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ABSTRACT 

Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Chloride 

Salts. (May 2013)  

 

Austin Alan Baty 

Department of Physics and Astronomy 

Department of Mathematics 

Texas A&M University 

 

Research Advisor: Professor Peter McIntyre 

Department of Physics and Astronomy 

 

 

The Accelerator Research Laboratory at Texas A&M is proposing a design for accelerator-driven 

subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in 

used nuclear fuel.  The transuranics (TRU) are the most enduring hazard of nuclear power.  TRU 

contain high radiotoxicity and have half-lives of a thousand to a million years.  The ADSMS 

core is fueled by a homogeneous chloride-based molten salt mixture containing TRUCl3 and 

NaCl.  Certain thermodynamic properties are critical to modeling both the neutronics and heat 

transfer of an ADSMS system. There is a lack of experimental data on the density, heat capacity, 

electrical and thermal conductivities, and viscosity of TRUCl3 salt systems.  Molecular dynamics 

simulations using a polarizable ion model (PIM) are employed to determine the density and heat 

capacity of these melts as a function of temperature.  Green-Kubo methods are implemented to 

calculate the electrical conductivity, thermal conductivity, and viscosity of the salt using the 

outputs of the simulations.  Results for pure molten salt systems are compared to experimental 

data when possible to validate the potentials used.  Here I discuss chloride salt systems of 

interest, their calculated properties, and possible sources of error for our simulations. 
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NOMENCLATURE 

 

ADSMS accelerator-driven subcritical fission in molten salt 

TRU transuranics 

PIM polarizable ion model 

UNF used nuclear fuel 

MS molten salt 

MeV Megaelectronvolts 

keff effective neutron multiplication factor 

λ thermal conductivity 

σ electrical conductivity 

  viscosity 

MD molecular dynamics 

RDF radial distribution function 

NVT canonical ensemble 

NPT isobaric-isothermal ensemble 

     radial distribution function 

       partial radial distribution function 

n number density 

N number of ions in a sample 

V volume 

   density 
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m mass 

Cv heat capacity at constant volume 

U total internal energy 

T temperature 

Cp heat capacity at constant pressure 

H enthalpy 

cp specific heat capacity at constant pressure 

R gas constant (8.3144 J K
-1

 mol
-1

) 

c concentration 

D self-diffusion coefficient  

ACF autocorrelation function 

    average quantity of A 

kB Boltzmann constant (1.3807x10
-23

 J K
-1

) 

je microscopic energy current 

jc microscopic charge current 

σxy shear component of stress tensor 

V(r) potential energy 

Lab Green-Kubo function of the correlation of a and b 

       -    equation used to fit density temperature dependence 

           
  

  
   equation used to fit electrical conductivity temperature dependence 

       -      equation used to fit thermal conductivity temperature dependence 

           
  

  
   equation used to fit viscosity temperature dependence 
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CHAPTER I 

INTRODUCTION 

 

As of April 2012, nuclear power is responsible for producing 13.5% of the world’s electricity.  

434 commercial reactors operate in 31 different countries, and an additional 150 reactors are 

either being planned or constructed.  In 16 of these 31 countries, nuclear power accounts for 20% 

or more of national electricity production
1
.  However, the benefits of nuclear power do come at a 

price. 

 

The first major problem with nuclear power is that the fuel cycle is not closed.  Used nuclear fuel 

(UNF) still contains fissile material, isotopes which in theory can still be burned to produce 

power.  Currently this material is wasted because UNF also includes toxic radioactive 

transuranics (TRU), which have half-lives of hundreds of thousands of years
2
.  These hazardous 

isotopes are problematic when attempting to recycle UNF back into usable fissile material.  It is 

possible to remove TRU from UNF, allowing the recycling of fertile materials such as 
235

U and 

238
U back into useable nuclear fuel

3,4
.  However these processes have not been proven on a large 

scale, so the nuclear fuel cycle remains open until there is an economic way of returning the 

fissile inventory locked in UNF to conventional or Gen IV reactors.   

 

Closing the fuel cycle would not solve the radiotoxic waste issue alone.  These toxic materials 

must be sequestered indefinitely in holding ponds on the reactor site in order to prevent an 

environmental catastrophe or nuclear proliferation.  According to the 2012 Blue Ribbon 
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Commission on America’s Nuclear Future, the United States alone currently stores almost 

67,000 metric tons and accumulates an additional 2,000 metric tons of used nuclear fuel (UNF) 

every year
5
.  UNF accumulation is also a problem in France, where 74% of the national electrical 

power comes from nuclear power
1
.  A solution to the waste problem would eliminate the largest 

obstacle currently facing the nuclear industry, and make the production of nuclear power a much 

more environmentally friendly and sustainable enterprise.   

 

To address this imposing issue, the Accelerator Research Lab at Texas A&M is proposing a 

design for an accelerator-driven subcritical fission in molten salt (ADSMS) system, a device 

which utilizes new advances in accelerator technology, neutron spallation targetry, molten salt 

(MS) chemistry, and materials science engineering.  This system is designed to destroy the 

radioactive waste locked in UNF at the rate at which they are created in a conventional reactor.  

An illustration of the proposed system can be seen in Figure 1.   

 

The system operates by injecting a beam of protons into an isochronous flux-coupled stack of 

four cyclotrons, which are able to accelerate the protons to an energy of 800 MeV.  Four beams 

of protons are routed from this accelerator and each beam is split into three smaller beams before 

being routed to a bank of twelve MS cores.  Inside each of these cores is a MS mixture 

containing dissolved TRU
4
.  The proton beams enter these vessels through a beam window and 

collide with heavy nuclei, shattering them in a process known as spallation.  Spallation serves 

two functions: it destroys heavy nuclei, including TRU, and also produces copious amounts of 

fast neutrons, coupling the energy from the proton accelerator to the core’s fission processes.  

Fast neutrons having kinetic energy greater than 1 MeV are desired because they fission TRU ten 
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Figure 1: A representation of the ADSMS system.  On the top right, a small cyclotron injects four proton 

beams into a larger flux-coupled cyclotron.  The four resulting beams are then split and injected into twelve 

molten salt cores containing TRU. 

 

 

times more frequently than they create it, leading to a considerable reduction in TRU inventory.  

This is illustrated by the neutron fission and capture cross sections illustrated in Figure 2.  When 

no spallation neutrons are present, each core will have a subcritical effective neutron 

multiplication factor, keff, of 0.96.  This means that for every 100 neutrons lost by the core, only 

96 are produced.  The proton beam can be controlled so that the extra spallation neutrons 

injected into the MS core allow a sustained burning of TRU to occur.  If a problem occurs the 

accelerator producing the proton beams can be turned off.  This removes the extra source of 

spallation neutrons, causing the core’s nuclear processes to shrink away without any danger of 

meltdown.   

 

The use of MS provides a number of safety improvements over conventional reactors.  MS has a 
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Figure 2:  Fission and capture cross sections versus neutron kinetic energy for various transuranics.  Neutron 

capture breeds TRU and is undesireable in this application, whereas fission destroys TRU.
6
 

 

 

very low vapor pressure at high temperatures, allowing a MS core to operate at standard 

atmospheric pressure.  MS is also chemically inert, drastically decreasing safety concerns.  

Furthermore, MS exhibits negative thermal reactivity feedback, i.e. keff decreases when the 

temperature increases.  This is due to MS having a relatively large coefficient of thermal 

expansion
7,8

.  This feedback increases the passive stability of the reactor’s keff value and helps 

prevent a meltdown.   

 

Lastly, electric power can be produced from this system by harnessing the thermal energy from 

the cores to run generators.  Therefore, this system has many advantages over conventional 

reactors: it is a safe subcritical system, it can run on UNF, taking advantage of the fissile material 

remaining in UNF, and it destroys many long-lived waste isotopes
9
.  

 

This device can also be reconfigured to be a TRU isobreeder instead of a burner, enabling it to 

convert 
238

U into 
239

Pu at the same rate that 
239

Pu is burned.  This would remove the need to 

c
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periodically replenish each core’s TRU inventory to sustain power production.  The core would 

be self-sustaining, consuming fertile 
238

U without creating new TRU.  The isobreeder is therefore 

an option for closing the nuclear fuel cycle.  

 

Motivation 

In order to model such a device, it is of vital importance that the properties of the MS fuel are 

well understood.  For example, a higher fuel density correlates to more mass being present in the 

volume permeated by the proton beam, increasing the efficiency of the spallation process.  By 

similar logic a larger density also raises the neutron flux, and thus the keff of the core.  It follows 

that a complete understanding of the temperature dependence of the fuel density will make 

controlling the core criticality possible.  The heat capacity of the MS relates a system’s energy 

and its temperature.  In our system energy is input by a proton beam of fluctuating power, 

leading to fluctuations in the core’s MS temperature which in turn causes changes in the core’s 

thermal energy output based on the fuel MS’s heat capacity.  A melt’s thermal conductivity, or λ,  

indicates how rapidly it transfers heat across a temperature gradient.  This property and the heat 

 

 

Figure 3: Schematic diagram of an ADSMS counterflow heat exchanger.  Hot fuel salt runs through a Ni pipe 

immersed in a circulating bath of LiCl-KCl eutectic salt.  The two salts flow in the opposite directions to 

optimize heat transfer. 
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capacity are important attributes when constructing and evaluating the efficiency of a core’s 

cooling systems
10

.        

 

In order to illustrate this, simulations of a proposed ADSMS counterflow heat exchanger were 

performed in COMSOL Multiphysics
11

.  A simple diagram depicting the basic design of this heat 

exchange can be seen in Figure 3.  Heat is transferred from the fuel salt through a nickel 

intermediary into a colder secondary MS.  The simulation was repeated using slightly increased 

values for the fuel’s heat capacity and  λ.  These results have been plotted in Figure 4.  A larger 

fuel salt heat capacity increases the temperature in the heat exchanger because more energy 

transfer is required in order to lower the salt temperature by the same exchanger more effective 

at cooling the fuel salt.  Despite the different behaviors in MS temperature, both of these changes  

 

 

Figure 4: COMSOL simulations of fuel salt temperature versus heat exchanger length.  The thermal 

properties of the fuel salt are each increased by 10% to demonstrate their effect on the heat exchanger. 
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increased the efficiency of the heat exchanger by about 3%.  The property of electrical 

conductivity, σ, is similar to λ in that it dictates how much current will flow in a MS due to an 

electric potential gradient.  Thermal and electrical conductivities are physically related in this 

system, since the movements of ions cause electrical current as well as heat transfer.  As a 

consequence the two conductivities can usually be calculated simultaneously.  (Electrical 

conductivities are an important property in fuel cell technologies.)  Finally, the system’s 

viscosity,  , quantifies the relationship between the speed of MS flow and the shear acting on the 

salt due to friction from pipes.  Viscosity usually has strong temperature dependence, and the 

pumps and pipes in each core must be chosen with the salt’s viscosity in mind to ensure adequate 

fluid circulation. 

