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ABSTRACT 

 

 About 50 million people worldwide suffer from epilepsy and one third of them 

have seizures that are refractory to medication. In the past few decades, deep brain 

stimulation (DBS) has been explored by researchers and physicians as a promising way 

to control and treat epileptic seizures. To make the DBS therapy more efficient and 

effective, the feedback loop for titrating therapy is required. It means the implantable 

DBS devices should be smart enough to sense the brain signals and then adjust the 

stimulation parameters adaptively.  

This research proposes a signal-sensing channel configurable to various neural 

applications, which is a vital part for a future closed-loop epileptic seizure stimulation 

system. This doctoral study has two main contributions, 1) a micropower low-noise 

neural front-end circuit, and 2) a low-power configurable neural recording system for 

both neural action-potential (AP) and fast-ripple (FR) signals.  

The neural front end consists of a preamplifier followed by a bandpass filter 

(BPF). This design focuses on improving the noise-power efficiency of the preamplifier 

and the power/pole merit of the BPF at ultra-low power consumption. In measurement, 

the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-

μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 

kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency 

factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively.  The preamplifier 

power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-



 

iii 
 

leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation 

to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one 

of the most power-efficient high-order active filters reported to date. The complete front-

end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total 

input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power 

supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-

end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with 

a die area of 0.45 mm2. 

The neural recording system incorporates the front-end circuit and a sigma-delta 

analog-to-digital converter (ADC). The ADC has scalable BW and power consumption 

for digitizing both AP and FR signals captured by the front end. Various design 

techniques are applied to the improvement of power and area efficiency for the ADC. At 

77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, 

respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 

76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. 

Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a 

standard 0.6-μm CMOS process. The die size is 11.25 mm2.  

The proposed circuits can be extended to a multi-channel system, with the ADC 

shared by all channels, as the sensing part of a future closed-loop DBS system for the 

treatment of intractable epilepsy. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

Epileptic seizures are sudden recurrent convulsions due to synchronized neuro-

firings that interrupt normal brain functions. As a result, patients may experience loss of 

cognition, loss of motor control, and possibly even death. About 50 million people 

worldwide (including around 3 million in the US) suffer from epilepsy [1]. Medication is 

the mainstay of epilepsy treatment today. However, one third of patients with epilepsy 

have seizures that are refractory to any medical therapy. Surgical treatment can be 

effective in patients with partial or focal seizures. However, patients with generalized 

seizures, or those who have more than one epileptogenic zone, usually do not show 

complete seizure control with existing surgical therapies [1], [2]. Besides, surgery may 

cause irreversible effect to patient’s brain function.  

Recently, increasing evidence shows deep brain stimulation (DBS) as an 

effective and safe way of controlling intractable epileptic seizures [3], [4]. The emerging 

DBS technology enables the treatment of many medicine/surgery intractable neural 

disorders, such as Parkinson’s disease, essential tremor, depression and epilepsy, etc. As 

shown in Fig. 1.1, a modern DBS system usually includes an implanted pulse generator 

(IPG) in patient’s body and multiple leads routing through the neck to the patient’s brain 

with electrodes targeted into the specific brain area. The IPG delivers the electrical pulse 

stimulations through the electrodes for the inhibition of over-excitable brain tissues [5]. 
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Among all the indications, epileptic stimulation has been fast emerging with increasing 

research efforts dedicated to it.  

 

Fig. 1.1. Implantable DBS system (Plot courtesy of Medtronic, Inc.). 

  

Currently, few DBS systems work with the benefit of neural sensing. The 

titration of therapy requires visual inspection of clinical symptoms by a physician, who 

then manually adjusts the stimulation therapy through a clinician programmer 

communicating wirelessly to the IPG. This is eventually a “one-way” system. Taking the 

advantage of continuous and automatic delivery of stimulation therapy requires a closed-

loop brain-machine interfacing (BMI) system, which should have the capability of 

monitoring brain activities chronically and identifying the oncoming seizure onset 

correctly. There have been numerous seizure detection algorithms, including feature 

extraction and classification, developed over years for the closed-loop control of neuro-

stimulation for epileptic patients [2]. The implementation of the algorithms requires a 

low-noise front-end circuit and a high-resolution analog-to-digital converter (ADC) for 
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preconditioning of the signal before it gets to the digital signal processing (DSP) or 

field-programmable gate array (FPGA) module. 

 

1.2 Literature Review 

For the past few decades, many research efforts have been devoted to the 

epileptic seizure detection algorithms. This review focuses on hardware-efficient 

algorithms which can fit into battery-powered implantable devices with small area and 

low-power consumption requirements. Reliable seizure detection requires accurate 

neural signal feature extraction and classification. Most research groups concentrate on 

the intracranial electroencephalography (IEEG) as the signal for seizure detection. 

Compared to scalp EEG, IEEG has three main advantages including 1) a higher signal-

to-noise ratio (SNR); 2) a better spatial resolution; 3) allowing direct recording from 

seizure generating regions [2]. Thus, IEEG signals greatly improve the sensitivity of 

seizure detection. Efficient seizure detection algorithms will enable closed-loop epilepsy 

prostheses by stimulating the epileptogenic focus within an early onset stage.  

Feature extraction is the signal recording and processing through mathematical 

computation to form characterizing measures, i.e. feature vectors or variances, which can 

be classified [2], [6]. Feature classification is a computational process to sort 

characterizing measures by optimal decision boundary between seizure and non-seizure 

cases [6]. Over years, a growing number of sensitive and specific seizure detection 

algorithms have been seen in literature [7]-[11]. Tzallas et al. used the time-frequency 

analysis for the determination of EEG segments containing epileptic seizures and 
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artificial neural networks (ANN) for the classification [7]. Liang et al. combined 

approximate entropy and spectrum analysis to reduce the detection false rate and applied 

linear least squares (LLS) to classifying windowed EEGs [8]. Lyapunov exponent for 

complex analysis has been long developed for effective seizure classification [9], [10]. 

Recently, wavelet transform and wavelet artificial neural networks (WANN) also 

emerge for non-stationary feature extraction and classification [11]. Among them, [11] 

reported the Complementary metal–oxide–semiconductor (CMOS) integrated circuit 

(IC) implementation of the neural interface and wavelet transforms processor. However, 

all the above-mentioned works need extensive computational power consumption, and 

thus are not suitable for battery-powered IPGs. 

In past few years, low-power implantable seizure-onset detectors have been 

proposed to reduce the computational power burden [12], [13]. In [12], the algorithm is 

based on multi-voltage-window feature extraction and counter-based classification, 

while [13] has single-voltage window and event-based classification. The total power 

dissipation is 51 μW for [12] and 350 nW for [13], both of which achieved at least 100 

times improvement in power consumption compared with previous reported works. 

However, [12] suffers from high detection delay due to slow comparators and [13] is 

limited by sensitivity degradation due to baseline variations. Safi-Harb et al. later 

proposed an improved seizure-onset detector based on single-window dual-path 

algorithm [14]. Single voltage window has less complexity and allows more immunity to 

variations in baseline and threshold voltage due to noise and offsets. Dual overlapped 

time windows effectively reduce detection latency as well. However, offline training is 
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required for all algorithms proposed in [12]-[14], which exposes them to limited patient 

selection. Raghunathan et al. combined multistage time and frequency analyses 

optimized for feature extraction that relies on seizure-onset-distinct patterns in lieu of 

pre-training [15]. 

However, those aforementioned hardware systems usually suffer from limited 

seizure detection accuracy due to simple pre-determined thresholds of specific signal 

parameters resulted from low-order modeling of complex manifestation of physiological 

processes[12]-[15]. Therefore, data-driven computation which aims to modeling 

pathological signals based on observing and analyzing data in lieu of modeling the 

underlying processes has been recently developed for classification by optimized feature 

boundaries trained by machine-learning on a patient-to-patient basis to simultaneously 

improve both sensitivity and specificity of detection [16]. Data-driven computation thus 

leads to a more sophisticated trend for seizure detection implemented on system-on-chip 

(SOC) by integrating spectrum energy based feature extractor [6]. Yoo et al. reported the 

recent state-of-the-art SOC which achieves the full integration of both seizure extractor 

and classifier based on support vector machine (SVM) learning to simultaneously 

minimize off-chip components, reduce system power consumption to microwatt level, 

and maximize correct detection rate [17]. 

In recent years, many implantable CMOS closed-loop DBS systems have been 

reported. Lee et al. [18] discussed a closed-loop DBS stimulator for Parkinson’s diseases 

(PD). It consists of 8 neural-amplifier channels and 64 stimulation channels. The chip 

consumes 271 µW at 1.8 V power supply in 0.18-µm CMOS process. However, it still 
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needs the off-the-shelf microprocessor (µP) to close the loop. This system is good for 

PD application, but its 8-bit logarithmic ADC cannot meet the high-resolution (> 12 bits) 

requirement for seizure applications (Note: the resolution specification for the epileptic 

DBS system will be discussed in Section 2.2.1). Avestruz et al. [19] described a spectral 

analysis IC for local filed potential (LFP) applications. It has 4 sensing channels with 

each channel consuming 5 µW at 1.8 V power supply in 0.8 µm CMOS process. But it 

relies on the off-the-shelf ADC and micro-processor (µP) for closed-loop stimulation. 

For the purpose of low cost and low power, an on-chip ADC is always desired for the 

efficient use of integrated DSP power. Medtronic in 2012 reported an implantable 

closed-loop DBS device for seizure control [20]. It achieves integrations of sensing and 

classification blocks, but the stimulator is still off-the-shelf. In ISSCC 2012, Chen et. al. 

reported the latest state-of-the-art closed-loop seizure SOC, which achieved fully 

integration of all building blocks including stimulator, with a total power consumption of 

2.8 mW in 0.18-um CMOS process [21]. 

The seizure detection systems for closed-loop application reported to date mainly 

concentrate on IEEG signals at low frequency (< 100 Hz) [8], [14], [20], [21]. It is also 

worth noting that [8] and [14] are only PCB implementations yet. The correlation of 

low-frequency EEG signals with seizure onsets is complicated by flicker-noise filtering 

and patient-specified feature extraction [6]. Researches also show that low-frequency 

IEEG detection does not give clear enough information about seizure onset locations 

[22]. Recently reported clinical trials [23]-[27] show that a certain type of brain wave 

termed fast ripple (FR) could provide a simplified alternative way to reliable seizure 
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detection, since it resides in higher signal band (> 250 Hz), i.e., less prone to flicker 

noise, and may provide more universal seizure-onset indications than the EEG does by 

possibly avoiding patient-specific training. Increasing evidence shows that the rate of FR 

is much higher within seizure onset zone than lower-frequency ripples [23], [25]. FR has 

also been visually identified near the time of seizure onset from implanted electrodes in 

epileptogenic zones [27]. Past researches [23]-[27] prove FR as a good indicator to 

seizure onset zone and a promising precursor to seizure onset time as well. Thus, this 

research focuses on the FR detection. 

In this dissertation, a closed-loop seizure stimulator is discussed to provide a top-

level system overview where the proposed FR-detection channel can play a critical role. 

The scope of this PhD work is on the development of a FR-based seizure detection 

technique. The future goal of this work could involve the development of an implanted 

system that can catch FR seizure precursors, send warnings and then tranquilize through 

stimulations the real seizure before it spreads. To the best of author’s knowledge, as of 

today, there is no seizure closed-loop DBS system commercially available yet. 

 

1.3 System Overview 

  There are many challenges associated with the design of a power-efficient 

closed-loop seizure stimulator. 1) To extend the recharge interval of battery and allocate 

enough power to the stimulation circuitry, a good power scheme needs to be developed 

to save power from other main building blocks, such as the front end, ADC and DSP. 2) 

For the reliable recording of bio-signals, the total input-referred noise of the front-end 
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circuit should be lower than the typical extracellular neural background noise of 5-10 

μVrms [28]. 3) The front end should be able to reject any electrode-tissue interface 

induced DC offsets. 4) Reliable DSP algorithm should be developed for the detection of 

FR patterns and the controlling of stimulation parameters. 5) The system is required to 

reject the stimulation artifacts that may saturate the neural amplifiers. 

To address the aforementioned challenges, a closed-loop DBS system is 

proposed. Fig. 1.2 shows the system block diagram. The system consists of 16 sensing 

and stimulation channels, which share the same electrodes. The number of 16 is chosen 

to accommodate the existing 16-channel simulator in the Boston Scientific Precision 

SCS® platform. The front end is composed of sixteen low-noise preamplifiers 

multiplexed to a single bandpass filter (BPF). The preamplifier is designed to provide a 

40-dB DC gain, upto 5-kHz bandwidth (BW), and 6-μVrms input referred noise. The BPF 

is a 6th-order follow-the-leader feedback (FLF) elliptic filter with designed passband 

from 250 Hz-500 Hz, out-of-band rolloff of -110 dB/decade, and in-band ripple of 0.5 

dB. The occurrence of seizure is random. It may start developing minutes, hours, or even 

days before the seizure onset [29]. Therefore, the front end (preamplifier + BPF) needs 

to monitor the brain activity continuously. Besides, multiple channels are usually desired 

for multiple electrodes. Therefore, micro-watt power is often required for each front-end 

channel. 
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Fig. 1.2. Block diagram of the proposed closed-loop system. 

 

The ADC and DSP can be time-multiplexed to reduce power consumption, 

which indicates that they are turned on only when the front end sees an FR energy burst, 

and for the rest of the time, they are in sleep mode. Thanks to the time multiplexing, 

milli-watt power consumption is reasonable for the ADC and DSP blocks. The ADC 

resolution is required to be 14 bits (as discussed in Section 2.2.1). An analog low-power 

seizure-onset monitor can be incorporated for the loop control. The monitor extracts the 

energy of incoming FR signals. The energy extraction can be done by a Gilbert 

multiplier which consumes only sub-micro power for this application. If the energy 

exceeds a certain threshold, switch SA closes and meanwhile both ADC and DSP are 

turned on. To avoid false decision, the threshold should be adaptive to the background-

noise fluctuation [30]. For human temporal-lobe seizures, the focal time is about 20 

seconds before the seizure spreads to other brain areas [26]. Therefore, the ADC will 
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have enough time to digitize the incoming signal burst and DSP to figure out the optimal 

stimulation parameters for the patient. A scheme of “non-overlap sensing and 

stimulation” is used. When the stimulator delivers stimulation pulses, the sensing 

channels are isolated from the electrodes (S0 – S15 off). Sensing is active (S0 – S15 on) 

only when stimulation is off. The stimulation artifact issue is therefore alleviated by 

using this scheme. The specifications for building blocks are summarized in Table 1.1. 

 

Table 1.1. Specifications of building blocks 

Preamplifier BPF ADC 

Gain 40 dB Passband
250 - 500 

Hz 
Resolution 14 bits 

Noise 
< 10 
uV 

In-band 
Ripple 

< 0.5 dB 
Max 

Bandwidth 
5 kHz 

Max 
Bandwidth 

5 kHz Rolloff 
 -33 dB 
/octave 

Reconfigur-
able 

Yes 

Power 
< 5 
uW 

Power < 5uW Power 
< 3 
mW 

 

1.4 Research Contribution 

This research investigates a new seizure detection scheme based on FR-signal 

detection, which can be an essential part of a proposed closed-loop seizure-control DBS 

system. The main contributions of this work include two challenging building blocks in 

the seizure detection circuit. They are the front-end circuit (preamp + BPF) and the 

ADC, both gray colored in Fig. 1.2, with focuses on low-power low-noise neural 

amplifier design, power-efficient high-order filtering methods, configurable analog 
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modulation techniques, and area-power-saving decimation methodologies. The main 

contributions of this work are summarized as following: 

1) Proposed a micropower low-noise neural recording front-end circuit for 

epileptic seizure detection. To the authors’ knowledge, the proposed epileptic 

seizure-detection front end is the first to achieve the FR-recording 

functionality. The circuit achieves one of the best power-noise efficiencies 

among the literature. 

