58]). Since the time spent by the algorithm along each root-leaf path in the

search tree is polynomial, the theorem follows.

4.3 Conclusion

In this chapter, we presented a kernelization algorithm for the multicut on trees problem

that computes a kernel of size at most O(k3) for the problem, improving the upper bound

of O(k6) on the kernel size given in [13]. More specifically, in the analysis of our algorithm,

we partition the nodes in the forest into three types of groups, and we bound the number of

groups for each type in the forest. Then, we also bound the number of bottommost leaves

through the connection with vertex cover problem. Eventually, with carefully analysis on

the number of bad leaves, good leaves and internal nodes, we obtain a kernel of size O(k3)

for the problem.

73

We also presented a parameterized algorithm that solves the multicut on trees problem

in time O∗(ρk), where ρ = (
√

5 + 1)/2 ≈ 1.618 is the positive root of the polynomial

x2−x−1; this improves the O∗(2k)-time algorithm given in [34]. The presented algorithm

itself is a simple search-tree algorithm that distinguishes very few cases, and exploits the

connection between multicut on trees problem and vertex cover problem. It is possible to

obtain an algorithm with a slightly improved running time by distinguishing more cases

based on the tree structure around the chosen important vertex. In fact, at the expense of

a sophisticated case-by-case analysis, we can obtain an algorithm running in time O∗(ρ′k),

where ρ′ =
√√

2 + 1 ≈ 1.553 is the positive root of the polynomial x4−2x2−1. While the

improved algorithm still uses the structural connection between multicut on trees problem

and vertex cover problem, the numerous cases that need to be considered make the analysis

very cumbersome, which makes it unworthy to present the improved algorithm. It is

interesting to see if we can exploit the structural properties of the problem further to

obtain improved algorithms without overcomplicating the analysis and case distinction; we

leave this as an open problem.

74

5. METHODS AND RESULTS FOR PROTEIN COMPLEX PREDICTION ∗

In this chapter, we present our algorithms to predict protein complexes, and then we

test our algorithms on three well known protein-protein interaction networks in yeast and

evaluate the performances of our results with respect to several measures.

5.1 Methods to predict protein complex

5.1.1 Neighborhood density for protein complex prediction

Given a protein interaction network represented by a graph G = (V,E), in which each

vertex represents a protein and each edge represents interaction between two proteins, we

first obtain the set C of all maximal cliques with at least three vertices by using a branch-

and-bound algorithm to add one vertex at a time until no more vertices can be added.

Since the degree of most vertices in G is small, the number of maximal cliques is not large

and this step is feasible, with time complexity O(|C||V |2). Given two sets C1 and C2, we

define their similarity to be S(C1, C2) = |C1 ∩ C2|2/(|C1||C2|) [6] [4] [50] [19] [57] [72] [42]

[64]. For each maximal clique C, we count the number of other maximal cliques C ′ with

S(C,C ′) ≥ t, where t is a given threshold. We define a clique C to have low neighborhood

density if this number is below a given threshold c, and it has high neighborhood density

otherwise. The worst case time complexity of this step is O(|C|2|V |).

5.1.2 Cliques with low neighborhood density

Given an induced subgraph G0 = (V0, E0) of a graph G = (V,E), we define its density

to be D(G0) = 2|E0|/(|V0|(V0| − 1)) [6], [4] [50] [57] [72] [64]. For each maximal clique

with low neighborhood density, we iteratively identify the best vertex to add so that the

density of the enlarged subgraph remains high and the length of the shortest path between

two vertices in the enlarged subgraph remains small. We repeat the procedure until no

∗Reprinted with permission from “Identifying Complexes from Protein Interaction Networks According
to Different Types of Neighborhood Density” by Jia-Hao Fan, Jianer Chen and Sing-Hoi Sze, 2012. Journal
of Computational Biology, 19(12): 1284-1294 (2012), Copyright [2012] by Mary Ann Liebert, Inc.

75

more changes can be made, and use the resulting dense subgraphs as predicted complexes

(Figure 5.1). Since these subgraphs reside in regions with low neighborhood density, they

are likely to function as an independent unit. For each potential vertex to add, it takes

O(|V |) time to compute the density of the enlarged subgraph. By precomputing all vertex

pairs that have shortest paths of length at most two, the worst case time complexity of the

procedure is O(|C||V |2), although it should terminate quickly when the density threshold

is large.

NDComplexL
input: a graph G = (V,E), a set of cliques C in G and density threshold d
output: a set of C′ of predicted complexes by adding vertices to cliques in C.

1 C′ ← ∅
2 for each clique C ∈ C
2.1 C′ ← C
2.2 V ′ ← V \ C
2.3 while there exists a vertex v ∈ V ′ with density D(C′ ∪ {v}) ≥ d
2.3.1 v ← vertex in V ′ with highest density D(C′ ∪ {v})
2.3.2 if all shortest path between vertices in C′ ∪ {v} are of length at most two
2.3.2.1 C′ ← C′ ∪ {v}
2.3.3 V ′ ← V ′ \ {v}
2.4 C′ ← C′ ∪ {C′}
3 return C′

Figure 5.1: Algorithm NDComplexL is used to obtain predicted complexes from maximal
cliques with low neighborhood density.

