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ABSTRACT

Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion

planning methods. These sampling-based methods generate robot configurations (nodes)

and then connect them to form a graph (roadmap) containing representative feasible path-

ways. A key step in PRM roadmap construction involves identifying a set of candidate

neighbors for each node. Traditionally, these candidates are chosen to be thek-closest

nodes based on a given distance metric. This work proposes a new neighbor selection pol-

icy calledLocalRand(k, k′), that first computes thek′ closest nodes to a specified node

and then selectsk of those nodes at random. Intuitively,LocalRand attempts to benefit

from random sampling while maintaining the higher levels oflocal planner success inher-

ent to selecting more local neighbors. A methodology for selecting the parametersk and

k′ is provided, and an experimental comparison for both rigid and articulated robots show

thatLocalRand results in roadmaps that are better connected than the traditionalk-closest

or a purely random neighbor selection policy. The cost required to achieve these results is

shown to be comparable to the cost ofk-closest.
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CHAPTER I

INTRODUCTION

The generalmotion planningproblem involves finding a valid path for an object (e.g.

robot, vechicle) from some start to goal configuration in a given environment. The notion

of validity depends on the problem – traditionally, it refers to a collision-free path, i.e.

avoiding collisions with self and with obstacles in the environment. Motion planning is an

important component of many applications, including computer-aided design [1], robotics

[2], virtual reality simulations [3], and bioinformatics [4] .

The motion planning problem is regarded intractable, as thecomplexity of an exact

algorithm grows exponentially in the complexity of the robot [5]. Research on random-

ized, sampling-based approaches has produced methods thatcan solve important motion

planning problems that were once considered impractical. One widely used randomized

method is the Probabilistic Roadmap Method (PRM) [6]. PRMs sample and test motions

in the space consisting of robot configurations, calledconfiguration space(C-space).

PRMs use aroadmap graphG = (V,E) to approximate the environment in C-space,

where verticesv ∈ V represent configurations in C-space and edgese ∈ E are valid paths

between them. In implementations of PRMs, valid configurations are selected through a

sampling methodand connected using aconnection strategyand local planner. Queries

are solved by connecting the start and goal configuration to the roadmap and using a graph

search (e.g. Djikstra’s shortest-path algorithm) to extract a path.

One of the key steps in PRM construction is node connection. Ideally, roadmap con-

nectivity should reflect the connectivity of the underlyingC-space. From this perspective,

the best strategy would be to attempt to connect allθ(n2) pairs of nodes. However, the

enormous cost of these connection attempts is not feasible for any but the simplest of

problems. Hence, the selection of candidates for local transitions (neighbors) is crucial to
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both roadmap quality and efficiency.

The objective of a good neighbor selection strategy is to identify pairs of configuration

that have a high probability of being connectible by the local planner and that are useful

in terms of producing good quality roadmaps.

The most commonly used method for neighbor selection in PRMsuses nearest-

neighbor search to select thek nodes that are closest to the node in question, wherek

is typically some relatively small, fixed constant, typically between 5 and 25 [3].

This work proposes a new neighbor selection policy calledLocalRand(k, k′). This

method first computes thek′ closest nodes to a specified node and then selectsk of those

nodes at random; this enables us to limit the proximity of nodes from which neighbors are

selected while still allowing randomness in selection.

Intuitively, the proposedLocalRand method attempts to achieve the benefits associ-

ated with random sampling, while also maintaining the higher levels of local planner suc-

cess associated with local connection. Additionally, basic differences betweenLocalRand

and the traditionalk-closest neighbor selection policy are expected to affect roadmap struc-

ture. For example, in undirected roadmapsLocalRand should reduce the number of du-

plicate connection attempts, resulting in roadmaps with more edges. Another difference is

thatLocalRand will likely produce roadmaps with longer edges thank-closest. This may

be beneficial as it has previously been shown that longer edges have a positive impact on

roadmap quality [7].

A. Contributions

The main contributions of this work include:

• A new neighbor selection policy,LocalRand(k, k′), that identifies a set ofk′ local

nodes and then selects a random subset ofk of these nodes, and a methodology for
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selecting the parameters forLocalRand.

• An experimental evaluation that showsLocalRand is capable of producing roadmaps

with higher connectivity thank-closest at a comparable cost.

The performance ofLocalRand(k, k′) is closely tied to the selection of parameters

k andk′. For a givenk andn (total number of configurations) we havek ≤ k′ ≤ n − 1.

Note that for the extreme values ofk′ = k andk′ = n−1, the method becomes equivalent

to k-closest and purely random (k-random) neighbor selection, respectively. To under-

stand how to selectk′ for a givenk andn, an extensive performance study was undertaken

over the range of possiblek andk′ values in some basic environments. From this study,

a set of optimalk′ values was identified for which theLocalRand method is capable of

outperforming both thek-closest andk-random methods; these optimalk′ varied across

different environment classifications. Next, a set of more complex environments is consid-

ered, with the(k, k′) values determined from the closest-matching basic environment. The

results show that theLocalRand method with thesek′ values is capable of outperforming

both thek-closest andk-random methods in more complex environments including clut-

tered and narrow passage environments with both rigid body robots and fixed/free base

articulated linkage robots of varying size and dimensionality.

