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ABSTRACT

This dissertation addresses the control problem for the general class of control

non-affine, non-standard singularly perturbed continuous-time systems. The prob-

lem of control for nonlinear multiple time scale systems is addressed here for the

first time in a systematic manner. Toward this end, this dissertation develops the

theory of feedback passivation for non-affine systems. This is done by generalizing

the Kalman-Yakubovich-Popov lemma for non-affine systems. This generalization

is used to identify conditions under which non-affine systems can be rendered pas-

sive. Asymptotic stabilization for non-affine systems is guaranteed by using these

conditions along with well known passivity-based control methods. Unlike previ-

ous non-affine control approaches, the constructive static compensation technique

derived here does not make any assumptions regarding the control influence on the

nonlinear dynamical model. Along with these control laws, this dissertation presents

novel hierarchical control design procedures to address the two major difficulties

in control of multiple time scale systems: lack of an explicit small parameter that

models the time scale separation and the complexity of constructing the slow man-

ifold. These research issues are addressed by using insights from geometric singular

perturbation theory and control laws are designed without making any assumptions

regarding the construction of the slow manifold. The control schemes synthesized

accomplish asymptotic slow state tracking for multiple time scale systems and si-

multaneous slow and fast state trajectory tracking for two time scale systems. The

control laws are independent of the scalar perturbation parameter and an upper

bound for it is determined such that closed-loop system stability is guaranteed.

Performance of these methods is validated in simulation for several problems

ii



from science and engineering including the continuously stirred tank reactor, mag-

netic levitation, six degrees-of-freedom F-18/A Hornet model, non-minimum phase

helicopter and conventional take-off and landing aircraft models. Results show that

the proposed technique applies both to standard and non-standard forms of singu-

larly perturbed systems and provides asymptotic tracking irrespective of the reference

trajectory. This dissertation also shows that some benchmark non-minimum phase

aerospace control problems can be posed as slow state tracking for multiple time

scale systems and techniques developed here provide an alternate method for exact

output tracking.
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1. INTRODUCTION

Feedback control is an integral part of most modern industrial processes and

technological systems. Some of these applications are intrinsically unstable and hence

their safe operation depends directly on control design. The design process usually

involves defining desired specifications and requirements, mathematical modeling of

the physical system, synthesizing a control law, analyzing the designed controller and

evaluating the overall system performance. Among these the most fundamental task

of the control engineer is to judiciously select control laws to achieve an acceptable

performance and desired stability characteristics.

It is apparent that the complexity of the resultant controller and the selection

process itself depend on the underlying description of the system being studied. It

is for this reason that control design and analysis of systems with linear dynamics

is well developed [1],[2]. Control law selection for linear systems is sequential in

nature. It begins with appropriate gain selection whose effect on the system is

analyzed using time-domain and/or frequency-domain techniques. Sometimes this

is followed by a compensator design to meet the desired performance specifications.

The above mentioned steps maybe repeated a few times to accomplish the desired

stability properties.

On the contrary, design and analysis of feedback control for systems with non-

linear dynamics is coupled. The control engineer selects a controller from available

synthesis methods and proceeds to derive the specific form of the control law. This de-

sign is then analyzed using Lyapunov based methods, Jacobian linearization and/or

numerical simulation. Often analysis concludes that the selected controller does not

guarantee system stability and the engineer needs to adopt other control techniques
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or use a combination of available methods. Once the control engineer is satisfied

with a particular technique, acceptable domain of operation is determined through

iterations. The limited number of available control approaches for addressing the

nonlinearities in the system add to the demanding nature of this iterative process.

This restriction stems from the fact that unlike linear systems, no specific form of

controller can be used to address all the different nonlinearities encountered in a sys-

tem. As a consequence nonlinear control theory for linear-in-control or control-affine

systems has been extensively developed [3],[4] and the control of general nonlinear

systems is an open research problem.

This dissertation considers the core problem of developing stabilizing controllers

for control non-affine continuous-time systems and explores applications in science

and engineering, especially physical systems that are singularly perturbed and exhibit

multiple time scale behaviour. The motion of these dynamical systems is sometimes

characterized by a small parameter multiplying the highest derivative. For example,

in DC motors the small inductance acts as the perturbation parameter. In biochem-

ical models the small “parasitic” parameter is the small quantity of an enzyme, in

nuclear reactor models it is the fast neutrons and in most engineering systems the

time constants of actuators characterize the small parameter. However, in some sys-

tems this parameter is not evident and is a function of several physical quantities.

For example, in aerospace applications this small quantity varies with flight condi-

tion and does not multiply the highest derivative. Such dynamic equations are called

non-standard singularly perturbed systems and are the focus of this research.

The presence of this small parameter is the cause of stiffness and higher order of

dynamic equations. The system states whose velocity is associated with the small

perturbation parameter evolve several times faster than the other system states. This

causes the motion of the physical system to evolve on multiple time scales. Thus,
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not all system states of a singularly perturbed system respond to the input signal at

an equal rate. Unless this difference in response rates has been explicitly addressed

during control synthesis, the magnitude of the corrective action from the controller

will continue to increase. Consequently, this leads the system into saturation which

is undesirable and sometimes dangerous.

This dissertation investigates feedback control methodologies and develops rig-

orous techniques to address the stabilization problem for control non-affine, non-

standard singularly perturbed systems. Toward this end several fundamental re-

search questions are addressed. The theory of feedback passivation is developed for

constructing globally stabilizing static compensation control laws for non-affine-in-

control systems. These control laws, along with insights from geometric singular

perturbation theory [5], are employed to obtain a hierarchical design procedure to

address the following two important control objectives for non-standard singularly

perturbed systems.

1. The first control objective is to track a desired slow state reference trajectory

while ensuring all the other system signals remain bounded.

2. The second objective requires simultaneous control of the slow and fast states

of the system, as required by aerospace applications.

It is expected that the real-time implementable methods developed in this work will

permeate numerous applications in control of nonlinear dynamics and multiple-time

scale systems, several examples of which are described below.

• Magnetic Levitation (Maglev) Systems : An immediate application of non-

affine-in-control system stabilization is the maglev system. Magnetic Levitation

is a new form of transportation that suspends, guides and propels the vehicle
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using electromagnets. The strength and the polarity of the electromagnetic

field required to levitate a vehicle depends quadratically on the electric cur-

rent. Since maglev does not have problems of friction, abrasion or lubrication,

it is ideal to use in special environments such as wafer transportation, photo

lithography, teleoperation, to lift test models in a wind tunnel and magnetic

bearings. The Maglev train first introduced in Japan was shown to be 6 km/h

(3.7 mph) faster than the conventional wheel-rail speed record. Maglev tech-

nologies are also being considered by NASAs Marshall Space Flight Center in

Huntsville, Ala. to levitate and accelerate launch vehicles along a track at high

speeds before it leaves the ground to reduce the spacecraft’s weight at lift-off.

