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ABSTRACT

Probabilistic Roadmap Methods (PRMs) are one of the most cissses of motion
planning methods. These sampling-based methods genebateconfigurations (nodes)
and then connect them to form a graph (roadmap) containprgsentative feasible path-
ways. A key step in PRM roadmap construction involves idginty a set of candidate
neighbors for each node. Traditionally, these candidateslaosen to be thk-closest
nodes based on a given distance metric. This work proposes agighbor selection pol-
icy called Local Rand(k, k"), that first computes the’ closest nodes to a specified node
and then selects of those nodes at random. Intuitivelyypcal Rand attempts to benefit
from random sampling while maintaining the higher levelsoctl planner success inher-
ent to selecting more local neighbors. A methodology foest&hg the parametefsand
k" is provided, and an experimental comparison for both rigid articulated robots show
that Local Rand results in roadmaps that are better connected than thédraalik-closest
or a purely random neighbor selection policy. The cost negliio achieve these results is

shown to be comparable to the costieflosest.
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CHAPTER |

INTRODUCTION
The generamotion planningproblem involves finding a valid path for an object (e.qg.
robot, vechicle) from some start to goal configuration in\egienvironment. The notion
of validity depends on the problem — traditionally, it reféo a collision-free path, i.e.
avoiding collisions with self and with obstacles in the @aaiment. Motion planning is an
important component of many applications, including cotepaided design [1], robotics
[2], virtual reality simulations [3], and bioinformatic4].

The motion planning problem is regarded intractable, astimeplexity of an exact
algorithm grows exponentially in the complexity of the rolfg]. Research on random-
ized, sampling-based approaches has produced methodsmthablve important motion
planning problems that were once considered impracticak Widely used randomized
method is the Probabilistic Roadmap Method (PRM) [6]. PREI®gle and test motions
in the space consisting of robot configurations, catledfiguration spacéC-space).

PRMs use aoadmap graphG = (V, E) to approximate the environment in C-space,
where vertice® € V' represent configurations in C-space and edged~ are valid paths
between them. In implementations of PRMs, valid configoratiare selected through a
sampling metho@nd connected using@nnection strateggndlocal planner Queries
are solved by connecting the start and goal configuratiometodadmap and using a graph
search (e.g. Djikstra’s shortest-path algorithm) to etteapath.

One of the key steps in PRM construction is node connectateally, roadmap con-
nectivity should reflect the connectivity of the underlyi@espace. From this perspective,
the best strategy would be to attempt to connect(@lf) pairs of nodes. However, the
enormous cost of these connection attempts is not feasiblarfy but the simplest of

problems. Hence, the selection of candidates for locakitians (neighbors) is crucial to



both roadmap quality and efficiency.

The objective of a good neighbor selection strategy is totifiepairs of configuration
that have a high probability of being connectible by the Igdanner and that are useful
in terms of producing good quality roadmaps.

The most commonly used method for neighbor selection in PRbss nearest-
neighbor search to select tlienodes that are closest to the node in question, where
is typically some relatively small, fixed constant, typlgddetween 5 and 25 [3].

This work proposes a new neighbor selection policy calledul Rand(k, k). This
method first computes the closest nodes to a specified node and then seleatshose
nodes at random; this enables us to limit the proximity ofgsoflom which neighbors are
selected while still allowing randomness in selection.

Intuitively, the proposed.ocal Rand method attempts to achieve the benefits associ-
ated with random sampling, while also maintaining the higeeels of local planner suc-
cess associated with local connection. Additionally, bd#ferences betweehocal Rand
and the traditionat-closest neighbor selection policy are expected to aftedimap struc-
ture. For example, in undirected roadmdpsgal Rand should reduce the number of du-
plicate connection attempts, resulting in roadmaps withenedlges. Another difference is
that Local Rand will likely produce roadmaps with longer edges thianlosest. This may
be beneficial as it has previously been shown that longersslaigee a positive impact on

roadmap quality [7].

A. Contributions
The main contributions of this work include:

e A new neighbor selection policy,ocal Rand(k, k'), that identifies a set df’ local

nodes and then selects a random subsétaifthese nodes, and a methodology for



selecting the parameters fbbcal Rand.

e An experimental evaluation that showscal Rand is capable of producing roadmaps

with higher connectivity thark-closest at a comparable cost.