B. Organization of Thesis

The thesis is organized as follows. In chapter II, we providean introduction to the Proba-

bilistic Roadmap Method (PRM) and discuss related literature, especially around the area

of candidate neighbor selection for PRM connection. Next (chapter III), we compare

several neighbor selection strategies for the connection phase of PRM construction, and

introduce theLocalRand method. Chapter IV provides a description of the environments

and other PRM parameters (e.g. distance metric) that will bestudied during our evaluation
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of neighbor selection strategies. The final chapters (V, VI)detail the results of this study

and conclusions drawn from the observed data.
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CHAPTER II

PRELIMINARIES AND RELATED WORK

Here, we present an overview of the Probabilistic Roadmap Method and its use for solving

complex motion planning problems in high-DOF configurationspace. Following this, we

describe variations of PRM node generation, then discuss relevant related work in PRM,

especially around candidate neighbor selection.

A. Configuration Space

In the context of a motion planning problem, a robot is an object with position and orien-

tation described by a set ofn degrees of freedom (DOFs), with each corresponding to a

component of the object (e.g. physical positions in (x, y, z), orientations, joint angles of a

linkage). The robot’s configuration can be uniquely described by a point (x1, x2, · · · , xn)

in ann-dimensional space calledconfiguration space(C-space) [8]. The subset of feasible

(not in collision) configurations is calledfree C-space(C-free), and the set of unfeasible

configurations is theblocked C-space(C-obstacle). With these definitions, the motion

planning problem becomes that of finding a continous path through C-free that connects

some start and goal configuration. Rather than explicitly computing the boundaries of

C-obstacle, we determine the feasibility of each configuration by performing a collision

detection (CD) test against obstacles in the robot’s natural workspace.

B. PRM Overview

The methods proposed in this work will be studied on Probabilistic Roadmap Methods

[6], a class of randomized motion planners that use a roadmapgraph of free robot con-

figurations (not in collision with obstacles) to find paths between some start and goal
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configuration. The use of PRMs to solve a general motion planning problem is described

in Alg. 1.

Roadmap creation in PRMs is typically performed in two phases. In thenode gener-

ation phase (step 1 in Alg. 1), a set ofn robot configurations in C-space is generated using

a specific sampling strategy (or set of sampling strategies), then added to the roadmap

graph as vertices. TheNode Connectionphase (step 2 in Alg. 1) attempts to insert edges

in this graph between vertices that represent a valid motionbetween two configurations.

The node connection phase itself contains two separate operations. First, pairs of can-

didates for connection are chosen by iterating through all roadmap vertices and selecting

a set of configurations to connect to, using some criteria. Inmost applications of PRMs,

the selection criteria is simply thek configurations that are closest, in distance, to the

source configuration. After these candidates are found a connection is attempted using a

local planner, which is a computationally-expensive deterministic planner that checks for

a valid path between the two configurations (e.g., a straight-line collision detection check

in C-space).

The cost of these steps is listed in Alg. 1 in terms of the primitive operations:

• cs = cost to generate a sample

• cv = cost to validate the feasibility of sample

• cn = cost to find a neighbor

• cc = cost to validate a connection between two nodes (local planner call)

Several PRM variants have been proposed in literature. The following use different

methods of node generation (step 1 in Alg. 1) to handle different classifications of prob-

lems.
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Algorithm 1 PRMs: Probabilistic Roadmap Methods

1) Generate Nodes{find collision-free configurations -O(n(cs + cv))}

2) Connect Nodes{connect nodes to form roadmap -O(kn(cn + cc))}

for each configuration:

a) Select neighbors -O(k ∗ cn)

b) Attempt connection between neighbor pairs -O(k ∗ cc)

3) Process Query

a) Connect start/goal to roadmap

b) Find path in roadmap between connection nodes

• Basic PRM (PRM): The original PRM [6] uses uniform random sampling in order

to produce a distribution that is symmetry invariant. This method performs well

when the environment is uniform (e.g., completely free or a uniform distribution of

obstacles).

• Obstacle-Based PRM (OBPRM):OBPRM [9] is a PRM that samples near the

boundary of C-space obstacles. The method first generates configurations that are in

collision with obstacles in C-space, then computes valid configurations in random

directions away from the obstacle. Of these, the valid configuration closest to the

surface is kept.

• Gaussian-Sampling PRM (GaussPRM):GaussPRM [10] samples configurations

in difficult regions by using techniques associated with blurring in image processing.

• Medial-Axis PRM (MAPRM): MAPRM [11] biases sampling along the medial

axis (generalized Voronoi diagram) of the valid C-space. Resulting paths generally

have a wide clearance from obstacles.