2) Proposed a low-power configurable neural-signal recording system for 

seizure detection. The system consists of the aforementioned front-end circuit 

and a sigma-delta ADC with scalable bandwidth and power consumption. 

The proposed ADC features a fully integrated decimation filter with 

improved power and area efficiency compared to state-of-the-arts. 

 

1.5 Dissertation Organization 

Chapter I gives a research background overview, provides a literature review of 

epileptic seizure detection, and discusses the top-level system view of this application. 

Chapter II presents the design methodology for a low-power configurable neural 

recording system suitable for epileptic seizure detection. Chapter III describes the 

proposed micropower low-noise neural recording front-end circuit, with experimental 

verification through a test chip fabricated in XFab 0.6-μm CMOS process. Chapter IV 

describes the proposed low-power high-resolution neural ADC, with experimental 

results from the prototype chip implemented in XFab 0.6-μm CMOS process. Chapter V 
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discusses both bench-top measurement and saline-solution test results for the complete 

neural recording channel. Chapter VI summarizes this research and discusses the future 

work. 
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CHAPTER II 

PROPOSED LOW-POWER CONFIGURABLE NEURAL RECORDING SYSTEM 

FOR EPILEPTIC SEIZURE DETECTION * 

 

2.1 Introduction 

Recently, deep brain stimulation (DBS) has been emerging as a promising way of 

treating patients with neurological conditions ranging from Parkinson’s disease [31], 

[32], depression [33], [34], and epilepsy [3], [4]. The detection of brain activities is 

required for the reliable delivery of stimulation therapy. Smart and miniaturized 

implantable devices with capability of capturing neural information from the brain are 

becoming important aids to neurosurgeons. Successes in acquiring of neural action 

potential (AP) signals and various electroencephalography (EEG) signals have been 

achieved by integrated sensor interface systems [35], [36]. Among the new indications, 

epileptic seizure detection poses stringent challenges for the low-power low-noise 

integrated neural recording of brain potentials due to the unpredictable sudden 

occurrence of seizures. Recently, micropower EEG CMOS acquisition systems for 

chronic seizure detection have been developed [6], [37], [38]. Although EEG has the 

advantage that it is noninvasive, its correlation with seizure onsets is complicated by 

flicker-noise filtering and patient-specified feature extraction [6]. 

 

____________ 
*©[2012] IEEE. Reprinted, with permission, from “A low-power configurable neural 
recording system for epileptic seizure detection,” by C. Qian, J. Shi, J. Parramon, and E. 
Sánchez-Sinencio, IEEE Trans. Biomed. Circuits Syst., accepted on Nov. 12, 2012. 
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 Intracranial Electroencephalography (IEEG) or Electrocorticography (ECoG) 

could provide a simplified alternative way to reliable seizure detection, since it resides in 

higher signal band (i.e., less prone to flicker noise), and may provide more universal 

seizure-onset indications than the EEG does. Recent evidence shows that a certain type 

of high-frequency oscillation termed fast ripple (FR) recorded in hippocampus area of 

epileptic patients is strongly associated with epileptic seizure onset [23]-[25]. It is widely 

recognized that FR is an indication to localize the epileptogenic focus (i.e., seizure onset 

zone) in mesial temporal lobe and neocortical seizures [23]-[25]. Further clinical 

evidence shows that FR can also be a precursor to the electrographic seizure onset time. 

FR has been visually identified near the time of seizure onset from implanted electrodes 

in epileptogenic zones [27]. FR can be recorded by IEEG and may provide valuable 

information for seizure onset detection. The energy of FR lies mainly within the 250 - 

500 Hz frequency range. The amplitude varies from 30 μV to 1.5 mV depending on the 

electrode size used in IEEG recording [24], [25], [27], [39].  

Besides, it is desirable for this system to have the capability of processing neural 

action potentials as well. We do not intend to have action potential as a seizure 

precursor. The AP signal is recorded because 1) the analysis of AP signals provides 

useful information for the positioning of DBS electrodes to the right target inside 

patient’s brain; 2) it could also give neurophysicians a unique opportunity to learn 

directly the pathological properties of targeted neurons [40], [41]; and 3) it is for the 

demonstration of the system’s capability of sensing higher frequency neural signals. 
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Typical extracellular neural action potentials have amplitudes in the range of 50 μV–1 

mV, with frequency band ranging 100 Hz to > 1 kHz [42], [43].  

In this work, we discuss a fully integrated low-power configurable neural 

recording system designed to demonstrate the functionality of a complete channel for 

epileptic seizure detection. This prototype chip is capable of sensing both FR and AP 

signal with 13-bit resolution to fulfill the clinical requirements as discussed in Section 

2.2.1. The ADC power consumption is scalable with the signal bandwidth (BW) to make 

the system more energy efficient. Our goal for this prototype system is to capture FR 

signal at the seizure onset time through in-vitro test. The integration of a wireless 

communication block is essential for in-vivo testing for an implantable device, but it is 

out of the scope of this chapter. This chapter is organized as follows. Section 2.2 

describes the system-level design and considerations of this neural interface circuit. 

Section 2.3 concludes the chapter. We have previously reported the neural front-end 

circuit design in [44], its discussion will be presented in Chapter III. 

 

2.2 System-Level Design 

Over the past few years, there have been intensive research efforts on developing 

neural acquisition ICs for neural spikes and/or local field potentials (LFP). Avestruz et 

al. [19] described a spectral analysis IC for LFP applications, but it relies on the off-the-

shelf ADC for the signal recording. For the purposes of low cost and low power, an on-

chip ADC is always desired for the efficient use of integrated DSP power. Muller et al. 

[45] presented a DC-coupled neural recording system for spike detection. It is composed 
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of the ADC, digital lowpass filter and DAC in a servo-loop to suppress the DC offset 

and LFP. It achieves small area for each channel. However, the power hungry digital 

filter for offset and LFP attenuation is implemented off-chip on an FPGA. Lee et al. [18] 

proposed an 8-channel neural signal chain for both AP and LFP recording, but the 

logarithmic ADC only has 8-bit resolution, which is not enough for the epileptic seizure 

detection. Verma et al. [6] presented a micro-power CMOS bio-potential acquisition 

system for chronic seizure detection, but it is susceptible to noise folding due to non-

idealities in anti-aliasing filters. In this research, we propose a neural recording system 

with full integration and high resolution suitable for implantable seizure detection. The 

required system specifications for the proposed system, in terms of resolution and 

power, are discussed in the following section.  

 

2.2.1 System Specifications 

For both AP and LFP applications, the desired dynamic range can be higher than 

60 dB, corresponding to μV level of input-referred noise for the front-end circuit and 

high resolution for the ADC [35]. For the seizure detection, particularly, the resolution 

requirement is derived from two aspects: 1) For the localization of DBS electrodes, AP 

signals captured by one guiding microwire may come from different neurons, high ADC 

resolution (> 10 bits) is needed to distinguish various signal sources, as well as the 

movement-related signal changes [46]. 2) For seizure onset detection, at least 12-bit 

resolution is required to extract correct FR signal patterns [23], [24]. In addition, the 

feature extraction accuracy in the digital domain improves as the resolution of ADC 
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increases to at least 10 bits [6]. This greater than 10 bits resolution is the minimum 

requirement to achieve acceptable false positive rate, even though the SNR of original 

IEEG signal is usually less than 15 dB [47]. Considering resolution loss due to various 

static or dynamic errors, the ADC design target is set to be higher than 14 bits. 

The power specifications for such a system are discussed below. Since seizures 

may start developing minutes, hours, or even days before their occurrences [24], [25], 

the integrated front-end circuit must monitor for prolonged periods. Besides, a multi-

channel system is usually desired for multiple electrodes. Therefore, micro-watt power is 

often required for each front-end channel. On the back end, an ADC can be shared by 

multiple channels on an interrupt-based manner to minimize the power and area 

overhead. The ADC wakes up briefly and digitizes the signal, only when the front end 

senses a seizure burst. An analog low-power seizure-onset monitor can be developed to 

control the ADC. The monitor extracts the energy of incoming FR signals. The energy 

extraction can be done by a Gilbert multiplier which consumes only sub-micro power for 

this application. If the energy exceeds a certain threshold, the ADC will be turned on. To 

avoid false decision, the threshold should be adaptive to the background-noise 

fluctuation [30]. For human temporal-lobe seizures, the focal time is about 20 seconds 

before the seizure spreads to other brain areas [26]. Therefore, the ADC will have 

enough time to response. For the seizure-quiet time, the ADC can be put in sleep mode. 

Thus, milli-watt power consumption is reasonable for the ADC. 
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2.2.2 System Architecture 

The proposed epileptic seizure recording system consists of a front-end circuit 

including preamplifier and bandpass filter (BPF), a single-to-differential converter 

circuit and a sigma-delta ADC (including analog modulator and decimation filter). We 

have discussed the front end in a previous paper [44]. We briefly discuss it here for 

completeness. We focus in this chapter on the design considerations and details of a low-

power neural ADC, especially on the decimation filter as a part of the ADC. Fig. 2.1 

shows the system block diagram.  

 

 

Fig. 2.1. System block diagram of the proposed neural recording system. 

 

The integrated peripheral circuits include a bandgap circuit, two linear voltage 

regulators for separate analog and digital power supplies, and a current reference circuit 

to provide bias currents throughout the entire chip. Additionally, a series interface 
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accepts the 15-bit commands from an external microprocessor unit (MCU) and generates 

the control bits through the control logic for the chip configuration. The communication 

with the MCU is based on the standard series peripheral interface (SPI) protocol. The 

series interface is only activated for a brief period of time (~ 20 μs) based on the chip-

select (CS) signal from the MCU, when the system initially turns on. It gets deactivated 

right after the chip configuration, therefore consumes little power. The MCU provides 

the clock to drive the ADC, thus it can easily program the ADC’s sampling frequency 

(fs). The MCU also fetches the ADC data at the speed defined by the data clock. The 

data is then stored in the MCU memory for post data processing.  

The binary-weighted PMOS current DACs are designed to adjust the bias current 

of analog blocks. For example, Cal_IPA[3:0], Cal_IBPF[3:0] and Cal_IADC[4:0] are the 

control bits for the tuning of the preamplifier, BPF and ADC, respectively. The unit 

current branch is 2 nA for both Cal_IPA and Cal_IBPF DACs and 80 nA for the Cal_IADC 

DAC. The switches SAP and SFR select the signal paths for action-potential (AP) and fast-

ripple (FR) applications, respectively. The preamplifier provides a DC gain of ~40 dB. 

The BPF (250 – 500 Hz) is dedicated to the extraction of FR signals. In FR mode, the 

signal goes through both the preamplifier and BPF. In AP mode, the signal bypasses the 

BPF, which is shut off by setting Cal_IBPF[3:0] all high. In both modes, the ADC finally 

digitizes the signal. Since the AP signal is recorded for guiding the placement of DBS 

electrodes in this application, it can be digitally bandpass filtered during the on-line data 

processing by the dedicated physiology system that monitors the electrode position, if 

necessary [48]. 
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For different neural applications, the BW requirements are different. With the 

ADC’s oversampling ratio (OSR) fixed, the BW and power consumption of the 

decimation filter can scale with the sampling frequency. The bias current for each OTA 

in the sigma-delta modulator can also scale accordingly through the settings of 

Cal_IADC[4:0], since OTAs are the only blocks consuming static power in the ADC. For 

the OTA power configuration, Cal_IADC[4:0] is set as [11110] for FR mode (Ibias = 2.5 

μA) and [11011] for AP mode (Ibias = 10 μA). Note the PMOS DAC is low-bit active. 

A single-to-differential (S-to-D) converter converts the single-ended signal from 

the front-end circuit to differential signals, since the ADC processes signal differentially 

and is robust to any common-mode errors. Differential ADC also achieves superior 

linearity and better matching against process variations than the single-ended version. 

The S-to-D converter also drives the capacitive sample-and-hold in the ADC. Fig. 2.2 

shows the schematic of the circuit.  

 
Fig. 2.2. Schematic of the single-to-differential converter. 
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Since it has a much smaller impact on noise than the front-end circuit, its power 

consumption is negligible. The transfer function can be computed as vo/vin = 

R2/[2R1(1+sR2C1)]. By choosing R2 = 2R1, the input vin is converted into the differential 

signals with the same amplitude as |vin| in signal band. Concurrently, the pole at (R2C1)
-1 

provides the first-order low-pass anti-aliasing filtering. The front-end circuit consists of 

two building blocks, the preamplifier and the bandpass filter, and achieves good power-

noise efficiency. Design considerations and analysis of the front end are given in 

Chapter III. 

 

2.3 Conclusions 

This chapter has demonstrated a configurable neural recording system capable of 

the acquisition and digitization of both neural-spike and fast-ripple signals. 

Specifications of the building blocks are determined through system-level analysis. 

Front-end circuit and ADC designs will be discussed in Chapter III and IV, respectively. 

The integrated SPI interface allows for the possibility of integrating the system with any 

future digital control or DSP blocks through standard buses. This prototype circuit can 

be extended to a multi-channel system, with the ADC shared by all channels, as the 

sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy. 
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CHAPTER III 

PROPOSED MICROPOWER LOW-NOISE NEURAL RECORDING FRONT-END 

CIRCUIT FOR EPILEPTIC SEIZURE DETECTION * 

 

3.1 Introduction 

Roughly 50 million people suffer from epilepsy worldwide. Among them about 

one third have seizures that are not controlled by medication [1]. Brain stimulation may 

provide an effective way of controlling intractable epileptic seizures [3], [4]. One 

difficulty of realizing such stimulation therapy lies in reliable seizure onset detection. In 

current state of the art, clinical determination of seizure onset time still relies on an 

epileptologist’s visual inspection of patients’ electroencephalogram (EEG) recordings 

[22], [49]. Recently, researchers have attempted to design implantable deep-brain-

stimulation (DBS) devices with automated brain activity detection capabilities [19], [50]. 

 Evidence increasingly shows that a certain type of high-frequency oscillation 

termed fast ripple (FR) recorded in hippocampus area of epileptic patients is strongly 

associated with epileptic seizure onset [23]–[25]. FR can be recorded by intracranial 

electroencephalography (IEEG) and may provide valuable information for seizure 

detection. The energy of FR lies mainly within the 250 - 500 Hz range.  

 

____________ 
*©[2011] IEEE. Reprinted, with permission, from “A micropower low-noise neural 
recording front-End circuit for epileptic seizure detection,” by C. Qian, J. Parramon, and 
E. Sánchez-Sinencio, IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1392–1405, Jun. 
2011. 
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The FR amplitude varies from 30 μV to 1.5 mV depending on electrode size used 

in IEEG recording [24]–[27], [39]. Since seizures may start developing minutes, hours, 

or even days before their occurrences [29], the integrated front-end circuit must monitor 

for prolonged periods, requiring ultra-low power. The neural front end must boost these 

weak neural signals before any further signal processing can be performed. Meanwhile 

the total input-referred noise of the amplifier should be lower than the typical 

extracellular neural background noise of 5-10 μVrms [28]. Since the amplifier power is 

inversely proportional to 2
niv , where 2

niv  is the input-referred noise power spectral density 

(PSD), the noise-power tradeoff must be well balanced throughout the design. 