5.1.3 Cliques with high neighborhood density

For each maximal clique with high neighborhood density, if its most similar maximal

clique overlaps significantly with it, we replace it by the intersection of the two cliques. We

repeat the procedure until no more changes can be made, and use the remaining cliques as

76

predicted complexes (Figure 5.2). This procedure reduces the number of highly overlapping

predictions significantly, since many cliques become identical after the intersections. By

labeling each clique with a positive integer and picking the one with the lowest label when

resolving ties in similarity, we can guarantee that at least two cliques become identical

after each iteration, and the procedure takes at most |C| iterations. The worst case time

complexity of the procedure is O(|C|3|V |), although it should terminate quickly when the

similarity threshold is large.

NDComplexH
input: a graph G = (V,E), a set of cliques C in G and similarity threshold s
output: a set of C′ of predicted complexes by intersecting cliques C.

1 while there exist cliques C1 and C2 in C with similarity S(C1, C2) ≥ s
1.1 C′ ← ∅
1.2 for each clique C ∈ C
1.2.1 C′ ← cliques in C \ {C} with hightest similarity S(C,C′)
1.2.2 if S(C,C′) > s
1.2.2.1 C′ ← C′ ∪ {C ∩ C′}
1.2.3 else
1.2.3.1 C′ ← C′ ∪ {C}
1.3 C ← C′
2 return C′

Figure 5.2: Algorithm NDComplexH is used to obtain predicted complexes from maximal
cliques with high neighborhood density.

5.2 Experimental results

5.2.1 Performance evaluation

We use a combined set of true complexes that contain at least two proteins to which we

compare the predicted complexes, including 214 curated complexes from the Munich Infor-

77

mation Center for Protein Sequences (MIPS) database [56], 101 curated complexes from

Aloy et al.[3], and 363 complexes extracted from the Saccharomyces Genome Database

[41], according to GO slim complex annotations [30]. To reduce evaluation bias, we have

removed complexes that contain more than 100 proteins from the SGD complexes. We

removed the duplicates from the combined set, resulting in a total of 574 true complexes.

Most of these complexes are small, with the average number of proteins within a com-

plex being 9.4 (Table 5.1). We used the yeast protein interaction network from the MIPS

database [56], the yeast protein interaction network from the Database of Interacting Pro-

teins (DIP database [73]), and the yeast protein interaction network from the Biological

General Repository for Interaction Datasets (BioGRID database [66]) to obtain separate

sets of predicted complexes from each network. For the BioGRID network, only physi-

cal interactions are included. These networks have different densities, with the BioGRID

network being the densest (Table 5.2).

Table 5.1: Distribution of True Complexes Used in the Evaluation

Protein Complex Protein Complex Protein Complex

2 116 5 47 8 24

3 96 6 32 9 13

4 67 7 32 ≤ 10 147
a Complex denotes the number of complexes that have number of proteins specified by Protein.

5.2.2 Performance comparisons

We compared the performance of our algorithm NDComplex to the Markov cluster

algorithm (MCL) [27], which subdivides a given graph into clusters by Markov clustering,

78

Table 5.2: Protein Interaction Networks Used in the Evaluation

Protein Interaction Avg deg Max deg Density

MIPS 4546 12319 5.4 286 0.0012

DIP 4945 21639 8.8 281 0.0018

BioGRID 5727 51319 17.9 2553 0.0031
a Protein, interaction, avg deg, max deg, and density denote the number of proteins, the number of

interactions, the average vertex degree, the maximum vertex degree, and the density of the
network, respectively.

to the Molecular complex detection algorithm (MCODE) [6], which uses a seed-extension

algorithm to identify complexes in dense regions, to the Dense-neighborhood extraction us-

ing connectivity and confidence features algorithm (DECAFF) [50], which is based on the

identification and merging of dense subgraphs, and to the Core-attachment based method

(COACH) [72], which is based on the prediction of a core complex and its attachment pro-

teins.We also compared the performance of our algorithm to the Maximal clique algorithm

(CLIQUE), which uses the set of maximal cliques with at least three vertices as predicted

complexes. For MCL, we set inflation to 3.5. For MCODE, we set depth to 100, haircut to

true, fluff to false, and fluff density threshold to 0.2. For DECAFF, we implement steps 1 to

4 of Algorithm 1 in Li et al.[50], including the local clique detection step, the hub removal

step, and the merging step, and set the density threshold to 0.8 and the neighborhood

affinity threshold to 0.5. Since the other algorithms do not use functional information,

we skip the filtering steps 5 to 9 in DECAFF that use the MIPS functional catalog [56].

For COACH, we set the neighborhood affinity threshold to 0.1. For NDComplex, we set

the similarity threshold t and the occurrence threshold c during the computation of neigh-

borhood density to 0.3 and 3 respectively. We set the density threshold d to 0.7 during

the computation of predicted complexes in regions with low neighborhood density, and

the similarity threshold s to 0.2 during the computation of predicted complexes in regions

79

with high neighborhood density. These parameters are determined by testing a few com-

binations and choosing the one that gives the best overall performance on the test sets.