In this work, we primarily use PRM and OBPRM for sampling.
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C. Related Work

1. PRM

PRMs have been applied to a wide range of problems [12]. In robotics, PRM has been

used for path planning with mobile robots [13] [14] [15], humanoid robots [16] and recon-

figurable robots [17]. They have been applied to biological problems including analysis of

biological structures [18] and protein folding [4]. They have also been used in industrial

automation and path planning with robotic manipulators [19] [20] [21] [22].

In [7], Geraerts and Overmars perform a reachability-basedanalysis of the PRM

method. In this study they evaluate existing node generation and connection methods

based on how well they cover environments and how connected the roadmaps they pro-

duce are. This study shows that existing methods are capableof generating node sets that

cover the environment well and that the major difficulty in roadmap construction is con-

necting these nodes, especially in difficult narrow passageproblems. The study concludes

that the major hurdle in roadmap construction is not covering the environment but gen-

erating a connected roadmap. In [23], Geraerts and Overmarsshow experimentally that

the main difficulty in PRM construction is constructing a roadmap whose connectivity

represents the connectivity of C-space.

2. Candidate Selection Approaches

There have been a variety of proposed methods for identifying candidates for local transi-

tions during the connection phase of PRM construction [24].The most common strategy is

the so-calledk-closest, which selects the set ofk nodes that are nearest the query sample,

i.e., itsk-nearest neighbors, wherek is typically some small constant. This simple strategy

was used in many PRMs, including the original PRM [6], OBPRM [9], and GaussPRM

[10]. The intuition behind the use of the set of closest nodesis that the costs for veri-
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fying the validity of the connection are reduced and, depending on the problem, shorter

connections are more likely to be collision-free [24].

Another simple method is aDistancemethod that identifies neighbors within some

fixed distance of the query node. A drawback of this method is that some knowledge of

the problem is required in order to determine an appropriatedistance. If the distance is

too big, too many connections will be attempted, resulting in a very expensive connection

phase. If it is too small, then many connections will be excluded and the roadmap will be

poorly connected. The original PRM implementation included a variation of the distance

method with an upper bound on the number of neighbors [6]. Thedistance method is com-

monly used for grid-based PRM methods [25]. It is also commonly used in biophysical

simulations where certain cutoffs are standard, e.g., a root-mean-square deviation (RMSD)

of atom positions between molecular conformations [26]. Geraerts and Overmars [27, 28]

include a distance method in a study of the impact of sampling, node selection/adding

strategy and local planning on coverage and connectivity ofPRMs. Their study shows that

thek-closest method is well-suited for generating roadmaps with high connectivity.

In [23], Geraerts and Overmars explore aVisibility-based connection strategy. Visi-

bility neighbors are those that are visible (connectible with a straight-line) from the node.

However, this often requires special placement of the nodesas in the variant, Visibility

Roadmaps [29].

Geraerts and Overmars[23] also explore aComponent-based selection strategy. This

strategy attemptsk connections to each connected component [24]. Depending onthe

number of components and the value ofk, there could be a large number of attempts.

As part of his work in [30], Boden presents a grid based neighbor selection policy.

The nodes in this method are arranged in a grid in C-space and connections are attempted

between adjacent nodes on the grid. If a path is not found, then additional grid nodes are

introduced at a higher resolution in areas that could not be connected, and connections are
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attempted between adjacent nodes in the higher resolution grid.

In [31], Karaman and Frazzoli study the asymptotic behaviorof solutions returned by

sampling-based motion planning methods. As part of this work they present the methods

PRM* and RRT*, which are shown theoretically to converge to optimal solutions as the

number of nodes grow to densely cover the configuration space.

Another direction in neighbor selection that has been explored is the examination of

the impact of using approximate and more efficient strategies for computingk-closest us-

ing data structures (e.g. KD-trees [32] [33], Metric/SpillTrees [34] [35], dimensionality

reduction [36]) to efficiently provide solutions to the neighbor selection problem. These

methods use an approximation parameter that tolerates a certain amount of error in neigh-

bor selection.

KD-treesare a D-dimensional extension of a binary tree which provides a good model

for motion planning environments with high dimensionality. The CGAL [32] and ANN

[37] libraries provide a KD-tree structure with an approximate query algorithm. The pa-

rameterǫ can be used to allow approximation, where ak-nearest-neighbor search returns

k neighbors that are guaranteed to be no more than(1 + ǫ) times farther away than the

exactk-th neighbor.

TheMetric-treedata structure organizes a set of nodes in a spatial hierarchical manner

[34]. The metric tree is constructed by iteratively dividing a group of nodes into two

subgroups, based on the most distant nodes they are closest to. Metric trees are queried

by locating the leaf of the tree containing the query nodes, then performing a backtracking

step to ensure that every leaf potentially containing a nearest-neighbor is searched.Spill-

Treesare an approximate variant of metric trees [35] that are queried using a defeatist

search, which only checks the leaf containing the query nodes.