In this chapter, we present a fully integrated low-power low-noise CMOS front-

end circuit designed for recording epileptic fast ripples. The functionality of recording 

action potentials is added in the system chip and the measurement results are discussed 

in Section 5.3.1. Section 3.2 describes system-level design and considerations for the 

front-end circuit. Section 3.3 discusses the operational transconductance amplifier 

(OTA) design to achieve a good noise-power tradeoff. Section 3.4 describes the design 

of a 6th order elliptic bandpass filter (BPF) with passband specified as 250 – 500 Hz. 

Section 3.5 presents experimental results and saline-solution test results of the front-end 

circuit, and Section 3.6 concludes this chapter. 

 

3.2 Overall System Architecture 

The whole neural front-end circuit consists of two stages, the preamplifier stage 

and the bandpass filter stage, as shown in Fig. 3.1. The preamplifier has a capacitive 
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feedback configuration similar to the topology in [51], [42]. Two identical MOS-bipolar 

pseudoresistors [52] consisting of transistors Mb1–Mb2 and Mb3–Mb4 provide extremely 

high on-chip incremental resistance RH (>1012 Ω). The design procedure is shown below.  

1) From the desired gain of 40 dB, we choose feedback capacitor Cf value of 0.2 pF, 

thus input capacitance Cs is calculated as 20 pF.  

2) RH combined with Cf creates a low-frequency highpass pole fh (= (2πRHCf )
-1= 

0.36 Hz) that blocks the DC offset induced by the electrode-tissue interface while 

passing the neural signals of interest. A low fh is designed to prevent the pseudoresistor 

noise from coupling to the front-end output (as explained later in this section). 

3) The OTA noise (vn,OTA) gets coupled to the preamplifier output by a gain of An = 

1+sCs/(sCf+RH
-1) and corrupts signals, thus the OTA noise needs to be minimized as 

discussed in Section 3.3.  

 

 

Fig. 3.1. System block diagram of the proposed neural front-end circuit. 
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As shown later in this section, the front-end gain is Cs/Cf, where Cs is the 

preamplifier input capacitor. The noise transfer function (NTF) of the pseudoresistor 

[53] within the signal band is approximately 
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where 
HRnov ,  is the voltage noise density of RH at the front-end output and 

HRni ,  is the 

current noise density of RH, with HRn RkTi
H

/42
,  , where k is Boltzmann’s constant ( = 

1.38 E-23 J·K-1) and T is the absolute temperature. Our preamplifier drives a bandpass 

filter, which limits the noise bandwidth (see Section 3.4 for more discussion of filter 

operation). Since the BPF is designed with a narrow bandwidth B (250 – 500 Hz), the 

integrated voltage noise of RH at the front-end output is approximated as 
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where fo,BPF  is the center frequency of the BPF. Equation (3.2) shows that a high RH (i.e., 

fh is low) reduces the pseudoresistor noise. A high RH also reduces the loading to the 

OTA. It is worth mentioning that for many other neural applications such as 

electrocardiography (ECG), local field potential (LFP) and surface EEG, there is useful 

information lying between 0.1 Hz and 1 kHz [35]. Though this front-end circuit is 

dedicated to the FR recording, a low fh makes the preamplifier itself also useful in other 

applications. The final device will be a battery-driven implant encapsulated in a well-

shielded metal case, so it will not pick up any low-frequency power-line interferers. The 

symmetrical loading on the positive input of the OTA makes the circuit symmetrical and 
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robust to common-mode input. Additionally, the pseudoresistors provide the necessary 

DC resistive feedback to bias the OTA. One drawback of the pseudoresistor is that its 

resistance (RH) varies with large voltage swing across it. The RH variation is about 10 

times with ±200 mV voltage difference across it [51]. This may create signal distortion. 

Fortunately, with small input amplitude (< 1.5 mV), the distortion is tolerable for this 

application. In other words, since fh is extremely lower than FR frequency (0.36 Hz v.s. 

500 Hz), a 10-time variation on fh will not affect FR signal much. 

Since the preamplifier stage is in closed loop with capacitive feedback, we can 

open the loop as shown in Fig. 3.2 to analyze the loop gain, where vt is the applied test 

signal and vr is the return signal. By solving the KCL nodal equation and neglecting RH, 

since RHCf >>RoCL, the loop gain T(s) can be approximated as 
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where Gm and Ro are the OTA transconductance and output resistance, respectively; β = 

Cf /(Cf + Cs + Cp) is the capacitive divider feedback factor and Cp is the OTA input 

parasitic capacitance; CLtot = CL+(1-β)Cf is the effective total load capacitance and CL is 

the load capacitor.  

 

Fig. 3.2. Open-loop configuration of the gain stage. 
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The simplified amplifier model in Fig. 3.2 assumes that the source impedance is 

low. Seizure-detecting macroelectrodes usually render a finite electrode/tissue 

impedance ~ 200 – 500 Ω in this application [39]. It can be modeled as a resistor Rs in 

series with Cs at the amplifier input. With the impact of this source impedance, (3.3) can 

be modified as 
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With the value of Rs < 500 Ω, the added zero fz (= (2πRsCs)-1 = 16 MHz) is far 

beyond the signal band. Since Rs << Ro (~ GΩs), the additional term in the denominator 

is much less than CLtot. Therefore, this source impedance has negligible impact on the 

amplifier transfer function. 

When closing the loop, considering the highpass pole introduced by RH and Cf 

and assuming the DC loop gain GmβRo>>1, the preamplifier’s transfer function yields 
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The ratio Cs/Cf determines the midband gain. The highpass cutoff frequency is at 

1/(RHCf) and lowpass cutoff frequency is at βGm/CLtot. The dominant noise source ( 2
,OTAniv ) 

in this design is the OTA, and the input-referred noise of the preamplifier is 
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Increasing the input transistor size reduces flicker noise but also increases Cp, which in 

turn compromises the input-referred noise of the overall system. Besides, an increased 
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Cp decreases β, and thus reduces the loop gain. An optimized input gate size should be 

found to obtain a good compromise between these mentioned tradeoffs. 

A bandpass filter follows the gain stage to process FR signals. To the best of our 

knowledge, most biopotential amplifiers published to date [42], [35] and [54] rely only 

on 1st-order RC filters that provide at most 6 dB/octave attenuation, which is insufficient 

for FR signal processing [23]. Epileptic patients’ brain waves usually contain 

oscillations ranging 80 – 500 Hz. Oscillations between 80 – 200 Hz, termed ripples, have 

the same order of amplitude as FRs, but are not related to epileptic focus [25]. This 

ripple power must be sufficiently attenuated (at least 10 – 30 dB attenuation in 80 – 200 

Hz) by a filter to render a good signal-to-noise ratio (SNR) for FRs [23], [25]. Therefore, 

modern clinical intracranial EEG recording for epileptic applications requires -33 

dB/octave (-110 dB/decade) filter rolloff [23], [25]. This specifies that, in this 

application, the filter should be at least 6th order [55]. The filter’s upper rolloff is 

required to attenuate interferers above 500 Hz, such as epileptiform interictal spikes (~ 5 

kHz) [23]. Since this high-frequency power is far away from the signal band, the rolloff 

requirement is not as stringent as that for the ripple power. Thus, the 6th order 

specification is mainly determined by the lower rolloff. This filter along with the 

preamplifier will be a part of a future integrated micropower analog seizure-warning 

system. 
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3.3 Low-Power Low-Noise OTA Design 

In this section, we discuss the design strategies to achieve the low-power and 

low-noise OTA for neural recording. 

 

3.3.1 Noise Limit of a Differential Pair in Subthreshold Region 

As mentioned in Section 3.1, this neural front end must continuously monitor 

epileptic brain activities. The front end must consume minimal power to budget for 

subsequent blocks in the DBS system. Besides, the multi-channel applications also 

require low power consumption for each channel. As mentioned before, the typical 

extracellular neural background noise is on the order of 5–10 μVrms. To achieve a good 

noise-power tradeoff, we first investigate the theoretical noise limit of a differential-

input amplifier at a certain bias-current level. Using the EKV model [56], the MOS 

transconductance gm in saturation is 
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A similar expression exists using the “one equation all region” or ACM model [57], 

[58]. In (3.7), κ is the subthreshold slope factor of approximately 0.7 [59], UT is the 

thermal voltage of 26 mV at room temperature of 300 K, and ID is the drain current. IC is 

the inversion coefficient and is defined as the ratio of drain current ID to the moderate 

inversion characteristic current IS of a MOS transistor, given by IC=ID /IS = ID 

/(2µCoxUT
2W/ κL) [57], [60] where µ is the mobility, Cox is the gate oxide capacitance 

per unit area, W is the transistor width, and L denotes the effective channel length. IC < 
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0.1 indicates roughly weak inversion, 0.1 < IC < 10 moderate inversion, and IC > 10 

strong inversion. Low noise design is basically targeted to maximize the input 

transconductance and minimize the input-referred noise due to all other noise sources, 

such as load transistors and resistors, at a given power. We bias our input transistors in 

deep subthreshold region with an IC value of about 0.02, so 

T
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Note that subthreshold operation trades speed and linearity for power efficiency. It is 

well suited for this application with low signal frequency and amplitude, but high 

demand for noise. The subthreshold MOSFET’s current-noise PSD can be modeled [51], 

[60] as 
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Based on (3.8) and (3.9), we can derive the input-referred noise PSD of an ideal 

subthreshold differential pair as 
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where IB is the bias current for each transistor in the differential pair. This neural 

preamplifier is designed to consume less than 1 μA total current. The partitioned bias 

current to the differential input pair is 2IB (= 800 nA). Equation (3.10) indicates that an 

input-referred voltage noise of 48 nV/√Hz at 300 K is the theoretical noise limit of a 

differential-input amplifier biased in subthreshold region with the target current level of 

800 nA. 
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3.3.2 OTA Topology for Low-noise Low-power Design 

Recently, various OTA topologies have been explored to get a low noise and 

high power efficiency. The one-stage OTA with three current mirrors is among the 

popular OTA topologies for low-noise neural amplifier design [51], [54] and [61]. This 

OTA topology can achieve a wide output swing but relatively low gain. Cascode 

transistors are added to the output branch to enhance gain at the cost of reduced output 

swing [51], [54]. Nevertheless, this OTA topology itself is not very power efficient, 

since the current mirrors both contribute noise and consume power. The reported NEF 

(see Section 3.3.5 for definition) is limited to 4 – 5 for this OTA topology. The 2-stage 

OTA can achieve both large gain and wide output swing, but the 2nd stage consumes 

considerable current to ensure stability, thus limiting the OTA power efficiency. An 

NEF of 19.4 is reported for a 2-stage OTA-based neural amplifier [62]. Push-pull 

operation has recently been added to a 2-stage OTA to reduce the output quiescent 

current and improve the NEF to 3.26 [35]. In contrast, the folded cascode (FC) OTA can 

reach the theoretical NEF limit (~ 2) of any differential-pair based OTA [42]. The FC 

OTA can also achieve a good input common-mode range and a reasonably high open-

loop gain within one stage. Thus, we choose an FC topology in this design.  

The low-noise strategy is to minimize the quiescent currents that do not 

contribute to the overall transconductance of the OTA, such as the output-branch bias 

current. Fortunately, the resulting side effect of reduced slew rate is not a main concern 

here since there is no rapid change of large signals involved in this neural recording 

application. Wattanapanitch et al. in 2007 [42] proposed a large current scaling of 16:1 
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(input bias current : output-branch current) to a conventional FC structure and achieved a 

NEF of 2.67 with a bandwidth (BW) of 5.32 kHz and a total current consumption of 2.7 

μA. However, such severe current scaling increases the impedance looking into the 

source of the transistors in the output branch such that it even becomes comparable to 

the drain resistances of the input transistors and the bottom current-sinking transistors. 

Thus, the resulting current divider greatly lowers the effective transconductance Gm,eff of 

a conventional FC OTA. To achieve low input-referred noise, it is crucial to maximize 

the Gm,eff of the OTA at a given bias current. To alleviate the problem of Gm,eff 

attenuation, the design in [42] adds cascode transistors to the input transistors, increasing 

their output impedance but sacrificing headroom. 

In this chapter, we adopt a current splitting technique [63], [64] to increase the 

drain resistances of both input transistors and current-sinking transistors. The current-

splitting technique was originally proposed by Bahmani et al. [63] in a pseudo-

differential OTA, and later adapted by Assaad et al. [64] into a fully-differential folded-

cascode topology by adding a tail current source and two folded output branches. Both 

reports’ proposed techniques increase the OTA’s effective Gm at certain power 

consumption. In our OTA topology, we combine this current splitting technique with the 

output-current scaling [42] technique to lower the OTA noise. 

Fig. 3.3 shows the proposed OTA schematic, and Fig. 3.4 includes the schematic 

of a conventional FC OTA without current splitting [42] for comparison. The bias 

current in each branch is marked on the schematics. In this design, we scale the output-

branch bias current to 1/N of the input bias current. We choose scaling factor N = 16 to 
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achieve a good tradeoff between the reduced output-branch noise and the 

aforementioned Gm,eff attenuation issue. To apply the current-splitting technique, we 

divide each input transistor MP1-MP2 (see Fig. 3.4) of the conventional FC OTA into 

segments A/N and B/N, where A and B are the splitting factors such that A + B = N. Thus 

the currents in M1, M4 and in M9, M10 (see Fig. 3.3) are reduced by the ratios of A/N and 

(A+1)/(N+1), respectively, relative to the conventional FC. Note that before current 

splitting the current in MN3, MN4 (see Fig. 3.4) is (N+1)IB /N, while after current splitting 

the current in M9, M10 (see Fig. 3.3) becomes (A+1)IB /N. Thus, the current is reduced by 

(A+1)/(N+1). As will be shown later in this section, we choose A = 8, so that the 

currents of M1, M4, M9 and M10 (see Fig. 3.3) are halved, and their effective drain 

resistance is doubled.  

Compared to the state-of-art design in [42], the current splitting technique used in 

our OTA presents two advantages: first, current splitting enhances the drain resistance of 

both input and bottom transistors without any additional cascoding; second, since M9–

M12 are internally biased as shown in Fig. 3.3, current splitting obviates the additional 

biasing branch Mb along with the source degeneration resistor Rb in Fig. 3.4. Note that 

Rb is usually much higher than other degeneration resistances, because the current is 

commonly minimized in biasing branch to save power. 
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Fig. 3.3. Schematic of the low-noise OTA with both current scaling and current splitting 
techniques. 

 

 

Fig. 3.4. Schematic of a conventional FC OTA without current splitting [42]. 
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In Fig. 3.3, by cross coupling M2 and M3, the small-signal current of M2 adds in 

phase with the small-signal current of M4 through the current mirror formed by M12 and 

M10. The same small-signal addition happens in the other half circuit. To compute the 

total Gm of the OTA, use (3.8) for each input transistor and its corresponding bias current 

indicated in Fig. 3.3. Assuming all the small-signal currents caused by the differential 

input go completely through the sources of M5 and M6, the ideal transconductance of the 

current-splitting FC OTA is 
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 .     (3.11) 

Equation (3.11) implies that for the same bias current level, we can increase the 

ideal Gm by merely selecting a larger A value. However, the current noise from M2 and 

M3 scales by ((A+1)/B)2 to the output by the current mirroring. Therefore, we need a 

detailed analysis on the splitting factor and noise tradeoffs to reach an optimal noise-

performance point. The input-referred noise PSD of a differential pair with current 

splitting is 
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where 2
4,1,Mni  and 2

3,2,Mni  are the current noise from M1,4 and M2,3, respectively. 