The performance of.ocal Rand(k, k') is closely tied to the selection of parameters
k andk’. For a givenk andn (total number of configurations) we hake< k' < n — 1.
Note that for the extreme valuesiof= k£ andk’ = n — 1, the method becomes equivalent
to k-closest and purely randont-andom) neighbor selection, respectively. To under-
stand how to seledt for a givenk andn, an extensive performance study was undertaken
over the range of possibleand’ values in some basic environments. From this study,
a set of optimak’ values was identified for which theocal Rand method is capable of
outperforming both thé-closest and:-random methods; these optinfdlvaried across
different environment classifications. Next, a set of man@plex environments is consid-
ered, with thek, k') values determined from the closest-matching basic enwieom. The
results show that théocal Rand method with thesé’ values is capable of outperforming
both thek-closest and:-random methods in more complex environments including clu
tered and narrow passage environments with both rigid botgts and fixed/free base

articulated linkage robots of varying size and dimensiiyal

B. Organization of Thesis

The thesis is organized as follows. In chapter I, we pro@dentroduction to the Proba-
bilistic Roadmap Method (PRM) and discuss related litamgtaspecially around the area
of candidate neighbor selection for PRM connection. Nekgfter 1ll), we compare
several neighbor selection strategies for the connecti@sg of PRM construction, and
introduce thelLocal Rand method. Chapter IV provides a description of the environisien

and other PRM parameters (e.g. distance metric) that wstbb@ied during our evaluation



of neighbor selection strategies. The final chapters (V,déknil the results of this study

and conclusions drawn from the observed data.



CHAPTER I

PRELIMINARIES AND RELATED WORK
Here, we present an overview of the Probabilistic Roadmaihbdteand its use for solving
complex motion planning problems in high-DOF configuratspace. Following this, we
describe variations of PRM node generation, then discuegamet related work in PRM,

especially around candidate neighbor selection.

A. Configuration Space

In the context of a motion planning problem, a robot is an cjéth position and orien-
tation described by a set afdegrees of freedom (DOFs), with each corresponding to a
component of the object (e.g. physical positions in (x, ypzjentations, joint angles of a
linkage). The robot’s configuration can be uniquely desatiby a point £, x5, - - -, z,,)

in ann-dimensional space callednfiguration spacéC-space) [8]. The subset of feasible
(not in collision) configurations is calleflee C-spacéC-free), and the set of unfeasible
configurations is thdlocked C-spac€C-obstacle). With these definitions, the motion
planning problem becomes that of finding a continous patbuthin C-free that connects
some start and goal configuration. Rather than explicitipgoting the boundaries of
C-obstacle, we determine the feasibility of each configanalby performing a collision

detection (CD) test against obstacles in the robot’s nhivoekspace.

B. PRM Overview

The methods proposed in this work will be studied on ProksilmlRoadmap Methods
[6], a class of randomized motion planners that use a roadiregh of free robot con-

figurations (not in collision with obstacles) to find pathgvileen some start and goal



configuration. The use of PRMs to solve a general motion phenproblem is described
in Alg. 1.

Roadmap creation in PRMs is typically performed in two pBasethenode gener-
ation phase (step 1in Alg. 1), a setofrobot configurations in C-space is generated using
a specific sampling strategy (or set of sampling strategtegh added to the roadmap
graph as vertices. THgode Connectionphase (step 2 in Alg. 1) attempts to insert edges
in this graph between vertices that represent a valid mdtéiween two configurations.

The node connection phase itself contains two separatatiqes. First, pairs of can-
didates for connection are chosen by iterating throughoalilmap vertices and selecting
a set of configurations to connect to, using some criteriandst applications of PRMs,
the selection criteria is simply thee configurations that are closest, in distance, to the
source configuration. After these candidates are found aemion is attempted using a
local planner which is a computationally-expensive deterministic pkanthat checks for
a valid path between the two configurations (e.g., a strdigatcollision detection check
in C-space).

The cost of these steps is listed in Alg. 1 in terms of the givmioperations:

e ¢, = cost to generate a sample
e ¢, = cost to validate the feasibility of sample
e ¢, = costto find a neighbor

e ¢, = cost to validate a connection between two nodes (locahglacall)

Several PRM variants have been proposed in literature. dlk@ning use different
methods of node generation (step 1 in Alg. 1) to handle diffeclassifications of prob-

lems.



Algorithm 1 PRMs: Probabilistic Roadmap Methods
1) Generate Nodegfind collision-free configurations@(n(c; + ¢,))}

2) Connect Nodeg connect nodes to form roadmap+{kin(c, + c.))}
for each configuration:
a) Select neighborsG (k * ¢,,)
b) Attempt connection between neighbor pait3(£ * c.)
3) Process Query
a) Connect start/goal to roadmap

b) Find path in roadmap between connection nodes

e Basic PRM (PRM): The original PRM [6] uses uniform random sampling in order
to produce a distribution that is symmetry invariant. Thisthod performs well
when the environment is uniform (e.g., completely free ondioum distribution of

obstacles).

e Obstacle-Based PRM (OBPRM):OBPRM [9] is a PRM that samples near the
boundary of C-space obstacles. The method first generatéguwations that are in
collision with obstacles in C-space, then computes valitfigarations in random
directions away from the obstacle. Of these, the valid condiion closest to the

surface is kept.

e Gaussian-Sampling PRM (GaussPRM)GaussPRM [10] samples configurations

in difficult regions by using techniques associated withiiirg in image processing.