Distance-based Projection onto Euclidean Space (DPES)[36] computes the nearest-

neighbors to a given nodes by projecting the metric space down to Rd space. Although
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the accuracy is reduced, the complexity of the computation of nearest-neighbors is also

reduced, as fewer distance evaluations are required. The amount of approximation can be

controlled by increasing/decreasing the dimensionality of the projection.
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CHAPTER III

CANDIDATE SELECTION POLICIES

In this chapter, we compare severalselection policiesfor the PRM connection phase. In

addition to the traditionally usedk-closest policy, we consider anAllPairs policy (used

as a baseline comparison for each method), a random connection policy, and our proposed

novel method,LocalRand, which identifies a set of local nodes then selects a subset of

these nodes at random.

A. Selection Policy Definitions

In our discussion, we will define selection policies that operate on a candidate set of config-

urations (Vc) and a source configuration (vs). The set of all configurations in the roadmap

is V , with Vc ⊆ V andvs ∈ V . Most selection policies choose a maximum ofk configu-

rations, wherek is a user provided constant.

Listed below are a set of basic strategies for selecting candidates from the candidate

setVc. Note that all strategies that select a candidate set based on distance calculation (i.e.,

k-closest andLocalRand) are affected by the distance metric used.

• AllPairs(vs, Vc): Select all configurations fromVc as connection candidates forvs.

• k-closest(vs, Vc, k): Select thek closest configurations tovs from Vc.

• k-random(vs, Vc, k). Selectk configurations at random fromVc.

• LocalRand(vs, Vc, k, k
′) Select thek′ ≥ k closest configurations tovs from Vc and

then selectk of them at random.
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B. LocalRand Candidate Neighbor Selection Policy

TheLocalRand method first identifies thek′ closest neighbors to a sample then selects

k of these nodes at random. One of the key features of this method is that it allows us to

introduce a controlled amount of randomness into neighbor selection. Because this method

first locates thek′ closest neighbors we know that the nodes selected by this method must

be drawn from thek′ closest nodes to a sample. By changing the value ofk′ we can change

the range from which the nodes are selected. This method alsogives the user the ability to

separately control the number of nodes and the range from which these nodes are drawn.

This provides the ability to adjust the range from which the nodes are selected without

changing the number of neighbors that are selected. Conversely, this method also provides

the ability to alter the number of neighbors that are selected while keeping the range from

which they are selected fixed.

The behavior of theLocalRand method differs from thek-closest method in a num-

ber of significant ways. One major difference is that this method will avoid making du-

plicate edge connections in undirected graphs. With thek-closest method, there is a high

probability that a node’s neighbors will also have the node as one of their own neighbors.

This results in a total number of edge connection attempts that is considerably less thank

per node. With a randomized method likeLocalRand this will happen less often, as the

pool of potential neighbors to a given node is larger (k′ vs. k), and the total number of

unique connection attempts will be greater. For more details about this see [38].

Another difference is that this method will be attempting toconnect longer edges than

thek-closest method with the samek value. It has been previously shown that edge per

edge, longer edges contribute more to roadmap quality than shorter edges [7]. At the same

time, it also possible that these longer edges will be more difficult to connect, and that the

advantage of having having longer edges will be offset by thefact that fewer edges are
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generated.

Another difference is that, ask′ increases, there is a greater likelihood that the set

of candidates will include nodes from different connected components. A method like

k-closest that selects only the nearest node is likely to select many nodes from the same

connected component. Making multiple connections with thesame connected component

will not contribute to the connectivity of the roadmap and will result in redundant edges. In

contrast, a method likeLocalRand that selects some further nodes would be more likely

to select nodes from different connected components. If these connections are successful

they could merge these components and increase the overall connectivity of the roadmap.

In addition, there are some environments where consideringonly the closest neigh-

bors can be problematic. This will particularly be a problemfor environments with thin

walls where there are regions of C-free that are close to eachother but separated by C-

obstacle (and unconnectable).

With theLocalRand(k, k′) method, the choice ofk′ will dramatically affect the re-

sulting roadmap. Ask′ approachesN (nodes in roadmap),LocalRand behaves likek-

random. Ask′ approachesk, LocalRand behaves more likek-closest.

Becausek-closest andk-random both produce roadmaps with beneficial qualities –k-

closest provides better connectivity and more roadmap edges,k-random provides a longer

average edge length and shorter diameter – it is important for us to study the spectrum

of roadmaps produced byLocalRand(k, k′) for various values ofk′. This is done in

section A.

C. Evaluation Metrics

It is important to compare the quality of different neighborselection methods with a variety

of performance-based metrics. The following metrics allowevaluation of (A) how effec-
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tive each method is at finding connectible neighbors, (B) howgood they are at producing

well-connected roadmaps, and (C) the computational expense of each method.