 

The computational tool used in this study is a Molecular Dynamics (MD) program.  This code 

takes an input data file that characterizes a sample of MS by specifying the type, position, and 

velocity of a few hundred ions.  A visualization of the contents of this input file can be seen in 

Figure 5.  Additional input files define other parameters such as the temperature, pressure, and 

time-step, which affect the computational experiment.  After the inputs are initialized, the 

program calculates the force on each ion, allowing it to solve the equation of motion at each time 

step in the simulation
12

.   In order to calculate these forces, the program uses a polarizable ion 

model (PIM) employing an ionic interaction potential which is able to account for short range 

electrostatic, dispersion, and particle repulsion forces, as well as ion polarizations due to long 

range interactions
13

.  Use of this model is crucial to obtaining physically permissible results, as 

molten salts are highly polarized.  The equations of motion are then used to acquire the volume, 

stress tensor, energy, dispersion factors, and dipoles of the ionic assembly.  With this information 
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Figure 5: Visualization of a typical molecular dynamics cell.  The disordered and closely packed Cl
-
 (teal), 

Na
+
 (blue), U

3+
 (pink), and Pu

3+
 (brown) ions indicate that the system is in liquid phase. 

 

 

statistical mechanics and Green-Kubo relations can be used to compute the properties of large 

collections of ions, including their density, heat capacity and transport properties.   In this way a 

library of melt properties based on melt composition can be constructed.  

 

We begin with simulations of well-studied pure compounds, such as sodium chloride, in order to 

verify that they behave in the correct physical manner.  To do this we calculate the radial 

distribution functions (RDF) of the liquid.  The simulated MS has the correct atomic structure if 

the RDFs match data taken by X-Ray diffraction experiments.  This means the results of our 

simulations are firmly based in experiment
12

, and we then move on to simulating mixtures of 

these compounds.  We are specifically interested in mixtures of the ions Pu
3+, 

U
3+

, La
3+

,Na
+
, Li

+
, 

K
+
, and Cl

-
 because of their potential use in an ADSMS system. 
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CHAPTER II 

THERMODYNAMICS AND STATISTICAL MECHANICS 

 

There is over 2.5 metric tons of MS contained within one ADSMS core, corresponding to over 

10
28

 ions - a number 10,000 times larger than the estimated number of stars in the observable 

universe.  This presents us with a dilemma; we wish to predict the thermodynamic behavior of 

our core, but it contains an intractably complex system of MS.  Complicating the issue is the fact 

that there is little experimental data on the fuel salt composition.  We can alleviate these 

problems by shrinking our view down to the microscopic scale and looking at only a few 

hundred ions.  Firstly this decreases the computational time required to model the system.  The 

time required to calculate a MD model is proportional of the number of ions squared, so reducing 

from 10
28

 ions to 10
3
 ions changes the required time from eons to a few hours or days.  Secondly, 

there is more data concerning how molten salts interact at a microscopic level, allowing us to 

base our model on real physical parameters. 

 

Here we develop the tools required to link our small microscopic MD simulations to the 

properties measured in macroscopic samples of MS.  The concept of a thermodynamic ensemble 

allows us to relate two macroscopically identical but microscopically different systems.  Radial 

distribution functions can be used to relate our microscopic model to experimental data on the 

atomic structure of MS samples.  Finally, we describe the macroscopic properties we are 

interested in modeling, and develop Green-Kubo relations allowing us to calculate them from 

information calculated in our microscopic models. 
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Thermodynamic ensembles 

An ensemble is a collection of systems which share certain macroscopic properties regardless of 

their microscopic state.  As an example, consider two samples containing a gram of NaCl salt 

held at a constant temperature and volume.  Both of these samples are members of the same 

ensemble, even though the individual positions of each ion in the sample may differ greatly.  

Because of this we expect to measure the same values for all macroscopic properties in these 

samples and any other one gram samples of NaCl held at the specified volume and temperature.  

The notion of an ensemble is therefore an important tool needed for generalizing results 

calculated from one specific microscopic configuration of MS.  There are three thermodynamic 

ensembles of particular importance for working with MS: the microcanonical, canonical, and 

isobaric-isothermal ensembles. 

 

In conventional MD simulations the system is completely isolated, so its total energy is a 

constant of motion
12

.  This makes the microcanonical, or NVE, the ensemble around which MD 

is built.  Systems in this ensemble contain the same number of particles, have the same volume, 

and have a specified total energy.  Unfortunately the NVE ensemble does not recreate a 

laboratory setting; a real system cannot be completely energetically isolated from its 

surroundings to prevent energy transfer.   

 

If we postulate that the system is able to exchange energy with a large external heat sink, then 

the energy of the system may fluctuate but its temperature will not.  This creates the canonical, 

or NVT, ensemble which has a constant volume, temperature, and number of particles.  This 

ensemble is particularly useful because it allows for the calculation of the system’s transport 
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properties.  While the canonical ensemble is mathematically useful, it still does not reflect the 

conditions used in most modern experiments.   

 

The isobaric-isothermal, or NPT, ensemble is usually the most applicable ensemble for 

experimenters.  Here the system has a constant number of particles and is kept at constant 

pressure and temperature.  Temperature and pressure can be easily monitored and controlled by 

simple thermometers, pressure gauges and heating elements.  Another advantage of the NPT 

ensemble is that it does not constrain the volume of the system, making it more useful for 

calculating the temperature dependence of a MS’s density. 

 

One of the main arguments for using MSs in a nuclear system has to do with their low vapor 

pressures.  This allows the salt to be heated to extremely high temperatures without increasing 

the pressure inside the core of the system.  As a consequence, modeling a system using the 

isobaric-isothermal ensemble is very close to reality for this application, making it our preferred 

ensemble.  However, some of the methods developed in this paper concerning transport 

properties employ the canonical ensemble.  If this ensemble is used, the constrained volume is 

taken to be the equilibrium value from a previous isobaric-isothermal calculation.  

 

Radial distribution functions 

Some of the simulations done in this study require as many as 100 input parameters to be 

specified before the calculation begins.  It is therefore possible to have a bad combination of 

inputs cause the model to converge to a solution not reflecting a realistic system.  An example 

of this can be seen in Figure 6.  The left group of ions has a structure that is too diffuse for a real 
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Figure 6: Two models of the same MS having different microscopic structure.  The left group is too diffuse to 

represent a real sample of MS, and its RDF would not correlate with experiment.  The right group is a more 

realistic model. 

 

MS, which should look like the tightly packed group on the right.  It is of primary importance to 

prove that a simulated MS system has the same microscopic structure as a real sample of MS.  

This will show that the salt is behaving realistically at the microscopic level, which in turn 

indicates that the macroscopic properties that result from this microscopic behavior are also 

realistic.   

 

In order to quantify the microscopic structure of the MS, we calculate its RDF,     .  This 

function is defined as 

      
    

 
  (1) 

where   is the average number density, N/V, of the salt, and      is the local number density of 

the salt at a distance r away from some reference particle.  The RDF describes as MS’s local 

configuration by representing where its constituent ions are in relation to each other.  For an  
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Figure 7: A typical molten salt RDF.  The large first peak indicates large interactions between neighboring 

ions.  As the distance between ions increases, the strength of interaction decreases and g(r) converges towards 

unity. 

 

 

ideal gas that has no intermolecular forces,       . Deviations from unity are large in ionic 

liquids because of the strong dispersion and polarization forces present.  A typical molten salt 

RDF is shown in Figure 7.  The RDFs of many molten salts have been measured experimentally 

using neutron and X-ray diffraction techniques, allowing us to benchmark how well our 

simulations reproduce molten salt systems.  It should be noted that this technique is not new, and 

has been used in many previous MD studies
14,15

. 

 

Density 

The density,  , of a system is defined as the ratio of its mass to volume, 

   
 

 
  (2) 
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This makes a MS’s density one of the easiest properties to calculate.  In general a system’s 

volume, and therefore its density, is a function of the temperature.  For MS an increase in 

temperature leads to a linear decline in density, meaning a simple linear regression is adequate 

for modeling the temperature dependence of this property.  The density of a MS is of critical 

importance when calculating the neutronic behavior of a nuclear system.  Spallation neutron 

sources, such as SNS at Oakridge National Laboratory, use very dense heavy metal spallation 

targets to produce several neutrons from a single proton.  Using the same reasoning, a high salt 

density increases the effectiveness of the salt as a spallation target for incident protons, leading to 

significant neutron production.  Thus, if a salt is too dense the system can become more prone to 

criticality.  However, if a salt is not dense enough, the mass of fuel that can be fit into a given 

space will be too small to sustain long-term operation of the device.  Finally, the thermal 

dependence of a salt’s density must be known in order to determine the device’s thermal 

reactivity feedback coefficient.  Essentially, an increase in temperature of the system will 

increase its criticality.  However, an increase in temperature also leads to a decrease in MS 

density, which lowers criticality.   Because of this, a larger temperature dependence leads to 

greater neutronic stability in the system, increasing safety. 

 

Heat capacities 

A system’s heat capacity is a measure of how much energy is required to change its 

temperature.  Mathematically for a system at constant volume, we write the heat capacity 

at constant volume as 

     
  

  
 

 
 (3) 
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where U is the system’s total internal energy.  As stated earlier experiments are rarely carried out 

at constant volume, as a constant pressure environment is easier to obtain.  It is therefore more 

convenient to define the heat capacity at constant pressure by adding in a PV term to account for 

work done during volumetric expansion
16

. 

     
       

  
 
 

  
  

  
 
 
 (4) 

Here we have introduced the symbol H to represent the U+PV term, which is commonly called 

the system’s enthalpy.  For MS Cp is usually very close to Cv, and has very little temperature 

dependence. 

 

It should be noted that the heat capacity of a system depends on its size; a large sample of MS 

will take more energy to heat by the same amount as a small one.  In order to resolve this, we 

divide the heat capacity by the system’s total mass in order to form a parameter that only 

depends on the type of MS in the system.  This molten salt property is referred to as specific heat 

capacity and is denoted with a lowercase c, 

    
  

 
  (5) 

In this study, both the temperature dependence of a MS’s density and its cp value are calculated 

using the NPT ensemble. 

 

Calculation of a nuclear core’s heat capacity is required in order to appropriately design heat 

transfer systems for the device.  As seen earlier, a larger fuel salt heat capacity will decrease the 

ability of the core’s heat exchangers to cool the system.  Additionally, a larger heat capacity will 

cause the core temperature to be more stable when subject to fluctuations in power due to the 
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incident proton beam.  Finally, the heat capacity is an important factor used for evaluating many 

emergency scenarios.  For example, if the core’s heat exchangers failed, the rate of the device’s 

temperature increase would be a function of its heat capacity.  

 

Transport properties 

The set of parameters describing the dynamics of mass, charge, and energy flow within a 

material are collectively referred to as transport properties.  In this study we examine three major 

transport properties: the thermal conductivity, electrical conductivity, and shear viscosity. 

 

The thermal conductivity,  , of a substance is a measure of how much heat will flow in a 

material due to a temperature difference.  It is the proportionality constant in Fourier’s law of 

heat conduction
16

: 

           (6) 

Here     is the heat flux density, which accounts for how much energy flows through a surface in 

the system.  In MS systems λ itself has a weak temperature dependence. 