¢ Medial-Axis PRM (MAPRM): MAPRM [11] biases sampling along the medial
axis (generalized Voronoi diagram) of the valid C-spacesuReng paths generally

have a wide clearance from obstacles.

In this work, we primarily use PRM and OBPRM for sampling.



C. Related Work

1. PRM

PRMs have been applied to a wide range of problems [12]. Iotiody PRM has been
used for path planning with mobile robots [13] [14] [15], hanoid robots [16] and recon-
figurable robots [17]. They have been applied to biologicabfems including analysis of
biological structures [18] and protein folding [4]. Theyeaalso been used in industrial
automation and path planning with robotic manipulatorg [20] [21] [22].

In [7], Geraerts and Overmars perform a reachability-bassalysis of the PRM
method. In this study they evaluate existing node generatiomd connection methods
based on how well they cover environments and how connebtedoadmaps they pro-
duce are. This study shows that existing methods are capbbtnerating node sets that
cover the environment well and that the major difficulty imdonap construction is con-
necting these nodes, especially in difficult narrow pasgagelems. The study concludes
that the major hurdle in roadmap construction is not coggtire environment but gen-
erating a connected roadmap. In [23], Geraerts and Overshams experimentally that
the main difficulty in PRM construction is constructing a do@ap whose connectivity

represents the connectivity of C-space.

2. Candidate Selection Approaches

There have been a variety of proposed methods for idengjfyamdidates for local transi-
tions during the connection phase of PRM construction [ZAE most common strategy is
the so-calledi-closest, which selects the setiohodes that are nearest the query sample,
i.e., itsk-nearest neighbors, whekas typically some small constant. This simple strategy
was used in many PRMs, including the original PRM [6], OBPR| pnd GaussPRM

[10]. The intuition behind the use of the set of closest nddebkat the costs for veri-



fying the validity of the connection are reduced and, dependn the problem, shorter
connections are more likely to be collision-free [24].

Another simple method is Bistancemethod that identifies neighbors within some
fixed distance of the query node. A drawback of this methotdas some knowledge of
the problem is required in order to determine an appropda&ance. If the distance is
too big, too many connections will be attempted, resultmg very expensive connection
phase. If it is too small, then many connections will be egelliand the roadmap will be
poorly connected. The original PRM implementation incldidevariation of the distance
method with an upper bound on the number of neighbors [6].dI$tance method is com-
monly used for grid-based PRM methods [25]. It is also comigased in biophysical
simulations where certain cutoffs are standard, e.g., am@an-square deviation (RMSD)
of atom positions between molecular conformations [26fa@&s and Overmars [27, 28]
include a distance method in a study of the impact of sampliogle selection/adding
strategy and local planning on coverage and connectiviBRi¥ls. Their study shows that
the k-closest method is well-suited for generating roadmapk igh connectivity.

In [23], Geraerts and Overmars explor&/igibility-based connection strategy. Visi-
bility neighbors are those that are visible (connectibléhwi straight-line) from the node.
However, this often requires special placement of the naeges the variant, Visibility
Roadmaps [29].

Geraerts and Overmars[23] also explor€@nponenbased selection strategy. This
strategy attempts connections to each connected component [24]. Dependirtpeon
number of components and the value:pthere could be a large number of attempts.

As part of his work in [30], Boden presents a grid based neaglsielection policy.
The nodes in this method are arranged in a grid in C-spaceamections are attempted
between adjacent nodes on the grid. If a path is not found, @delitional grid nodes are

introduced at a higher resolution in areas that could notlb@ected, and connections are
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attempted between adjacent nodes in the higher resolution g

In [31], Karaman and Frazzoli study the asymptotic behavi@olutions returned by
sampling-based motion planning methods. As part of thikwloey present the methods
PRM* and RRT*, which are shown theoretically to converge ptirmal solutions as the
number of nodes grow to densely cover the configuration space

Another direction in neighbor selection that has been explas the examination of
the impact of using approximate and more efficient stragefgiecomputingt-closest us-
ing data structures (e.g. KD-trees [32] [33], Metric/Spitees [34] [35], dimensionality
reduction [36]) to efficiently provide solutions to the nielipr selection problem. These
methods use an approximation parameter that toleratesaarcamount of error in neigh-
bor selection.