We collect the predicted complexes from both types of regions for performance evaluation,

with each distinct prediction counted once.

5.2.3 Complex agreement measure

Given a similarity threshold u, we evaluate the agreement between a set of true com-

plexes and a set of predicted complexes by defining the precision (PC) to be the ratio of the

number of predicted complexes P that have a true complex C with similarity S(C,P) ≥ u

to the total number of predicted complexes, and the recall (RC) to be the ratio of the

number of true complexes C that have a predicted complex P with similarity S(C,P) ≥ u

to the total number of true complexes [19] [57] [72] [42] [64]. We compute the F-measure

= 2 × (PC × RC)/(PC + RC). Figure 5.3 shows that NDComplex has the best overall

performance when the similarity threshold u is low, while MCODE and COACH perform

better when the similarity threshold u is high, which corresponds to a small number of

almost perfect predictions. DECAFF has the next best performance, followed by CLIQUE

and MCL.

5.2.4 Complex accuracy measure

In addition to using the complex agreement measure, we use the complex accuracy

measure in Brohée and van Helden [14], Friedel et al.[30], and Tu et al.[67] that does not

rely on the use of a similarity threshold. Given a set of true complexes C and a set of pre-

dicted complexes P , we compute the sensitivity Sn =
∑

C∈CmaxP∈P |C ∩ P |/
∑

C∈C |C|,

which is the ratio of the sum of the maximum overlap of each true complex with a pre-

dicted complex to the total size of true complexes, the positive predictive value PPV =∑
P∈P maxC∈C |C∩P |/

∑
P∈P |P |, which is the ratio of the sum of the maximum overlap of

each predicted complex with a true complex to the total size of predicted complexes, and

the accuracy Acc =
√
Sn × PPV , which is the geometric mean of sensitivity and PPV.

Figure 5.4 shows that NDComplex has the best accuracy in almost all cases, followed by

80

MIPS

Similarity threshold

0.2 0.4 0.6 0.8

C
om

pl
ex

 F
-m

ea
su

re

0.0

0.2

0.4

0.6

 u

DIP

Similarity threshold

0.2 0.4 0.6 0.8
C

om
pl

ex
 F

-m
ea

su
re

0.0

0.2

0.4

0.6

 u

BioGRID

Similarity threshold

0.2 0.4 0.6 0.8

C
om

pl
ex

 F
-m

ea
su

re

0.0

0.2

0.4

0.6

 u

CLIQUE MCL MCODE COACH NDComplexDECAFF

Figure 5.3: Performance of complex prediction algorithms on each protein interaction
network with respect to the complex agreement measure over different similarity thresholds
u between a true complex and a predicted complex. For DECAFF, only steps 1 to 4 of
Algorithm 1 in Li et al. [50] are included, while the filtering steps 5 to 9 that are based on
the use of functional information are skipped.

CLIQUE, DECAFF, and COACH. The performance differences between NDComplex and

MCL, MCODE, DECAFF, or COACH are the largest on the BioGRID network. DECAFF

puts emphasis on sensitivity, while MCODE puts emphasis on PPV.

5.2.5 Protein pair agreement measure

We evaluate the protein pair agreement by defining a true positive (TP) to be a protein

pair that is within the same true complex and within the same predicted complex, a false

positive (FP) to be a protein pair that is within the same predicted complex but not in

the same true complex, and a false negative (FN) to be a protein pair that is within the

same true complex but not in the same predicted complex. We compute the precision

PC = |TP |/(|TP | + |FP |), the recall RC = |TP |/(|TP | + |FN |), and the F-measure

= 2 × (PC × RC)/(PC + RC). When the true complexes and the predicted complexes

both consist of disjoint sets of proteins, this measure evaluates the resemblance of the two

81

MIPS

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.2

0.4

0.6

0.8

DIP

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.2

0.4

0.6

0.8

BioGRID

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.2

0.4

0.6

0.8

Sensitivity Complex accuracy PPV

Figure 5.4: Performance of complex prediction algorithms on each protein interaction
network with respect to the complex accuracy measure.

sets. Since a protein can appear in more than one complex, this measure evaluates how

accurately an algorithm can predict whether a given pair of proteins are within the same

complex or not, although this is only an approximation since the set of true complexes

may not be complete. Figure 5.5 shows that COACH and NDComplex have the best

performance with respect to protein pairs. The performance differences between these

algorithms and MCL, MCODE, or DECAFF are especially large on the BioGRID network,

with CLIQUE performing better than MCL, MCODE, and DECAFF. MCL and DECAFF

have low performance on the BioGRID network due to a large number of false positive

protein pairs. MCODE puts emphasis on precision, while DECAFF puts emphasis on

recall.

5.3 Discussion

We have developed an algorithm to identify complexes from protein interaction net-

works based on using different strategies for regions with different neighborhood densities.

82

MIPS

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DIP

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BioGRID

C
LI

Q
U

E

M
C

L
M

C
O

D
E

D
EC

A
FF

C
O

A
C

H
N

D
C

om
pl

ex

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall Protein pair F-measure

Figure 5.5: Performance of complex prediction algorithms on each protein interaction
network with respect to the protein pair agreement measure.