1. Ideal Roadmap

To determine the relative quality of roadmap as the different neighbor selection parame-

ters are changed, it is important to have an ideal case with which to normalize the results.

Thus, anideal roadmap will be generated for each environment. The ideal map will be

connected using an all-pairs selection policy. This method, while computationally expen-

sive, will produce the best-possible connected roadmap forthe environment, because all

elements inVc will be considered as a neighbor – the other selection policies only return a

subset ofVc.

2. Connectivity Metrics

The following connectivity metrics evaluate how good the methods are at finding con-

nectible neighbors and how successful they are at producingconnected roadmaps. This

will help to determine how the methods affect roadmap quality.

• Number of Edges: The total count of roadmap edges. This metric will tell us how

many edges the methods are able to produce. In general, roadmaps with more edges

tend to be better connected and have a shorter diameter.

• Local Planner Success(%): The percentage of successful local planner connections.

This metric will tell us how effective each method is at finding connectible neighbors.

While this metric trends with the number of edges generated,the exact metric differs

in that the total number of connections attempted changes between methods.

• Connectivity: For a roadmapR = (V,E), the connectivity (conn) is the number of

pairs of nodes(p, q) for which there is a path fromp → q in R. This metric indicates
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how connected a roadmap is. Theconn of the roadmap is normalized by dividing it by

theconn of the ideal map.conn = 1 indicates that a roadmap captures the connectivity

of the ideal map.conn < 1 indicates that there are nodes that are connected in the ideal

map but not in the roadmap.

• Diameter of Largest Connected Component: The diameter is the length of the

longest shortest path in a graph. This is important because it tells us about the structure

of the roadmap and indicates how long paths in the roadmap will be. All diameters in

this study are computed using the Euclidean distance metric.

3. Cost Metric

This metric shows the computational expense of each methods. This is important in deter-

mining the tradeoffs associated with the connection methods (for example, is a 5% gain in

connectivity worth an order of magnitude increase in computation?).

• CD-Calls: The number of local-planner collision detection (CD) calls made during

theconnectionphase of roadmap construction. CD-calls are a metric used tomeasure

roadmap construction time that does not take into account computational resources.
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CHAPTER IV

EXPERIMENTAL STUDY

This chapter describes the set of experiments run to comparethe selection policies detailed

in chapter III. The motion planning problem environments studied are described, followed

by other controlled parameters (node generation strategy,distance metric, etc.).

A. Environments

To properly study the effects of differing connection strategies, it is important to choose

problem environments that are tuned to maximize the information gained through roadmap

metrics. The first set shown in Fig. 1 are simple, homogeneousand serve as representatives

of environments in the second set. Environments in the second set (Fig. 2, 3, 4) are more

complex but share similar characteristics with environments in the first set. A general

overview of all environments is discussed next.

(a) Free (rigid body) (b) Tunnel (rigid body) (c) Semi-Cluttered (linkage)

Figure 1. Baseline environments
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(a) Elbow-tunnel (6 DOF) (b) Cluttered (6 DOF) (c) Walls (7 DOF)

Figure 2. Low-DOF Environments

• Free (rigid): [free] A uniformly C-free environment (10x10x10), with a rigid-body

cube robot (1x1x1) (Fig. 1a). This problem will help us find thek′ that produces an

optimal number of edges when local-planner success is guaranteed.

• Tunnel (rigid) : [tu-E, tu-M, tu-H ] A homogeneous narrow-passage environment

(1x1x20), with a rigid-body rectangular robot (Fig. 1b). Three permutations of this

environment are studied, with different levels of difficulty (tu-E, tu-M, tu-H). In the

easy permutation (tu-E), the robot is small enough to freely rotate 360 degrees in all

rotational DOF. The harder permutations of the environmentincrease the robot size so

that only 1 rotational DOF (tu-M) and none of the rotational DOF (tu-H) can rotate

360 degrees. Intu-H, the robot is large enough so that only translational movements

are possible.

• Semi-Cluttered (articulated, 12 DOF): [freeAL ] A free environment (10u3) with

seven small obstacles placed uniformly in the environment (Fig. 1c). The robot is a

12-DOF articulated linkage with 6 revolute joints at various orthogonal orientations.

• Elbow Tunnel (rigid) : [et-E, et-M, et-H] An extension of the tunnel environment,

this environment (Fig. 2a) consists of three narrow passages (1x1x10) connected by

two “elbow” sections of free space (4x1x4). As with the baseline tunnel problem, three
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permutations of this environment are studied, with different levels of difficulty caused

by proportionally increasing the robot dimensions. The same rotational restrictions

are produced in these environments to match the corresponding baseline environment

(tu-E→ et-E, etc.)

• Cluttered (rigid) : [cl-E, cl-M, cl-H ] A homogeneous cluttered environment (7x7x7,

Fig. 2b) with the same rigid-body rectangular robot used in the Elbow Tunnel. Obsta-

cles are aligned in a grid with a random orientation, with an average width of 1 unit

between obstacles. Three permutations of this environmentare studied, with different

levels of difficulty (cl-E, cl-M, cl-H).