KD-treesare a D-dimensional extension of a binary tree which pravalgood model
for motion planning environments with high dimensionalifyne CGAL [32] and ANN
[37] libraries provide a KD-tree structure with an approabe query algorithm. The pa-
rametere can be used to allow approximation, wherg-aearest-neighbor search returns
k neighbors that are guaranteed to be no more than ¢) times farther away than the
exactk-th neighbor.

TheMetric-treedata structure organizes a set of nodes in a spatial hiécatchanner
[34]. The metric tree is constructed by iteratively divigia group of nodes into two
subgroups, based on the most distant nodes they are closedetric trees are queried
by locating the leaf of the tree containing the query node=) performing a backtracking
step to ensure that every leaf potentially containing aestareighbor is searche8pill-
Treesare an approximate variant of metric trees [35] that areigdarsing a defeatist
search, which only checks the leaf containing the query siode

Distance-based Projection onto Euclidean Space (DHB&)computes the nearest-

neighbors to a given nodes by projecting the metric spacendowiz? space. Although
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the accuracy is reduced, the complexity of the computatfamearest-neighbors is also
reduced, as fewer distance evaluations are required. Thararof approximation can be

controlled by increasing/decreasing the dimensionafithe projection.
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CHAPTER III

CANDIDATE SELECTION POLICIES
In this chapter, we compare sevesalection policiesor the PRM connection phase. In
addition to the traditionally usettclosest policy, we consider ati/Pairs policy (used
as a baseline comparison for each method), a random coongdtiicy, and our proposed
novel method Local Rand, which identifies a set of local nodes then selects a subset of

these nodes at random.

A. Selection Policy Definitions

In our discussion, we will define selection policies thatrape on a candidate set of config-
urations {/.) and a source configuration,j. The set of all configurations in the roadmap
isV,with V. C V andv, € V. Most selection policies choose a maximunkafonfigu-
rations, where is a user provided constant.

Listed below are a set of basic strategies for selectingidates from the candidate
setV.. Note that all strategies that select a candidate set baséidtance calculation (i.e.,

k-closest and.ocal Rand) are affected by the distance metric used.
o AllPairs(vs, V,): Select all configurations fromi, as connection candidates far.
e k-closestvs, V., k): Select the: closest configurations ta, from V..
e k-randontu,, V., k). Selectk configurations at random frof..

e LocalRand(vs,V,, k, k") Select thek’ > k closest configurations to, from V. and

then select of them at random.
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B. LocalRand Candidate Neighbor Selection Policy

The Local Rand method first identifies thé’ closest neighbors to a sample then selects
k of these nodes at random. One of the key features of this méthbat it allows us to
introduce a controlled amount of randomness into neighédection. Because this method
first locates thé’ closest neighbors we know that the nodes selected by thisoth@iust
be drawn from th&’ closest nodes to a sample. By changing the valuéwE can change
the range from which the nodes are selected. This methodjaies the user the ability to
separately control the number of nodes and the range frommhwhese nodes are drawn.
This provides the ability to adjust the range from which tloeles are selected without
changing the number of neighbors that are selected. Calygtisis method also provides
the ability to alter the number of neighbors that are setkwatieile keeping the range from
which they are selected fixed.

The behavior of thé.ocal Rand method differs from thé-closest method in a num-
ber of significant ways. One major difference is that thishodtwill avoid making du-
plicate edge connections in undirected graphs. Withiteosest method, there is a high
probability that a node’s neighbors will also have the noslerge of their own neighbors.
This results in a total number of edge connection attempiisistconsiderably less than
per node. With a randomized method likecal Rand this will happen less often, as the
pool of potential neighbors to a given node is largérys. k), and the total number of
unique connection attempts will be greater. For more de#dibut this see [38].

Another difference is that this method will be attemptingémnect longer edges than
the k-closest method with the samievalue. It has been previously shown that edge per
edge, longer edges contribute more to roadmap quality thames edges [7]. At the same
time, it also possible that these longer edges will be mdfiedlit to connect, and that the

advantage of having having longer edges will be offset byféloe that fewer edges are
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generated.

Another difference is that, as increases, there is a greater likelihood that the set
of candidates will include nodes from different connectedhponents. A method like
k-closest that selects only the nearest node is likely tacsab@any nodes from the same
connected component. Making multiple connections withstlime connected component
will not contribute to the connectivity of the roadmap andl vésult in redundant edges. In
contrast, a method likéocal Rand that selects some further nodes would be more likely
to select nodes from different connected components. felwennections are successful
they could merge these components and increase the ovemalkctivity of the roadmap.