We have shown that this approach is very effective and it achieves the best performance with

respect to complex agreement, complex accuracy, and protein pair agreement measures.

Among the three networks that we have tested, we found that each algorithm performs the

best on the BioGRID network, which has the highest density, with weaker performance

on the DIP network, followed by the MIPS network, which has the lowest density. On

the BioGRID network, our algorithm NDComplex performs the best with respect to the

complex agreement measure when the similarity threshold u is low, and with respect to the

complex accuracy measure, while COACH and NDComplex have the best and comparable

performance with respect to the protein pair agreement measure.

Ideally, the correspondences between the true complexes and the predicted complexes

should be one-to-one. To evaluate the degree of success of each algorithm in reaching this

goal, we use the separation measure in Brohée and van Helden [14], and Tu et al.[67]. Given

a true complex C and a predicted complex P , define their separation Sep(C,P) = |C ∩

P |2/(
∑

C∈C |C ∩P |
∑

P∈P |C ∩P |). Given a set of true complexes C and a set of predicted

83

complexes P, we compute the average separation over the set of true complexes Sepc =∑
C∈C

∑
P∈P SEP (C,P)/|C|, the average separation over the set of predicted complexes

Sepp =
∑

C∈C
∑

P∈P SEP (C,P)/|P|, and the separation Sep =
√
Sepc × Sepp , which is

the geometric mean of the above two averages.

Table 5.4 shows that while MCODE has the highest separation, it produces a small

number of predictions that cover very few proteins. MCL achieves the next highest separa-

tion, but it produces a disjoint partition of proteins, which is biologically inaccurate since

it does not allow a protein to appear in multiple predicted complexes. COACH achieves

a better separation than NDComplex, but it covers less proteins. CLIQUE and DECAFF

cover the most interactions, but the number of predictions is very high and they have the

worst separation. NDComplex achieves better separation than CLIQUE and DECAFF.

Table 5.3: Running Time in Seconds During Different Stages of Our Algorithm
NDComplex on Each Protein Interaction Network

Clique Neighbor Complex l Complex h

MIPS 420 39 88 41

DIP 908 184 101 212

BioGRID 15739 13873 2950 24722
a Clique denotes the time to obtain all the maximal cliques; neighbor denotes the time to compute the
neighborhood density of these cliques; and complex l and complex h denote the time to obtain
predicted complexes from cliques with low neighborhood density and high neighborhood density,
respectively.

Table 5.5 shows the statistics of maximal cliques and predicted complexes during dif-

ferent stages of our algorithm NDComplex. Within each network, the number of maximal

cliques with high neighborhood density is much larger than the number of maximal cliques

84

with low neighborhood density, which means that there are significant overlaps among the

maximal cliques with high neighborhood density. For regions with low neighborhood den-

sity, our strategy can add a large number of proteins to a prediction, which is especially

evident on the BioGRID network. While the density of these predictions remains high, the

number of predictions decreases since some of them become identical after the addition of

proteins. The situation is very different for regions with high neighborhood density, when

the number of predictions decreases drastically after the intersections of cliques, and each

of these predictions contains a very small number of proteins, which means that there are

only a small number of highly shared parts within these cliques. The predictions from

these two types of regions are distinct (compare to Table 5.4), with almost all predictions

coming from regions with low neighborhood density. Since this is sufficient to ensure that

the predictions have high quality, a complex can be modeled mostly as an independent

unit with dense inside connections and sparse outside connections, while the small number

of predictions from very dense regions are still needed to reduce false negatives.

Figure 5.6: Predicted complex from each algorithm on the protein interaction network from
the BioGRID database that has the highest similarity to the true complex that contains the
MAP kinase cascade of the pheromone response pathway and the filamentation/invasion
pathway from the MIPS database. No predicted complexes from MCL or MCODE have
overlap to the true complex and are not shown.

85

Although the worst case time complexity of our algorithm NDComplex is high, the

actual running time is not high (Table 5.3). For sparse networks such as MIPS and DIP, it

takes less than an hour to complete all the steps, and the time to obtain the maximal cliques

dominates. For denser networks such as BioGRID, it takes about a day, and the time to

obtain predicted complexes from cliques with high neighborhood density dominates.

(0
.2,

3,0
.7)

(0
.25

,3,
0.7

)

(0
.3,

2,0
.7)

(0
.3,

4,0
.7)

(0
.3,

3,0
.8)

(0
.3,

3,0
.9)

(0
.3,

3,0
.7)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(0
.2,

3,0
.7)

(0
.25

,3,
0.7

)

(0
.3,

2,0
.7)

(0
.3,

4,0
.7)

(0
.3,

3,0
.8)

(0
.3,

3,0
.9)

(0
.3,

3,0
.7)

0.0

0.1

0.2

0.3

Sensitivity Complex accuracy PPV Precision Recall Protein pair F-measure

Figure 5.7: Performance of our algorithm NDComplex on the protein interaction network
from the BioGRID database with respect to the complex accuracy measure and the protein
pair agreement measure over different parameter settings (t, c, d), where t and c are the
similarity threshold and the occurrence threshold, respectively, during the computation of
neighborhood density, and d is the density threshold during the computation of predicted
complexes in regions with low neighborhood density. The similarity threshold during the
computation of predicted complexes in regions with high neighborhood density is fixed to
s = 0.2. The last set of parameters (0.3, 3, 0.7) is the one we chose.