• Control of Non-minimum Phase Systems : Nonlinear control techniques such as

feedback linearization and sliding mode control guarantee closed-loop stability

and precise output tracking only for a specific class of nonlinear systems that

are minimum phase and have outputs with a well-defined relative degree. But

there are a number of important flight control problems such as acceleration

control of tail-controlled missiles, control of planar Vertical Take-off and Land-

ing (V/STOL) aircraft, Conventional Take-off and Landing (CTOL) aircraft

and hover control of helicopter models that are characterized by unstable zero

dynamics, thereby not satisfying the conditions listed above. The author of

this work has shown that inherent multiple time scale behaviour is the cause

of instability for a class of non-minimum phase systems and the problem can

be equivalently converted into stabilization problem of non-standard singularly

perturbed system with non-affine controls [6],[7].

• Propulsion-Controlled Aircraft : Research for throttle-only control was pio-

neered by NASA Dryden in order to provide an alternative method of con-
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trol for aircraft that have lost their primary controls due to accident/wear and

tear/malfunction. Propulsion-based control can be applied to any aircraft with

two or more engines. It works on the principle that differential thrust creates

a resultant yawing motion. Also, if the wing has a dihedral then this side force

creates a net rolling moment. Past studies have used fault-tolerant schemes

to determine the desired thrust profiles. However, compared to primary flight

control surfaces the engines have slow response times. The Integrated Resilient

Aircraft Control (IRAC) project of NASA Aviation safety relaxed the struc-

tural limits on fan speed and engine pressure ratio in emergency conditions

to improve responsiveness and provide excess thrust. However, the over-thrust

operation is potentially much more detrimental to engine life than fast response

operation. The control technique proposed in Section 6 of this dissertation ex-

plicitly considers systems with slow actuators and is a potential candidate for

propulsion-controlled aircraft.

• Morphing Air Vehicles : A stabilization controller designed for non-affine sys-

tems would find application for reconfigurable air-vehicles being considered for

surveillance and multiple-mission performance. Recent fifth-generation fighters

demonstrate some of these reconfigurable capabilities in the form of variable

sweep, foldable wing tip sections, wing flaps, retractable landing gear and tail

hooks. However, it is well known that linear control methods fail to apply

to the flight regimes in which these air vehicles operate. Additionally, their

dynamic behaviour is dominated by nonlinear phenomena that is a function of

the vehicle states and control inputs and it also evolves at different response

rates.

Besides the areas mentioned above, several important problems in science depend
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nonlinearly on the control variable, e.g. concentration and temperature stabilization

of continuously stirred reactors using coolant flow rate and circadian rhythm in the

chemistry of eyes modeled as a van der pol oscillator [8]. The work in this disserta-

tion primarily deals with the control problems of magnetic levitation, stabilization

of continuously stirred reactor, non-minimum phase systems and highly nonlinear

aircraft and helicopter models.

The remainder of this section is organized as follows. Formal definitions of stan-

dard and non-standard forms of singularly perturbed systems is presented in Sec-

tion 1.1. Section 1.2 reviews the control approaches developed for standard singularly

perturbed systems in the past. This section details the research issues associated

with the control of non-standard singularly perturbed systems and specifies how it

is related to control of general non-affine systems. Section 1.3 presents in detail the

history of research in the field of control non-affine systems and identifies the open

research issues.

1.1 Standard and Non-Standard Forms of Singularly Perturbed

Systems

This dissertation considers a class of singularly perturbed systems that are mod-

eled as ordinary differential equations with a small parameter, ε multiplying the

derivatives of some of the states

ẋ = f(t,x, z,u, ε) (1.1a)

εż = g(t,x, z,u, ε) (1.1b)

where x ∈ Rm is the vector of slow variables, z ∈ Rn is the vector of fast variables,

u ∈ Rp is the input vector and ε ∈ R+ is the singular perturbation parameter that
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satisfies 0 < ε << 1. The vector fields are assumed to be continuously differentiable.

The presence of the singular perturbation parameter ε causes multiple time scale

behaviour as the velocity ż evolves at O(1/ε). This behaviour forces the states z to

evolve faster than the states x for a stable closed-loop system. Notice that in the

limit ε → 0 the dimension of (1.1) reduces from n + m to m because the resulting

system becomes the differential-algebraic system

ẋ = f(t,x, z,u, 0) (1.2a)

0 = g(t,x, z,u, 0). (1.2b)

The system (1.1) is in standard form if the algebraic equation of (1.2) has isolated

real roots for the fast states in the domain of interest. This assumption results in a

well-defined reduced-order model and (1.2) is called the reduced-order slow system.

The differential equation of the reduced-order slow system captures the dynamics

of the slow states. In order to capture the transient response of the fast states, the

full-order system is written in a different time scale τ = t−t0
ε

, also known as the fast

time scale. Then in the limit ε→ 0 the following reduced-order fast system

x′ = 0 (1.3a)

z′ = g(t,x, z,u, 0) (1.3b)

captures the behaviour of the fast states. Notice that the fixed points of the

reduced-order fast system are the isolated roots of the transcendental equations of

the reduced-order slow system.

In general, a dynamic model of any system obtained using Hamilton’s principle or

Newton’s laws of motion is not in standard form. There have been some techniques
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in the literature that help to convert systems into standard forms [9][Ch 1, Sec 1.6]

but it still remains an open problem and system dependent technique. In such cases,

knowledge about the physical process is used and the small parameter is artificially

introduced in front of the derivatives of the states that are known to respond fast.

Formally, this process is called the forced-singular perturbation technique [10]. The

dynamic model thus obtained violates the isolated root assumption and is in non-

standard form.

1.2 Review of Stabilization Methods for Singularly Perturbed Systems

Feedback control design for standard singularly perturbed systems has received

a lot of attention in the past [11],[12], [13],[14]. Most of these techniques were in-

spired by the solution forms obtained for open-loop full-order singularly perturbed

systems [15]. It has been shown that the complete system behaviour can be approxi-

mated by the dynamics of the reduced-order slow system provided the reduced-order

fast system is uniformly asymptotically stable about its isolated fixed point. This

powerful result not only removes the numerical stiffness but also reduces the dimen-

sionality of the resulting system. Figure 1.1 illustrates these results for an example

two-dimensional system ẋ = −x − z; εż = −z. Notice that the reduced-order slow

system (broken lines) approximates the dominant solution of the complete system

(solid lines), while the initial transient is captured by the reduced-order fast system

(dotted lines).