Substituting (3.11) into (3.12) and then normalizing by (3.10), the normalized input-

referred noise PSD of a current-splitting differential pair yields 
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We plot (3.13) in Fig. 3.5 and find that when A = 8, the noise is almost equal to 

that of a simple differential pair. The ideal Gm is also enhanced by (17/16) times that of a 

simple differential pair. Therefore, we choose A = B = 8. It is seen that the proposed 

OTA avoids Gm and noise degradation while providing high output resistance of both 

input and bottom transistors.  

 

 

Fig. 3.5. Effect of current splitting technique on the noise of a differential pair. 

 

Equation (3.11) is only valid for ideal components, thus we need to derive the 

actual non-ideal transconductance. Fig. 3.6 displays the OTA half circuit for the Gm,eff 

calculation. A current divider is formed due to the output-current scaling as mentioned 

before. It consists of Gs6, gd4 and Gd10, where Gs6 is the conductance looking into the 

source of M6, gd4 is the drain conductance of M4, and Gd10 is the output conductance of 

the source-degeneration structure of M10. Since gd10
-1>> R10, we can derive Gd10 = (gd10

-1 

+R10+gm10R10 gd10
-1)-1 ≈ gd10 (1+gm10 R10)

-1, where gm10 and gd10 are the transconductance 
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and drain conductance of M10, respectively. We choose degeneration factor gm10 R10 = 12 

as shown later. The drain of M6 is at the AC ground, thus Gs6 = gm6, where gm6 is the 

transconductance of M6. With the effect of this current divider, the effective 

transconductance transfer functions from M4 and M2 to the output are 
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where gm2 and gm4 are the transconductance of M2 and M4, respectively. By substituting 

gm4 = κAIB /(NUT) into (3.14) and gm2 = κBIB /(NUT) into (3.15) and then adding up 

(3.14) and (3.15), the effective transconductance of the proposed OTA yields 
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Table 3.1 shows the simulated operating points of all main transistors. We compute 
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Fig. 3.6. Half circuit of Fig. 3.3 for the effective Gm analysis. 
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Table 3.1. Operating points for transistors in the OTA with Itot = 872 nA 

Devices W/L (um) gm (μS) ID (nA) gm/ID gout
* (nS) 

Inversion 
Coefficient 

M1, M2, 
M3, M4 

240/3 5.36 201.6 26.6 4.7 0.02 

M9, M10 45/8 4.35 220.8 19.7 1.9** 0.44 
M5, M6 8.0/6.0 0.42 19.2 21.7 0.5 0.25 

M15, M16 2.0/2.0 0.29 19.2 15.3 14.7 1.22 
M13, M14 2.0/1.0 0.42 19.2 22.1 0.5** 0.22 

*Output conductance of transistors 

**Effective conductance looking into the cascade structure 

 

Evaluating (3.11) and (3.17) yields Gm = 11 μS and Gm,eff = 10.8 μS. For comparison, the 

performance degradation of a conventional FC OTA without current splitting will be 

discussed in Section 3.3.7.  

 

3.3.3 Source Degeneration for Low-Noise Design 

Furthermore, we apply source degeneration to reduce the noise of transistors M9–

M12, for the local feedback from the degeneration resistor forces some of the noise 

current to circulate inside the MOS transistor without coupling to the output. We define γ 

= gm/ID and degeneration factor α = gmR, where R, ID, and gm are the degeneration 

resistance, transistor drain current, and transconductance, respectively. Hence, the 

current noise PSD is attenuated by 1/(1+gmR)2 = 1/(1+α)2, but the resistor consumes 

headroom Vheadroom = IDR = α / γ. We can thus derive R = α / (γ ID). Note that α should 

only be maximized with affordable R and Vheadroom values. In this design, we choose γ 

and α as 20 and 12, respectively. So, a reasonable Vheadroom = 600 mV is achieved. The 
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drain currents ID9,10 and ID11,12 are 225 nA and 200 nA, respectively. So, the values of 

R9,10 and R11,12 are calculated as 2.67 MΩ and 3 MΩ, respectively. We inter-digitize unit 

resistors in series in the layout to achieve good matching. 

We show that this selection of R value gives an optimal design tradeoff between 

noise and voltage headroom. The maximum output swing that can be achieved with this 

FC structure is Vo, swing = VDD – (Vheadroom+4|VDSAT|), where |VDSAT| is the minimum 

drain-source voltage to keep each output transistor in saturation region, which is 

typically 100 mV for subthreshold transistors. Thus the Vo,swing is around 1.8 V in this 

design with a VDD of 2.8 V. For this neural application, the output swing requirement is 

only within 400 mVpp. Thus, this 600 mV headroom will not affect the amplifier 

linearity. Fig. 3.7 shows the normalized (to 2
niv ) OTA noise is minimized with the 600 

mV headroom. At low Vheadroom = IDR (i.e., R is low), M9–M12 contribute significant 

noise, and the higher Gd9,10 reduces Gm,eff, so the input referred OTA noise is high. 

Increasing R reduces the OTA noise. But when Vheadroom > 600 mV, it starts driving M9 

and M10 slightly less saturated, reducing their output resistances and thus Gm,eff. This 

effect counteracts any further noise deduction from increased R. 
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Fig. 3.7. Simulated OTA noise and output swing with respect to voltage headroom. 

 

Examining Fig. 3.3, the supply-voltage requirement to keep the OTA active is 

headroomTHDSATheadroomMGSMDSATMDSAT VVVVVVVVDD  ||2|||| min,10,2,18, , (3.18) 

where VGS,M10,min is the minimum gate-source voltage for M9,10 and VTH is the threshold 

voltage of M9,10. Hence, with a typical NMOS VTH value of 1 V for this 0.6 μm CMOS 

process, we calculate VDDmin ≈ 1.8 V. In Fig. 3.8, we sweep the supply voltage and 

measure the AC transconductance Gmeff, indicating a VDDmin of roughly 2.0 V, as the 

curve has a sharp knee at 1.9 V. The effective Gm drops drastically below this voltage. 

We choose 2.8 V mainly because it is convenient to use a universal 1.28 V (~ VDD/2) 

reference voltage generated by the integrated bandgap circuit. 
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Fig. 3.8. Simulated effective Gm with respect to supply voltage. 

 

3.3.4 OTA Noise Analysis 

After applying all the noise-reduction techniques including current scaling, 

current splitting and bottom-transistor source degeneration, the remaining main noise 

contributors are M1–M4, R9–R12 and M15–M16. We bias M15 and M16 in above-threshold 

region to minimize their noise. As shown in Section 3.3.2, the noise contribution of M1–

M4 is the same as a simple differential pair in subthreshold region. The input-referred 

noise PSD of the entire OTA is 
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Substituting Gm, eff = 98% Gm into (3.19) yields 
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Given the known constants and design parameters, we compute 
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Equation (3.21) indicates that the noise of our OTA is only 1.14 times that of an 

ideal differential pair biased in subthreshold region. Our design has minimized all noise 

sources except for those of the input transistors. Evaluating (3.21), we calculate 

HznVv OTAni /51,   as the input-referred noise voltage density of our OTA at 300 K, 

which is close to the theoretical noise limit of HznV /48  from Section 3.3.1. 

 

3.3.5 Noise Efficiency Factor 

For a fair comparison of the noise-power tradeoff among neural amplifiers, the 

noise efficiency factor (NEF) proposed in [65] is adopted 
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where Vni,rms is the amplifier total input-referred noise voltage, Itot is the amplifier total 

supply current, and BW is the amplifier -3 dB bandwidth. NEF normalizes the total 

input-referred noise of an OTA to that of a single-BJT amplifier with the same 

bandwidth and supply current. It provides a good figure of merit (FOM) for comparison 

of various low-noise OTA designs. Assuming a first-order roll-off for noise [66], Vni,rms 

can be derived as 

BWvV OTAnirmsni 
2
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Substituting (3.21) and (3.23) into (3.22), and noting that Itot = 2IB, we find 
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Equation (3.24) gives the theoretical NEF of the proposed OTA. In real practice, 

taking into account the flicker noise and the additional power consumption in the biasing 

circuit, the NEF will be a little larger than the theoretical value. 

 

3.3.6 OTA Design Procedures 

This section summarizes the design procedure for the low-noise low-power OTA. 

1) From the power consumption specification, the total bias current partitioned to 

the input differential pair of the OTA is 800 nA. By operating in deep subthreshold 

region, the noise limit of a differential pair at room temperature calculates HznV /48 .  

2) The preamplifier input referred noise spec is < 5 μVrms. We design Vni,rms = 3 

μVrms to give enough margin. Based on (3.23), the opamp cutoff frequency fc is 

calculated as 1.5 kHz, which is enough to cover the fast-ripple range. 

3) As shown in Fig. 3.1, Cf is chosen as 0.2 pF and Cp is estimated to be 0.5 pF. Cs 

is computed as 20 pF to give a 40 dB closed-loop gain. The resulted feedback factor β is 

0.01. With a load capacitance CL = 11 pF, Gm calculates as 10.7 μS form the fc 

requirement. 

4) As discussed before, equal splitting is chosen in compliance with the noise and 

splitting factor tradeoff. Thus the gm for each split input device (M1-4) is 5.35 μS. The 

resulting gm /ID value of 26.5 ensures deep subthreshold operation for these devices. 

Consequently, the (W/L)1-4 value is designed at 240μm/3μm to achieve good tradeoff 
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between flicker noise, gate capacitance and loop gain.  

5) We chose L = 8 μm for bottom transistors M9-12 for two main design 

considerations, minimizing noise contribution and increasing output impedance. 

6) The bias current of M15-16 was scaled down by 16 times to minimize their noise 

contributions. The aspect ratio is chosen to be 2μm/2μm to have it biased in moderate 

inversion for both minimized noise and good matching for the current mirror. 

7) Finally, source-degeneration resistances are designed to achieve good tradeoff of 

noise suppression and voltage headroom, as discussed in Section 3.3.3. 

 

3.3.7 Remarks 

Compared to a conventional FC OTA, current-splitting OTAs have higher Gm,eff, 

lower degeneration-resistor area, and reduced noise. Current-splittnig OTAs provide an 

extra degree of freedom that can either provide higher gm for a given current, less power 

for a fixed gm, or a compromise in between. Because we also degenerate the NMOS 

transistors to reduce output noise (see Section 3.3.3), the current-splitting topology 

provides the additional advantage of reduced current in each branch, consuming less 

headroom. The current in MN3 and MN4 of conventional FC OTAs (see Fig. 3.4) is twice 

that of current splitting. Based on the discussion in Section 3.3.3, to achieve the same 

factor of noise reduction on these transistors at the same power, α should be √2 times the 

one with current splitting, thus √2 times the voltage headroom because Vheadroom = α / γ 

as shown before. This headroom increase consumes output swing and raises the output 

conductance of MN3 and MN4. From simulations, the effective output conductance Gd,N4 
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≈ gm,N6, where gm,N6 is the transconductance of MN6. While increasing the transistor 

aspect ratio W/L may slightly improve this headroom problem, simulations indicate that 

headroom improvements are minute, essentially requiring less degeneration and in turn 

more noise. Re-computing (3.16) and noting that Gm = κIB / UT for the conventional FC 

OTA, the effective transconductance yields 
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Defining RN3,4 =R, we calculate R =R9,10 /√2 =1.88 MΩ. Substituting Gm,eff,con and 

RN3,4 values into (3.19), the input-referred noise PSD of the conventional FC OTA yields 
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Comparing (3.17) and (3.25), the current splitting technique prevents the 50% Gm,eff loss 

from the severe output current scaling. Comparing (3.21) and (3.26), the OTA with 

current splitting reduces noise by 36%. Table 3.2 summarizes the OTA performance 

improvements by using current splitting. 

 

Table 3.2. Performance comparison of OTAs 

  Current Splitting FC Conventional FC 
Rdegeneration 2√2 (1+9/8) R = 6R (1+1+17/2) R = 10.5R 

Current 2.215 IB 2.25 IB 

Gm,eff 1.04 gm
* 0.5 gm

* 

Noise 1.14 2
niv  1.77 2
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Setting the preamplifier’s load capacitance CL = 11 pF, we obtain the 

preamplifier BW as 1.3 kHz through simulation. We explore the potential of extending 

the proposed preamplifier topology towards higher-frequency (~ 10 kHz) neural 

applications, such as neural action-potential recording. Keeping the value of CL fixed 

through simulations, we increase the bias current of the preamplifier to extend BW and 

lower input-referred voltage noise.  

 

 

Fig. 3.9. Simulated power tradeoffs for (a) input-referred voltage noise and bandwidth 
and (b) area and NEF. 
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When changing the bias current, we scale the source-degeneration resistors by 

the same ratio to keep the source degeneration factor unchanged. The resistor value and 

thus the amplifier area are inversely proportional to the bias current. Fig. 3.9 (a) shows 

the simulation results. Compared to the preamplifier in [51], with the same input-

referred voltage noise (20 nV/√Hz) and comparable BW, our preamplifier consumes 

16.4 μW (versus 80 μW). Compared to [42], with the same input-referred voltage noise 

(30 nV/√Hz) and comparable BW, our preamplifier consumes 7.5 μW (versus 7.6 μW). 

The area and NEF dependence on power is shown in Fig. 3.9 (b). The plots in Fig. 3.9 

clearly illustrate the noise, BW, power and amplifier area tradeoffs in a neural amplifier 

design. The general guide for neural amplifier design is to carefully evaluate these 

tradeoffs and achieve a good design balance for certain applications. 

 

3.4 Bandpass Filter Design 

From the discussion of BPF specifications in Section 3.2, Table 3.3 summarizes 

the BPF requirements for FR signal sensing. We choose the follow-the-leader feedback 

(FLF) architecture [67] for the BPF design because of its good tradeoff between 

sensitivity and tuning ability compared to both simple cascading and more complex 

leap-frog architectures. We choose an elliptic approximation to achieve a fast filter 

rolloff. Fig. 3.10 shows the filter block diagram.  
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Table 3.3. Specifications of the FR bandpass filter 

Order 6 
Passband 250 Hz - 500 Hz 

Passband ripple ≤ 0.5 dB 
Rolloff -33 dB/octave 

Attenuation ≥ 30 dB at 125 Hz and below 
 

 

Fig. 3.10. Block diagram of the 6th-order FLF elliptic bandpass filter. 

 

The feedback is based on a primary resonator structure with identical biquadratic 

sections (biquads) TBP1 -TBP3, except biquad gains. F2 and F3 are the feedback 

coefficients. Four feed-forward coefficients B0 -B3 are added to realize the elliptic filter’s 

finite zeros. K0 is the filter gain coefficient; K1, K2 and K3 are the gain coefficients of 

each biquad. We synthesize a 3rd-order lowpass (LP) filter prototype and then perform a 

LP-to-BP transformation to obtain the desired 6th-order BPF. The results are shown in 

Table 3.4, where Q and fo are the quality factor and center frequency of biquads, 

respectively. 
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Fig. 3.11 shows the biquad block diagram. The design procedure for biquads is 

discussed as follows. Neglecting excess-phase-compensation resistors R1,2 (since Ri << 

|1/sCi| within the passband 250 – 500 Hz), the transfer function of biquad1 – biquad3 

becomes 
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(i = 1, 2, 3).   (3.27) 

 

 

Fig. 3.11. Biquad block diagram. The series resistance for the excess phase 
compensation is 600k Ω. 

 

The design procedure of the BPF is discussed below. 