To investigate the effect of different parameters on our algorithm NDComplex, we picked

a few sets of parameters that are close to the one we choose and examine the performance

differences. Figure 5.7 shows that NDComplex is not very sensitive to parameters.

86

To illustrate the differences in predictions that can be obtained from different algo-

rithms, we examine the predicted complex from each algorithm on the BioGRID network

that has the highest similarity to the true complex that contains the MAP kinase cascade

of the pheromone response pathway and the filamentation/ invasion pathway [35] from the

MIPS database. Figure 5.6 shows that CLIQUE finds the complex that contains the MAP

kinase cascade of the filamentation/invasion pathway, while the protein Fus3 in the true

complex is not included. NDComplex expands the complex to include two extra proteins

Bem1 and Hek2, in addition to all the proteins in the true complex. COACH and DECAFF

return the largest complexes that contain a few extra proteins, while MCL and MCODE

do not return a complex that has overlap to the true complex.

One drawback of our algorithm is that it takes exponential time to identify all the

maximal cliques, thus it is not likely that it will scale up to handle dense networks. One

future direction is to investigate whether it is possible to develop polynomial time heuristics

without a large decrease in prediction performance.

87

Table 5.4: Statistics of Predicted Complexes from Each Algorithm on Each Protein Interaction Network

MIPS DIP BioGrid

C
L
IQ

U
E

M
C
L

M
C
O
D
E

D
E
C
A
F
F

C
O
A
C
H

N
D
C
o
m
p
le
x

C
L
IQ

U
E

M
C
L

M
C
O
D
E

D
E
C
A
F
F

C
O
A
C
H

N
D
C
o
m
p
le
x

C
L
IQ

U
E

M
C
L

M
C
O
D
E

D
E
C
A
F
F

C
O
A
C
H

N
D
C
o
m
p
le
x

Complex 2869 1740 57 5328 280 621 7129 2226 52 11434 467 1180 34383 2213 76 35048 672 2600

Protein 1387 4546 233 3550 1024 1144 2161 4945 265 4433 1530 1800 4429 5727 553 5707 2675 3217

Interaction 5648 3051 459 9364 3692 4016 11498 2971 489 18623 6392 7193 42980 6466 2344 49899 22663 27101

Separation 0.0055 0.034 0.046 0.0012 0.029 0.014 0.003 0.033 0.046 0.0006 0.025 0.011 0.0009 0.028 0.051 0.000079 0.016 0.0055

a Complex denotes the number of predicted complexes; protein and interaction denote the number of proteins and interactions covered by these
complexes, respectively, in the network; and separation denotes the separation between the set of true complexes and the set of predicted complexes.

88

Table 5.5: Statistics of Maximal Cliques and Predicted Complexes During Different Stages of Our Algorithm

MIPS DIP BioGrid

clique l clique h complex l complex h clique l clique h complex l complex h clique l clique h complex l complex h

Number 735 2134 595 26 1333 5796 1159 21 2715 31668 2554 46

Avg pro 3.2 4.7 8.1 2.5 3.2 3.7 6.6 2.5 3.3 7.7 19.0 2.8

Max pro 14 12 27 4 9 10 22 4 10 33 80 7

a Clique l and complex l denote cliques with low neighborhood density and predicted complexes from these cliques, respectively;
and clique h and complex h denote cliques with high neighborhood density and predicted complexes from these cliques,
respectively. In each case, number denotes the total number of cliques or predicted complexes, and avg pro and max pro denote
the average and maximum number of proteins within a clique or a predicted complex, respectively.

89

6. CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we developed algorithms for three cut and partition problems in graphs

and trees, and studied their applications. The three problems are the maximum agreement

forest problem, the multicut on trees problem and the protein complex prediction problem.

We summarize our results and describe future work to each of these three problems in the

following paragraphs.

For the maximum agreement forest problem, we presented a parameterized algorithm

and an approximation algorithm on unrooted general trees. Our parameterized algorithm

is the first fixed-parameter tractable algorithm, which resolves an open problem posed in

the literature [36, 71]. Our approximation algorithm is also the first constant-ratio approxi-

mation algorithm on unrooted genearl trees, which matches the best known approximation

ratio to the problem in binary trees [70, 71]. The problem is motivated in the study of

evolution trees in bioinformatics. Our algorithms could therefore be applied to computing

the similarity between phylogenetic trees and reveal the evolutionary relationship among

species, efficiently. In addition, our algorithms to the maximum agreement forest problem

are based on the concept of a bottommost sibling set in one tree and the structure of the

corresponding leaf set in the other tree. Our techniques should be useful for the study on

parameterized and approximation algorithms for other problems related to phylogenetic

similarity, such as those related to the SPR distance, the rooted SPR distance, and the

hybridization distance. We are currently working on these extensions and aimed at new

and more efficient algorithms for these problems.