Based on these analysis results, the typical control approach is to design two

separate controllers for each of the two reduced-order systems and then apply their

composite or sum to the full-order system. The stabilizing controller for the reduced-

order slow system is designed first, assuming that the fast states have settled down

onto the isolated roots. Next, the controller for the reduced-order fast system is
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Figure 1.1: Trajectories of two-dimensional singularly perturbed system (solid lines)
compared with reduced-order slow system (broken lines) and reduced-order fast sys-
tem (dotted lines)

designed to ensure that this assumption holds. This two-stage approach was initiated

by Suzuki and Miura [16] for linear time-invariant systems and since then has been

extensively used for robust and optimal stabilization [17],[18] of linear singularly

perturbed systems. This technique takes advantage of the fact that the reduced-

order systems are represented as ordinary differential equations and stabilizers can

be designed for each of these systems using any desired state-feedback control design

technique. An example of sliding-mode control for linear systems was demonstrated

by Heck [19]. The composite control technique proposed by Saberi and Khalil [20]

extended the two-stage procedure for general class of singularly perturbed systems

that are nonlinear in both the states and the control inputs. This approach uses

Lyapunov-based control design and asymptotic stability is guaranteed for standard

singularly perturbed systems.

The two-stage design procedure described above is applicable only to standard

singularly perturbed systems. To enforce the isolated real root condition, previous

studies in the literature have either
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1. assumed that the system has a unique real root[21],[22] or

2. considered nonlinear systems that have unique roots. This condition is satisfied

by multiple time scale systems that are nonlinear in the slow states and linear

in the fast states [23],[24].

However, for general nonlinear systems the isolated roots of the algebraic equation are

a set of fixed points of the fast dynamics and hence not always unique nor guaranteed

to exist. Clearly, the existence of multiple roots hinders the decomposition of general

nonlinear singularly perturbed systems into reduced-order slow and fast systems. A

natural open problem is

Open Problem 1: Assume the singularly perturbed system given in (1.1) is in

non-standard form. Can reduced-order models be employed for stabilizing the system

and/or asymptotically tracking a desired slow state?

Khalil [25] proposed two techniques for linear non-standard singularly perturbed

systems. In the first approach the control input was represented as a sum of linear

fast state feedback and a translation vector. The feedback gain was chosen to trans-

form the system into standard form. The translation vector acts as the control input

for this resulting system, and the composite control technique is employed for stabi-

lization. In the second approach, the standard form was obtained using a similarity

transformation.

However, for nonlinear systems such as aircraft such a transformation is difficult

to find. Thus an approximate approach that guarantees local bounded stability has

been proposed. Menon [10] designed nonlinear flight test trajectories for velocity,

angle-of-attack, sideslip angle and altitude by using the fast angular rates as the

control variables while assuming the control surface deflections do not affect the

slow states. This work was extended to over actuated systems by Snell [26] and

10



more recently employed to design longitudinal wind shear flight control laws [27].

However, studies [7],[28] show that the force contribution from the control surfaces

in a helicopter is significant and cannot be neglected. Apart from these local results,

there have been a few attempts in literature for optimal control [29] of non-standard

systems but the feedback stabilization problem of non-standard singularly perturbed

systems has not been considered.

All of the approaches discussed above demonstrate stabilization or slow state

tracking either locally or globally by restricting the fast states. But for systems

whose dynamics inherently possess different time scales, both the slow and the fast

states constitute the output vector. For example, during air combat maneuvering

an aircraft is typically required to track a fast moving target while regulating speed

(slow variable) and/or one or more kinematic and aerodynamic angles. Such cases

motivate following research question:

Open Problem 2: Assume the singularly perturbed system given in (1.1) is in non-

standard form. Can the reduced-order models be employed for simultaneous tracking

of both the slow and the fast states of the system?

It is clear that for simultaneous tracking, the fast states cannot be restricted to

simply stabilize onto an isolated root. The reduced-order approach therefore ap-

pears to be inadequate for a general class of output tracking problem. Artstein [30]

formulated optimal control laws to accomplish fast state tracking using invariant

measures and the method of averaging for systems with oscillatory fast dynamics.

Hastrudi-Zaad and Khorasani[31] used the integral manifold approach and the com-

posite control technique to accomplish output tracking of linear singularly perturbed

systems. The isolated root of the fast states and the control for the reduced-order

slow system was approximated using straight-forward expansion, and the zero-order

control and other correcting terms were computed to ensure the reduced-order slow
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system output remains close to the desired output. Gliemlo [32] developed sufficient

conditions for the general output feedback problem of standard singularly perturbed

systems with exponentially stable fast dynamics, but the output feedback problem

of non-standard singularly perturbed systems remains an open research problem. In

this dissertation, a class of output tracking of non-standard singularly perturbed sys-

tems where both the slow and fast state constitute the output vector is considered.

The objective is to employ reduced-order models and state-feedback control laws to

accomplish asymptotic output tracking.

1.3 Review of Control Methodologies for Non-Affine in Control

Nonlinear Systems

Two-stage design procedures for singularly perturbed system described in Sec-

tion 1.2 reduce the control problem to stabilization of general nonlinear systems, the

analysis of which has inspired researchers for decades. Early in the 1960s Balakr-

ishnan [33] proved that any controllable nonlinear system could be transformed into

the following affine form

ẋ = f(x,u) ≡ f1(x) + f2(x)u, (1.4)

where x ∈ Rn represents the state vector and u ∈ Rm is the control input vector.

This result inspired the plethora of nonlinear control techniques that we know today

such as feedback linearization, gain-scheduling, sliding-mode control, backstepping

and more recently forwarding. However, it is difficult to find a change of coordinates

that leads to the linear form given in (1.4). Moreover if such a transformation exists,

the resultant set of coordinates may be abstract mathematical quantities and/or lead

to discontinuous vector fields and is not desirable from a control stand point.

The significant issue is that the notion of controllability is not well-defined for
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general nonlinear systems. The notion of weak controllability is defined through the

accessibility rank condition which tests whether a system can be driven locally in

any arbitrary direction from a given state. If a system satisfies the accessibility rank

condition then it is concluded that system has non-empty reachable and controllable

sets. A fundamental result in [3][Ch.4, Sec4.3] shows that the accessibility rank

condition reduces to the Kalman controllability condition for linear systems.