 

Knowledge of  a MS’s λ is of vital importance when designing coolant systems.  We have shown 

that a larger λ increases the cooling effect of heat exchangers, but a low λ can cause cooling 

systems or energy inputs to engender large temperature gradients within the MS.  These 

gradients can lead to nonuniformities in the criticality and power production in the core.  In 

general, high thermal conductivities are desirable for this application, as they help keep the core 

temperature more isotropic.   
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Electrical conductivity, σ, is an analogue of λ describing how electric current responds to electric 

fields.  It is found in Ohm’s Law relating the current density,   , to electric potential, ϕ. 

         (7) 

In general, λ and σ are intimately related in MS systems, since the ions transferring heat are also 

the charges producing current in the system.  This means that these quantities can be calculated 

together in certain cases.   

 

Finally, the shear viscosity,  , of a system relates stress then strain rate experienced by a material 

due to forces between its constituent particles.   If τ is the stress experienced by a system, then a 

shear rate,      , will occur according to the relation
16

, 

    
  

  
  (8) 

Liquids with higher viscosities are thicker, flowing less easily and requiring more force to pump 

through pipes.  The viscosity of a liquid usually has notable temperature dependence, given in 

the Arrhenius model as 

         
  

  
   (9) 

Here    and E are constants that can be determined empirically, and R is the ideal gas constant.  

We mention that σ also has a temperature dependence of this form, but it is usually much weaker 

and has a negative E value. 

 

We are interested in MS viscosity because it dictates what types of pipes and pumps must be 

used when circulating the fuel salt through the core and its heat exchangers.  If the core’s pumps 

are underpowered for a thick MS, the heat exchangers will not receive enough fluid flow keep 
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the entire system cooled.  Additionally, the spallation window is cooled by a flow of incident 

molten salt, and may crack if the salt flow is insufficient.  Therefore, the pumps must be 

powerful enough to supply adequate circulation to the core for the range of viscosities 

determined by the temperature dependence of the molten salt. 

 

Green-Kubo relations 

Molecular dynamics simulations do not readily calculate the transport properties of MS.  Instead, 

they output the positions and velocities of individual ions in the melt.  In order to calculate the 

transport properties from this information, we must use so-called Green-Kubo relations.  To 

develop these relations, we will consider the diffusion of particles in a one-component ionic 

liquid.  This liquid will have a concentration profile given by c(r,t) and a particle flux J.  

Diffusion in this liquid is described by Fick’s first law, and has a corresponding transport 

property, the self-diffusion coefficient D. 

        (10) 

Furthermore, the number of particles is conserved, so we can also write 

 
  

  
       (11) 

Combining these two equations yields the differential equation
17

 

 
  

  
       (12) 

If we assume c is normalized to unity, we can multiply both sides by r
2
 and integrate over three 

dimensional space, yielding 

 
 

  
            

        

  
     (13) 
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Here we adopt the convention that triangle brackets refer to the average of whatever quantity 

they contain.   The 6 on the right hand side is a result of integrating by parts on the Laplace 

operator acting on c.  We now note that a particle’s position is the time integral of its velocity, so 

 
        

  
 

 

  
           

 

 

 

 

  
 

  
     

 

 

                   
  

 

  (14) 

By substituting (14) into (13) and evaluating the time derivative with the first integral, we 

obtain
17

 

   
 

 
                  

 

 

  (15) 

At this point, it is convenient to redefine the time origin so that       and      - .  This can be 

done because the behavior of our system is invariant under translations in the time coordinate.  

The resulting argument of the integral,            , is known as the velocity autocorrelation 

function (ACF).  Its value starts at 3 (for 3 dimensions) and will eventually converge to zero as 

   .   When we let the upper limit of the integral go to infinity, the value of D should converge: 

   
 

 
              

 

 

  (16) 

Relations such as this one, between transport properties and integrated autocorrelation functions, 

are broadly referred to as Green-Kubo relations.  They are useful in molecular dynamics 

simulation because the autocorrelation function can readily be calculated from the output of a 

MD code. 

 

It should be noted that the equations containing the three transport properties we are interested in 

have a form close to that of (10).  Furthermore, these transport properties describe the motion of 

conserved quantities, so (11) is also fulfilled.  Not surprisingly, solutions to these equations 
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having Green-Kubo form exist.  The λ of a system can be related to its energy current, je, with 

the relation 

   
 

      
   

 

 

               (17) 

For electrical conductivity, the charge current, jc, is used to give the equation 

   
 

     
   

 

 

               (18) 

Finally, to determine the viscosity of a system the shear components, σxy, of the stress tensor are 

contained in the autocorrelation function
12,17

 

   
 

    
   

 

 

                (19) 

It should be remembered that these formula are for a one-component ionic liquid, and are 

therefore inappropriate for calculating the transport properties of more complicated MSs.  

Luckily, they can be expanded upon using the Onsager reciprocal relations in order to be 

appropriate for multi-component systems
18

.  See Appendix A for a detailed description of the 

formula used for these types of systems. 
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CHAPTER III 

MOLECULAR DYNAMICS METHODS 

 

There exist two favored methods for modeling properties of molecular systems: Molecular 

Dynamics and the Monte Carlo method.  Of these two methods, MD simulation is better for 

measuring dynamic properties because it specifically calculates the equations of motion for each 

particle in the simulation.  It is therefore natural to choose MD for calculating transport 

properties of molten salt systems.  

 

Fundamentally MD consists of three steps: initialization, force calculation, and integrating the 

equations of motion
12

.  During initialization the location of each ion in the simulation, as well as 

other parameters such as temperature, are specified.  This phase also allows the ion velocities be 

either specified by the user, or generated to fit an appropriate thermal energy distribution.  Using 

this data and a set of user-specified interaction potential parameters, the code calculates the 

potential energy, V(r), of each ion due to every other ion.  From this information the net force on 

each ion is calculated.  Finally, the code uses these forces to extrapolate the positions and 

velocities of each ion after a very small time step on the order of 1 fs.  The last two steps are then 

repeated for as long as desired in order to fully describe the equation of motion for each ion.  We 

expect a properly working code to give physically relevant solutions for any input temperature or 

ion configuration.  Therefore special attention should be paid to the interaction potential 

parameters, as they are the main determining factor as to whether the code’s output solutions are 

physically relevant. 
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Interaction potentials 

Most conventional MD codes are not suited for simulating ionic liquids because complex long-

range forces due to the ions polarizing each other are not accounted, leading to nonphysical 

results.  We therefore use a MD code developed by Madden and Wilson
19,20

 which is specifically 

calculates these polarization effects as well as repulsion, dispersion and Coulombic effects.  The 

interaction potentials in this code are divided into two types: short and long range interactions. 

 

The short range interactions include ionic repulsion due to ions not wanting to occupy the same 

space, and dispersion forces caused by ions inducing multipoles in the electric structure of their 

neighbors.  The interaction between the ith and jth ion in a system are described by a pair 

potential having Born-Mayer form
21

: 

                       
   

     
   

 

   
 
    

   
     

   
 

   
 
  (20) 

Here the first term is the repulsion term, and the last two terms describe the dispersion effects 

using dispersion damping functions
21

 

    
   

              
      

    
     

 

  
 

 

   

 (21) 

This MD code employs periodic boundary conditions to avoid errors that could arise at the 

surfaces of the MD cell.  The short range interactions are assumed to be negligible for large 

intermolecular distances, so they are only calculated for radii under half the MD cell length.  An 

illustration of this can be seen in Figure 8.  We note that the short term interactions between two 

ionic species can be completely described using six parameters:                          

  



 

 

30 

 

 

Figure 8: Periodic boundary conditions in a 2D MD cell.  The cell is tessellated to form a continuum of MS.  

Short range interactions for an ion (red) are calculated using ions (blue) under half of a cell length away.  

Long range interactions take all ions into account using Ewald summation. 

 

 

 

The long range interactions in a molten salt comprise of Coulombic interactions and ionic 

polarizations.  A complete description of these interactions is very complex because it involves 

an infinite sum over the periodic boundary conditions of the MD cell.  A method of calculating 

these interactions called Ewald summation
12

 exists and is implemented in the MD code
21

.  For 

our purposes, it suffices to say that the long range interactions between two ionic species are 

described by three parameters: b,   -   - , as well as each species’ polarizability,  . 

 

The full set of interaction potential parameters used in this study is detailed in Table 1.  All of 

these potentials with references indicated were taken from other sources that calculated the 

parameters directly using ab initio density function theory (DFT).  Therefore, these values are 

based upon first-principle calculations of the material’s electronic structure.  We have estimated 

the values for Pu
3+

 interactions to be the same as those of La
3+

 based on studies which have  
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Table 1: Interaction Potential Parameters 
  Short Range Interactions (a.u.) Long Range Interactions (a.u.) 

Ion Pair Reference a B C
6 

C
8 

b
6 

b
8 

b c+- c-+ α (1
st
 ion) α(2

nd
 ion) 

Cl--Cl-   22 1.53 100 222 745

5 

1.7 1.7 - - - 20 20 

Cl--Na+   21 1.73 67.5 37.4 167 1.7 1.7 1.76 0.70 3 20 0.89 

Cl--K+   21, 23 1.59 82.9 89.8 544 1.59 1.59 1.63 0.92 3 20 4.71 

Cl--Li+   21, 23 1.59 15.6 1.08 4.08 1.59 1.59 1.861 0 2.08 20 0 

Cl--La3+   22 1.8 450 97.2 600 1.5 1 1.258 1 1 20 10 

Cl--U3+   22 1.8 400 97.2 600 1.5 1 1.258 1 1 20 10 

Cl--Pu3+  1.8 450 97.2 600 1.5 1 1.258 1 1 20 10 

Na+-Na+   21 5 1 10 100 1.7 1.7 - - - 0.89 0.89 

Na+-La3+  5 1 12.0 54.8 1.5 1 - - - 0.89 10 

Na+-U3+  5 1 12.0 54.8 1.5 1 - - - 0.89 10 

Na+-Pu3+  5 1 12.0 54.8 1.5 1 - - - 0.89 10 

La3+-La3+   22 3 15 47.7 100 1.5 1 - - - 10 10 

La3+-Pu3+  3 15 47.7 100 1.5 1 - - - 10 10 

U3+-U3+  22 3 15 47.7 100 1.5 1 - - - 10 10 

U3+-Pu3+  3 15 47.7 100 1.5 1 - - - 10 10 

Pu3+-Pu3+  3 15 47.7 100 1.5 1 - - - 10 10 

K+-K+   23 2.65 175 32.7 151 2.64 2.64 - - - 4.71 4.71 

K+-Li+  3.16 328 0.64 .004 3.16 3.16 - - - 4.71 0 

Li+-Li+   23 3.68 482 0.01 0 3.68 3.68 - - - 0 0 

 

 

shown that Pu
3+

 and La
3+

 have similar ionic radii and activity coefficients
24,25

.  La
 
is also 

frequently used as a Pu surrogate in experimental studies which do not have access to radioactive 

material, and will be used in an ADSMS test system before any highly radioactive isotopes are 

introduced.  The Na
+
-La

3+
 and Na

+
-U

3+
 parameters were chosen to represent that these cations 

only interact via Coulombic forces.  Lastly, the Li
+
-K

+
 short range interaction potentials were 

calculated by combining Li
+
-Li

+
 and K

+
-K

+
 data.  This should not greatly affect our simulation 

results because cations are shielded from each other by large amounts of Cl
-
 making their 

interaction very weak, to the point of being almost negligible
21

.  For this reason the cation-anion 

parameters affect our simulations much more than the cation-cation ones. 
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Simulation parameters and methods 

As ions move in a MD simulation, the forces they experience change dynamically.  This means 

every time the computer calculates an ion’s trajectory, the ion’s position can only be advanced a 

small amount before the trajectory has to be updated to take into account the new forces the ion 

experiences.  For this reason MD simulations run with extremely small time steps and can only 

realistically simulate a system for fractions of a second.  In this study, a time step of 1 fs is used 

when simulating an NPT ensemble.  For modeling dynamic properties it proves useful to have 

more accurate data on each ion’s trajectory.  We therefore choose to update NVT ensembles 

twice as frequently, corresponding to a 0.5 fs time step.  