In addition, there are some environments where considemhgthe closest neigh-
bors can be problematic. This will particularly be a problEmenvironments with thin
walls where there are regions of C-free that are close to edwdr but separated by C-
obstacle (and unconnectable).

With the Local Rand(k, k") method, the choice of will dramatically affect the re-
sulting roadmap. A%’ approachesV (nodes in roadmap).ocal Rand behaves like:-
random. Ask’ approaches$, Local Rand behaves more liké-closest.

Becausé:-closest and-random both produce roadmaps with beneficial qualities —
closest provides better connectivity and more roadmapségandom provides a longer
average edge length and shorter diameter — it is importaniddo study the spectrum
of roadmaps produced b¥ocal Rand(k, k') for various values of’. This is done in

section A.

C. Evaluation Metrics

Itis important to compare the quality of different neighbelection methods with a variety

of performance-based metrics. The following metrics alemaluation of (A) how effec-
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tive each method is at finding connectible neighbors, (B) goad they are at producing

well-connected roadmaps, and (C) the computational expeinsach method.

1. Ideal Roadmap

To determine the relative quality of roadmap as the differesighbor selection parame-
ters are changed, it is important to have an ideal case witbhath normalize the results.
Thus, anideal roadmap will be generated for each environment. The ideal map will be
connected using an all-pairs selection policy. This metldidle computationally expen-
sive, will produce the best-possible connected roadmagh®environment, because all
elements in/. will be considered as a neighbor — the other selection gdionly return a

subset ofV/...

2. Connectivity Metrics

The following connectivity metrics evaluate how good thetmoels are at finding con-
nectible neighbors and how successful they are at produwmingected roadmaps. This

will help to determine how the methods affect roadmap qyalit

e Number of Edges The total count of roadmap edges. This metric will tell usvho
many edges the methods are able to produce. In general, apadrith more edges

tend to be better connected and have a shorter diameter.

e Local Planner Success(%) The percentage of successful local planner connections.
This metric will tell us how effective each method is at fingliconnectible neighbors.
While this metric trends with the number of edges generdteriexact metric differs

in that the total number of connections attempted changeslea methods.

e Connectivity: For a roadmapk = (V, E), the connectivity fonn) is the number of

pairs of nodesp, ¢) for which there is a path from — ¢ in R. This metric indicates
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how connected a roadmap is. Then of the roadmap is normalized by dividing it by
theconn of the ideal mapconn = 1 indicates that a roadmap captures the connectivity
of the ideal mapconn < 1 indicates that there are nodes that are connected in the idea

map but not in the roadmap.

e Diameter of Largest Connected Component The diameter is the length of the
longest shortest path in a graph. This is important becatskésius about the structure
of the roadmap and indicates how long paths in the roadmapevilAll diameters in

this study are computed using the Euclidean distance metric

3. Cost Metric

This metric shows the computational expense of each metfAdsis important in deter-
mining the tradeoffs associated with the connection metitfmat example, is a 5% gain in
connectivity worth an order of magnitude increase in coratorn?).

e CD-Calls: The number of local-planner collision detection (CD) sathade during

theconnectionphase of roadmap construction. CD-calls are a metric usettasure

roadmap construction time that does not take into accounpatational resources.
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CHAPTER IV

EXPERIMENTAL STUDY
This chapter describes the set of experiments run to contipaselection policies detailed
in chapter Ill. The motion planning problem environmentslgtd are described, followed

by other controlled parameters (node generation stratégfance metric, etc.).

A. Environments

To properly study the effects of differing connection stags, it is important to choose
problem environments that are tuned to maximize the inftiongained through roadmap
metrics. The first set shown in Fig. 1 are simple, homogenandserve as representatives
of environments in the second set. Environments in the sesen(Fig. 2, 3, 4) are more

complex but share similar characteristics with environtsen the first set. A general

overview of all environments is discussed next.

(a) Free (rigid body) (b) Tunnel (rigid body) (c) Semi-Cluttered (linkage)

Figure 1. Baseline environments
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5
A4

(a) Elbow-tunnel (6 DOF) (b) Cluttered (6 DOF) (c) Walls (7 DOF)

Figure 2. Low-DOF Environments

e Free (rigid): [free] A uniformly C-free environment {0x10x10), with a rigid-body
cube robot {x1x1) (Fig. 1a). This problem will help us find thé that produces an

optimal number of edges when local-planner success is gieeaa.