1) As discussed above, through filter approximation and synthesizing by using 

MATLAB®, the filter coefficients and biquad parameters are computed in Table 3.4. 

2) From the biquad transfer function (3.27), the parameters can be mapped to the 

expressions of gm and C as shown below. 
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Center frequency: ωo,i
2 = gm1,i gm2,i /(C1,iC2,i).   (3.28) 

Bandwidth: BWi = ωo,I /Qi = gmr,I /C1,i.   (3.29) 

Quality factor: Qi = (gm1,I gm2,iC1,I /gmr,i
2/C2,i)

0.5.  (3.30) 

Gains: Hi(jωo)= Ki= gm1,I /gmr,i.    (3.31) 

In this design, ωo,i , BWi and Qi are equal for all the three biquads. But Ki vary with gm1,i. 

3) For design simplicity, we choose equal value for C1 and C2 as 40 pF. Substituting 

the Q, fo, and Ki values from Table 3.4 into equations (3.28) – (3.31), we can compute all 

the gm values as shown in Table 3.5. Note that the product gm1,i ·gm2,i is nominally the 

same for all the biquads.  

4) Two adders (adder1 and adder2 in Fig. 3.10) are realized by differential pairs to 

achieve signal addition in current mode. Since B0 = 0, we can use the same topology as 

shown in Fig. 3.12 for both adders. B1 -B3 are implemented as Bi = gmA,i /gmd, where 

gmA,1, gmA,2 and gmA,3 are the transconductances of MA1,2, MA3,4 and MA5,6, respectively. 

The same implementation is applied to K0, F2 and F3 as well. Similar to the biquad Gm 

cells, the adders are also source degenerated to improve linearity. 

 

Table 3.4. Parameters of the 6th order FLF elliptic filter 

K0 0.6596 B0 0 F2 0.6517 
K1 2.3573 B1 0.1939 F3 0.238 
K2 2.186 B2 -0.3878 Q 2.2318 
K3 2.0064 B3 1.1939 fo 353.55 Hz 
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Table 3.5. Parameters of Biquads 

  Biquad1 Biquad2 Biquad3

gm1 (nS) 93.8 87.0 80.0 
gm2 (nS) 84.1 90.7 98.8 
gmr (nS) 39.8 39.8 39.8 
C1 (pF) 40 40 40 
C2 (pF) 40 40 40 

 

Fig. 3.12. Schematic of the adders. 

 

This paragraph discusses the 6th-order BPF's sensitivity to parameter variation. Q 

and ωo errors are the principal cause of high-order filters' frequency-response 

degradation [68]. Applying Mason’s rule to the filter block diagram (see Fig. 3.10) and 

inserting (3.27), the filter transfer function yields 
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where xi = s/ωo,i. Fig. 3.13 shows the system-level simulation results.  



 

52 
 

 

Fig. 3.13. Filter sensitivity to the Q and ωo of the biquads.  

 

The tolerable variation limits of the biquad’s Q and ωo are 15% and 5%, 

respectively to restrict passband ripple variation < 0.5 dB and filter bandwidth and center 

frequency variations < 5% and 2%, respectively. The biquad Q variation mainly changes 

the filter bandwidth, while the biquad ωo variation alters the filter center frequency. The 

rolloff is less sensitive to parameter variations. We lay out the Gm cells, resistor arrays, 

and capacitor arrays in common-centroid patterns. A filter tuning scheme is discussed 

later in this section.  

Fig. 3.14 shows the schematic of the Gm cells used in the biquads. These Gm cells 

have the same Ibias, except for gm2, which has tunable Ibias. The bias current is 16 nA in 

each input transistor. To achieve small gm values (tens of nS) for this low-frequency 

filter design, we source degenerate the input transistors M1,2 with triode PMOS 

transistors M3,4 [69]. The source degeneration also improves the Gm cells’ linearity. The 

degeneration factor a is 
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Fig. 3.14. Schematic of the Gm cells in the biquads. 

 

Increasing a yields better linearity, but compromises the input range and tuning 

ability of the Gm cells. Adopting the analysis in [69], the input range before M3,4 enters 

saturation region is 

25.0

5.0
||

4

2





a

aa
vin .     (3.34) 

We choose a value of a as 2.5 to get a good design tradeoff. The input range with 

this a value is ± 485mV and is enough for this application. All the load transistors M5 – 

M13 are designed with longer length than input transistors to minimize their noise. 

To tune the filter, we only tune gm2,i (thus Qi and ωo,i), leaving BWi and Ki 

unchanged. A 5-bit binary-weighted current DAC adjusts the bias currents of gm2,i 

through a bank of current sources controlled by the input digital code. An on-chip 

bandgap circuit generates the reference current for the current-source bank. The BPF 
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consumes 800 nA total. Each biquad dissipates 200 nA, and there are three biquads. 

Adder1 dissipates 111 nA, and adder2 dissipates 89 nA.  

 

3.5 Experimental Results 

This neural front-end recording circuit was fabricated in XFab 0.6 μm CMOS 

process with two-poly-three-metal (2P3M) layers. All the capacitors were built as poly-

poly capacitors for maximum linearity. All resistors were implemented with high-

resistance polysilicon, except RH, which is implemented by MOS-bipolar pseudoresistors 

[52]. An on-chip bandgap circuit generates all the reference currents and voltages for the 

entire chip to minimize the use of off-chip components in the neural detection implant. 

Fig. 3.15 displays the die photo. The total area of the front-end is 0.45 mm2, of which the 

preamplifier occupies 0.13 mm2.  

 

 

Fig. 3.15. Die microphotograph of the neural front-end circuit. 
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The chip is sealed in the standard ceramic DIP 28-pin package. We use a HP 

89441A vector signal analyzer (VSA) for a series of bench-top tests to verify the 

functionality of the front-end circuit. These tests include AC response, noise, THD, 

CMRR and PSRR measurements. Fig. 3.16 shows the experimental setup. 

 

 

Fig. 3.16. Bench-top test setup for the neural front-end circuit. 

 

3.5.1 Preamplifier Test Results 

The preamplifier mid-band gain is designed to be 40 dB by setting Cs to 20 pF 

and Cf to 0.2 pF. Fig. 3.17 shows the measured AC response of the preamplifier. The 

measured preamplifier mid-band gain is 39.4 dB, slightly lower than the designed value 

of 40 dB. This discrepancy is likely due to capacitor mismatches or the additional 
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fringing capacitance on the small Cf capacitors [51] or the finite OTA gain (Simulations 

show that a finite OTA gain of 1500 V/V can cause this 0.6 dB discrepancy). The 

highpass and lowpass cutoff frequencies are measured at 0.36 Hz and 1.3 kHz, 

respectively. The load capacitance of the preamplifier is 11 pF.  

 

Fig. 3.17. Measured AC response of the preamplifier. 

 

Total input-referred noise was measured as the total output noise divided by the 

mid-band gain. Fig. 3.18 plots the measured input-referred noise spectral density 

together with the simulated curve. We observe that the measured spot noise at 1 kHz for 

the preamplifier is 60 nV/√Hz, which is close to the calculated value of 51 nV/√Hz by 

using (3.21). The slight difference is mainly due to the degraded gain mentioned above. 

It could also be caused by the simplified subthreshold models shown in (3.8) – (3.10). 

The 1/ f noise corner occurs near 50 Hz. The total input-referred noise of 3.07 μVrms was 

obtained by integrating the area under the measured curve from 0.5 Hz–30 kHz. The 

resulting NEF is 3.09. The preamplifier consumes a total power of 2.4 μW from a 2.8 V 
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power supply. The total current consumption of the preamplifier is 872 nA. The input 

transistors consume most of the current (800 nA).  

 

Fig. 3.18. Measured and simulated (dashed line) input-referred voltage noise spectra of 
the preamplifier. 

 

Our amplifier achieves one of the best NEFs at the lowest power consumption 

within kilo-hertz bandwidth in the literature. The total harmonic distortion (THD) is 1% 

with a maximum 10 mVpp input signal. The measured CMRR and PSRR exceed 66 dB 

and 80 dB across the bandwidth from 0.36 Hz to 1.3 kHz, respectively. While there are 

few papers in the literature to which we can compare addressing the on-silicon epileptic 

fast ripple detection, there are several reported neural action potential amplifiers [42], 

[51], [54], [61], [62], [70], [71]. Table 3.6 lists a comparison of the proposed 

preamplifier with these works. 
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Table 3.6. Neural preamplifier performance comparison 

  

Mohseni Gosselin Yin Harrison Wattana- Shahrokhi  
Rodrigu

ez- 
This 

2004 
[62] 

2007 
[61] 

2007 
[54] 

2003 [51] 
panitch 

2007 [42] 
2010 [70] 

Perez 
2012 
[71] 

 Work 
2011 

Current 38.3 μA 
/115 μW 

4.67 μA 
/8.4 μW 

8 μA 
/27.2 
μW 

16 μA /80 
μW 

2.7 μA 
/7.6 μW 

4.25 μA 
/12.75 μW 

1.6 μA 
/1.92 μW 

0.872 μA 
/2.4 μW /Power 

Gain 39.3 dB 49.52 dB 39.3 dB 39.5 dB 40.85 dB 73 dB 47.5 dB 39.4 dB 

Bandwi
dth 

0.1 Hz - 
9.1 kHz 

98.4 Hz 
– 9.1 
kHz 

0.015 
Hz - 4 k 

Hz 

0.025 Hz - 
7.2 kHz 

45 Hz - 
5.32 kHz 

10 Hz - 5 
kHz 

167 Hz - 
6.9 kHz 

0.36 Hz – 
1.3 kHz 

Load 
N/A 0.4 pF 3 pF 17 pF 9 pF N/A N/A 11 pF capacito

r 

Total 
input 

7.8 μVrms 5.6 μVrms 
3.6 
μVrms 

2.2 μVrms 3.06 μVrms 6.08 μVrms 3.8 μVrms 
3.07 
μVrms 

referred 0.1 Hz - 
10 kHz 

1 Hz - 50 
kHz 

20 - 10 
kHz 

0.5 Hz - 
50 kHz 

10 Hz - 98 
kHz 

10 Hz - 5 
kHz 

1 Hz - 
100 kHz 

0.5 Hz - 
30 kHz noise 

NEF 19.4 4.9 4.9 4 2.67 5.55 2.16 3.09 

Max. 5 mVp-p 
(THD 
1.1%) 

2.4 mVp-

p (THD 
1%) 

17.4 
mVp-p 
(THD 
1%) 

16.7 mVp-

p (THD 
1%) 

7.3 mVp-p 
(THD 
1%) 

N/A 
3.1 mVp-

p (THD 
1%) 

10 mVp-p 

(THD 
1%) signal 

CMRR N/A > 50 dB N/A > 83 dB > 66 dB N/A 83 dB > 66 dB 

PSRR N/A > 50 dB N/A > 85 dB > 75 dB N/A N/A > 80 dB 

Die area 
0.107 
mm2 

0.050 
mm2 

0.201 
mm2 

0.160 
mm2 

0.160 
mm2 

0.02 mm2 
0.08 
mm2 

0.130 
mm2 

Process 
1.5 μm 
CMOS 

0.18 μm 
CMOS 

1.5 μm 
CMOS 

1.5 μm 
CMOS 

0.5 μm 
CMOS 

0.35 μm 
CMOS 

0.13 μm 
CMOS 

0.6 μm 
CMOS 

 

3.5.2 Front End Test Results 

Fig. 3.19 shows the measured AC response of the entire front-end circuit for FR 

recording. The passband is 250 – 486 Hz. The passband gain is 38.5 dB, and the in-band 

ripple is less than 0.5 dB. The filter rolloff is measured as -110 dB/decade. The achieved 

attenuation is around 30 dB for f < 200 Hz and ≥ 30 dB for f > 5 kHz. Simulations show 

that the high-frequency level-off is mainly caused by the finite feed-forward coefficient 

B0 (see Fig. 3.10). By design, B0 = 0. However, in the layout, the parasitic (trace or 
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junction) capacitances could provide a finite feed-forward path (i.e., finite B0) between 

the output of adder1 and one of the inputs of adder2. Setting B0 = 0.1 for simulations, the 

result reproduces the measured high-frequency level-off. Fig. 3.20 shows the front-end 

simulation results with B0 = 0 and B0 = 0.1. The effect of finite B0 can be clearly 

observed. 

 

Fig. 3.19. Measured AC response of the neural front-end circuit. 

 

Fig. 3.20. Comparison of front-end simulation results for B0 = 0 and B0 = 0.1. 
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Fig. 3.21 plots the front-end measured and simulated input noise spectral 

densities. A good agreement in between measurement and simulation is achieved. The 

total input-referred noise of the front end is 2.48 μVrms obtained by integrating through 

the passband. The corresponding NEF is 7.6 while consuming a total power 

(preamplifier + filter) of 4.5 μW from the 2.8-V power supply. The maximum input 

amplitude for the entire front end is 3.4 mVpp (1% THD). This input range can well 

cover the epileptic FR signals. The dynamic range of the front end is achieved as 54 dB. 

The measured CMRR and PSRR exceed 79 dB and 68 dB across the passband, 

respectively.  

Table 3.7 compares the performance of our front-end circuit with the state-of-

the-art for EEG acquisition. Our proposed front end provides one of the highest-order 

on-chip filtering for EEG preconditioning applications reported so far in the literature 

[6], [35], [42], [51], [54], [72]. This front end consumes 0.75 μW/pole and is the most 

power-efficient reported to date. We use a power/pole metrics to be able to compare, in a 

fair way, with similar filters of different orders. 
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Table 3.7. Neural front-end circuit performance comparison 

 
Harrison 

2003 [51]* 
Wattanapanitch 

2007 [42]* 

Shojaei-
Baghini 2005 

[72] 

Verma 
2010 [6] 

This work 

Current/ 
Power 

180 nA/ 0.9 
μW 

743 nA/ 2.1 μW 22 μA/ 73 μW 
3.5 μA/ 3.5 

μW 
1.6 μA/ 4.5 

μW 

Filter 
Topology 

OTA 
dominant 

pole 
1st-order BPF 1st-order LPF 

2nd-order 
LPF 

6th-order FLF 
Elliptic BPF 

Power/ pole 0.9 μW/ pole 2.1 μW/ pole 73 μW/ pole 
1.75 μW/ 

pole 
0.75 μW/ 

pole 

Roll off 
-20 

dB/decade 
-20 dB/decade -20 dB/decade 

-40 
dB/decade 

-110 
dB/decade 

In-band 
ripple 

N/A N/A N/A N/A 0.5 dB 

Bandwidth 0.014 - 30 Hz 0.39 - 295 Hz 0.05 - 170 Hz 
0.5 - 100 

Hz 
250 - 486 Hz 

Total input-
referred 

noise 
1.6 μVrms 1.66 μVrms 6 μVrms 1.3 μVrms 2.48 μVrms 

NEF 4.8 3.2 80 N/A 7.6 

Gain 39.8 dB 40.9 dB 55 dB 60 dB 38.5 dB 

Max. input 
(THD 1%) 

12.4 mVp-p 7.2 mVp-p N/A N/A 3.4 mVp-p 

Dynamic 
Range 

69 dB (THD 
1%) 

63.7 dB (THD 
1%) 

N/A N/A 
54 dB (THD 

1%) 

CMRR > 86 dB 66 dB 100 dB (60 Hz) > 60 dB > 79 dB 

PSRR > 80 dB 75 dB N/A N/A > 68 dB 

Applications Surface EEG 
Parkinson's 

Disease 
ECG Recording 

Seizure 
Detection 

Epileptic FR 
Detection 

Process 
1.5 μm 
CMOS 

0.5 μm CMOS 0.35 μm CMOS 
0.18 μm 
CMOS 

0.6 μm 
CMOS 

* The authors also reported the measurement results for their front end configured for 
lower frequency neural recording 
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Fig. 3.21. Measured and simulated (dashed line) input-referred voltage noise spectra of 
the neural front-end circuit. 