 

The temperature of each simulation is controlled by a Nosé-Hoover thermostat algorithm.  This 

method modifies the Hamiltonian of the system in order to simulate interaction with a heat 

bath
12

.  This type of thermostat was chosen because it modifies the motion of each ion in a 

continuous way.  Other thermostats, such as the Andersen thermostat, suddenly increase or 

decrease the energy of an ion to keep the system’s temperature constant.  This would make it 

difficult to calculate dynamic properties of the system.  We alter the strength of the thermostat by 

specifying its relaxation time– the amount of time the thermostat takes to bring a random 

temperature fluctuation back to the set equilibrium value.  For NPT runs we use a relaxation time 

of 2 ps.  In order to keep the thermostat from altering our transport property data too much, a 

weaker thermostat having a relaxation time of 10 ps is used for NVT runs. 

 

An Andersen barostat was used in NPT runs to hold the pressure of the system constant.  Like 

the Nosé-Hoover thermostat this method alters the system’s Hamiltonian to keep the pressure 
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constant
26

, and has a user-supplied relaxation time.  We chose to run our simulations with a 

relaxation time of 2 ps at a pressure of 1 atm.  Use of this barostat allows the MD cell to expand 

or contract until a natural equilibrium is reached.  This flexibility in volume is advantageous for 

calculating the system’s density. 

 

After initializing all parameters, each MS sample was allowed to equilibrate in an NPT ensemble 

for between 100,000 to 500,000 time steps.   This step prevents any transient behavior caused by 

changing user-supplied inputs, such as the sample’s temperature, from affecting the data used to 

calculate salt properties.  The output of this run was then used as the input for a NPT data run of 

500,000 time steps.  Density, heat capacity, and RDFs were all calculated using this NPT data.  

Next the output of this run was put into a NVT data run of either 5 or 10 million time steps.  This 

data is used to calculate the salt’s transport properties.  A summary of the time lengths used in 

each ensemble can be found in Table 2. 

 

It should be noted that the MD code used here assumes the input is in liquid state.  It is not 

capable of correctly modeling the dynamics that occur during a melting or freezing phase 

transition.  Because of this, we must make sure we are modeling the molten salt in the correct 

temperature regime so the cell starts as and remains a liquid.  If the system seems to behave like 

 

Table 2: Simulation Parameters for Data Runs 
Ensemble Time Step 

(t.s) 

Total Simulation Length Thermostat Barostat 

 (fs) (ps) (10
3 
t.s.) (ps) (t.s.) (ps) (t.s.) 

NPT 1 500 500 2 2,000 2 2,000 

NVT 0.5 2,500-5,000 5,000-10,000 5 10,000 - - 
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a solid, it can be annealed in a high temperature NPT run for 500,000 time steps to melt it again.  

The temperature can then be slowly lowered to an appropriate value.   

 

Calculating Green-Kubo functions 

In order to use Green-Kubo functions to extract transport properties from our simulations, we 

must first calculate the appropriate correlation functions,              .  This is done by first 

selecting an origin, to, within the data set (usually at the beginning), and calculating the function, 

                 for the next few picoseconds.  The origin is then moved down the data set to a 

new point,           .  Here    is a constant value chosen to be larger than the correlation 

function’s characteristic decay time, the average time for the function to decay to zero.  This  

 

 

Figure 9: A diagram of the calculation of correlation functions.  The correlation is found on subsets (red) 

having different origins, and the results are averaged (blue arrow) to give the overall correlation function. 
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requirement on    is needed to ensure that the measurements of the correlation function are not 

interdependent
12

.  After the origin is redefined the function                 is tabulated.  This 

process of redefining the origin and calculating                 is repeated for the entire data set.  

All                 are then averaged together to give the correlation function              .  This 

process, which is illustrated in Figure 9, requires a large amount of data in order to converge to a 

single correlation function.  This explains why we chose our NVT runs to be significantly longer 

than their NPT counterparts.   

 

Next, the correlation functions are integrated and multiplied by appropriate constants to yield the 

Green-Kubo function of interest.  These functions eventually reach a plateau value at a time 

corresponding to when the correlation function decays to zero.  This plateau is averaged over for 

1ps to yield the final value of the transport property of interest.  Examples of correlation 

functions and their corresponding Green-Kubo functions are shown in Figure 10.  All correlation 

 

 

Figure 10: Autocorrelation and Green-Kubo functions for NaCl at 1300K.  Both ACFs have been normalized 

for comparison.  The functions used for calculating the largest term for λ (left) converge much more quickly 

than the viscosity functions (right).  The plateau region is shown in red. 
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functions used for calculating λ and σ converged quickly, within 200fs.  We therefore chose   = 

200 fs and calculated each Green-Kubo function for 2 ps.  The plateaus were averaged from 1 to 

2 ps.  The correlation functions used in viscosity calculations converge much more slowly, with 

   varying from 500 to 5000 fs.  We therefore chose    on a case by case basis and averaged over 

the Green-Kubo plateau for 1 ps after the correlation function converged. 

 

Error calculations 

It is important to establish error estimates so that any discrepancies between our estimated values 

and physical quantities can be accounted for when engineering an ADSMS system.  We divide 

the error of our simulations into two parts: statistical error and modeling error.  Statistical errors  

originate from the data set size and random thermal fluctuations in the simulated system.  The 

statistical error is determined by splitting the data set up into 30 to 50 smaller blocks and running 

transport property calculations on these smaller chunks.  The average and variance of this 

 

 

 

Figure 11: A diagram of the statistical error calculation.  The data is parsed into between 30 and 50 smaller 

subsets (5 shown here) and the calculation is run multiple times.  The results are then averaged together to 

give a final estimate and error. 
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smaller data set then gives an estimate and error for the transport property in question.  A 

schematic of this process is shown in Figure 11.  Modeling error accounts for all other simulation 

errors due to the MD code, interaction potential parameters, and thermostat and barostat effects.  

There is no explicit way of calculating this error, but we estimate it to be approximately 5% after 

comparing our simulations with experimental data. 

 

Density and heat capacity measurements do not involve Green-Kubo relations, and therefore 

have very low statistical errors, on the order of 0.1%.  We therefore only consider modeling 

errors for these properties.  On the other hand, transport properties have statistical errors of 10% 

or more, even though ten times more data must be collected in order to calculate them.  This is 

because the averaging operation       in equations (17) - (19) only converges when calculated 

over a very large data set.  In this situation, we make an estimate of the total error based on the 

relative values of the statistical and modeling error. 

 

Hardware 

The simulations done in this study used the Texas A&M Accelerator Research Lab’s high 

performance computing cluster.  This cluster contains a head node containing 2 8-core CPUs and 

16Gb of memory, as well as 8 Dell Power Edge R815 computational nodes each having 4 12-

core processors.  Each computational node has access to 128 Gb of memory and is connected to 

the head node by both a private Ethernet LAN and a 40 Gbit/s Infiniband switch.  The system 

runs Scientific Linux 6.0.  This study used an estimated 30,000 CPU hours and produced 

approximately 3Tb of usable raw data. 
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CHAPTER IV 

BINARY SYSTEMS 

 

We begin by examining binary MSs, only having a single anion and cation.  The wealth of data 

on pure salt systems makes this a natural starting place to verify our modeling methods.   X-ray 

and neutron diffraction studies probe the microscopic structure of the melt, and the subsequent 

data provides an avenue to validate our interaction potential parameters by comparing simulated 

RDF's with experimental results.  Furthermore, it has been shown in mixed chloride systems that 

the positions of the first cation-anion RDF peak are almost identical to the peak positions in the 

corresponding pure salt
27

.  Thus, if all the first RDF peaks match experiment for the pure 

constituents of a fuel mixture, the first peak positions of the fuel should also be correct.  After 

checking the RDFs, we calculate the other properties of these salts and compare them with 

experimental information in order to extensively affirm our methods.  Here we look to two 

different types of binary system: alkali chlorides and heavy metal chlorides. 

 

Alkali chlorides (LiCl, NaCl, KCl) 

Three alkali chlorides are of interest to us.  The most important is sodium chloride; almost 70% 

of our fuel salt will be comprised of NaCl making adequate modeling of this compound an 

essential first step in understanding the properties of the entire fuel salt.  LiCl and KCl comprise 

the secondary coolant salt.  The study of these additional salt systems allow us to make a more 

robust and thorough evaluation of the model. 
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These simulations were carried out in a system of 512 ions.  The simulation cells were built as 

crystalline solids.  Each of these binary systems have well known crystal strctures.  When a cell 

is created, the code calls an input file mapping the location of the ions to this solid crystal 

structure.  To simulate melting, the solid system is annealed at high temperature or given a 

"kick" of energy.  To run our computational experiments, the cell is then cooled to the 

temperatures of interest.  LiCl has a lower freezing point (883K) than NaCl (1073K) and KCl 

(1043K)
 28

; its data was collected at slightly lower temperatures.   

 

RDFs 

Radial distribution functions (RDFs) were calculated for three alkali chlorides at 1300K in the 

NPT ensemble.   Figure 12 shows the three partial RDFs for each system, which examine the 

relative positions of ion species i to that of ions of species j.  The NaCl data is compared to 

experimental neutron diffraction data taken by Edwards et al.
29

  A full set of partial RDFs for 

KCl and LiCl has not been reported, but the RDFs of a mixture of the two will be examined later, 

with the expectation that first peak position is in a similar position because it is essentially 

invariant when mixing pure salts.
27

.   

 

Our NaCl simulations are in good agreement with experimental values.  We have correctly 

reproduced the first and second peak positions, except for the first peak in the Na
+
-Na

+
 partial 

RDF.  However, this peak is subject to the most experimental error, and shouldn't impact our 

modeling due to of the lack of cation-cation interaction.  It should be noted that the experimental 

amplitude for the Na
+
-Cl

- 
function is slightly lower, while it is slightly higher for Cl

-
- Cl

-
.  This 

discrepancy is noted by Edwards 
29

, and we believe could be the result of a difference in  
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Figure 12: Partial RDFs of alkali chlorides.  Each RDF is offset by 2 from the one below it.  Experimental 

data is reproduced from Edwards et al.
29

  As cation size increases, the first and second peak positions shift to 

the right. 