Tunnel (rigid): [tu-E, tu-M, tu-H] A homogeneous narrow-passage environment
(I1x1x20), with a rigid-body rectangular robot (Fig. 1b). Three patations of this
environment are studied, with different levels of diffiqu(tu-E, tu-M, tu-H). In the
easy permutationty-E), the robot is small enough to freely rotate 360 degreeslin al
rotational DOF. The harder permutations of the environnrerease the robot size so
that only 1 rotational DOFtg-M) and none of the rotational DORu¢H) can rotate
360 degrees. ltu-H, the robot is large enough so that only translational moveme
are possible.

Semi-Cluttered (articulated, 12 DOF) [freeAL] A free environment (0u?) with

seven small obstacles placed uniformly in the environmEigt. (1c). The robot is a

12-DOF articulated linkage with 6 revolute joints at vasauthogonal orientations.

Elbow Tunnel (rigid) : [et-E, et-M, et-H] An extension of the tunnel environment,
this environment (Fig. 2a) consists of three narrow passéiggx10) connected by

two “elbow” sections of free spacéx1x4). As with the baseline tunnel problem, three
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permutations of this environment are studied, with diffeédevels of difficulty caused
by proportionally increasing the robot dimensions. The eaatational restrictions
are produced in these environments to match the correspghdiseline environment

(tu-E — et-E etc.)

Cluttered (rigid) : [cl-E, cl-M, cl-H] A homogeneous cluttered environmefixx7,
Fig. 2b) with the same rigid-body rectangular robot usedhéenElbow Tunnel. Obsta-
cles are aligned in a grid with a random orientation, with serage width of 1 unit
between obstacles. Three permutations of this environarerdgtudied, with different
levels of difficulty €CI-E, cl-M, cl-H).

Walls (articulated, 7 DOF): [walls] This environment (Fig. 2c) contains a set of free
areas separated by thin walls with a small opening, whicindhet (2 links connected
by a revolute joint) can only traverse by rotating the joingke. The thin walls and
opening will produce situations where nearest-neighbafigarations will be uncon-
nectable, highlighting the advantages of a connectionegjya(i.e. Local Rand) that

attempts connections randomly in the local neighborhood.

Boxes (articulated, 12 DOF/ 64 DOF/ 128 DOE)boxeg This environment (Fig. 3)
contains an area cluttered with small boxes. The robotn-lL2-DOF articulated
linkage) must traverse from one corner to the opposing cafrtbe environment. The
swept-volume distance metric is used for computing distdo®tween configurations.
The 12 DOF problem uses a 7-link robot with orthogonal jomglas. The 64- and
128-DOF problems use a “coil”-like robot composed of manyadepize segments.
Forked (fixed-base articulated linkage, 32 DOF / 128 DOF / 2560F): [forked]

A cluttered environment (Fig. 4) with several small obstacl The robot is a fixed-
base articulated linkage with a forked end that can only $amnpa two-dimensional

plane. Three permutations of this environment are testegitatal robot size remains
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constant while the number of links increases (and the sieadh link decreases).

| Em =

(a) Boxes (12 DOF) (b) Boxes (64 DOF) (c) Boxes (128 DOF)

Figure 3. High-DOF Articulated Linkages (free-base)

-. .- u /\ﬁ
i.éi\!/i gee

(a) Forked (32 DOF) (b) Forked (128 DOF) (b) Forked (256 DOF)

Figure 4. High-DOF Articulated Linkages (fixed-base)

B. Setup

Node generation strategies and distance metric methodssected to best fit the char-
acteristics of each environment.
1. Node Generation

In the first set of experiments, Uniform sampling [6] was useftee andsemi-cluttered

environments and Obstacle-based sampling [2lirmelenvironments. In the second set
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of experiments, Uniform sampling was usednalls, boxesandforkedenvironments and

Obstacle-based samplingafbow-tunnebndclutteredenvironments.

2. Distance Metric

Environments with a rigid-body robot used Euclidean distaias well as those with fixed-
base linkages; all free-body articulated-linkage proldammed a swept distance metric.
The swept distance between two configurations is the totahvwe the robot sweeps in the
workspace when moving between configurations using thefggmetocal planner. This
distance metric is generally considered to be very accatatee expense of being costly

to compute [39].

3. Implementation and Experimental Platform

All planners were implemented using the C++ motion planilbigary developed by the
Parasol Lab at Texas A&M University, which uses the grapmftbe STAPL Parallel C++
library [40]. RAPID [41] was used for collision detectionroputations. All computation
was performed on Brazos, a major computing cluster at Tex&sl Aniversity. The

processing nodes consisted of quad-core Intel Xeon proressnning at 2.5 Ghz, with

15 GB of available RAM.
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CHAPTER V

RESULTS
This chapter discusses the results of our study in two p#vesfirst study the impact of
the &’ parameter on the quality of roadmaps connected usind.thel Rand(k, k') con-
nection method, followed by recommendations for seleabipigmal &’ values in different
categories of motion planning problems. We then directippare theLocal Rand(k, k')
method with these “optimalk’ against common connection strategies employed in PRM:

k-closest and:-random.