Although in theory the existence of a control can be tested by computing the

accessibility of the system, in practice this computation is affected by the ‘curse

of dimensionality’ [34][Ch.6, Sec.6.3]. Thus, in general the existence of continuous

feedback laws in the nonlinear affine case are shown through existence of Lyapunov

functions [3][Theorem 17]. This result was extended by Artstein [35] for continuous

time-invariant non-affine systems of the form (1.4). It was proven that a stabilizable

control exists if and only if the Lyapunov function V (x) satisfies

inf
u
∇V (x)f(x,u) < 0. (1.5)

The intuitive idea behind this condition is that there exists some sort of ‘energy’

measure of the states that diminishes along suitably chosen paths and the control

input is chosen to force the system to approach a minimal-energy configuration.

This condition is a special case of the Hamilton-Jacobi-Bellman equation [34][Ch.6,

Sec.6.3] with time-invariant objective function. It is well-known that this partial

differential equation may not always have a solution. Moreover, if a solution exists,

it may not be unique. This was discussed in Artstein’s work and he suggested

that non-affine systems in general cannot be stabilized with continuous feedback.

Motivated by Artstein’s conclusions, Jayawardhana [36] used pulse-width modulated

control signals to stabilize non-interacting mechanical systems.
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The fact that discontinuous control cannot be employed for most physical systems

has motivated several researchers to explore other feedback solution methods for non-

affine systems. Moulay [37] augmented convexity requirement on the argument of

(1.5) to provide sufficiency conditions for existence of continuous stabilizing controls.

Since the proof was non-constructive, a restricted class of single-input second and

third order polynomial systems was studied. Assuming that a Lyapunov function

exists, the control input was solved using analytic root solving techniques. Given

ẋ = f0(x) + f1(x)u + f2(x)u2 and Lyapunov function V (x), the control input was

solved such that

V̇ (x) = ∇V (x)
[
f0(x) + f1(x)u+ f2(x)u2

]
< 0. (1.6)

The restrictions on analytical solutions for polynomial systems of degree four and

higher hindered the extension of this approach for general non-affine systems.

Lin [38],[39] explored passivity-based methods for smooth open-loop Lyapunov

stable non-affine systems. The central idea in this approach was to take advantage of

smoothness and represent the nonlinear vector field as a linear combination of affine

and non-affine parts

ẋ = f(x,u) ≡ f0(x) + g(x)u + R(x,u). (1.7)

Upon doing so the controller was designed by assuming that the affine part domi-

nates the closed-loop system stability and the higher-order terms are always upper-

bounded for all admissible states and control inputs. Although the technique was

demonstrated for several examples, Lin’s results were restricted to a class of open-

loop stable systems.
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The control design methods discussed so far provide constructive forms for the

control variable. But in order to consider higher-order unstable systems, several

approximation and numerical methods have been explored. The intuitive idea has

been to indirectly stabilize the system by varying the control derivative. In order to

do so the non-affine problem given in (1.4) is augmented with control input dynamics

such that the resulting dynamics

ẋ = f(x,u) (1.8a)

τ u̇ = ν (1.8b)

becomes affine in the input vector ν. The time-constant τ is appropriately chosen

such that the control input dynamics evolves faster than the dynamical system un-

der consideration. Howakimyan [40] designed the new input vector using dynamic

inversion. The technique was motivated by the observation that for a single-state

single-input system the following input vector

ν = − sgn

(
∂f

∂u

)
(f(x, u) + ax) ; a > 0,

∂f

∂u
> 0 (1.9)

globally asymptotically stabilizes the system as it replaces the original nonlinear

system dynamics with a linear stable form. Extension to the multi-input case was

made by minimizing the objective function J(x, u, u∗) = 1
2
||f(x, u)−f(x, u∗)︸ ︷︷ ︸

desired

||2 online

using gradient-descent algorithm [40],[41]

ν = ∇uJ(x, u, u∗). (1.10)

This technique assumes that the control influence remains non-singular and a mini-
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mum always exists. But as discussed earlier this assumption is quite restrictive and

not satisfied in general. Similar assumptions were also made in [42],[43]. Instead of

online minimization the control was approximated through radial basis functions to

enforce desired state dynamics. Furthermore, Boškovic̀ [44] assumed that the vector

field is smooth and the control influence is non-singular such that

ν =
1
∂f
∂u

(
−∂f
∂x
f(x, u) + f(x, u∗)

)
(1.11)

can be employed to achieve desired stabilization.

The non-constructive approaches discussed above have been restricted to a class

of systems that are monotonic in control and have non-singular control influence for

all the states. This restriction is not met in general. Consider

ẋ = x− 2xu4 (1.12)

as an example of such a system. Observe that u = 1 globally stabilizes the origin.

However, this system cannot be controlled using either the general dynamic inversion

[45] or modeling error compensation [46] technique since the ∂f
∂u

= −8xu3 is zero at

the origin. Motivated by Sontag’s [47] universal formula for affine systems one is

lead to the natural question

Open Problem 3: Assume that a control Lyapunov function exists for the dynamic

system given in (1.4). Can a constructive control law be formulated to stabilize an

unstable non-affine system?

For unstable systems, an intuitive approach for controlling systems of the form

given in (1.4) is to employ feedback equivalence. But soon, one encounters a highly

nonlinear algebraic equation whose solution determines the explicit control law. Ad-
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ditional difficulties arise as multiple solutions to this equation exist and some of

which are not feasible for a physical system. For example, one way of stabilizing

ẋ = x − u2 is through u =
√

(a+ 1)x , a > 0. Notice that the control takes on

imaginary values and is undefined whenever x < 0. Some work in the direction of

switching controllers has been investigated [48],[49]. A hierarchical switching strat-

egy was designed to switch between local controllers to guide the system through a

map of fixed points to finally approach origin in finite time. This map of fixed points

and the corresponding stabilizing local controllers are determined offline resulting in

a system specific design.