 

 

temperature between the simulation (1300K) and experiment (1150K).   Our data also exhibits a 

rightward shift in the first and second peaks as we move left to right across the plot.  This is due 

to the ionic radius also increasing as temperature increases, causing the gap between ions to 

grow.  Finally, we draw attention to the flattening of the peaks in the cation-cation RDF as ionic 

mass increases.  This flattening effect is due to the ion polarizabilities increasing from 0 (Li) to 

4.71 (K). 
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Figure 13: Temperature dependence of alkali chloride density.  All three salts exhibit similar temperature 

dependence.  Experimental data taken from Janz et al.
28 

 

 

 

Density and heat capacity 

The densities of all three alkali chlorides are shown in Figure 13.  We obtain excellent agreement 

 

with experiment here, with deviations in ρ of less than 5%, 3%, and 1% for LiCl, KCl, and NaCl 

respectively.  In order to evaluate the temperature dependence of these systems, a line having the 

form        -    was fit to each of the data sets.  Our simulations predict   to within 8% for 

KCl, 7% for NaCl, and 3% for LiCl.  It is a nice coincidence that NaCl is the densest alkali 

chloride, due to its mass to ionic radius ratio.  This means a fuel salt based on NaCl instead of 

KCl or LiCl will have a larger mass density which benefits the spallation process.  Finally, we 

note that all these chlorides do in fact have the positive coefficient of thermal expansion which is 

desired for the ADSMS system because it leads to negative thermal reactivity feedback 
7
. 

 

The heat capacities of these systems are reported in Figure 14.  They are given by the slope of 

the enthalpy vs. temperature data collected during NPT simulations.  All three systems have  
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Figure 14: Enthalpy vs. temperature for alkali chloride systems.  The heat capacity is given by the slope of the 

line of best fit.  All three salts have very similar heat capacities, but their specific heat capacities vary greatly. 

 

 

similar heat capacities, which is likely due to their similar microscopic structures.  This also 

means that their specific heat capacities, obtained by dividing Cp by the simulation cell mass, are 

quite varied.  Our results agree quite well with experiment; KCl’s cp has under 7% error, while 

both NaCl’s and LiCl’s are within 3% 
30

.  The calculated and experimental specific heat 

capacities are summarized along with the density parameters in Table 3.  We have achieved less 

than 8% deviation from experiment, and shown the similarity in the temperature dependence for 

three different alkali chloride systems. 

 

 

Table 3: Summary of Alkali Chloride NPT Data 
Salt αd    (10

-4
 g/cm

3
•K) βd    (g/cm

3
) cp    (kJ/K•kg) 

 This Work Experiment
28

 This work Experiment
28

 This work Experiment
30

 

LiCl 4.48 4.38 1.84 1.88 1.48 1.44 

NaCl

l 

5.06 5.43 2.10 2.14 1.18 

 

1.15 

KCl 5.39 5.83 2.05 2.14 0.92 

 

0.98 
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Transport Properties 

The thermal conductivity, electrical conductivity, and viscosity were calculated using a NVT run 

of 5 million time steps.  λ is plotted against temperature in Figure 15, along with experimental 

data from Nagasaka et al.
31

   The functions extrapolated from the simulation data have the form 

       -   .  There is almost no deviation from experiment for the KCl cell; although, the 

temperature dependence is exaggerated in this model.  For the NaCl sample, both the 

temperature dependence and the actual λ are overestimated.  This could be an experimental 

artifact: the experimental data was taken by measuring system’s thermal diffusivity and then 

multiplying by ρ and cp to yield λ.  Thus, errors of less than 8% from the previous NPT 

simulations might contribute to some of this discrepancy.  Additionally, the experimental data 

has a quoted uncertainty of 8%.  Finally, we remark that Ohtori et al. encountered a similar 

overestimation effect when simulating alkali chlorides
32

, calculating values for NaCl and LiCl 

that are similar to the ones presented here.  The extremely large statistical errors present in the  

 

 

Figure 15: Thermal conductivity of alkali chlorides.  Error bars shown only take statistical error into 

account.  The experimental data is reproduced from thermal diffusivity measurements by Nagasaka et al. 
31
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Figure 16: Electrical conductivity of alkali chlorides.  Experimental data having Arrhenius form is taken 

from Redkin et al. 
33

 Our results underestimate σ at lower temperatures, but overestimate it the temperature 

dependence. 

 

 

LiCl data have been encountered and discussed before by Ohtori et al.
21

  They are an artifact of 

two very large terms being subtracted from each other in the λ calculation.  This causes the terms 

to have errors of a size similar to that of the difference between these terms, increasing the 

relative error.  This effect is inherently a result of the large mass difference between the anions 

and cations in the LiCl melt.
21

   

 

Figure 16 displays the simulation results for σ, plotted with experimental data
33

.  Our results are 

modeled as having an Arrhenius temperature dependence of form            
  

  
  in order to 

facilitate comparison with experiment.  The two constants were determined by performing a 

linear fit of the line having form     
  

  
     .  However, the data behaves very linearly, 
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causing it to be notably lower than experimental data near each salt’s freezing point, but this gap 

is closed after the salt is heated by a few hundred K.  This temperature profile is probably caused 

by the code’s inability to simulate conductivity due to electron flow; it only considers charge 

propagation due to bulk ionic flow.  As the temperature decreases, the ratio of ionic flow to 

electron flow decreases, causing the code to underestimate the electrical conductivity by an 

increasing amount.  The bulk ionic flow does have enough of an impact to allow an estimation of 

σ.  Our calculation’s maximum deviation from experiment, 31%, occurs just under 1100K for 

NaCl and decreases with temperature.  According to this data we expect our simulations to 

underestimate σ when the temperature is close to the salt’s freezing point. 

 

Lastly, we show the results of the viscosity calculations in Figure 17.  The solid curves in the  

 

 

Figure 17: Shear viscosity of alkali  chlorides.  Experimental data taken from Janz et al.
28

  The best fit lines 

have Arrhenius form.   
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Table 4: Fit Parameters for Alkali Chloride Transport Properties 
Salt Sources λ (W/m·K) σ (S cm

-1
) η (mPa·s) 

  αt (x10
-4 

W/m·K
2
) βt (W/m·K) σ0 (S cm

-1
) E1 (J mol

-1
) η0 (mPa·s) E2 (J mol

-1
) 

LiCl This work 1.839 0.960 29.04 -13,441 0.1249 16,261 

LiCl 28,31,33 2.900 0.882 13.13 -6,098 0.0331 29,317 

NaCl This work 4.010 1.042 21.91 -18,787 0.0214 38,681 

NaCl 28,31,33 1.800 0.712 7.64 -6,743 0.0185 38,957 

KCl This work 2.115 0.618 22.25 -21,924 0.0478 27,695 

KCl 28,31,33 1.700 0.566 6.95 -10,100 0.0531 26,891 

 

 

plot have Arrhenius form, with constants   and E2.  These results mirror our λ findings; there is 

almost perfect agreement with experiment for KCl and good agreement for NaCl.  The results for 

LiCl are underestimated temperatures near the freezing point, but seem to converge towards 

experimental value with increasing temperature.  These results are quite successful when it is 

considered that the material's viscosity is generally the most difficult property to have converge 

properly.  We remark that all three of these viscosities are in the same regime as that of water at 

300K.  Thus, water can serve as a first order approximation when determining types of pumps 

and pipes used for transporting these types of salts. 

 

We have summarized our results as well as the plotted experimental data for the transport 

properties of alkali chlorides in Table 4.  Although our simulations are not perfect, we achieved 

excellent agreement with the properties of KCl.  The maximum of discrepancy for  any transport 

property in the NaCl system is 30%, a value which quickly diminished with increasing 

temperature.  Furthermore, this value was calculated for electrical conductivity, which is of least 

importance when designing the ADSMS system.  Finally, the LiCl simulations have yielded 
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good first order estimates, but have large statistical errors due to the difference in cation and 

anion mass and the proximity of the simulation temperatures to its freezing point. 

 

Trichlorides (LaCl3, UCl3) 

Before considering the addition of transuranics to our simulations, we turn to two trichlorides of 

interest, UCl3 and LaCl3.  The larger ratio of anions to cations changes the structure of the melt, 

as each cation is surrounded by more negatively charge ions.  We chose to examine UCl3 

because its interaction potential parameters are very similar to those of PuCl3, which is to be 

used in the fuel salt.  Furthermore, it will help us describe any issues associated with a large mass 

discrepancy between heavy transuranics and chlorine (since U
3+

  has a mass which is almost 7 

times that of Cl
-
).  LaCl3 is also examined because there is much more experimental data 

available for LaCl3 than either UCl3 or PuCl3.  Additionally, it is commonly used as a Pu 

surrogate, allowing us to the same interaction potentials for La and Pu. 

 

These simulations were performed with cells containing 90 cations and 270 anions.  The cells 

were built from existing MD simulations by strategically deleting or changing cation species.  

After this process, the cells were annealed and equilibrated.  The mass of the U used in these 

simulations was 238.02 u. 

 

RDFs 

RDF data was gathered at 1200K for LaCl3 and at 1300K for UCl3.  Figure 18 compares the total 

RDF of LaCl3 to X-ray diffraction data collected by Okamoto et al.
34

  Both values are offset 

from the calculated partial Cl
-
-Cl

-
 RDF.  At first glance, our function seems to be incorrect,  
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Figure 18: Total RDF of LaCl3 compared to experiment.  Our simulated RDF contains and extra peak, which 

can be explained by the Cl
-
-Cl

-
 interaction, which is offset below.  The experimental data is reproduced from 

the X-ray diffraction work of Okamoto et al.
34

 

 

 

having an extra peak just behind the first, followed by a large valley.  However, Okamoto notes 

that the X-ray diffraction technique does not probe the Cl
-
-Cl

-
 interaction.  We would therefore 

expect our calculated RDF to contain some extra structure due to these interactions.  Comparison 

with the partial Cl
-
-Cl

-
 RDF shows that this is the case; intervals where the partial RDF exceeds 

or is less than unity directly correlate to areas where our total RDF over predicts or 

underestimates the experimental RDF.  This weighting of experimental RDFs based on how well 

they probe certain interactions is also discussed by Okamoto in his work with UCl3
35

.  We also 

note that the first peak in the experimental data is shorter and broader, but we believe this is due 

to the inclusion of a damping factor in the experimental data, which widens the RDF
35

.   
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Our study of the UCl3 partial RDFs is shown in Figure 19 where they are compared to partial 

RDFs simulated by Okamoto
35

.  We have nearly perfect agreement, which is to be expected 

because the short range simulation potential parameters used in both studies were identical.  Our 

study does, however, use a slightly different method for handling the long range interactions.  

The partial RDFs illustrated were also shown by Okamoto to be consistent with X-ray diffraction 

experiments once the damping factor and interaction weighting are taken into account. 

 

Comparison of these RDFs with those of alkali chlorides reveals the difference in structure for  

 

 

Figure 19: Partial RDFs of UCl3.  We get excellent agreement with previous work by Okamoto et al.
35

  These 

RDFs agree well with X-ray diffraction data.  Each RDF has a vertical offset of 2 from the one below it. 
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trichlorides.  The first peak for the cation-anion functions are much higher than those of the 

alkali chlorides, corresponding to more chlorides being directly adjacent to the cations.  