 

3.5.3 Saline-Solution Test Results 

The front-end circuit was also tested in a sterilized saline solution with an 8-

contact lead (Boston Scientific Neuromodulation, Model SC2108 Linear). Saline 

solution is used to emulate patient’s brain tissue. An artificial 2 mVpp IEEG signal was 

generated using an Agilent 33250A arbitrary waveform generator. This signal was fed 

into the saline solution through contact 1 of the lead. Contact 3 collected the signal, and 

the neural front-end circuit amplified and filtered the input signal. 

Fig. 3.22 shows the experimental setup for the saline-solution test. The front-end 

gain and bandwidth were set at 38.5 dB and 250 - 486 Hz, respectively. The upper and 

lower traces in Fig. 3.23 show the input and output signals, respectively. A 320-Hz 

signal tone was embedded in some segments of the input signal to emulate the fast ripple 

signal, and this tone was correctly extracted and amplified by the front-end circuit. 
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Fig. 3.22. Saline-solution test setup for the neural front-end circuit.  

 

 

Fig. 3.23. Measured input (upper trace) and output (lower trace) of the front-end testing 
in a saline solution (input is a 2 mVpp artificial IEEG signal). The output fast ripple 

signal is 320 Hz and 143 mVpp. Inset: a close-up view of one segment of the input and 
output traces. 
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3.6 Conclusions 

This chapter has presented a micropower low-noise front-end circuit for epileptic 

fast ripple recording. The presented system is the first to achieve the epileptic fast-

ripple-recording functionality. We combined several low-noise design techniques to 

make the preamplifier achieve one of the best noise-power tradeoffs among neural 

amplifiers reported to date. The on-chip bandpass filter used in the system provides a 

sharp out-of-band rolloff that meets the clinical need for seizure detection and achieves 

one of the best power efficiencies in literature. Thus, our front-end circuit design can be 

embedded in an integrated-circuit solution to seizure detection for future deep-brain-

stimulation therapy for intractable epilepsy. 
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CHAPTER IV 

PROPOSED LOW-POWER CONFIGURABLE NEURAL ANALOG-TO-DIGITAL 

CONVERTER (ADC)* 

 

4.1 Introduction 

A sigma-delta (ΣΔ) ADC is designed to digitize the signal from the neural front-

end circuit. In recent years, successive approximation (SAR) ADC has been explored 

and become popular for the neural sensing applications, mainly due to its low power 

consumption in the kHz sampling frequency range [6], [35]. However, SAR ADCs are 

usually limited at the medium resolution with n ≤ 10 bits [73], [74]. It is mainly due to 

the fact that the number of unit capacitors grows exponentially with the ADC bits [75]. 

The minimum unit-capacitor size is usually constrained by the layout rules, kT/C noise 

and the capacitive-array distortion due to small unit size [73], [74]. The SAR resolution 

is also limited by capacitor mismatches and comparator offsets. On the other hand, a ΣΔ 

ADC does not have the minimum-unit-capacitor constraint and is less sensitive to 

component mismatch and offsets because of the noise shaping [76]. Thanks to the 

oversampling technique, a ΣΔ ADC does not need a dedicated anti-aliasing filter, which 

SAR ADC often requires. Therefore, ΣΔ ADCs are usually working with high 

resolutions (n ≥ 12).  

 
____________ 
*©[2012] IEEE. Reprinted, with permission, from “A low-power configurable neural 
recording system for epileptic seizure detection,” by C. Qian, J. Shi, J. Parramon, and E. 
Sánchez-Sinencio, IEEE Trans. Biomed. Circuits Syst., accepted on Nov. 12, 2012. 
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Moreover, ΣΔ ADC shows better power scaling ability, since both analog and 

digital power can scale down proportionally as the sampling frequency scales. But, for 

SAR ADCs, the two dominant power sources, namely the comparator and the DAC 

capacitor array, do not scale accordingly [77]. Due to the reasons stated above, as 

resolution increases beyond 8 bits, ΣΔ ADCs have shown to be more power efficient 

[77] than SAR ADCs. As mentioned in Section 2.2.1, for FR seizure detection, the 

resolution requirement is higher than 10 bits. Thus, we choose sigma-delta modulation 

as our ADC architecture. 

 

4.2 ADC Architecture 

The proposed ADC consists of a sigma-delta modulator (SDM) followed by a 

digital decimation filter. We choose a 2nd-order single loop with single-bit quantizer and 

DAC as our SDM architecture. Single-loop structure achieves good tradeoff of stability 

and mismatching, compared with multi-loop or cascading structures. A single-bit DAC 

avoids the linearity problem and is more suitable for medium-high-resolution 

applications than multi-bit DACs. With the 2nd-order noise shaping and an oversampling 

ratio of 200, the dynamic range of the SDM can achieve 14 bits with the single-bit DAC. 

This design meets the resolution specification for neural applications as discussed in 

Section 2.2.1. The decimation filter achieves improved power and area efficiency, thanks 

to the simple implementation of a sinc filter and the 8-cycle data pipelining in the 

succeeding IIR filter. We carefully design the decimation filter to avoid in-band noise 
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increase due to aliasing, thus retain the dynamic range of the whole ADC. We discuss 

the SDM design first. The decimation filter design follows in Section 4.4.  

 

4.3 Sigma-Delta Modulator (SDM) Design 

Fig. 4.1 shows the topology of the SDM. The loop coefficients are determined 

from behavioral simulations and are set to [0.5, 2]. The selection of these coefficients 

ensures a unit signal transfer function (STF) with 2 clock delays, but the noise transfer 

function (NTF) is 2nd-order high-pass filtered. Fig. 4.2 shows the switch-level schematic 

of the SDM and the interconnection to the decimation filter.  

 

 

Fig. 4.1. Single-loop 2nd-order SDM topology. 
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Fig. 4.2. Schematic of the sigma-delta ADC. 

The SDM design is similar to what is reported in [76]. The improvements are 1) 

the current-splitting technique [63], [64] adopted to boost the OTA’s speed and slew rate 

(SR); 2) the voltage doubler [78] used to enhance the linearity of switches. 

As shown in Fig. 4.2, Φ1 and Φ2 are the non-overlap clocks. CS and CI are the 

sampling and integrating capacitors, respectively. A comparator implements the 1-bit 

quantizer. The quantization noise power (PQ) after the noise shaping [79] is known as 

])12()12(12/[ 12222  LBL
Q OSRLFSRP  ,     (4.1) 

where FSR is the SDM full scale range, B is the bit resolution of the quantizer, 

OSR is the oversampling ratio, and L is the modulator order. In practice, the SDM 

performance is also limited by other major noise sources, such as the switch kT/C noise 

and the OTA noise. The kT/C noise power [80] is given by 
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where fB is the signal bandwidth and OSR = fs /(2fB). In this design, we choose B = 1, L 

= 2, and OSR = 200 as discussed earlier. The FSR is set as 0.8 V, which can cover the 

signal range for all neural applications, without imposing much SR constraint to the 

OTAs. Thus, this FSR choice avoids the performance overdesign for the seizure 

detection. By choosing CS = 2 pF, we compute PQ = -114 dB and PkT/C = -110 dB.  

The OTA noise is carefully reduced by increasing the input transistor geometry 

size and reducing the gm of the load transistors. The simulated noise of the first OTA 

within 5 kHz BW is -125 dB and is negligible compared to the other two noise sources. 

The peak signal power is Psig, peak = FSR2/8, thus the SDM’s dynamic range (DR) can be 

computed as   

 
)/(])12()12(12/[

8/
12222

2

/

,

S
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peaksig

COSRkTOSRLFSR
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


 

.  (4.3) 

Fig. 4.3 plots the SDM’s DR along with the PQ-noise-limited DR (DRQ = Psig, 

peak/PQ) and the kT/C-noise-limited DR (DRkT/C = Psig, peak/PkT/C). It shows that an OSR of 

200 is at the border of kT/C-noise-limited region and gives an efficient SDM design. The 

calculated DR at this point is 97.7 dB (= 16 ENOBs). ENOB is the effective number of 

bits and ENOB = (DR – 1.76)/6.02. 
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Fig. 4.3. Calculated SDM DR with respect to OSR. 

 

4.3.1 Low-Power High-Performance Integrator Design 

The first OTA has dominant impact on the modulator performance. The design 

procedures based on the specifications are discussed below. 

1) In this application, the maximum ADC speed fs,max = 2 MHz. To reach a good 

settling accuracy (< 0.5 LSB) within the half clock cycle for a 16-bit resolution, the first 

OTA’s gain-bandwidth product (GBW) should be at least 20 times fs,max, i.e., allowing 

for 10 time constants [81].  

2) Thus, in the Φ2 phase, GBW = βGm/CLtot = 2π·40 MHz, where Gm is the OTA 

transconductance; β = CI1/(CI1 + CS1 + Cp) is the feedback factor and Cp (~ 0.5 pF) is the 

first OTA’s input parasitic capacitance; CLtot = CL+(1-β)CI1 is the total load capacitance 

and CL (~ 0.3 pF) is the OTA’s load capacitor.  
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3) From the ADC kT/C noise requirement and the loop coefficient calculated in 

Section 4.3, the first integrator capacitance values are designed as CS1 = 2 pF and CI1 = 

4pF. Therefore, we calculate β = 0.62, CLtot = 1.8 pF and thus Gm = 730 μS.  

4) We adopt the current-recycling folded cascode (CRFC) as our OTA topology. As 

discussed in Section 3.3.1, this technique was originally proposed by Bahmani et al. [63] 

in a pseudo-differential OTA, and later adapted by Assaad et al. [64] into a fully-

differential folded-cascode topology. Fig. 4.4 shows the schematic of the OTA.  

5) In comparison to a conventional FC, by equally splitting the input transistors and 

making a current ratio of 1:4 (M11,12 : M9,10), the CRFC can boost the gm and SR by 2.5 

and 4 times, respectively [64]. Thus, gm1-4 = Gm/5 = 146 μS. With a designed gm/ID = 16, 

we calculate ID = 9.2 μA, where ID is the drain current of M1 - M4.  

6) The dc gain achieved is 60 dB, with a GBW of 42 MHz and phase margin of 55o. 

 

Fig. 4.4. Schematic of the first OTA in the SDM. 
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The first integrator accounts for 50% of the modulator power dissipation. Since 

the noise and non-idealities of the second integrator are attenuated by the 1st-order noise 

shaping, its current and capacitance are scaled by half to reduce the power consumption. 

For the FR recording, after the fs and power scaling, the integrators consume about 17% 

power of that for AP recording. 

 

4.3.2 Clocker Booster Design 

Since the switch conductance and charge injection are signal-dependent, they 

may cause distortion when operating at the low clock voltage. Fig. 4.5 shows the charge 

pump [78] used to boost the clock signals driving the NMOS switches in the modulator.  

 

 

Fig. 4.5. Schematic of the charge pump. 

 

The design procedures of this clock voltage booster are discussed here. 
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1)  C1 and C2 act like two batteries storing a charge of C1,2·VDD each. C1,2 is chosen 

as  50 pF to minimize the output loading effect as discussed below.  

2) Driving by the clock, nodes X1 and X2 toggle alternatively between VDD and 

2VDD.  

3) Two PMOS series switches M3 and M4 are needed to connect 2VDD to the output 

alternatively. Cout is chosen as 100 pF. 

4) To ensure the reverse bias of the vertical PN junctions, the bulk voltage of M3, 4 

is always required at 2VDD. This is done by M5 and M6, since they always switch to the 

highest voltage.  

5) The parasitic capacitor Cp (= 1 pF) preserves the bulk voltage during switching.  

6) All switch sizes (W/L)M1-6 are chosen as 160μm/0.6μm. Large width and 

minimum length are designed to reduce RON. 

The output voltage is a little lower than 2VDD due to the loading from the stage 

it drives. For a VDD = 2.8 V, the simulated Vout value is 4.5 V. For the CMOS process 

used in this design, a maximum gate-source voltage of 6 V can be tolerated without 

causing voltage stress on the transistors. 

 

4.3.3 Comparator Design 

The design of comparator can be relaxed in sigma-delta modulators, because the 

nonidealities of the comparator undergo the same noise shaping as the PQ noise. Fig. 4.6 

shows the comparator [82] consisting of a dynamic latch and a SR latch. It is worth 

mentioning that the pseudo-differential topology used here saves the comparator from 
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any static power consumption and is suitable for this moderate-speed (up to 2 MHz) 

application. 

 

 

Fig. 4.6. Schematic of the comparator. 

 

When Φ1 is low, M7 and M10 pull both nodes VN and VP high while M3 and M4 

are turned off. This operation resets the dynamic latch when the SR latch locks the 

previous comparator decision. The comparator output controls the timing of the 

feedback DAC. When Φ1 goes high, the dynamic latch regenerates the input difference 

into rails. The design procedures of the comparator are shown below. 

1) Minimum lengths of 0.6μm are chosen for all devices M1-10 to improve circuit 

speed. 

2)  Large width W1-2 = 16 μm is chosen for the input devices M1-2. It improves 

comparator gain and matching. 
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3) The PMOS width W8-9 = 8 μm and NMOS width W5-6 = 4.4 μm are chosen in the 

dynamic latch to achieve a good balance between transconductance and parasitic 

capacitance, and thus improve the latch time constant, which is τ ≈ (Cgs+Cgd)/(gmN+gmP). 

 

4.4 Decimation Filter Design 

A sigma-delta ADC usually consists of a sigma-delta analog modulator followed 

by a digital decimation filter. A decimation filter is useful to 1) lower the word rate of 

the oversampled signals from the modulator, 2) remove the out-of-band quantization 

noise, and 3) avoid the aliasing of high frequency components down to the signal band. 

When the power efficiency of the analog modulator keeps improving, the decimation 

filter becomes the bottle neck of power efficiency for the whole ADC. In the audio 

frequency range, the state-of-art decimation filter usually consumes tens of milliwatts 

[83], [84], while the modulator can consume only hundreds or even tens of µW’s [80], 

[82]. The decimation filter also occupies larger area than the modulator. There are many 

research efforts through years to improve both the power and area efficiency of 

decimation filters. One of the popular architectures for decimation filters is the cascaded 

integrator-comb (CIC) filter [85]. Though the CIC structure has very simple hardware 

implementations, its wordlength is large in order to avoid register overflow in the 

integrator stages running at full sampling frequency. A polyphase decomposition 

technique has been developed to reduce the wordlength of comb filters, but it requires 

large adder trees that consume significant power [86]. A modified filter structure was 
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reported in [87] to improve the distribution of zeros of the CIC filter to reduce both the 

PQ noise and the bit rate, but it still uses two multipliers and is not power efficient. 

In this chapter, we propose a direct implementation of the impulse response (IR) 

of a sinc filter in the 1st stage. This simple implementation requires only one shift 

register and one adder as the main components. A one-multiplier structure is proposed 

through data pipelining for the IIR filter used in the 2nd stage. Therefore, the proposed 

decimation filter is area and power efficient and obviates the aforementioned problems 

in literature. Fig. 4.7 shows the schematic of our proposed decimation filter.  

 

 
Fig. 4.7. Block diagram of the decimation filter. 