• Walls (articulated, 7 DOF): [walls] This environment (Fig. 2c) contains a set of free

areas separated by thin walls with a small opening, which therobot (2 links connected

by a revolute joint) can only traverse by rotating the joint angle. The thin walls and

opening will produce situations where nearest-neighbor configurations will be uncon-

nectable, highlighting the advantages of a connection strategy (i.e. LocalRand) that

attempts connections randomly in the local neighborhood.

• Boxes (articulated, 12 DOF / 64 DOF / 128 DOF): [boxes] This environment (Fig. 3)

contains an area cluttered with small boxes. The robot (7-link, 12-DOF articulated

linkage) must traverse from one corner to the opposing corner of the environment. The

swept-volume distance metric is used for computing distance between configurations.

The 12 DOF problem uses a 7-link robot with orthogonal joint angles. The 64- and

128-DOF problems use a “coil”-like robot composed of many equal-size segments.

• Forked (fixed-base articulated linkage, 32 DOF / 128 DOF / 256DOF): [forked]

A cluttered environment (Fig. 4) with several small obstacles. The robot is a fixed-

base articulated linkage with a forked end that can only sample in a two-dimensional

plane. Three permutations of this environment are tested: the total robot size remains
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constant while the number of links increases (and the size ofeach link decreases).

(a) Boxes (12 DOF) (b) Boxes (64 DOF) (c) Boxes (128 DOF)

Figure 3. High-DOF Articulated Linkages (free-base)

(a) Forked (32 DOF) (b) Forked (128 DOF) (b) Forked (256 DOF)

Figure 4. High-DOF Articulated Linkages (fixed-base)

B. Setup

Node generation strategies and distance metric methods were selected to best fit the char-

acteristics of each environment.

1. Node Generation

In the first set of experiments, Uniform sampling [6] was usedin freeandsemi-cluttered

environments and Obstacle-based sampling [9] intunnelenvironments. In the second set
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of experiments, Uniform sampling was used inwalls, boxesandforkedenvironments and

Obstacle-based sampling inelbow-tunnelandclutteredenvironments.

2. Distance Metric

Environments with a rigid-body robot used Euclidean distance, as well as those with fixed-

base linkages; all free-body articulated-linkage problems used a swept distance metric.

The swept distance between two configurations is the total volume the robot sweeps in the

workspace when moving between configurations using the specified local planner. This

distance metric is generally considered to be very accurateat the expense of being costly

to compute [39].

3. Implementation and Experimental Platform

All planners were implemented using the C++ motion planninglibrary developed by the

Parasol Lab at Texas A&M University, which uses the graph from the STAPL Parallel C++

library [40]. RAPID [41] was used for collision detection computations. All computation

was performed on Brazos, a major computing cluster at Texas A&M University. The

processing nodes consisted of quad-core Intel Xeon processors running at 2.5 Ghz, with

15 GB of available RAM.
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CHAPTER V

RESULTS

This chapter discusses the results of our study in two parts.We first study the impact of

thek′ parameter on the quality of roadmaps connected using theLocalRand(k, k′) con-

nection method, followed by recommendations for selectingoptimalk′ values in different

categories of motion planning problems. We then directly compare theLocalRand(k, k′)

method with these “optimal”k′ against common connection strategies employed in PRM:

k-closest andk-random.

A. Selecting Parameters For LocalRand

Given the high degree of configurability of theLocalRand(k, k′) method, we seek in this

study to a select thek′ (for eachk), that produces a roadmap of the highest quality. In the

process we show that theLocalRand method is capable of generating roadmaps that have

a higher connectivity than eitherk-closest ork-random. We also evaluate the tradeoffs in

cost and connectivity that come from using theLocalRand method.

We hypothesize that for an environment with certain characteristics (e.g. narrow-

passage, free, cluttered) and a robot of a certain type (e.g.high-DOF articulated linkage,

rigid body) there exists an “optimal”k′, or range ofk′, that provides a good combination

of the benefits ofk-random andk-closest. We seek to obtain values ofk′ for severalk in a

variety of controlled, homogeneous environments. Once thesek′ are fixed, this “optimal”

version ofLocalRand(k, k′) will be labeledLR-Opt(k).

In order to determine this optimal set, we performed an exhaustive set of experiments

over the entire range of possiblek′ values. In this part of our study we used 4k values (4,

8, 16, 32). These values were selected because they were representative of the range ofk

values commonly used in motion planning problems. For thesevalues ofk, we connected
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roadmaps usingk′ = k + 1, k + 2, ..., 128. The results of this study were averaged over 5

runs using unique random number seeds for configuration sampling.