Furthermore, both the trichloride cation-cation and anion-anion RDFs have a much narrower first 

peak, with the anion-anion peak occurring before the cation-cation one.  This indicates that the 

cation is surrounded much more by anions.  This once again agrees with measured values, as the 

coordination number - the number of anions surrounding a cation - for molten NaCl is about 6
29

,
 

while it is 8 for UCl3
35

. 

 

Density and heat capacity 

The densities of the two studied trichlorides are graphed against temperature in Figure 20.  The 

experimental data for UCl3 was collected by Desyatnik et al.
36

, while the data for LaCl3 is  

 

 

Figure 20:  Simulated densities for chosen trichlorides.  Our simulated data is very close to the experimental 

data for UCl3
36

 and LaCl3
28

.  Despite having a different cation to anion ratio, the temperature dependence is 

close to that of the alkali chlorides.   
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reported by Janz et al.
28

  We have achieved accurate results, with deviations from experiment of 

less than 3% in both systems.  We comment that our results seem to slightly underestimate the  

strength of the temperature dependence, but note that the values of    are of the same order of 

magnitude has those calculated for the alkali chlorides.  The difference in densities between UCl3 

and LaCl3 can be attributed entirely to the mass of the cations; the U and La ions interact with Cl 

in essentially the same way, but the U is 1.8 times as heavy.  UCl3 also has larger temperature 

dependence because the inverse volumes of both salts vary in a similar fashion, but this variation 

is amplified when it is multiplied by a larger mass during the density calculation.  We can expect 

similar behavior for PuCl3 because we are using the La interaction potentials, but the mass of Pu 

is only slightly larger than that of U. 

 

 

 

Figure 21:  Enthalpies and the heat capacity for trichloride salts.  The heat capacity of UCl3 is 20% less than 

that of LaCl3.  These values cannot be compared to the calculations for alkali chlorides, because of the 

different number of ions used 
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Table 5: Summary of Trichloride NPT Data 
Salt αd    (10

-4
 g/cm

3
•K) βd    (g/cm

3
) cp    (kJ/K•kg) 

 This Work Experiment This work Experiment This work Experiment 

LaCl3 5.701 7.774  
28

 3.908 4.090 
28

 0.633 0.645 
37

 

UCl3 9.079 15.222 
36

 5.684 6.375 
36

 0.365 

 

- 

 

 

Examination of the trichloride heat capacities, shown in Figure 21, reveals that the heat capacity 

of UCl3 is about 20% less than that of LaCl3.  This indicates that the larger cation size may 

increase the thermal response to changes in system energy.  The values for heat capacity cannot 

be strictly compared to those calculated for the alkali chlorides, because the simulations used a 

different number of ions, but they are in the same neighborhood of values.  The specific heats 

can be compared, however, and are much smaller for the trichlorides.  This is undoubtedly due to 

the much larger amount of mass in the trichloride cations.    We were unable to find experimental 

data on the specific heat capacity of UCl3, but our LaCl3 results are within 2% of the data taken 

by Dworkin and Bredig
37

.  On the whole our NPT simulations are able to accurately model 

trichloride systems, and are summarized in Table 5. 

 

Transport properties 

We performed NVT simulations of 5 million time steps for LaCl3 and 10 million time steps for 

UCl3.  The extra time for the UCl3 runs was required to achieve proper convergence of the 

viscosity ACFs at lower temperatures, where they had characteristic time lengths of up to 5 ps.  

We have chosen not to examine λ and σ for UCl3 because of a lack of experimental data to 

compare.  Although we were unable to find data on the value of λ for LaCl3, σ values are 

reported in the Janz database
28

.   
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Figure 22:  λ and σ of LaCl3 just above the melting point.  The same trend of σ underestimation exists in this 

system.  There is a positive temperature dependence of λ, but the statistical errors are quite large.  

Experimental data was taken from Janz
28

. 

 

 

Results of our calculations for LaCl3 can be seen in Figure 22.  The same major trends noted in 

the analysis of the alkali chlorides apply to σ here; the data behaves linearly and underestimates 

the experimental data  because of the proximity of the simulation to LaCl3's freezing point of 

1143K
28

.  The magnitude of this underestimation is similar to the 0.5 W/(m·K) difference seen in 

the alkali chloride (KCl) having the closest σ value.  We are unable to compare λ to any 

experiment, but its value lies in the same range as the other chlorides studied.  Our results have a 

positive temperature dependence, but it is weak when compared to the very large statistical 

errors, on the order of 25%, associated with this calculation.  Furthermore, only three points of 

data were gathered for this plot, so more information is most likely needed to get an accurate 
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temperature dependence.  Our data supports an estimation of λ=0.42±0.12 in the temperature 

range of 1150 to 1250K. 

 

The viscosity was calculated for both systems and is compared to various experiments in Figure 

23.  We were able to find only one experiment to compare our UCl3 data, that of Desyatnik
36

.  

According to this data our results significantly overestimate both the viscosity and the 

temperature dependence of the melt, although the discrepancy diminishes at higher temperatures.  

Our interaction potential may be causing the formation of multi-ion complexes with would 

increase the viscosity of the melt as ions try to act as part of a larger unit.  This would explain  

 

 

Figure 23: Viscosity of trichloride melts.  UCl3 (dark blue) overestimates the viscosity reported by 

Desyatnik
36

.  Our LaCl3 data (light blue) is within the vicinity of the data from three experiments.   
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large discrepancy at low temperature, as the ions with lower kinetic energy would tend to stay 

part of their local ion complex.  These medium ranged effects are known to strongly increase 

viscosity and decrease σ
34

.  There is ample experimental data for molten LaCl3, but it varies 

widely since viscosity measurements of molten salts are very difficult.  Our results are in the 

vicinity of those tabulated by Janz
28

, but have temperature dependence similar to the results in 

Okamoto
34

 and Potapov
38

.  The most recent work by Potapov notes that the Janz data is probably 

overestimated due to oxide buildup during their salt preparation.  We therefore believe these 

results also over predict the actual viscosity by 40% at the melting point.  This discrepancy then 

decreases slightly with increasing temperature.  Our results are within the general vicinity of all 

three experiments for the simulated temperature range, and we believe would be adequate as a 

first estimation.  Finally we note that the viscosities of the trichlorides are much larger than those 

of alkali chlorides, due to the formation of ionic complexes, as well as a larger coordination 

number and cation size causing a reduced cation mobility.  Furthermore, all of the trichloride 

melts remain very thin, having a viscosity under 10 mPa·s, which is less than most common oils.  

The results of the trichloride NVT simulations are summarized in Table 6. 

 

 

Table 6: Fit Parameters for Trichloride Transport Properties 
Salt Source λ (W/m·K) σ (S cm

-1
) η (mPa·s) 

  αt (x10
-4 

W/m·K
2
) βt (W/m·K) σ0 (S cm

-1
) E1 (J mol

-1
) η0 (mPa·s) E2 (J mol

-1
) 

LaCl3 This work -5.78 -0.275 41.67 -36,577 0.6196 20,622 

LaCl3 28 - - 13.52 -20,840 0.0206 54,599 

LaCl3 34 - - - - 0.0870 36,889 

LaCl3 38 - - - - 0.0739 37,455 

UCl3 This work - - - - 0.0198 56,334 

UCl3 36 - - - - 0.1825 25,079 
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CHAPTER V 

MULTI-COMPONENT MIXTURES 

 

We now examine the effects of mixing two different MSs having the same anion.  This is of 

particular interest to the ADSMS project, as all salts proposed for use in the system are multi-

component mixtures.  For this section, we adopt a notation where the salt name is followed by 

each salt's respective mole concentration in parenthesis.  We first inspect the secondary salt used 

for cooling the ADSMS system, a eutectic mixture of LiCl-KCl (59.5,40.5%).  Next, we examine 

the effects of altering the alkali chloride to trichloride ratio in a NaCl-UCl3 (X, 100-X%) 

mixture.  This will allow us to compare our results for a alkali chloride - trichloride mixture to 

experiment in preparation for the final step of this study.  This step models the ADSMS fuel salt 

itself as a NaCl-PuCl3-LaCl3 (68,28,4%) mixture, and produces working estimates to be used 

while planning specific parameters of the ADSMS system. 

 

Secondary salt (LiCl-KCl eutectic) 

A LiCl-KCl mixture has been selected as the ADSMS secondary salt to absorb heat from the fuel 

salt in the primary heat exchanger.  This mixture will be used at the eutectic concentration of 

59.5% LiCl and 40.5% KCl, corresponding to where the mixture has the lowest freezing point 

(628K)
39

.  The lower melt point allows the heat exchanger to operate at lower temperatures, 

increasing its performance, while preventing the solidification of the coolant.  Additionally, 

operating at the eutectic concentration prevents phase separation caused by either LiCl or KCl 

precipitating out of the mixture.  This mixture is also relatively inexpensive and has some of the 
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highest figures of merit when compared to other potential chloride coolants
39

.  There are 

fluoride-based coolants which have better figures of merit, but fluorides tend to be more 

corrosive and have higher operating temperatures.  The LiCl-KCl eutectic mixture is relatively 

well studied, but there is a curious scarcity of data on λ despite the salt's potential use as a reactor 

coolant. 

 

The simulations performed here used 256 Cl
-
, 151 Li

+
, and 105 K

+
 ions.  The simulation cell was 

created from an existing KCl cell, by replacing 151 K
+
 ions with Li

+
.  The system was then 

annealed and allowed to equilibrate.  We are specifically interested in the properties around 

800K, the currently planned secondary salt operating temperature.   

 

RDFs 

We take this opportunity to examine the validity of our interaction potential parameters for 

lithium and potassium, since we were unable to find any experimental data on these ions in pure 

melts.  Figure 24 shows the simulated partial RDFs calculated at 700K, plotted against X-ray 

diffraction data taken by Okada et al. at 668K
27

.  We have achieved excellent agreement in both 

peak position and height for the three partial RDF's (Li
+
-Cl

-
, K

+
-Cl

-
, Cl

-
-Cl

-
) for which the 

authors were able to accurately deduce peak positions.  There is also passable agreement in peak 

positions for the K
+
-K

+
 and Li

+
-K

+
 interactions, although slight discrepancies exist in the peak 

heights.  The experiment was completely unable to detect the Li
+
-Li

+
 interaction.  We note that 

the bottom three RDFs all involve cation-cation interactions, which are much weaker than their 

cation-anion counterparts.  Our interaction potential parameters have therefore excellently 

reproduced the microscopic structure of this multi-component melt.   
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Figure 24: Partial RDFs for LiCl-KCl eutectic mixture.  Excellent agreement has been achieved with the first 

cation-anion and anion-anion peaks found in X-ray diffraction experiments performed by Okada et al. 
27

 

Vertical offsets have been added to each RDF for clarity. 
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As predicted, the first peak positions in this melt are likened to those calculated for pure KCl and 

LiCl.  The heights are depressed because the ratio of each cation species to chlorine is lower in 

the mixture.  This further supports our use of these interaction parameters in the previously 

performed alkali chloride simulations. 