 

The first stage is a 3rd-order sinc filter with a decimation factor of 64. A 4th-order 

IIR lowpass filter (LPF) follows the sinc filter to attenuate the high frequency 

quantization noise. The 32-bit wordlength is employed to accommodate the standard 32-

bit DSP architecture in medical applications. The last stage is a parallel-to-series 

converter which is simply a 32-bit shift register and converts the output samples into a 

series bit stream. It makes the chip compatible to any module that communicates with 

standard SPI protocol. The specifications of each block are discussed in the following 

Section 4.4.1 and 4.4.2. 
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4.4.1 Sinc3 Filter Design 

The order of the sinc filter is chosen to be 3, because it should be at least one 

order higher than the modulator to ensure the filter cuts off at a faster rate than the NTF 

rises at high frequencies [88]. We choose the decimation factor M = 64, since it results in 

a residual OSR of 3.125 that can prevent passband droop, limit the increase of baseband 

noise to less than 0.25 dB [89] and allow enough transition band (= fs /M – 2fB) to 

attenuate the aliasing components. We put all the decimation factors on the 1st stage to 

lower the operation frequency of the succeeding stages as much as possible. It is part of 

the strategy to save power. The transfer function of the sinc filter is  
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where M (= 64) is the decimation factor, N (= 3) is the filter order, and an are the filter 

coefficients. Fig. 4.8 shows the block diagram of the sinc3 filter. A design procedure is 

provided below. 

1) A shift register constantly receives the incoming bits from the SDM at the speed 

of fs. The sinc filter samples [N(M-1)+1] (= 190) input bits in every 64 clock cycles. 

This is the decimation by 64.  

2) In time domain, the output samples are 
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where x-(n+Mm) are the delayed input samples. The coefficients an can be calculated [90] 

as 
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where an are 12 bits long.  

3) Since the input bits are either 1 or 0, 190 multiplexers can be employed to pass 

either an or 0 to a 190-input adder for implementing the summation in (4.5). No 

multiplier is thus needed in the first stage.  

4) Finally, the decimal point of summation results is shifted left by 18 bits to realize 

the division by M-N. 

Thanks to the decimation by 64, the combinational logic (the multiplexers and 

adders) has equivalently 64 clock cycles to process the data. Thus the adder is effectively 

running at fclk /64, saving power and avoiding any setup time violations.  

 

 

Fig. 4.8. Block diagram of the sinc3 filter. 
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4.4.2 Digital IIR Filter Design 

The order of the IIR filter is designed to be 4, achieving a good tradeoff between 

fast rolloff and small in-band ripples. The fs, max (= 2MHz) sets the maximum value of 5 

kHz for the cut-off frequency (fB). At least 90-dB stopband rejection is required to have 

enough attenuation of the out-of-band noise [91]. The specifications of the IIR filter are 

summarized in Table 4.1. In order to save both power and area, we minimize the number 

of multipliers to be 1 in the filter by using a novel 8-cycle data pipelining, as discussed 

in details later. The filter consists of two 2nd-order IIR LPF sections in cascading. The 

transfer function of the overall 4th order IIR LPF is 
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Table 4.2 summarizes the filter coefficients obtained from the elliptic filter 

approximation by using Matlab®. Fig. 4.9 shows the block diagram of the IIR filter. 

 

Table 4.1. Specifications of the digital IIR filter 
 

Order 4 

Max. cut-off frequency 5 kHz 
Stopband attenuation 100 dB 

Passband ripple ≤ 0.5 dB
 

Table 4.2. Coefficients of the IIR filter 
 

A11 A12 A13 A14 A15 

0.02459 0.04871 0.02459 -0.85695 0.25735 
A21 A22 A23 A24 A25 

1 1.892 1 -0.70812 0.65859 
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Fig. 4.9. Block diagram of the 4th-order IIR LPF. 

 

The design procedure for the IIR filter is discussed below.  

1) All the register names are shown in the figure. For example, “LPF_OUT1_32 

(32)” denotes a register named as “LPF_OUT1_32” with a register length of 32 bits.  

2) The filter processes data with the fixed-point arithmetic. For a 32 bit data, the 

first 4 bits are integer bits and the rest 28 bits are fraction bits. MSB is the sign bit. Each 

filter coefficient is 32 bits.  

3) A 3-bit counter running at fCLK /8 controls the operation of the filter. Table 4.3 

summarizes the steps of the data pipelining based on the counter cycles. For example, 

during counter cycle (000), the input LPF_IN multiplies A11 and then adds to the data in 

REG_DLY1. The result is 65 bits, but it gets truncated to both 64 bits and 32 bits. The 

registers LPF_OUT1_64 and LPF_OUT1_32 get updated with the 64-bit and 32-bit 

results, respectively.  
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4) The unit-delay elements (z-1) are implemented by registers REG_DLY1-4. The 

unit delay is realized by the fact that these registers always participate in the 

computations before they get updated.  

Note from Table 4.3 that every register is updated every 8 counter cycles, thus 

the IIR filter is effectively running at fCLK /64.  

Fig. 4.10 shows the simulated magnitude responses of the individual stages and 

the overall decimation filter with the sampling frequency of 2 MHz. The passband droop 

is less than 0.5 dB, thanks to the residual OSR of 3.125. If the signal is decimated to 

Nyquist rate, the droop will increase significantly and then a droop correction filter will 

be needed at the final stage [89].   

 

Table 4.3. The 8-cycle data pipelining of the IIR filter 
 

Counter cycle Operation Register updated 

000 (LPF_IN * A11) + REG_DLY1 
LPF_OUT1_32 

LPF_OUT1_64 

001 (LPF_IN * A12) + REG_DLY2 REG_ADD1 

010 (LPF_OUT1_32 * A14) + REG_ADD1 REG_DLY1 

011 LPF_IN * A13 REG_A13 

100 (LPF_OUT1_32 * A15) + REG_A13 REG_DLY2 

101 
LPF_OUT1_64 + REG_DLY3 LPF_OUT2 

(LPF_OUT1_32 * A22) + REG_DLY4 REG_ADD2 

110 (LPF_OUT2 * A24) + REG_ADD2 REG_DLY3 

111 (LPF_OUT2 * A25) + LPF_OUT1_64 REG_DLY4 
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Fig. 4.10. Simulated magnitude responses of the first stage, second stage and the overall 

decimation filter (fs = 2 MHz).  
 

 

4.5 Experimental Results  

This neural ADC was fabricated in XFab 0.6-μm CMOS process with two-poly–

three-metal (2P3M) layers. An integrated I-V reference circuit is implemented to 

generate all the bias currents and voltages. Two regulators provide analog and digital 

power supplies separately. Fig. 4.11 displays the die microphotograph. The die area is 

9.33 mm2, of which the decimation filter occupies ~ 70% of area. 
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Fig. 4.11. Die microphotograph of the ADC. 

 

The chip is sealed in the standard ceramic DIP 40-pin package and mounts to the 

PCB test board as shown in Fig. 4.12 for testing. Fig. 4.13 shows the test setup. A test 

sinusoidal signal (from an Agilent 33250 function generator) was fed into the on-board 

S-to-D converter, which generates the differential input signal to the ADC. A Texas 

Instrument (TI) MCU provides the reset and clock signals to drive the ADC. The 

digitized signal was fetched by the SPI interface of an oscilloscope (Agilent DSO7014A) 

for spectrum plotting. 
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Fig. 4.12. The PCB board for ADC testing. 

 

 

Fig. 4.13. The ADC test setup. 
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4.5.1 ADC Measurement Results 

The ADC (modulator + decimation filter) is clocked at 2 MHz and 333 kHz for 

the AP and FR recordings, respectively. The series output data of the ADC is captured 

by the oscilloscope through the SPI interface and processed offline by software. Fig. 

4.14 and Fig. 4.15 show the measured output spectra (2500-pt FFT up to fs/2) of 2.3-kHz 

and 400-Hz inputs for the AP and FR modes, respectively.  

 

 

Fig. 4.14. Measured ADC output spectra of a 2.3-kHz signal tone with input level of (a) 
-30 dB and (b) -9 dB for AP mode. 
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Fig. 4.15. Measured ADC output spectra of a 400-Hz signal tone with input level of (a) -
20 dB and (b) -2 dB for FR mode. 

 

They all show the out-of-band rolloff due to the digital filtering from the 

decimation filter and the 3.125 residual OSR. No harmonics are observed when signal is 

at the low levels (-30 dB for AP mode and – 20 dB for FR mode). Harmonic distortions 

appear in the spectra, as the input level becomes high. The peak SNDR is achieved at 
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input level -9 dB for AP mode and -2 dB for FR mode. Fig. 4.16 shows the measured 

SNR and SNDR versus the input amplitude normalized to the FSR.  

 

 

Fig. 4.16. Measured ADC SNR, SNDR and DR for (a) AP and (b) FR mode. 

 

The peak SNR measures 75.9 dB and 76.2 dB while peak SNDR reaches 67 dB 

and 73.2 dB for the AP and FR modes, respectively. The dynamic range is 77 dB in 5-

kHz BW for AP mode and 78 dB in 832-Hz BW for FR mode. The analog and digital 
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power consumption is 756 μW and 2 mW for the AP mode and 252 μW and 336 μW for 

the FR mode. The ADC performance is summarized in Table 4.4. The distribution of 

ADC power consumption is shown in Fig. 4.17. We can see the decimation filter 

consumes most of the power. Integrator 1 consumes the second most.  

 

 

Fig. 4.17. Distribution of the ADC power consumption. 

 

4.5.2 Comparison with State-of-the-Art Designs 

For fair comparison of ADC performance, only sigma-delta ADCs with 

integrated decimation filter design using similar CMOS processes are selected. [36], 

[83], [84], [91]. Since there are not many sigma-delta ADCs reported for this neural 

application, the audio ADCs with similar bandwidth [83], [84], [91] are only included 

for reference. Table 4.4 summarizes the ADC performance from different works. The 

presented ADC shows comparable performance among the others and especially 

achieves superior power efficiency for the decimation filter design. It is worth 
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mentioning that our ADC performs better than [36] in terms of both speed and 

resolution, which is the closest system to ours for a wide range neural signal detection 

from spike to local field potential. 

 

Table 4.4. Sigma-delta ADC (including decimation filter) performance references 
 

 Mollazadeh Nguyen Yang Maulik This Work 

 2009 [36] 
2005 
[84] 

2003 
[83] 

2000 
[91] 

 

Applications EEG Audio Audio N/A AP FR 
Analog Supply 

voltage (V) 
3.3 3.3 5 5 2.8 

Digital Supply 
voltage (V) 

3.3 3.3 1.8 3.3 2.8 

DR (dB) 55 106 114 94 77 78 
Sampling 

frequency (MHz) 
0.016 6.144 6.144 32 2 0.333

BW (kHz) 0.15 20 20 250 5 0.832
Analog power 

(mW) 
N/A 18 55 210 0.756 0.252

Digital power 
(mW) 

N/A 14 13 280 2 0.336

Total power (mW) 0.076 32 68 490 2.756 0.588
ADC area (mm2) 9 1.82 5.62 21 9.23 

CMOS process 0.5 μm 
0.35 
μm 

0.35 
μm 

0.6 μm 0.6 μm 

 

With the similar filter performance and the same-size CMOS process, we 

compare our decimation filter to the one reported in [91]. The digital power is 

proportional to CV2f, where C is the total loading capacitance which is proportional to 

the total number (n) of transistors, V is the supply voltage and f is the operating 

frequency of the digital circuit. With the similar supply voltage, if f in [91] is scaled to 

the same frequency (2 MHz) as in this work, its digital power will scale down to 17.5 
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mW. But this scaled-down value is still much higher than its counterpart (2 mW) in this 

work. Two main reasons can explain the power saving of our digital filter. First, n is 

smaller than that of [91], 115 k versus 150 k. It is due to the direct IR implementation of 

the sinc3 filter and the one-multiplier structure of the IIR filter. Second, the 8-cycle data 

pipelining makes the IIR filter run at effectively lower frequency than the CIC 

architecture does in [91]. 

 

4.6 Conclusions 

A 2nd-order sigma-delta ADC was proposed to digitize the neural signals for the 

closed-loop DBS system. The ADC is power and bandwidth configurable for recording 

both fast ripple and action potentials. The techniques of sinc-filter direct implementation 

and IIR-filter data pipelining make the decimation filter design competitive to the state-

of-the-arts in terms of power efficiency. 
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CHAPTER V 

MEASUREMENT OF THE LOW-POWER NEURAL RECORDING SYSTEM* 

 

5.1 PCB Setup 

This neural recording system was fabricated in XFab 0.6-μm CMOS process with 

two-poly–three-metal (2P3M) layers. All the capacitors were built as poly-poly 

capacitors for maximum linearity. All resistors were implemented with high-resistance 

polysilicon. An on-chip bandgap circuit and an I-V reference circuit generate all the 

reference currents and voltages for the entire chip to minimize the use of off-chip 

components in the neural-detection implant. Fig. 5.1 displays the die photo. 

 

 
 

Fig. 5.1. Die microphotograph of the neural recording system. 
 

____________ 
*©[2012] IEEE. Reprinted, with permission, from “A low-power configurable neural 
recording system for epileptic seizure detection,” by C. Qian, J. Shi, J. Parramon, and E. 
Sánchez-Sinencio, IEEE Trans. Biomed. Circuits Syst., accepted on Nov. 12, 2012. 
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The total die area is 11.25 mm2. The ADC area is 9.23 mm2, of which the 

decimation filter occupies 6.43 mm2 (70%). The die is assembled in 100-pin CERQUAD 

packages. The chip is soldered to a PCB for the prototype testing. The PCB setup is 

shown in Fig. 5.2. 

 

Fig. 5.2. PCB setup of the neural recording system. 

 

5.2 Test Scheme 

A TI MSP430 F2618 MCU is used for the experiment. The MCU performs two 

separate tasks for the measurement of the neural recording system. The 1st task is chip 

configuration based on the SPI transfer of the 15-bit command string to the device under 
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test (DUT) as discussed in Section 2.2. The 2nd task is the data fetch from DUT to the 

MCU memory for post data processing.  The test setup is shown in Fig. 5.3. The test 

flow diagram for both Task 1 and 2 is shown in Fig. 5.4. 

 

 

Fig. 5.3. Neural recording system test setup. 

 

 

Fig. 5.4. Neural recording system test flow diagram. 
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Task 1 contains 3 SPI input signals to the DUT. They are SPI_CLK, SPI_CS and 

SPI_DIN as shown in Fig. 5.3.  SPI_CLK is the divide-by-2 clock of a 1-MHz MCU 

system clock (ACLK). The clock diagram is shown in Fig. 5.5 for generating and 

transmitting these three SPI signals. The DUT configures itself based on the control bits 

contained in SPI_DIN signal. Note that the SPI_DIN is 32-bit long. It gives redundant bit 

space for any future commend expansion. As shown in Fig. 5.5, Task 1 takes 33 

SPI_CLK cycles to finish. It takes the first 32 clock cycles for data stacking and the last 

clock cycle for transferring the 32-bit word from the shift register to chip configuration. 

 

Fig. 5.5. Clock diagram for Task 1. 

 

For Task 2, we treat the MCU as the SPI slave, with DATA_CLK as the master 

clock and ADC_DATA as the master-out-slave-in (MOSI) signal. The rising edge of 
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DATA_CLK samples ADC_DATA as soon as the clock starts. The clock diagram for 

Task 2 is shown in Fig. 5.6. The data is continuously written to the defined 8k-byte 

MCU memory space until it fills up. Then the fetching process stops and the MCU 

writes the last 8188 bytes (e.g. 2047 samples, since each sample is a 32-bit word) from 

the memory space to a text file. The 1st rising edge of DATA_CLK deterministically 

samples bit 23 (if LSB is bit 0). Fig. 5.7 shows the memory space after the data fill-up. 