As environments can have wildly different underlying C-space topologies, we used

theLR-Opt(k) obtained from a baseline problem as the representativeLocalRand method

for more complex environments sharing similar characteristics. For example, theLR-

Opt(k) obtained for a baseline narrow-passage environment will beused in a complex

environment that has predominantly narrow-passage characteristics.
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Figure 5.LocalRand(k, k′) – numedges– Tunnel (M) (6 DOF)
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Figure 6.LocalRand(k, k′) – numedges– Semi-cluttered (12 DOF)

From the fine-grainedLocalRand(k, k′) study, we are able to see how roadmap met-

rics are affected ask′ increases fromk. Primarily, three metrics are interesting: the number

of edges connected (numedges), the total work performed in connection (local planner col-

lision detection calls, orlpcd), and the connectivity of the roadmap (conn). For eachk, we

would like to select ak′ such thatLR-Opt(k) maximizesnumedgesandconnwhile mini-

mizing lpcd. Because the work performed in roadmap connection scales with the number

of edges connected, our minimization oflpcd will only be used as a “tiebreaker”, after

optimizing the other metrics. Figures 5 and 6 shownumedgeswith connfor the tu-M and

freeALenvironments, and allow us to determine ak′ that we find optimal for eachk in our

set.
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Figure 7.LocalRand(k, k′) – lpcd – Tunnel (M) (6 DOF)
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B. LR-Opt(k) Selection

Figures 5 and 6 clearly show a small range ofk′ that result in a desirable roadmap. For

small k, this k′ falls between3k and 4k; for large k, between3

2
k and 3k. As an ex-

ample, consider the Tunnel (M) environment (Fig. 5). Fork = 4, the connectivity of

LocalRand(k, k′) is not maximized untilk′ = 16. At this point, numedgesis nearly

maximized. However, increasingk′ beyond this point results in minimal edge gain, but

significantly more work (lpcd, Fig. 7, 8). Therefore, we selectk′ = 14 for LR-Opt(k) at

k = 4.

k′

free tu-E tu-M tu-H freeAL

k

4 12 12 16 16 12

8 24 24 24 24 18

16 48 48 28 28 32

32 96 96 45 38 64

Table I.k′ selected forLR-Opt(k), for eachk (baseline study)

Using this methodology we select an optimalk′ for eachk in our set, for the environ-

ments in the baseline study (Table I). Thesek′ are used to select theLR-Opt(k) method

for a given environment classification (free, narrow-passage, articulated linkage), which

will be used in the remainder of this study. These selectedk′ range in value from1.19 to

4 timesk; environments where the connections are more difficult to achieve (tu-M, tu-H)

have a smallerk′, relative tok, ask increases (Table II).



27

k′/k

free tu-E tu-M tu-H freeAL

k

4 3 3 4 4 3

8 3 3 3 3 2.25

16 3 3 1.75 1.75 2

32 3 3 1.41 1.19 2

Table II.k′ selected forLR-Opt(k), shown as multiple ofk

C. Comparison of Connection Methods

Next, we compare the performance of theLocalRand method with the optimalk′ value

(LR-Opt(k)) to the k-closest andk-random methods. We show that theLocalRand

method is capable of producing better roadmaps than thek-random andk-closest methods,

particularly in environments where there is more free space.
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Figure 9. Roadmap Metrics – Elbow Tunnel (Easy)
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Figure 10. Roadmap Metrics – Elbow Tunnel (Medium)
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Figure 11. Roadmap Metrics – Elbow Tunnel (Hard)
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Figure 12. Roadmap Metrics – Cluttered (Easy)

To evaluate the relative performance ofk-closest,k-random, andLR-Opt(k), we

will examine the roadmap metrics produced by these methods in each of the environments
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along with the number of CD-calls required by each of the methods. In this section,

only the connectivity and edge count metrics will be listed (Fig. 9 through 21) as these

are the metrics that most clearly show a high-quality roadmap; the remaining metrics are

provided in Appendix B (Fig. 28 through 40). Recall that roadmaps with more edges and

a higher connectivity are beneficial and that the number of CD-calls is indicative of the

cost associated with connecting the roadmap. We are therefore looking for methods that

produce roadmaps with more edges and a higher connectivity,but that do not require too

many CD-calls.

A first observation is thatk-closest performs relatively well compared with globally

random connection (k-random). For example, consider the Cluttered (medium) environ-

ment (Fig 13, 32): more work (lpcd) was required to connect the roadmap than withk-

closest, and both the number of edges produced (numedges) and connectivity (conn) were

significantly less. As C-space becomes more complex in the medium/hard versions of this

problem (Fig 11,14), and in other environments (Fig 15, 18, and 19), the detrimental ef-

fect only increases. Whenlpcd is smaller thank-closest, this is due to the fact that the

longer connections attempted ink-random will fail more quickly (and thus require fewer

CD calls) than shorter connections attempted byk-closest.

In comparison, applying randomness to a local neighborhoodusingLR-Opt(k) pro-

duces, in most cases, ahigherconnectivity and agreaternumber of roadmap edges than

usingk-closest. This is most clearly seen in relatively free environments (Fig 9, 12, 15, and

19), where the longer average connections – we are attempting connections to neighbors

that are outside of thek-closest set – are more likely to succeed.