 

Density and heat capacity 

Modeling of the density of this mixture is nearly perfect, with a maximum error of less than 1% 

when compared with the experimental data. This is surprising; our simulations for both LiCl and 

KCl predicted densities slightly lower than experiment.  This hints that mixing the two salts 

could have caused an upward shift towards experimental data by more accurately modeling the 

dispersion terms in our interaction potential.  We calculate values of αd=5.132x10
-4

 W/(m·K
2
) 

and βd=2.022 W/(m·K), close to the experimental values of 5.268x10
-4

 W/(m·K
2
) and 2.029 

W/(m·K).
40

   

 

 

 

Figure 25: Density and enthalpy vs. temperature for LiCl-KCl eutectic.  Our density results agree well with 

experimental data from Janz
40

, and specific heat capacity is close to the estimated value
39

. 
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These simulation cells have the same number of ions has those used to calculate the heat  

capacities for pure alkali halides, permitting direct comparison.  The heat capacity for the 

mixture is slightly higher, probably because Cp tends to very slightly increase for molten salts at 

lower temperatures
30

.  The specific heat capacity is calculated to be cp=1.289 kJ/(kg·K), within 

7% of the measured 1.200 kJ/(kg·K)
39

.  Overall, this model seems very successful and proves 

that our NPT methodology holds up well when applied to multi-component mixtures. 

 

Transport Properties 

The NVT simulations performed here had a length of 5 million time steps.  Both conductivities 

can be seen in Figure 26.  We once again see the underestimation of σ at lower temperatures, and 

a temperature dependence that is too strong.  Fit parameters of σ0= 50.533 S/cm and E1=38,519 J 

mol
-1

 were calculated.  The experimental values are much different, at 23.533 S/cm and 16.356 J 

mol
-1

.  However, this result does show the effect of mixing on a melt's σ.  Pure LiCl has a σ 

value which is ~2x as large at temperatures above 900K, where both salts are in liquid phase.  

The cause for this reduction is the introduction of the much larger K
+
 ions to the melt.  They 

have a much lower mobility, curtailing bulk flow of the cations in the melt.  At 1100K, the LiCl-

KCl σ value of 3.2 S/cm is closer to the KCl's value of 2.3 than LiCl's 6.7, even though 59.5% of 

the melt is composed of LiCl.  Therefore the large K
+
 ion has an effect on the electrical 

conductivity that is disproportionate to its concentration.  This has important consequences; 

small amounts of impurities could have a significant impact on salt's overall ion mobility.  

The calculations for λ are quite consistant, yielding values that lie somewhere between the 

average values of pure LiCl and KCl.  Furthermore, a weak negative temperature dependence is 

also evident here; the line of best fit has paramteres of αt=9.378x10
-5

 W/(m·K
2
) and βt=0.561 
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Figure 26: Conductivities of LiCl-KCl eutectic.  Our calculations for σ once again underestimate 

experimental data
40

.  The results for λ seem reasonable given the small amount of experimental data 

available
39

.  The large error bars are because of the large amount of LiCl in the system. 

 

 

W/(m·K).  We have only been able to find data on this property for three individual temperature 

points, plotted in red.  The values of these points vary widely, but all are within the statistical 

error of our simulation.  The error bars are extremely large for two reasons.  First, the calculation 

of λ for a three component system involves 6 Green-Kubo functions instead of the 3 required for 

2 binary salts.  This means we have to take errors from 3 more sources into account.  Secondly, 

the MS contains 60% LiCl, which was shown to have the same issue of inflated statistical errors 

due to a cation-anion size discrepancy.  The small variation of our six data points (all fall within 

0.2 W/(m·K) range) leads us to believe that the statistical error is smaller than the plotted error 

bars, probably around 0.2 W/(m·K).  This result is important for the ADSMS project; we now 

have estimates for the both λ and it's temperature dependence for the proposed secondary salt. 

 

Lastly we look at the LiCl-KCl eutectic's viscosity, which is plotted in Figure 27.  The 
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0  

Figure 27: Viscosity vs. temperature for a LiCl-KCl eutectic.  Agreement with experiment is excellent, 

showing our methodology extends to describe salt mixtures. 

 

 

correlation between our values and experiment is astonishingly good, with discrepancies of less 

than 5%.  This could be in part due to the larger gap between the experimental temperatures and 

the eutectic's freezing point.  It is quite interesting that the viscosity of KCl was also predicted 

almost perfectly.  Because the large K
+
 ions affect ion mobility much more than the Li

-
, this 

accuracy seems to have carried over to this mixture.  The fit parameters used here were 

η0=0.07986 mPa·s and E2=21,276 J mol
-1

, and are within 10% of the experimentally determined 

values of 0.0861 m·Pas and 20,926 J mol
-1

.
39

 

 

NaCl-UCl3 

We next study an alkali chloride - trichloride system in order to evaluate how the two different 
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Table 7: Summary of MD cells for NaCl-UCl3 
UCl3 % concentration Number of ions ρ (g/cm

3
) η (mPa·s) 

 Na
+
 U

3+
 Cl

- 
Calculated Experiment Calculated Experiment 

0 256 0 256 1.541 1.541 1.63 1.26 

25 110 37 221 2.776 2.633 2.80 1.15 

40 110 73 329 3.311 3.199 3.97 1.91 

60 90 60 330 3.919 3.745 5.99 2.49 

85 16 90 286 4.428 4.389 8.08 3.05 

100 0 90 270 4.674 4.700 9.57 2.38 

 

 

microscopic structures of these salts interact with each other.  We use a NaCl-UCl3 mixture, and 

we sweep the concentration of UCl3 from 0 to 100%.  We expect the mixture to act more and 

more like a trichloride as more UCl3 is added, adjusting the ratio of anions to cations from 1 to 3.  

We do not examine the conductivities here because of a lack of experimental data.  The different 

melt concentrations, and the number of ions in each simulation, and their densities and 

viscosities are tabulated in Table 7.  The NPT used for this melt were run for 5 million time 

steps, and all runs were done at 1100K.  Experimental data was taken from the work of 

Desyatnik
36

. 

 

Figure 28 shows the density plotted against the left axis, and the viscosity plotted against the 

right axis.  The density of the melt is predicted quite well, with a maximum error of 5%.  The 

calculated data seems to over predict the density more as the ratio of NaCl to UCl3 approaches 

unity.  We noted this effect in our mixture of LiCl-KCl eutectic as well; it is probably due to the 

interaction potential parameters being optimized for pure salts.  It is then no surprise that the 

greatest error is located in the region with a 1 to 1 ratio between constituent salts. 
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Figure 28: Density and viscosity as a function of UCl3 concentration in a NaCl-UCl3 melt.  We are able to 

accurately describe the density dependence, but the viscosity is badly overestimated for high trichloride 

concentrations.  Simulations were done at 1100K. 

 

 

Our results for viscosity, on the other hand, show that our gross over estimate of pure UCl3 

viscosity at low temperatures causes the same effect to occur for all concentrations, with the 

magnitude of the discrepancy depending strongly on UCl3 concentration.  This effect was seen in 

the LiCl-KCl mixture as well; large K
+
 ions lowered the viscosity of the melt closer to that of 

KCl.  Here, the addition of large trivalent U
3+

 ions causes a lowered ionic mobility and facilitates 

the formation of ionic complexes, increasing the viscosity.  Because our code seemed to 

overemphasize these effects in pure UCl3, it does so in this melt as well.   
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Fuel salt (NaCl-PuCl3-LaCl3) 

Having tested the performance of our interaction potential parameters and evaluated the effects 

of mixing various molten salts together, we now model the ADSMS fuel salt.  This salt will 

contain a complex mixture NaCl, transuranic trichlorides, and rare earth trichlorides.  Here we 

approximate it as a ternary NaCl-PuCl3-LaCl3 mixture, with the PuCl3 representing the 

transuranic trichlorides and LaCl3 representing all rare earth fission products.  The molar 

composition of trichlorides is fixed to be 88 % PuCl3 and 12% LaCl3.  We believe this is a 

reasonable approximation, because the TRU from SNF consists mainly of plutonium isotopes.  

Also, the concentration of rare earth fission products is low, so deviations caused by them being 

modeled as lanthanum should be small. 

 

Density and heat capacity 

During the ADSMS system’s operation, transuranics will be fissioned into lighter rare earth 

elements, causing the ratio of TRU to NaCl to vary with time.  Additionally, we would like to be 

able to fine-tune the fuel salt composition in order to achieve optimal neutronics.  For these 

reasons, we calculate a density map for the fuel salt, slightly varying the ratio of trichlorides 

(XCL3) to sodium chloride.  This map can be seen in Figure 29, and a summary number of ions 

used in each simulation is shown in Table 8.   We confirm that the density increases as the  

 

 

Table 8: Summary of Fuel Salt Density Map Simulations 
XCl3 concentration Number of ions ρ (g/cm

3
) 

 Na
+
 La

3+
 Pu

3+ 
Cl

-
 αd    (10

-4
 g/cm

3
•K) βd    (g/cm

3
) 

33% 110 7 48 275 8.400 3.956 

32% 110 6 46 266 8.379 3.919 

31% 110 6 43 257 8.261 3.854 
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concentration of heavy trichlorides is increased.  In fact, the densities calculated here at 1100K 

are very similar to those calculated in our study of a varying mixture of NaCl- UCl3.  The density 

decreases with increasing temperature; a relation which provides our system with an important 

passive safety feature.  This trend is not greatly affected by slight changes in trichloride 

concentration.  We predict a modeling overestimation by a maximum of 5% based on our 

previous model of a NaCl-UCl3 mixture.  Here the statistical error is assumed to be negligible 

when compared to the modeling error.  Using this data it has been decided to use a 32% 

trichloride concentration in the ADSMS system; the rest of this section will examine a NaCl-

PuCl3-LaCl3 (68,28,4%) melt. 

 

The heat capacity of the fuel salt was also calculated and can be seen in Figure 30.  The specific  

 

 

 

Figure 29: A density map for the NaCl-PuCl3-LaCl3 ADSMS fuel salt. The concentration of trichlorides 

(XCL3) was slightly varied.  The ratio of PuCl3 to LaCl3 was kept fixed at 88% and 12% of the total 

trichloride content. 
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Figure 30: Heat capacity calculation for NaCl-PuCl3-LaCl3 (68,28,4%) fuel salt.  The specific heat capacity of 

the melt lies between the values for pure NaCl and pure UCl3. 

 

 

heat capacity was calculated to be           kJ/(K∙kg), a value that lies between those 

calculated for pure NaCl and UCl3.  This value is likely to be slightly larger than the actual 

specific heat capacity, simply because our approximations of the fuel only containing plutonium 

and lanthanum lower the total system’s mass.  However this effect is quite small compared to our 

estimated modeling error of 6%, a value we have determined by examining the deviations with 

experiment present in the other systems studied. 

 

Transport properties 

Because the fuel salt is a four component system, ten separate correlation functions must be 

calculated to determine the thermal conductivity of the system.  This means there are ten terms 

contributing to the total error.  In order to offset these large errors we ran the fuel salt NVT 
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Figure 31: Simulated conductivities of NaCl-PuCl3-LaCl3 (68,28,4%) fuel salt.  Simulations were run for twice 

the amount of time in order to reduce statistical errors.  We expect σ to be an underestimation based on our 

previous results.  The data for λ is very consistent and has weak temperature dependence.   