Note that the nominal term “8k-byte” indicates (213-1 = 8191) bytes. The measured data 

is processed in MATLAB®, including FFT transformation, power spectrum plotting and 

SNDR calculations. 

 

 

Fig. 5.6. Clock diagram for Task 2. 
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Fig. 5.7. Memory space with data filled up. 

5.3 Measurement Results 

We added the AP mode to the front-end circuit in this neural system chip. We 

briefly report here the front-end measurement results for this mode, which has not been 

covered in [44]. The front-end measurements in FR mode are reported in Section 3.5. 

For the system, both bench-top and saline-solution measurements are done to 

demonstrate the functionality of this neural recording prototype.  

 

5.3.1 Additional Front-End Experimental Results for AP Mode 

As a part of system measurement, Fig. 5.8 shows the measured AC response of 

the front-end circuit configured in AP mode. Since the signal bypasses the BPF in AP 

mode, the front end just consists of the preamplifier with load capacitance of 3 pF.  
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Fig. 5.8. Measured AC response of the front end in AP mode. 

 

The measured front-end mid-band gain is 39.6 dB. The highpass and lowpass 

cutoff frequencies are measured at 0.8 Hz and 5.2 kHz, respectively. The input-referred 

noise was measured as the total output noise divided by the mid-band gain. 

Fig. 5.9 plots the measured input-referred noise spectral density of the front end 

in AP mode. The measured spot noise at 1 kHz is 60 nV/√Hz. The 1/ f noise corner 

occurs near 100 Hz. The total input-referred noise of 5.86 μVrms was obtained by 

integrating the area under the measured curve from 0.5 Hz–30 kHz. The resulting noise 

efficiency factor (NEF) is 2.93. The NEF is defined as the normalization of the total 

input-referred noise of an OTA to that of a single-BJT amplifier with the same 

bandwidth and supply current [65]. The total harmonic distortion (THD) is 1% with a 
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maximum 10 mVpp input signal. The front end consumes a total power of 2.4 μW in AP 

mode. The front-end performance in FR mode is presented in [44]. 

 

Fig. 5.9. Measured input-referred voltage noise spectrum of the front end in AP mode. 

 
5.3.2 Neural Recording System Comparison with State-of-the-Art Designs 

Table 5.1 summarizes the performance of system (front-end circuit and ADC) for 

both modes. It also compares this work to some reported neural recording systems [70], 

[71] in literature. The front-end performance is comparable to others. Our ADC design 

achieves superior resolution, but with larger area and higher power consumption due to 

different process nodes and ADC architectures from others. In comparison to [70] and 

[71], the uniqueness of this work is that it achieves much higher-order signal filtering 

and much higher-resolution of A-D conversion for FR epileptic seizure detection. 
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Table 5.1. Measured performance summary of the neural recording system and 
comparison with literature 

 
  [70] [71] This work [92] 

Voltage 
supply  

3 V 1.2 V 2.8 V 

Process 0.35 μm CMOS 0.13 μm CMOS 0.6 μm CMOS 

Applications Epileptic Seizure Neural Spike Neural Spike Epileptic Seizure 

      Front End 
Power 

consumption 
4.25 μA /12.75 

μW 
1.6 μA /1.92 μW 0.85 μA /2.4 μW 1.6 μA /4.5 μW 

Gain 73 dB 47.5 dB 39.6 dB 38.5 dB 

Bandwidth 10 Hz - 5 kHz 167 Hz - 6.9 kHz 0.8 Hz - 5.2 kHz 250 - 486 Hz 
Total input 

referred 
noise 

6.08 μVrms 3.8 μVrms 5.86 μVrms 2.48 μVrms 

NEF 5.55 2.16 2.93 7.6 

Max. signal N/A 
3.1 mVpp (THD 

1%) 
10 mVpp (THD 

1%) 
3.4 mVpp (THD 

1%) 

CMRR N/A 83 dB 
> 66 dB (below 

5.2 kHz) 
> 79 dB (250 - 

500 Hz) 

PSRR N/A N/A 
> 80 dB (below 

5.2 kHz) 
> 68 dB (250 - 

500 Hz) 
Area/channel 0.02 mm2 0.08 mm2 0.13 mm2 0.45 mm2 

          ADC 
Architechture SAR SAR Sigma-delta Sigma-delta 

Dynamic 
range 

N/A N/A 77 dB 78 dB 

Peak SNR N/A N/A 75.9 dB 76.2 dB 

Peak SNDR N/A N/A 67 dB 73.2 dB 

ENOB 6.0 bits 7.62 bits 13 bits 13 bits 
Sampling 
frequency 

111 kHz 90 kHz 2 MHz 333 kHz 

Bandwidth 55.5 kHz 45 kHz 5 kHz 832 Hz 
Analog 
power 

N/A N/A 756 µW 252 µW 

Digital 
power 

N/A N/A 2 mW 336 µW 

Total  power 2.77 µW 1.8 µW 2.75 mW 588 µW 
Area 0.211 mm2 0.08 mm2 9.23 mm2 
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This design can greatly benefit from technology scaling. With advanced small-

size and multi-metal-layer processes, both silicon and routing areas can be drastically 

reduced. For example, by switching from 0.6-μm to 0.18-μm CMOS process, the same 

decimation filter design can save a factor of 10 times in area, which is approximately the 

square of feature-size reduction. The power consumption of decimation filter can be 

reduced by around 100 times, since Pdigi CV2, where C is the node capacitance scaled 

by 10 times and V is the supply voltage scaled by 3.3 times. 

As mentioned in Chapter II, for the seizure detection, the ADC runs in a "one-

shot" mode. It means, whenever the front end senses a pre-ictal seizure burst, the ADC is 

turned on briefly (up to about 20 seconds before the focal seizure spreads to other brain 

areas [26]). In future development, the control of "one-shot" mode can be realized by 

adding an analog FR-burst detector with adaptive threshold [30] in the front end. The 

micropower front-end circuit takes care of the long-term monitoring, thus the ADC can 

be deactivated during most of the time. This low-duty-cycled ADC power consumption 

is much lower than the stated value above. Besides, the digital power (a dominant power 

source in this design) can be significantly reduced by transitioning to smaller feature-

size process in future implementation. This prototype IC in 0.6-μm CMOS is only a 

proof-of-concept. 

 

5.3.3 System Bench-top Measurement Results 

A 400-Hz sinusoidal signal with 400 µV amplitude was injected to test the 

system. After the 38.5-dB front-end gain (in FR mode), the output tone should be at 
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-21.5 dB with respect to FSR. Fig. 5.10 shows the output spectrum. The measured tone 

is -21.4 dB with SNDR of 55.2 dB. Compared to the ADC SNDR plot for FR mode 

(shown in Fig. 4.16), adding the front end only degrades the SNDR by less than 1 dB. 

 

 
Fig. 5.10. Measured output spectrum of the system (with front end driving ADC). 

 

5.3.4 Saline-Solution Experiments 

To demonstrate the capability of seizure detection for this system, a piece of 

synthetic IEEG signal is generated based on the seizure data obtained from the public 

dataset by FHSLib [93]. The selected data was recorded differentially between left 

temporal lobe mesial depth (LTMD) electrode 1 and 2 from a patient. The signal shown 

in Fig. 5.11 demonstrates the IEEG signal that has undergone high-pass filtering and 

represents the FR oscillations for oncoming seizures. The electrographic seizure onset 



 

102 
 

time is also indicated in the figure. Fig. 5.11 shows the input signal to the neural system 

for testing purpose.  

 

 

Fig. 5.11. Emulated human left temporal seizure signal. 

 

Fig. 5.12 displays the saline-solution test setup. The artificial IEEG signal was 

fed into a sterilized saline solution with an 8-contact lead (Boston Scientific 

Neuromodulation, Model SC2108 Linear) through an Agilent 33250A arbitrary 

waveform generator. This ictal signal was injected into the saline solution through 

contact 1 of the lead. Contact 3 collected the signal. The neural front-end circuit 

suppressed interferers and amplified the emulated FR signal. The ADC digitized it. Fig. 

5.13 shows the spectrum of the recorded electrographic seizure signal. The output signal 

SNDR is around 36.4 dB, which is mainly limited by the input SNDR (5.4 dB). The 
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SNDR improvement from input to output is due to the front-end bandpass filtering. The 

experimental result demonstrates the system’s capability of recording FR signals at 

electrographic seizure onset time. 

 

 

Fig. 5.12. Saline-solution test setup. 

 

 

Fig. 5.13. In-vitro recording of emulated ictal seizure event. 



 

104 
 

5.3.5 Closed-Loop System Comparison 

For the completeness of discussion, we have a comparison of the proposed 

system to state-of-the-art closed-loop seizure DBS systems. Up to date, the main stay is 

8-channel sensing-stimulation channels [20], [21]. Simultaneous sensing and stimulation 

capabilities are already achieved in literature [20], [21], [70]. Medtronic Inc. [20] 

presented a closed-loop DBS device for seizure control. Multiple IC modules (e.g., 

sensing circuitry, accelerometer and classifier) are integrated on PCB board with the 

existing stimulator. Several techniques are combined from front end to back end to 

mitigate the stimulation artifacts and realize the concurrent sensing while stimulating. 

Symmetrical electrode configuration is applied to minimize stimulation propagation into 

the signal chain. Passive common-mode filtering is used at the front-end input. 

Heterodyning-based BPF is embedded in the neural amplifier to attenuate stimulation 

interferences. On the back-end signal processor, algorithmic methods are used to further 

separate sensing signal from stimulation interference. A fully-integrated SOC solution 

would be more attractive and low cost for such a system. 

Chen et. al. [21] recently reported the first complete silicon solution for closed-

loop seizure-controlling DBS system. It achieves low-cost and low-power operation by 

integrating all recording, classification, and stimulation modules onto one single chip. 

However, it compromises the artifact-rejection performance. The sensing channels are 

completely saturated after stimulation and take ~1.5 seconds to recover back. This time 

delay may severely jeopardize the treatments in certain applications. 

Shahrokhi et. al. [70] managed to extend the DBS system into 128 channels and 
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employed a reset phase to mitigate the stimulation interference issue. But the reset phase 

still causes delay in sensing channels. Our system proposes 16 sensing-stimulation 

channels with time-multiplexing operations to alleviate the artifact problem. It achieves 

a good balance between channel numbers, component integration and artifact immunity 

in comparison with other reports. Table 5.2 gives a detailed closed-loop system 

comparison. 

 

5.4 Conclusions 

Both bench-top and saline-solution test results are presented for the proposed 

neural recording system. The system demonstrated the functionality of recording 

electrographic seizure onset. The main contribution of this work lies in the low-power 

decimation filter design and the demonstration of entire system to the seizure detection 

based on FR sensing.  
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Table 5.2. Closed-loop DBS system comparison with literature 
 

  [20]*, 2012 [21], 2013 [70], 2010 This work [92] 

Voltage supply 1.8 V 2.0 V 3.0 V 2.8 V 

Process 0.8 μm CMOS 0.18 μm CMOS 0.35 μm CMOS 0.6 μm CMOS 

        Front End 

Power 
consumption/c

hannel 
2.5 μA /4.5 μW 3.3 μA /6.625 μW 

4.25 μA /12.75 
μW 

1.6 μA /4.5 μW 

Gain 46 - 64 dB 40.6 - 60.9 dB 73 dB 38.5 dB 

Bandwidth 1 - 20 Hz 0.1 Hz - 7 kHz 10 Hz - 5 kHz 250 - 486 Hz 

Input referred 
noise 

1.5 μVrms 5.23 μVrms 6.08 μVrms 2.48 μVrms 

NEF 29 1.77 5.55 7.6 

Area/channel 5 mm2 0.22 mm2 0.02 mm2 0.45 mm2 

             ADC 

Architechture N/A DMSAR SAR Sigma-delta 

Dynamic range N/A 54 dB N/A 78 dB 

Peak SNR N/A N/A N/A 76.2 dB 

Peak SNDR N/A N/A N/A 73.2 dB 

ENOB N/A 9 bits 6.0 bits 13 bits 

Sampling 
frequency 

N/A 62.5 kHz/channel 111 kHz 333 kHz 

Bandwidth N/A 7 kHz 55.5 kHz 832 Hz 

Analog power N/A N/A N/A 252 µW 

Digital power N/A N/A N/A 336 µW 

Total  power N/A 5.8 µW 2.77 µW 588 µW 

Area N/A 0.495 mm2 0.211 mm2 9.23 mm2 

           System 

# of channels 8 8 128 16 

Artifact 
mitigation 

Filtering+algorit
hm 

None Reset Time multiplexing 

* Front-end results for [20] are obtained from [19]; ADC is off-chip component in [19] and [20]. 
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CHAPTER VI 

CONCLUSIONS 

 

6.1 Summary 

This research discusses the architecture and challenges for epileptic seizure 

detection for closed-loop application. The work mainly involves two essential building 

blocks, the neural front-end circuit and the ADC. The methodological design and 

hardware implementation are presented. The saline-solution experiment is conducted to 

study the feasibility on biomedical applications for both building blocks. 

The front end requires low-power (sub-microwatt) and low-noise (microvolt) 

operation for chronic monitoring of patient’s brain wave signals. A combined technique 

of input-pair splitting and output-branch scaling is proposed to mitigate the noise-power 

tradeoff in preamplifier design. The designed folded-cascode amplifier achieves one of 

the best noise efficiency performances among reported neural amplifiers.  

High-order filtering is required to fulfill modern clinical needs for automated 

epileptic seizure detection. It is highly desired to have analog high-order filter for neural 

signal pre-conditioning in low-power front-end design. A 6th-order Gm-C bandpass filter 

with follow-the-leader feedback elliptic architecture is proposed to achieve a balance 

between filter sensitivity and tunability. The active source degeneration is added to the 

Gm cell to achieve good linearity and low-frequency operation for neural applications. 

The proposed filter achieves one of the best power/pole efficiencies reported to date.  
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A bandwidth and power scalable neural ADC is proposed. Second-order single-

loop single-bit sigma-delta topology is chosen to achieve enough resolution for seizure 

recording with low power consumption and good stability for the analog modulator. The 

techniques of sinc-filter direct implementation and IIR-filter data pipelining are 

combined to make the decimation filter competitive to the state-of-the-arts in terms of 

power efficiency. The SPI interface allows for the possibility of integrating the system 

with any future microcontroller or DSP blocks through standard buses for implementing 

on-chip seizure-detection algorithms.  

The performance of all proposed building blocks is verified through test chips 

fabricated in XFab 0.6-μm CMOS process. Besides, a complete signal-sensing channel is 

implemented and tested. Both bench-top and saline-solution test results demonstrate the 

system’s capability of recording FR signals for seizure detection. The prototype circuit 

shows the feasibility of extending itself to a future closed-loop DBS system for the 

treatment of intractable epilepsy. 

 

6.2 Future Work 

For the extension of this PhD work, it would be interesting to complete the 

closed-loop seizure stimulation system. To accomplish this, there are more challenges 

besides the recording-channel development (see Section 1.3). The future work could 

include but not limit to 1) an ultra-low-power analog seizure warning circuit which can 

turn on/off power-hungry components based on the sensing of imminent FR energy 

bursts; 2)  a DSP algorithm for reliable FR feature extraction and classification, which is 



 

109 
 

hardware and power efficient; 3) the immunity of front-end circuit to stimulation-

induced artifacts. 
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