A. Selecting Parameters For LocalRand

Given the high degree of configurability of ti@cal Rand(k, k') method, we seek in this
study to a select the’ (for eachk), that produces a roadmap of the highest quality. In the
process we show that tHercal Rand method is capable of generating roadmaps that have
a higher connectivity than eithérclosest ork-random. We also evaluate the tradeoffs in
cost and connectivity that come from using the-al Rand method.

We hypothesize that for an environment with certain charéstics (e.g. narrow-
passage, free, cluttered) and a robot of a certain type liggb-DOF articulated linkage,
rigid body) there exists an “optimak”, or range oft’, that provides a good combination
of the benefits of-random and:-closest. We seek to obtain valuesiofor severak in a
variety of controlled, homogeneous environments. Onceetkieare fixed, this “optimal”
version of Local Rand(k, k") will be labeledL R-Opt (k).

In order to determine this optimal set, we performed an estiaiset of experiments
over the entire range of possibitévalues. In this part of our study we used #alues (4,

8, 16, 32). These values were selected because they weeseeapative of the range &f

values commonly used in motion planning problems. For thakees ofk, we connected
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roadmaps using’ = k£ + 1,k + 2, ..., 128. The results of this study were averaged over 5

runs using unique random number seeds for configurationlgagmp

As environments can have wildly different underlying C-ep#opologies, we used

the L R-Opt(k) obtained from a baseline problem as the representativel Rand method

for more complex environments sharing similar charadiess For example, thé. R-

Opt(k) obtained for a baseline narrow-passage environment willdesl in a complex

environment that has predominantly narrow-passage dieaistcs.
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From the fine-grainedocal Rand(k, k') study, we are able to see how roadmap met-
rics are affected a8 increases fromk. Primarily, three metrics are interesting: the number
of edges connectedmedgeks the total work performed in connection (local plannercol
lision detection calls, dpcd), and the connectivity of the roadmagon). For eachk, we
would like to select &’ such thatl R-Opt(k) maximizesnhumedgegsndconnwhile mini-
mizing Ipcd. Because the work performed in roadmap connection scatesha number
of edges connected, our minimizationlptd will only be used as a “tiebreaker”, after
optimizing the other metrics. Figures 5 and 6 shmwnedgesvith connfor thetu-M and
freeALenvironments, and allow us to determing ghat we find optimal for each in our

set.
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B. LR-Opt(k) Selection

Figures 5 and 6 clearly show a small rangetbthat result in a desirable roadmap. For
small &, this &’ falls between3k and 4k; for large k, betweengk and3k. As an ex-
ample, consider the Tunnel (M) environment (Fig. 5). kot 4, the connectivity of
Local Rand(k, k") is not maximized untilt’ = 16. At this point, numedgess nearly
maximized. However, increasing beyond this point results in minimal edge gain, but
significantly more worklpcd, Fig. 7, 8). Therefore, we selekt = 14 for LR-Opt(k) at
k=4.

k/

free | tu-E | tu-M | tu-H | freeAL

4 | 12 | 12 16 16 12

8| 24 | 24 24 24 18

16| 48 | 48 28 28 32

32| 96 | 96 45 38 64

Table 1.k’ selected for. R-Opt(k), for eachk (baseline study)

Using this methodology we select an optinkafor eachk in our set, for the environ-
ments in the baseline study (Table ). Thésare used to select theR-Opt(k) method
for a given environment classification (free, narrow-pgssarticulated linkage), which
will be used in the remainder of this study. These selektednge in value froni.19 to
4 timesk; environments where the connections are more difficult toeae (u-M, tu-H)

have a smallek’, relative tok, ask increases (Table II).
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Kk

free | tu-E | tu-M | tu-H | freeAL

8 3 3 3 3 2.25

16| 3 3 1.75| 1.75 2

32| 3 3 141 1.19 2

Table 1. £’ selected for. R-Opt(k), shown as multiple of

C. Comparison of Connection Methods

Next, we compare the performance of thecal Rand method with the optimat’ value
(LR-Opt(k)) to the k-closest andk-random methods. We show that thecal Rand
method is capable of producing better roadmaps thah-ta@dom and-closest methods,
particularly in environments where there is more free space

14,000 T T T 1.00
[l K-Closest
O LR-Opt 0.90 -
12,000 | K-Random T

0.80 [

10,000 0.70 -

8,000 [ 0.60 -

edges

0.50 |-
6,000 [ o040

4,000 - 0.30 -

same-CC connectivity (%)