This dissertation addresses the three major open problems discussed in Section 1.2

and Section 1.3. The theoretical developments are supported by stability proofs and

applications to several engineering problems are illustrated. Furthermore, it is shown

that the synthesized controllers alleviate the restrictions of stable internal dynamics

for various under-actuated aerospace applications. The remainder of this disserta-

tion is organized as follows. Section 2 presents the formal statement of problems

considered in this dissertation, followed by a discussion of challenging research issues

surrounding these problems. Section 3 addresses the control problem for non-affine

systems by extending the general feedback passivation approach. This section intro-

duces the necessary concepts of passivity, develops a generalization of the important

Kalman-Yakubovich-Popov lemma and derives sufficiency conditions for stabilizing

an unstable non-affine system by static compensation. The developments are proven

using Lyapunov’s direct method and verified in simulation. Section 4 and Section 5

address the open problems 1 and 2 discussed in Section 1.2 for affine non-standard

two time scale systems respectively. These sections are linked with Appendix A

and Appendix B which review important concepts of singular perturbation theory

and composite Lyapunov function approach for stability. Rigorous proofs along with
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application to an F-18 high angle-of-attack aircraft model and discussion of bene-

fits and limitations of the developed techniques is presented. Section 6 presents the

main result of this dissertation and combines methods developed in Section 3 and

Section 4 to stabilize non-affine non-standard multiple time scale system. Appli-

cation of this novel technique to class of non-minimum phase aerospace systems is

detailed in Section 7. Finally conclusions and future recommendations are discussed

in Section 8.
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2. RESEARCH OBJECTIVES

2.1 System Class Description

The objective of this research is to address Open Problems 1-3 identified in Sec-

tion 1 with specific emphasis on stabilization of continuous-time non-standard non-

linear singularly perturbed dynamical systems represented by the following ordinary

differential equations:

S :



ẋ = f(x, z, δ); x(0) = x0

εδ̇ε = fδε(δε,uε, ε); δε(0) = δε0

µż = g(x, z, δ, µ); z(0) = z0

%δ̇% = fδ%(δ%,u%, %); δ%(0) = δ%0 .

(2.1)

In (2.1) x ∈ Rm is the vector of slow variables, z ∈ Rn is the vector of fast variables,

δ = [δε, δ%]
T ∈ Rp is the vector of actuator commands with δε ∈ Rl and δ% ∈ Rp−l,

u = [uε,u%]
T ∈ Rp is the input vector to be computed with uε ∈ Rl and u% ∈ Rp−l.

The singular perturbation parameters ε ∈ R, µ ∈ R and % ∈ R measure the time

scale separation explicitly and are unknown. All the vector fields are assumed to be

sufficiently smooth.

The dynamical model S given in (2.1) also characterizes the following class of

systems with multiple perturbation parameters:

S :



ẋ = f(x, z, δ)

εiδ̇εi = fδεi (δεi , uεi , εi); ∀i = {1, 2 · · · , l}

µj żj = g(x, z, δ, µj); ∀j = {1, 2, · · · , n}

%kδ̇%k = fδ%k (δ%k , u%k , %k); ∀k = {1, · · · , p− l} ,

(2.2)
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where all εi, µj and %k are of same-order, separately. In (2.1) the state variables

corresponding to these parameters have been collectively represented as a vector. For

example, all the slow actuator states δεi have been combined in the vector δε with a

common perturbation parameter ε. One of the several ways to define this parameter

is ε = (ε1ε2, . . . εl)
1
l [50]. The crucial assumption is that the singular perturbation

parameters are of different order and satisfy:

Assumption 2.1. µ
ε
→ 0 and %

ε
→ 0 as ε → 0. Further %

µ
→ 0 as µ → 0. Thus

system in (2.1) is a four time scale, multiple parameter system.

2.1.1 System Properties

The following observations regarding the model under study are made:

1. The actuator states have been separated into vectors δε and δ% to acknowl-

edge their difference in speeds of evolution. In (2.1) δε represents the actuators

with slow dynamics and δ% represents the actuators with relatively fast actu-

ator dynamics. The corresponding vector fields fδε(.) and fδ%(.) model their

dynamics respectively. This representation explicitly models systems such as

propulsion-controlled aircraft where actuation introduces an additional time

scale.

2. The dynamical system under study models several aerospace structures such

as reusable launch vehicles, high angle-of-attack missiles and tail-less aircraft

(see [13] for details). Here the control surface deflections constitute the fast

controllers, while the thrust and/or torque respond at a relatively slow rate.

Singular perturbation parameters for these vehicles are not accurately known.

In this work forced singular perturbation technique is employed to relatively

identify the rate of evolution of the states by non-dimensionalization, follow-
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ing which the singular perturbation parameter is included artificially at the

modeling stage. Common examples of this approach are seen in [10],[51].

3. It is assumed that the solutions of the fast dynamics converge either forward or

backward in time uniformly in the slow states. This restriction is imposed due

to the underlying singular perturbation methods employed in this research.

Appendix A presents a review of these methods and the reader is strongly

encouraged to go through the discussed concepts. Singularly perturbed sys-

tems with oscillatory fast states exhibiting limit cycle or chaotic behaviour are

not analyzed in this work. Analysis of these class of systems can be found

in [30],[52].

2.2 Objectives and Scope

This dissertation addresses the stabilization problem of dynamical systems described

in Section 2.1. This is carried out by posing four fundamental control problems in

nonlinear control theory. Each of these problems have been posed in a way such

that the solution strategies and stability properties not only support the motive of

this dissertation (described in Problem 4), but also are complete in their own right.

Referring to Figure 2.1, the following four research objectives are addressed:

1. Stabilization of Unstable, Non-affine, Nonlinear Systems

Consider the core problem of developing stabilizing controllers for non-affine

systems of the following form:

Σ :

ẋ1 = f1(x)

ẋ2 = f2(x)

...

ẋn = fn(x, u)

or Σ = f̄(x, u) (2.3)
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Figure 2.1: Organization and objectives of the dissertation

22



where x ∈ Rn is the state, u ∈ R is the control input and f̄ : Rn × R → Rn is

sufficiently smooth. The function f̄(x, u) need not be monotonic in the control

and ∂ f̄
∂u

can be singular at the origin. Assume that

Assumption 2.2. The unforced dynamics of system in (2.3), namely ẋ =

f̄(x, 0) , f̄0(x) is open-loop unstable.

This first objective addresses Open Problem 3 presented in Section 1.3 and

synthesizes static compensation control laws for asymptotic stabilization of

systems of the form Σ in (2.3). The goal is to use Lyapunov-based methods

to prove stability and analyze requirements on smoothness of the vector fields

under consideration. Toward this end, several fundamental properties such as

the generalized KYP lemma for non-affine systems of the following form

Σ : ẋ = f(x,u); x(0) = x0 (2.4)

with state-space X = Rn and set of input values U = Rm are derived and

control laws synthesized. The controller developed is tested in simulation for

magnetic levitation and continuously stirred chemical reactor systems. This

problem plays an integral part in the stabilization of reduced-order systems

developed singularly perturbed systems of the form (2.1). The solution strate-

gies of this problem are presented in Section 3.