For multicut on trees problem, we presented a kernelization algorithm that computes

a kernel of size at most O(k3), improving the upper bound of O(k6) on the kernel size

given in [13]. We also presented a parameterized algorithm that solves the multicut on

trees problem in time O∗(ρk), where ρ = (
√

5 + 1)/2 ≈ 1.618 is the positive root of the

polynomial x2−x−1; this improves the O∗(2k)-time algorithm given in [34]. The presented

90

algorithm itself is a simple search-tree algorithm that distinguishes very few cases, and

exploits the connection between multicut on trees problem and vertex cover problem. The

multicut on trees problem has applications in networking. Our algorithms to multicut

on trees problem can facilitate the performance of relative problems in networking. With

respect to the parameterized algorithms, improving the O(k3) upper bound further is an

interesting open problem. On the other hand, with respect to the kernelization algorithms,

the polynomial kernels to multiway cut problem and multicut problem are still unknwon.

It is also interesting for finding polynomial kernels to multiway cut problem or some other

relative problems.

For protein complex prediction problem, first, we formulated the problem as a graph

clustering problems. Then, we observed that most complexes either reside in very dense

regions or they reside in regions with low neighborhood density. Base on these obser-

vations, we develop an algorithm to predict protein complexes by refining the maximal

cliques in protein-protein interaction networks. We tested our algorithm on three most

popular protein-protein interaction networks in yeast (MIPS [56], DIP [73] and BioGRID

[66]) and compared our results with the curated protein complexes. We shown that

our predictions are more accurate than any other algorithms. In addition, we imple-

mented our algorithms as a software application which can be found at following hyper-

link, http://faculty.cs.tamu.edu/shsze/ndcomplex/. Currently, most research papers on

protein complexes prediction are limited to yeast. It is worthy to extend our algorithms to

predicting the protein complexes in other species.

91

REFERENCES

[1] F. A. Abu-Khzam, R. Collins, M. Fellows, M. Langston, W. Suters, and C. Symons.

Kernelization algorithms for the vertex cover problem: theory and experiments. In

Proceedings of 6th Workshop on Algorithm Engineering and Experiments, pages 62–69,

2004.

[2] B. Allen and M. Steel. Subtree transfer operations and their induced metrics on

evolutionary trees. Ann. Comb., 5:2001, 2000.

[3] P. Aloy, B. Böttcher, H. Ceulemans, C. Leutwein, C. Mellwig, S. Fischer, A.-C. Gavin,

P. Bork, G. Superti-Furga, L. Serrano, and R. Russell. Structure-based assembly of

protein complexes in yeast. Science, 303(5666):2026–2029, 2004.

[4] M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya. Develop-

ment and implementation of an algorithm for detection of protein complexes in large

interaction networks. BMC Bioinformatics, 7(1):207, 2006.

[5] A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees:

Metrics and efficient algorithms. SIAM J. Comput., 26(6):1656–1669, 1997.

[6] G. Bader and C. Hogue. An automated method for finding molecular complexes in

large protein interaction networks. BMC Bioinformatics, 4(1):2, 2003.

[7] E. Bapteste, M. O’Malley, R. Beiko, M. Ereshefsky, J. Gogarten, L. Franklin-Hall,

F. Lapointe, J. Dupre, T. Dagan, Y. Boucher, and W. Martin. Prokaryotic evolution

and the tree of life are two different things. Biol. Direct, 4:34, 2009.

[8] C. Bentz, M.-C. Costa, L. Létocart, and F. Roupin. Erratum to ”minimal multicut

and maximal integer multiflow: A survey” [european journal of operational research

162 (1) (2005) 55-69]. European Journal of Operational Research, 177(2):1312, 2007.

92

[9] M. Bonet, K. John, R. Mahindru, and N. Amenta. Approximating subtree distances

between phylogenies. J. Comput. Biol., 13(8):1419–1434, 2006.

[10] M. Bordewich, C. McCartin, and C. Semple. A 3-approximation algorithm for the

subtree distance between phylogenies. J. Discrete Alg., 6(3):458–471, 2008.

[11] M. Bordewich and C. Semple. On the computational complexity of the rooted subtree

prune and regraft distance. Ann. Comb., 8(4):409–423, 2005.

[12] N. Bousquet, J. Daligault, and S. Thomassé. Multicut is fpt. In STOC, pages 459–468,

2011.

[13] N. Bousquet, J. Daligault, S. Thomassé, and A. Yeo. A polynomial kernel for multicut

in trees. In Proceedings of the 26th Symposium on Theoretical Aspects of Computer

Science, pages 183–194, 2009.

[14] S. Brohée and J. Van Helden. Evaluation of clustering algorithms for protein-protein

interaction networks. BMC Bioinformatics, 7(1):488, 2006.

[15] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM J. Comput., 22:560–572,

1993.

[16] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for

multiway cut. J. Comput. Syst. Sci., 60(3):564–574, 2000.

[17] F. Chataigner. Approximating the maximum agreement forest on k trees. Inf. Process.

Lett., 93(5):239–244, 2005.

[18] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum

node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

[19] H. N. Chua, W.-K. Sung, and L. Wong. Using indirect protein interactions for the

prediction of gene ontology functions. BMC Bioinformatics, 8(S-4), 2007.

93

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, Second

Edition. The MIT Press, 2001.