0.20 -
2,000

0.10 -

0 0.00

k4 k8 k16 k32 k8 k16

numedges connectivity

Figure 9. Roadmap Metrics — Elbow Tunnel (Easy)
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Figure 12. Roadmap Metrics — Cluttered (Easy)

To evaluate the relative performance /otlosest,k-random, andLR-Opt(k), we

will examine the roadmap metrics produced by these methoelgah of the environments
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along with the number of CD-calls required by each of the mesh In this section,
only the connectivity and edge count metrics will be listedy( 9 through 21) as these
are the metrics that most clearly show a high-quality rogurttze remaining metrics are
provided in Appendix B (Fig. 28 through 40). Recall that noeghs with more edges and
a higher connectivity are beneficial and that the number ofdalls is indicative of the
cost associated with connecting the roadmap. We are thierkefoking for methods that
produce roadmaps with more edges and a higher connechuityhat do not require too
many CD-calls.

A first observation is thakt-closest performs relatively well compared with globally
random connectionkfrandom). For example, consider the Cluttered (mediumirenyv
ment (Fig 13, 32): more workgcd) was required to connect the roadmap than with
closest, and both the number of edges produnachédgesand connectivitygonn were
significantly less. As C-space becomes more complex in ttleuméhard versions of this
problem (Fig 11,14), and in other environments (Fig 15, 18l #9), the detrimental ef-
fect only increases. Whepcd is smaller thark-closest, this is due to the fact that the
longer connections attempted/irrandom will fail more quickly (and thus require fewer
CD calls) than shorter connections attempted:ffosest.

In comparison, applying randomness to a local neighborlsoty L R-Opt (k) pro-
duces, in most cases hagher connectivity and gjreaternumber of roadmap edges than
usingk-closest. Thisis most clearly seen in relatively free emwnents (Fig 9, 12, 15, and
19), where the longer average connections — we are attegngimections to neighbors
that are outside of the-closest set — are more likely to succeed.

In theet-M andboxesproblems (Fig 10, 18), smallér(4, 8) with L R-Opt(k) did not
provide an increase in connectivity. In fact, larger valoéé (16, 32) with LR-Opt(k)
resulted in a decreased connectivity. This suggests thabdoeptionally difficult envi-

ronments (e.g. Fig. 18) — with a low local planner success+attempting connections



beyond the closegt does not provide a benefit.
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For the relatively free environments that achieve full aeetivity —et-E (Fig. 9, 28),
cl-E (Fig. 12, 31)) —L R-Opt(k) reduces the roadmap diameter; this is desirable because
roadmaps with a smaller diameter tend to produce shortee efticient paths.
This study examined two types of high-DOF problerhexes(free-base linkage of
12, 64, and 128 DOF — Fig. 3) aridrked (fixed-base linkage of 32, 128, and 256 DOF
— Fig. 4). In all three permutations of Boxes, usib§-Opt(k) resulted in a slightly de-
creased connectivity when compared wititlosest. However, the relative performance
againstk-closest remains constant as DOF increases: this suggesthée motion plan-
ning problem difficulty (local planner success rate) haseatgr effect on the performance
of LR-Opt(k) than the DOF of the problem. In both of the fixed-base problstudied
(Fig. 19, 20, 21),LR-Opt(k) provided a higher connectivity thanclosest across alt
studied.
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Figure 17. Roadmap Metrics — Boxes (64 DOF)
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CHAPTER VI

CONCLUSIONS
This study has shown that, for a variety of motion planningiremments, the applica-
tion of local randomization to neighbor selection can pre®ltoadmaps of higher quality
(connectivity, number of edges) and lead to a better pedoce than the commonly used
k-closest connection method.

The baseline study, leading to the selectionLotal Rand(k, k'), shows that &’
(size of larger set of nodes to seléctandom from) exists such thdtocal Rand(k, k")
can equal or out-perforrh-closest in a variety of environments. /A of between two and
three timest is recommended for difficult environments, and four timef®r relatively
free motion planning problems.

The scope of this study is limited to rigid-body and artitetklinkage motion plan-
ning problems, of varying degrees of complexity. As PRMsapplied to a much wider
classification of motion planning problmes (e.g. simultarseplanning for multiple robots,
high-DOF protein folding, closed-chain systems), futuggkvcould include studying the
effectiveness of thé.ocal Rand(k, k') method into these domains. Additionally, an im-
proved method for guiding selection bfwould aid the broad application of this strategy
in practice. Also, using different’ in homogenous regions of a heterogenous problem

may prove effective.
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Figure 28. Additional Metrics — Elbow Tunnel (Easy)
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Figure 30. Additional Metrics — Elbow Tunnel (Hard)
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