2. Asymptotic Stabilization and Slow State Tracking of Affine in Con-

trol, Two Time Scale Systems

Consider the following specialized form of the governing dynamics of (2.1):

ẋ = f1(x, z) + f2(x, z)u (2.5a)

εż = g1(x, z) + g2(x, z)u (2.5b)
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with initial conditions specified. The control objective is to enforce the slow

state to asymptotically track an atleast twice continuously differentiable time-

varying bounded specified trajectory, or x(t)→ xr(t) as t→∞. It is assumed

that the control is sufficiently faster than all the system variables. The goal is to

analyze the reduced-order approach introduced in Section 1.1 and Appendix A

for non-standard singularly perturbed systems. Lyapunov-based methods are

employed to define the explicit requirements on the form of the vector fields in

terms of smoothness (e.g. continuous, continuously differentiable or infinitely

smooth), dependence on affine presence of control and robustness to the sin-

gular perturbation parameter.

This second control problem addresses a special case of Open Problem 1 iden-

tified in Section 1.2. This problem has been of interest to scientists and engi-

neers for decades. Common applications include parallel robots, flexible link-

manipulators, aircraft and enzyme models. Some of these applications are

studied in Section 4 along with details of the proposed control schemes.

3. Simultaneous Tracking of Slow and Fast States of Affine in Con-

trol, Two Time Scale Systems

Consider the singularly perturbed system represented in (2.5). The control

objective is to drive the states so as to track sufficiently smooth, bounded, time-

varying trajectories such that x(t) → xr(t) and z(t) → zr(t) as t → ∞. The

goal is to identify actuation properties of the system (e.g completely actuated

vs under-actuated) and system requirements in terms of minimum phase and

well-defined relative degree.

The third problem is inspired by aerospace applications. A motivating ex-

ample is the approach flight phase to precision landing such as an arrested
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landing on an aircraft carrier. In this situation an aircraft must track both fast

states (angular rates and sink rate) and slow states (flight path and heading)

simultaneously, accurately and reliably. Flying at higher approach speeds and

therefore lower angles-of-attack can largely mitigate this two time scale dy-

namics effect and prevent departure due to stall. But higher approach speeds

have long been known to lead to higher occurrences of landing mishaps or ac-

cidents. Another motivating example is an aircraft tracking a prescribed fast

moving target, while simultaneously regulating speed and/or one or more kine-

matic angles. Section 5 details the control design procedure for Open Problem

2 (see Section 1.2) and numerically simulates the response of an F-18 High

Angle-of-Attack Vehicle.

4. Asymptotic Stabilization of Non-affine, Nonlinear, Non-Standard

Singularly Perturbed Systems

The fundamental motive of this dissertation is to track sufficiently smooth,

bounded, time-varying trajectories of the slow states or x(t)→ xr(t) as t→∞

for the non-standard dynamical model represented in (2.1).

This final objective addresses Open Problem 1 (see section 1.2) for a dynamical

model with several time scales using insights determined from the two time

scale counterpart addressed in the second objective. The stability proof and

the details of a hierarchical control design procedure is presented in Section 6.

Nonlinear control methods for control non-affine reduced-order systems is an

integral part of this sequential design. As mentioned in Section 1 several non-

minimum phase systems can be modeled in the form of (2.1) and some of these

applications are detailed in Section 7.
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2.3 Research Issues

As discussed in Section 1, the preceding four problems pose numerous difficult

issues and these are detailed below.

1. Controllability: The significant issue with control of any system, whether

singularly perturbed or not, is testing for controllability. Several researchers

use accessibility rank test for determining these control properties. However,

large computational burden is associated with these tests even for a single-

input nonlinear system. This research follows the approach proposed in [3] and

[35], and assumes that a control Lyapunov function for the system model exists

and sufficiency conditions for controllability are met.

2. Limited static and dynamic feedback techniques for control non-

affine systems: Synthesis of memoryless feedback compensation for nonlin-

ear dynamical systems is restricted by available analytical root solving tech-

niques. This makes the controller design process increasingly difficult and

highly system dependent. Hence, recent results employ dynamic feedback com-

pensation for stabilization. In these methods a system is indirectly controlled

by changing the rate of the control variables. However, this correction depends

upon the varying influence of control on the dynamical model which is un-

known. Most studies assume this dependence to be constant. This assumption

is violated by the simple pendulum, magnetic levitation, aerospace vehicles and

most practical examples. In this research analytical static feedback compensa-

tion is constructed by extending the control designs for passive systems without

imposing this assumption.

3. Restricted techniques for different speed of controllers: Two-stage
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design schemes employ all of the control variables in stabilizing the reduced-

order slow and fast subsystems. This requires all the control variables to be

sufficiently faster than the system states. This assumption is met by most

electrical systems but violated by aerospace applications, some of which have

been discussed in Section 1. This research addresses this specific issue by

designing a sequential design procedure that assigns control tasks according to

speed of the actuators. Asymptotic stabilization is shown for all the system

states and the actuator variables using Lyapunov-based design approach.

4. Complexity of constructing manifolds for non-standard singularly

perturbed systems: Reduced-order models and in turn conclusions of geo-

metric singular perturbation theory depend upon unique analytical determi-

nation of the manifold for the fast states. The nonlinear nature of the non-

standard forms considered make this construction extremely difficult. Conse-

quently, the composite control scheme fails to apply and no conclusions regard-

ing the stability properties of the dynamical model can be made. This research

issue is addressed here by transforming the open-loop non-standard form into

the closed-loop standard form through appropriate control design. Two dif-

ferent control schemes are presented. The first method employs results from

center manifold theory to approximate the manifold and guarantees Lyapunov

stability. The second approach guarantees asymptotic tracking by employing

the manifold as an additional control variable. Both the control formulations

use singular perturbation methods and reduce the problem to control of lower-

dimensional ordinary differential equations. Thus making them independent of

the underlying control algorithms.