[21] M. Costa, L. Letocart, and F. Roupin. Minimal multicut and maximal integer multi-

flow: A survey. European Journal of Operational Research, 162(1):55–69, 2005.

[22] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk. On multiway cut param-

eterized above lower bounds. CoRR, abs/1107.1585, 2011.

[23] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The

complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

[24] B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtree-

transfer distance between phylogenetic trees. Algorithmica, 25(2-3):176–195, 1999.

[25] R. Downey and M. Fellows. Parameterized Complexity (Monographs in Computer

Science). Springer-verlag, Berlin, Germany, 1998.

[26] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. J. ACM, 19(2):248–264, 1972.

[27] A. Enright, S. Van Dongen, and C. Ouzounis. An efficient algorithm for large-scale

detection of protein families. Nucleic Acids Res., 30(7):1575–1584, 2002.

[28] M. Farach and M. Thorup. Fast comparison of evolutionary trees. In SODA, pages

481–488, 1994.

[29] J. Flüm and M. Grohe. Parameterized Complexity Theory. Springer-verlag, Berlin,

Germany, 2010.

[30] C. Friedel, J. Krumsiek, and R. Zimmer. Bootstrapping the interactome: unsupervised

identification of protein complexes in yeast. In Research in Computational Molecular

Biology, pages 3–16. Springer, 2008.

94

[31] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut

theorems and their applications. SIAM J. Comput., 25(2):235–251, 1996.

[32] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for

integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[33] A.-C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz,

J. Rick, A.-M. Michon, C.-M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Bra-

jenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau,

A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edel-

mann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork,

B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organi-

zation of the yeast proteome by systematic analysis of protein complexes. Nature,

415(6868):141–147, 2002.

[34] J. Guo and R. Niedermeier. Fixed-parameter tractability and data reduction for

multicut in trees. Networks, 46(3):124–135, 2005.

[35] M. Gustin, J. Albertyn, M. Alexander, and K. Davenport. Map kinase pathways

in the yeastsaccharomyces cerevisiae. Microbiology and Molecular Biology Reviews,

62(4):1264–1300, 1998.

[36] M. Hallett and C. McCartin. A faster FPT algorithm for the maximum agreement

forest problem. Theory Comput. Syst., 41(3):539–550, 2007.

[37] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolu-

tionary trees. Discrete Appl. Mathematics, 71(1-3):153–169, 1996.

[38] E. Hirsh and R. Sharan. Identification of conserved protein complexes based on a

model of protein network evolution. Bioinformatics, 23(2):170–176, 2007.

[39] Y. Ho, A. Gruhler, A. Heilbut, G. Bader, L. Moore, S.-L. Adams, A. Millar, P. Taylor,

K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson, S. Schandorff, J. Shew-

95

narane, M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar, Z. Lin,

K. Michalickova, A.R. Willems, H. Sassi, P.A. Nielsen, K.J. Rasmussen, J.R. Ander-

sen, L.E. Johansen, L.H., L.H. Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen,

J. Crawford, V. Poulsen, B.D. Sorensen, J. Matthiesen, R.C. Hendrickson RC, F. Glee-

son, T. Pawson, M.F. Moran, D. Durocher, M. Mann, C.W. Hogue, D. Figeys, and

M. Tyers. Systematic identification of protein complexes in saccharomyces cerevisiae

by mass spectrometry. Nature, 415(6868):180–183, 2002.

[40] W.-K. Hon and T. Lam. Approximating the nearest neighbor interchange distance for

evolutionary trees with non-uniform degrees. In COCOON, pages 61–70, 1999.

[41] L. Issel-Tarver, K. Christie, K. Dolinski, R. Andrada, R. Balakrishnan, C. Ball,

G. Binkley, S. Dong, S. Dwight, D. Fisk, M. Harris, M. Schroeder, A. Sethuraman,

K. Tse, S. Weng, D. Botstein, and J.M. Cherry JM. Saccharomyces genome database.

Methods in Enzymology, 350:329, 2002.

[42] S. H. Jung, B. r. Hyun, W.-H. Jang, H.-Y. Hur, and D.-S. Han. Protein complex pre-

diction based on simultaneous protein interaction network. Bioinformatics, 26(3):385–

391, 2010.

[43] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for

a geometric embedding of minimum multiway cut. Math. Oper. Res., 29(3):436–461,

2004.

[44] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based

clustering. Bioinformatics, 20(17):3013–3020, 2004.

[45] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity

flow. In FOCS, pages 726–737, 1990.

[46] R. Kliman, P. Andolfatto, J. Coyne, F. Depaulis, M. Kreitman, A. Berry, J. McCarter,

J. Wakeley, and J. Hey. The population genetics of the origin and divergence of the

Drosophila simulans complex species. Genetics, 156:1913–1931, 2000.