In theet-M andboxesproblems (Fig 10, 18), smallerk (4, 8) withLR-Opt(k) did not

provide an increase in connectivity. In fact, larger valuesof k (16, 32) withLR-Opt(k)

resulted in a decreased connectivity. This suggests that for exceptionally difficult envi-

ronments (e.g. Fig. 18) – with a low local planner success rate – attempting connections
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beyond the closestk does not provide a benefit.
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Figure 13. Roadmap Metrics – Cluttered (Medium)
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Figure 14. Roadmap Metrics – Cluttered (Hard)
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Figure 15. Roadmap Metrics – Walls (7 DOF)
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Figure 16. Roadmap Metrics – Boxes (12 DOF)

For the relatively free environments that achieve full connectivity – et-E (Fig. 9, 28),

cl-E (Fig. 12, 31)) –LR-Opt(k) reduces the roadmap diameter; this is desirable because

roadmaps with a smaller diameter tend to produce shorter, more efficient paths.

This study examined two types of high-DOF problems:boxes(free-base linkage of

12, 64, and 128 DOF – Fig. 3) andforked (fixed-base linkage of 32, 128, and 256 DOF

– Fig. 4). In all three permutations of Boxes, usingLR-Opt(k) resulted in a slightly de-

creased connectivity when compared withk-closest. However, the relative performance

againstk-closest remains constant as DOF increases: this suggests that the motion plan-

ning problem difficulty (local planner success rate) has a greater effect on the performance

of LR-Opt(k) than the DOF of the problem. In both of the fixed-base problemsstudied

(Fig. 19, 20, 21),LR-Opt(k) provided a higher connectivity thank-closest across allk

studied.
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Figure 17. Roadmap Metrics – Boxes (64 DOF)
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Figure 18. Roadmap Metrics – Boxes (128 DOF)
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Figure 19. Roadmap Metrics – Forked (32 DOF)
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Figure 20. Roadmap Metrics – Forked (128 DOF)
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Figure 21. Roadmap Metrics – Forked (256 DOF)
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CHAPTER VI

CONCLUSIONS

This study has shown that, for a variety of motion planning environments, the applica-

tion of local randomization to neighbor selection can produce roadmaps of higher quality

(connectivity, number of edges) and lead to a better performance than the commonly used

k-closest connection method.

The baseline study, leading to the selection ofLocalRand(k, k′), shows that ak′

(size of larger set of nodes to selectk-random from) exists such thatLocalRand(k, k′)

can equal or out-performk-closest in a variety of environments. Ak′ of between two and

three timesk is recommended for difficult environments, and four timesk for relatively

free motion planning problems.

The scope of this study is limited to rigid-body and articulated-linkage motion plan-

ning problems, of varying degrees of complexity. As PRMs areapplied to a much wider

classification of motion planning problmes (e.g. simultaneous planning for multiple robots,

high-DOF protein folding, closed-chain systems), future work could include studying the

effectiveness of theLocalRand(k, k′) method into these domains. Additionally, an im-

proved method for guiding selection ofk′ would aid the broad application of this strategy

in practice. Also, using differentk′ in homogenous regions of a heterogenous problem

may prove effective.
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APPENDIX A

FIGURES -LocalRand SELECTION
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Figure 22.LocalRand(k, k′) – numedges– Free (6 DOF)
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Figure 23.LocalRand(k, k′) – lpcd – Free (6 DOF)
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Figure 24.LocalRand(k, k′) – numedges– Tunnel (E) (6 DOF)
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Figure 25.LocalRand(k, k′) – lpcd – Tunnel (E) (6 DOF)
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Figure 26.LocalRand(k, k′) – numedges– Tunnel (H) (6 DOF)
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Figure 27.LocalRand(k, k′) – lpcd – Tunnel (H) (6 DOF)
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APPENDIX B

FIGURES -LocalRand COMPARISON
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Figure 28. Additional Metrics – Elbow Tunnel (Easy)
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Figure 29. Additional Metrics – Elbow Tunnel (Medium)
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Figure 30. Additional Metrics – Elbow Tunnel (Hard)
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Figure 31. Additional Metrics – Cluttered (Easy)
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Figure 32. Additional Metrics – Cluttered (Medium)
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Figure 33. Additional Metrics – Cluttered (Hard)
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Figure 34. Additional Metrics – Walls (7 DOF)
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Figure 35. Additional Metrics – Boxes (12 DOF)
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Figure 36. Additional Metrics – Boxes (64 DOF)
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Figure 37. Additional Metrics – Boxes (128 DOF)
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Figure 38. Additional Metrics – Forked (32 DOF)
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Figure 39. Additional Metrics – Forked (128 DOF)
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Figure 40. Additional Metrics – Forked (256 DOF)