5. Lack of an explicit small parameter : The lack of knowledge of the sin-
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gular perturbation parameter is an essential difficulty in the optimization of

aerospace dynamic systems. Kelley [53], Mease [54], Calise [55], Ardema [56],

[57] and Naidu [51] have developed systematic approaches to identify the sin-

gular perturbation parameter for both transport and fighter aircraft, but these

results were limited to flight conditions under consideration due to varying

aerodynamic behaviour. Hence a nonlinear control scheme that stabilizes the

airframe without requiring the knowledge of the parameter is crucial. This

research alleviates these problems and extends the application of multiple time

scales to regulation and tracking of tail-less aircraft as well as helicopters and

vertical take-off and landing aircraft.
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3. A CONSTRUCTIVE STABILIZATION APPROACH FOR OPEN-LOOP

UNSTABLE NON-AFFINE SYSTEMS

3.1 Introduction

This section considers the first objective discussed in Section 2 for developing

stabilizing controllers for non-affine systems of the following form

Σ :

ẋ1 = f1(x)

ẋ2 = f2(x)

...

ẋn = fn(x, u)

or Σ = f̄(x, u) (2.3)

where x ∈ Rn is the state, u ∈ R is the control input and f̄ : Rn×R→ R is sufficiently

smooth. The dynamical system under study is open-loop unstable and satisfies

Assumption 2.2. Throughout the section it is assumed that a control Lyapunov

function exists. This is sufficient to ensure the dynamical system Σ is asymptotically

controllable [3].

In this section, the construction of an analytic state-feedback control law is pur-

sued for systems with single input. This work is motivated by the results of Son-

tag [47] and explores a universal stabilization formula for an unstable non-affine

system. Sufficient conditions are given for stabilization by designing the control law

of the form u(x) = α(x) + ν(x). The intuitive idea behind this control form is to

introduce stiffness and damping into the system for stabilization through functions

α(x) and ν(x) respectively. The major contribution comes in the design of the func-

tion α(x) that converts an open-loop unstable system into stable in the Lyapunov

sense closed-loop system. This is an important task that ensures the system energy
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remains bounded. The resultant closed-loop system is formally known as a passive

system. Finally, the design proceeds with the construction of ν(x) to bring about

the necessary energy dissipation for globally stabilizing the origin.

The design procedure presented here is based on ideas of feedback passivation

introduced in [58] and [59] for control-affine systems. The general concept is to use

state-feedback to render the system passive and then employ well-established results

for stabilizing passive systems. Toward this end, several fundamental questions need

to be answered for non-affine systems. Most importantly, when is a general non-

linear system passive? The famous Kalman-Yacubovitch-Popov lemma [60] and its

nonlinear counterparts derived by Hill and Moylan [61], [62], answer this question for

linear and affine-in-control systems respectively. Sufficient conditions for passivity

of control non-affine systems and their relationship with the existing necessary con-

ditions [38] are derived in Section 3.2. Passivity is a desirable property for control

design. Pure output feedback render passive systems globally asymptotically stable.

Section 3.3 starts by revisiting some of these properties and analyzes how these can

assist in control formulation. However, not all physical systems are passive. The

latter part of Section 3.3 derives conditions under which a nonlinear system can be

rendered passive through state-feedback. This section closely follows the developments

of [58], [63] and uses generalized KYP results derived in Section 3.2. The main result

for stabilization of general multiple-input is presented in Section 3.4. This result is

derived using properties developed in Section 3.2 and Section 3.3. This result pro-

vides sufficiency conditions under which a general nonlinear system can be stabilized

by use of static compensation. Using these sufficiency conditions, Section 3.4 also

presents a novel method for construction of control laws for single-input non-affine

systems defined in (2.3) without making any assumptions about the nature of the

control influence. The theoretical findings are verified in simulation and examples
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are presented in Section 3.5. Finally, closing remarks are discussed in Section 3.6.

3.2 Passive Systems

In this section consider the following nonlinear dynamical system:

Σ1 :
ẋ = f(x,u)

y = h(x,u)
(3.1)

with state-space X = Rn, set of input values U = Rm and set of output values

Y = Rm. The set U of admissible inputs consists of all U -valued piecewise continuous

functions defined on R. The functions f(.) and h(.) are continuously differentiable

maps defined on the open subset O ⊂ Rn. It is assumed that these vector fields are

smooth mappings, with atleast one equilibrium. Without loss of generality, the origin

is chosen as the equilibrium of Σ1, that is, f(0,0) = 0 and h(0,0) = 0. In order to

derive conditions for Σ1 to be passive, several necessary definitions are reviewed and

presented below.

Definition 3.2.1. [58] A system Σ1 is said to be passive if there exists a storage

function V (x) that satisfies V (0) = 0 and for any u ∈ U and initial condition x0 ∈ X

V (x)− V (x0) ≤
∫ t

0

yT (s)u(s)ds. (3.2)

If the storage function is Cr times continuously differentiable with r ≥ 1 then differ-

entiating both sides of (3.2)

V̇ ≤ yTu. (3.3)

Definition 3.2.1 is the mathematical analog of saying that a system is passive if the

amount of energy stored is less than or equal to the energy being input. This means
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that either there is an effective energy dissipation from the system or the system

energy is conserved for all time. Notice for a positive-definite storage function and

zero input it can be concluded from (3.3) that passive system Σ1 is stable in the

Lyapunov sense. Similar behaviour is seen under the constraint y = 0. Thus, it

can be deduced that passive systems having a positive definite storage function have

Lyapunov stable zero dynamics.

The next definition gives the necessary conditions for an input/output nonlinear

system Σ1 to be passive. For convenience, define the following vector fields

f0(x) = f(x,0) ∈ Rn (3.4a)

h0(x) = h(x,0) (3.4b)

g0
i (x) = gi(x,0) =

∂f

∂ui
(x,0) ∈ Rn; 1 ≤ i ≤ m (3.4c)

g0(x) =
∂f

∂u
(x,0) =

[
g0

1(x), . . . ,g0
m(x)

]
∈ Rn×m. (3.4d)

In the above definitions, f0(x) represents the open-loop dynamics of the dynamical

system Σ1 while h0(x) is the output of Σ1 at zero-input. The vector field g0
i (x)

defines the influence of input ui on the system about the origin and is collected for

all inputs under the vector g0(x). Using these introduced notations and the fact that

the vector fields in Σ1 are smooth, the nonlinear dynamical system is equivalently

represented as

ẋ = f0(x) + g(x,u)u (3.5a)

h(x,u) = h0(x) + j(x,u)u, (3.5b)

where the following identities have been used:
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f(x,u)− f0(x) =

(∫ 1

0

∂f(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , g(x,u)u (3.6)

h(x,u)− h0(x) =

(∫ 1

0

∂h(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , j(x,u)u. (3.7)

Hence the vector fields g(x,u) and j(x,u) capture the effect of the control input

on the motion of the dynamical system states and the output. Recall, for control-

affine systems these vector fields are independent of the control input vector. Using

smoothness of the vector g(x,u), (3.5a) is further decomposed as

ẋ = f0(x) + g0(x)u +
m∑
i=1

ui [Ri(x,u)u] (3.8)

with Ri(x,u) : Rn × Rm → Rn×m, being a smooth map for 1 ≤ i ≤ m.