 

 

simulations for 10 million time steps instead of 5, a decision which reduces our statistical errors 

by a factor of   .  Figure 31 shows the results of the fuel salt conductivity calculations.   

 

We expect the electrical conductivity to be underestimated in this temperature range by 

anywhere from 30% to 60% based on our results for pure NaCl and LaCl3 respectively.  We 

therefore consider the values calculated here as a lower bound on σ.  Our results for λ, on the 

other hand, have not shown any systematic deviation from experiment in past simulations.  The 

results for the fuel salt are consistent, in the same range as other molten salts, and show a weak 

temperature dependence.  Because the temperature variation is so small compared to the 

statistical error, we average all 5 points together to estimate λ = 0.43(6) W/(m∙K).  The error in 

the last digit takes the statistical error of 12% and assumes a 5% modeling error.  This is perhaps 

our most important result; λ has a large effect on the ADSMS system’s performance and was 

previously unknown. The fit parameters used for σ are σ0= 17.13 S/cm and E1=21,847 J mol
-1

,  
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Figure 32: Simulated viscosity vs. temperature for a NaCl-PuCl3-LaCl3 fuel salt.  We expect these values to 

overestimate the actual viscosity after considering our previous results for UCl3 salts.  These values therefore 

constitute an upper boundary on  . 

 

 

and those used for λ are αt=6.552x10
-5

 W/(m·K
2
) and βt=0.492 W/(m·K). 

 

Finally, the simulated fuel salt viscosity is graphed in Figure 32.  The fit parameters used were 

η0=0.1717 mPa·s and E2=29,356  J mol
-1

.  We expect these results to be an over prediction 

because our code seems to systematically exaggerate the viscosity for trichlorides.  However, 

based on our work with a NaCl-UCl3 system, it is expected that the deviation is not as large as 

those for pure trichloride systems.  In fact, our value for the viscosity at 1100K is very close to 

the calculated value of a NaCl-UCl3 (68,32%) system according to Figure 28.  As the calculated 

values there were about twice as large as experiment, we speculate that our fuel salt viscosities 

are increased by close to a factor of 2.  The results here will be useful to the ADSMS 

collaboration by setting an upper boundary for the fuel melt viscosity.  We conclude our study by 

summarizing the calculated properties at the proposed bulk operational temperature of 650°C  

 (923K).   
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Table 9: Summary of Calculated ADSMS Fuel Salt Properties 
Property Units Value at 650°C Estimated Error 

ρ g/cm
3
 3.146 0.157 

cp kJ/(K∙kg) 0.676 0.041 

σ S cm
-1

 1.00 Lower bound 

λ W/(m∙K) 0.431 0.050 

  mPa∙s 7.87 Upper bound 
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CHAPTER VI 

CONCLUSIONS 

 

We have performed molecular dynamics simulations of various chloride melts using a polarizble 

ion model (PIM) to accurately predict thermal, physical and transport properties of molten salt 

systems.  The PIM is a computational experiment which simulates a system of ions and solves 

for each ion’s equation of motion.  Simulation parameters, including ensemble type, simulation 

length, and time step were strategically chosen to provide accurate results within a reasonable 

computational time.  The interaction potential parameters used in the simulations were validated 

by comparing the microscopic structure of each salt to experimentally measured RDFs.  

Excellent agreement between experimental and simulated RDFs was achieved for all ionic 

species used in this study.  The only system lacking experimental validation is PuCl3: there is no 

experimental data for the RDF for plutonium in a chloride melt.  We have compensated for this 

by using La
3+

 as a surrogate for Pu
3+

 and are confident in the accuracy of this first order 

simulation. 

 

A framework was developed to calculate the density, heat capacity, electrical conductivity, 

thermal conductivity, and viscosity of molten salts.  Significant use of correlation functions and 

Green-Kubo relations has been employed in the calculation of transport properties, but large 

amounts of data were required in order for the functions to converge.  Our results for density and 

heat capacity are quite good, with maximum deviations of 5 and 7% respectively from 

experimental values.  The calculations for thermal conductivity were also quite successful, being 
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within modeling error for all alkali chloride melts, and producing reasonable estimates of the 

ADSMS secondary and fuel salts.  Errors for the thermal conductivity were typically around 

10%, but became inflated when lithium was present in the melt.  Additionally, larger statistical 

errors were present in multi-component melts, as more correlation functions had to be calculated. 

 

Results for viscosity agreed with experiment quite well for alkali chlorides, and LiCl-KCl 

eutectic.  Our model also correctly reproduced the correct form of temperature dependence for 

this value.  However, we see a systematic over prediction of the viscosity in melts containing 

heavy trichlorides.  This is probably due to changes in the microscopic structure of the melt 

caused by the change in cation to anion ratio.  Large ionic complexes and bigger cation sizes 

could be reducing the ion mobility, causing the liquid to become thicker.  The magnitude of the 

deviation from experiment seems to be linearly proportional to the concentration of trichlorides 

in the melt.  For these reasons, we treat our calculated values for melt viscosity as an upper 

boundary, with the expectation that the actual salt viscosity will be somewhat lower. 

 

Our model may not be appropriate for accurately calculating the electrical conductivities of 

molten salts, as we see a systematic underestimate of this value at lower temperatures.  

Furthermore, our model seems to treat the temperature dependence very linearly instead of the 

Arrhenius type.  These deviations may be caused by charge current due to things other than bulk 

ion flow, or by nonlinear effects that arise close to the molten salt’s freezing point.  That said, we 

do believe these results provide first-order approximations for the electrical conductivity, as our 

calculations do get within the neighborhood of experimental values. 
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Finally, we have modeled the ADSMS fuel salt using a NaCl-PuCl3-LaCl3 model.  The density 

was mapped for varying compositions, and a 32% trichloride concentration was chosen.  

Working estimates of the density, heat capacity, and thermal conductivity were produced for the 

ADSMS fuel salt and secondary coolant, and limits were placed on the melt’s viscosity and 

electrical conductivity.  These values will be of importance to the ADSMS collaboration as they 

design the ADSMS system’s molten salt cores.  Experiments using surrogates for plutonium, 

such as lanthanum, need to be done in order to confirm the values calculated here. 

 

This work furthers the goal of the ADSMS collaboration of constructing an economic and safe 

device capable of destroying the world’s highly radiotoxic inventory of TRU.  This will be a 

large step forward for the nuclear industry, as it eliminates the most enduring hazard of modern 

nuclear power.   
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APPENDIX A 

FORMULAS USED FOR MULTI-COMPONENT SYSTEMS 

 

In chapter II we derived the Green-Kubo formula for a one-component ionic liquid’s diffusion 

coefficient.  We then went on to state similar expressions for other various transport properties.  

These expressions are significantly more complex for ionic liquids containing multiple 

components.  First, imbalances in different ion concentrations may cause internal electrostatic 

potentials not present in one-component liquids.  Secondly, differing ion concentrations lead to 

chemical potentials that give rise to internal diffusion of ions.  These two factors combine to 

form electrochemical potentials, which alter the motion of each of the liquid’s components 

differently.  Furthermore, these potentials can coexist with a temperature gradient.  Thus, the 

dynamics of the liquid are based on multiple thermodynamic forces: the temperature gradient, 

  , the electrostatic potential difference,   , and the chemical potential gradients,    .   

 

In the following treatment, the following notation is used for Green-Kubo relations: 

     
 

    
   

 

 

               (A1) 

je is the system’s microscopic energy current, jc is the net microscopic charge current, and jn 

indicates the charge current of the nth ionic species.   
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Conductivities of binary systems 

Consider an ionic liquid containing two types of ions, one being a cation with charge   and the 

other an anion of charge   .  Because of the relative concentrations of the ions in the liquid two 

chemical potentials    and    will be present.  For simplicity we first combine these potentials 

with any electric potential, ϕ, present in the liquid to form the electrochemical potentials 

          .  Furthermore, we can redefine electrochemical potential of the anionic species as 

zero as long as we shift the other potential with the relation  

     
       

     
  (A2) 

This manipulation is advantageous because it is now possible to relate the macroscopic energy 

and charge fluxes, JE and J1 respectively, to the thermal driving force,    -  , and the 

electrochemical driving force,    -         .  Furthermore, the coefficients of these 

phenomenological equations are Green-Kubo relations which can be calculated directly from 

MD simulations
18,41

: 

 

   
 

  
              

   
 

  
               

(A3) 

(A4) 

JE and J1 are a set of conjugate flows for these thermodynamic driving forces, meaning they obey 

the Onsager reciprocal relation
42

 
,43

: 

         (A5) 

Equations (A4) and (A5) can be used to eliminate X1 and L1E from (A3), yielding 
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    (A6) 

In the absence of electrical current, so that J1=0, (A6) has the form of Fourier’s Law of heat 

conduction with the λ of the binary ionic liquid being
44 

   
 

  
     

   
 

   
   (A7) 

It can also be shown that the electrical conductivity is given by the formula 
21,41

: 

   
   

 
  (A8) 

This reproduces our result for a one-component ionic liquid. 

 

Conductivities of multi-component systems 

Now consider a liquid containing N different ionic species.  For our purposes, we assume that the 

species labeled 1 through N-1 are cations, and the Nth species is an anion, such as Cl
-
.  In 

general, the energy and N-1 species charge currents are related by a system of N equations 
18

:   

 

   
 

  
              

   

 

  

   
 

  
             

   

 

   

(A9) 

 

(A10) 

Here the index i runs from 1 to N-1.  To calculate the λ, we assume there is no electrical current, 

so each Ji=0.  Then the equations (A10) can be solved to give each Xj in terms of XE.  

Substitution of these expressions into (A9) relates JE to XE.   
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For example, in a three-component system (A10) will reduce to the relations 

 

   
             

          
 

   

   
             

   
        

    

(A11) 

(A12) 

Substituting into (A9) yields the formula for three-component system’s λ
18

: 

   
 

  
     

   
        

                

          
 

   (A13) 

 Equations (A5), (A9), and (A10) can be solved to give a general solution for the λ of an N+1 

component system:   

 
  

 

  

 

          

          

    
          

 

 
       

   
       

 

  
(A14) 

Using this approach, the λ for a four-component system is calculated to be 

   
 

  
     

 

 
  (A15) 

where 

 

     
            

      
            

      
            

  

                                              

                        

                            
         

        
                                      

 

(A16) 

 

(A17) 

Finally, we remark equation (A8) is true in general for multi-component systems
45

. 
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Viscosity averaging 

While equation (19) is accurate for describing the viscosity of a multi-component system, we can 

take advantage of the isotropy of a MS in order to increase the accuracy of the calculated value.  

Because a MS is homogenous is all directions, each of the three shear terms of the stress tensor, 

σxy, σyz, and σxz, as well as two more independent terms, 
 

 
    -     and 

 

 
    -    , should give 

the same value if used for the autocorrelation function in (19)
46

.  Therefore, averaging over these 

five values quintuples the amount of data for viscosity produced by one MD simulation.  After 

averaging, equation (19) becomes 

 

  
 

     
                                             

 

 

 
 

 
                                

 
 

 
                                     

(A18) 

This extra averaging is necessary because viscosity autocorrelation functions converge very 

slowly, causing a large amount of data to be needed for accurate calculations. 

 