96

[47] N. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu,

N. Datta, A. Tikuisis, T. Punna, J.M. Peregrin-Alvarez, M. Shales, X. Zhang,

M. Davey, M.D. Robinson, A. Paccanaro, J.E. Bray, A. Sheung, B. Beattie, D.P.

Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M.M. Canete,

J. Vlasblom, S. Wu, C. Orsi, S.R. Collins, S. Chandran, R. Haw, J.J. Rilstone,

K. Gandi, N.J. Thompson, G. Musso, P. St Onge, S. Ghanny, M.H. Lam, G. But-

land, A.M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J.S. Weissman, C.J. Ingles,

T.R. Hughes, J. Parkinson, M. Gerstein, S.J. Wodak, A. Emili, and J.F. Greenblatt.

Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature,

440(7084):637–643, 2006.

[48] S. Leibler A. Murray L. Hartwell, J. Hopfield. From molecular to modular cell biology.

Nature, 402:C47–C52, 1999.

[49] H. Leung, Q. Xiang, SM Yiu, and F. Chin. Predicting protein complexes from ppi

data: a core-attachment approach. Journal of Computational Biology, 16(2):133–144,

2009.

[50] X.-L. Li, C.-S. Foo, and S.-K. Ng. Discovering protein complexes in dense reliable

neighborhoods of protein interaction networks. In Comput Syst Bioinformatics Conf,

volume 6, pages 157–168, 2007.

[51] G. Lin, C. Zhang, and D. Xu. Polytomy identification in microbial phylogenetic

reconstruction. BMC Sys. Biol., 5(Suppl 3):S2, 2011.

[52] S. Linz and C. Semple. Hybridization in nonbinary trees. IEEE/ACM Transactions

on Computational Biology and Bioinformatics, 6:30–45, 2009.

[53] G. Liu, L. Wong, and H. N. Chua. Complex discovery from weighted ppi networks.

Bioinformatics, 25(15):1891–1897, 2009.

[54] D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–

406, 2006.

97

[55] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by

the size of the cutset. In STOC, pages 469–478, 2011.

[56] H. W. Mewes, D. Frishman, K. F. X. Mayer, M. Munsterkotter, O. Noubibou, T. Rat-

tei, M. Oesterheld, and V. Stumpflen. Mips: Analysis and annotation of proteins from

whole genomes. Nucleic Acids Res., 32:41–44, 2004.

[57] C. Moschopoulos, G. Pavlopoulos, R. Schneider, S. Likothanassis, and S. Kossida.

Giba: a clustering tool for detecting protein complexes. BMC Bioinformatics, 10(S-

6), 2009.

[58] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31. Oxford Uni-

versity Press, New York, U.S.A., 2006.

[59] Y. Qi, F. Balem, C. Faloutsos, J. Klein-Seetharaman, and Z. Bar-Joseph. Protein

complex identification by supervised graph local clustering. In ISMB, pages 250–268,

2008.

[60] I. Razgon. Large isolating cuts shrink the multiway cut. CoRR, abs/1104.5361, 2011.

[61] E. Rodrigues, M. Sagot, and Y. Wakabayashi. Some approximation results for the

maximum agreement forest problem. In RANDOM-APPROX, pages 159–169, 2001.

[62] E. Rodrigues, M. Sagot, and Y. Wakabayashi. The maximum agreement forest prob-

lem: Approximation algorithms and computational experiments. Theor. Comput. Sci.,

374(1-3):91–110, 2007.

[63] R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R. Karp. Identification of protein

complexes by comparative analysis of yeast and bacterial protein interaction data.

Journal of Computational Biology, 12(6):835–846, 2005.

[64] L. Shi, Y. Lei, and A. Zhang. Protein complex detection with semi-supervised learning

in protein interaction networks. Proteome Science, 9:1–9, 2011.

98

[65] V. Spirin and L. Mirny. Protein complexes and functional modules in molecular

networks. Proceedings of the National Academy of Sciences, 100(21):12123–12128,

2003.

[66] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers.

Biogrid: a general repository for interaction datasets. Nucleic Acids Res., 34(Database

issue):D535–D539, 2006.

[67] S. Tu, R. Chen, and L. Xu. A binary matrix factorization algorithm for protein

complex prediction. Proteome Science, 9(Suppl 1):S18, 2011.

[68] D. West. Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River, NJ,

1996.

[69] D. Wheeler, C. Chappey, A. Lash, D. Leipe, T. Madden, G. Schuler, T. Tatusova, and

B. Rapp. Database resources of the National Center for Biotechnology Information.

Nucleic Acids Res., 28:10–14, 2000.

[70] C. Whidden, R. Beiko, and N. Zeh. Fixed-parameter and approximation algorithms

for maximum agreement forests. CoRR, abs/1108.2664, 2011.

[71] C. Whidden and N. Zeh. A unifying view on approximation and FPT of agreement

forests. In WABI, pages 390–402, 2009.

[72] M. Wu, X. Li, C.-K. Kwoh, and S.-K. Ng. A core-attachment based method to detect

protein complexes in ppi networks. BMC Bioinformatics, 10(1):169, 2009.

[73] I. Xenarios, E. Fernandez, L. Salwinski, X. Duan, M. Thompson, E. Marcotte, and

D. Eisenberg. Dip: The database of interacting proteins: 2001 update. Nucleic Acids

Res., 29:239–241, 2001.

[74] M. Xiao. Simple and improved parameterized algorithms for multiterminal cuts. The-

ory Comput. Syst., 46(4):723–736, 2010.

99