For convenience, let V : Rn → R be a Cr(r ≥ 1) storage function and the

expression

Lf0V =

〈
∂V

∂x
, f0(x)

〉
(3.9)

represent the Lie derivative of the functional V along the vector field f0(x).

Definition 3.2.2. [38]. Let Ω1 , {x ∈ Rn : Lf0V (x) = 0}. Necessary conditions

for Σ1 to be passive with a C2 storage function V are

(i) Lf0V (x) ≤ 0,

(ii) Lg0V (x) = hT0 (x) ∀x ∈ Ω1,

(iii)
∑n

i=1
∂2fi
∂u2 (x,0). ∂V

∂xi
≤ jT (x,0) + j(x,0) ∀x ∈ Ω1,

where fi(x,u) is the ith component of the vector function f(x,u).
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If the storage function was positive-definite, property (i) would be analogous to

Lyapunov’s condition V̇ ≤ 0 for bounded stability. The other conditions in Def-

inition 3.2.2 follow directly from Definition 3.2.1 by noticing that the difference

∂V
∂x

f(x,u)− hT (x,u)u attains its maximum at u = 0 on the set Ω1.

The following theorem completes Definition 3.2.2 by presenting the sufficiency

conditions required for a system Σ1 to be passive.

Theorem 3.1. Let V be a C1 positive semidefinite function. A system Σ1 is passive if

there exist some functions q : Rn → Rk, W : Rn → Rk×m and H : Rn×Rm → Rk×m,

for some integer k such that

(i) Lf0V (x) = −1
2
qT (x)q(x),

(ii) Lg0V (x) = hT0 (x)− qT (x)W (x),

(iii) 1
2

[W (x) +H(x,u)]T [W (x) +H(x,u)] = 1
2

[
j(x,u)T + j(x,u)

]
− LR(x,u)V ,

(iv) W T (x)H(x,u) +HT (x,u)W (x) is positive-definite.

In the conditions above LR(x,u)V =
[
LR1(x,u)V, · · · ,LRm(x,u)V

]T ∈ Rm×m.

Proof. The proof follows the developments given in [63]. Assume functions q(x),

W (x) and H(x,u) exist. Then, along the solutions of Σ1

V̇ ≤ V̇ +
1

2
[W (x)u + q(x)]T [W (x)u + q(x)] +

1

2
uT
[
W T (x)H(x,u)

+HT (x,u)W (x)
]
u +

1

2
uTHT (x,u)H(x,u)u (3.10)

Rearrange further to get

V̇ ≤ Lf0V + Lg0V u + uTLR(x,u)V u +
1

2
qT (x)q(x) (3.11)

+
1

2

[
qT (x)W (x)u + uTW T (x)q(x)

]
+

1

2
[W (x) +H(x,u)]T [W (x) +H(x,u)]
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Using properties (i) through (iii) given in Theorem 3.1

V̇ ≤ hT0 (x)u +
1

2
uT
[
j(x,u)T + j(x,u)

]
u

≤ yTu. (3.12)

Thus, comparing (3.12) with (3.3) it is concluded that Σ1 is passive and V (x) is the

storage function. This completes the proof.

Notice on the set Ω1 defined in Definition 3.2.2, property (i) through (iii) of The-

orem 3.1 become exactly the necessary conditions for passivity. Thus, Theorem 3.1

plays the role of the generalized KYP lemma for non-affine systems on the set Ω1.

For an affine Σ1, Theorem 3.1 has the following interesting consequence.

Corollary 3.2. Let V be a C1 positive semidefinite function. A system

ẋ = f0(x) + g0(x)u

y = h0(x) + j(x)u

is passive if and only if

(i) Lf0V = −1
2
qT (x)q(x),

(ii) Lg0V = hT0 (x)− qT (x)W (x),

(iii) 1
2
W T (x)W (x) = 1

2

[
j(x)T + j(x)

]
.

Proof. The sufficient conditions follow directly from Theorem 3.1 by noticing in

this case that H(x,u) and R(x,u) are identically zero. The necessity is shown

by observing the function −V̇ + yTu is positive, semidefinite and quadratic in the
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control for a passive system. Thus, a non-unique representation satisfying properties

(i) through (iii) exist. This completes the proof.

Corollary 3.2 is the nonlinear version of the KYP lemma derived by Hill and

Moylan [61].

3.3 Feedback Equivalence to a Passive System/Feedback Passivation

In this section, the conditions under which the following system

Σ2 :
ẋ = f(x,u)

y = h(x)
(3.13)

is feedback equivalent to a passive system with positive definite storage function

V (x) are derived. These conditions are developed to exploit the following interesting

stabilizing property of passive systems. Assume that Σ2 is passive and zero-state ob-

servable. This means that if the output h(x) = 0 is zero, then the state is identically

zero. With this property the following theorem states that the system is globally

stabilized purely by output feedback.

Definition 3.3.1. [60][Theorem 14.4] If Σ2 is

(i) passive with a radially unbounded positive definite storage function and

(ii) zero-state observable

then the origin x = 0 can be globally stabilized by u = −φ(y), where φ is any locally

Lipschitz function such that φ(0) = 0 and yTφ(y) > 0 for all y 6= 0.

The control in Definition 3.3.1 has been formulated to ensure the passivity condi-

tion in Definition 3.2.1 holds globally. Then the zero-state observable property helps

conclude that the origin is the largest invariant set and hence the global equilibrium
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of the closed-loop system. In order to use this powerful result for control design, con-

ditions under which systems can be made passive need to be studied. The first result

toward this end, studies the relative degree of a passive system. Relative degree of a

system is number of times the output must be differentiated for the input to appear

explicitly. The following definition expresses this condition using Lie derivatives.

Definition 3.3.2. The system Σ2 is said to have a relative degree (r1, r2, . . . , rm) at

a point (x0,u0) if:

(i) ∂
∂u

[
Lkf hi(x)

]
= 0 for all 1 ≤ i ≤ m, x in the neighbourhood of x0 and all u in

the neighbourhood of u0 and all k < ri,

(ii) ∂
∂u

[Lrif hi(x)]
∣∣
(x0,u0)

6= 0.

Note the relative degree of a nonlinear system is a local concept defined about

the point (x0,u0) and also depends on the domain of control. This dependence is

a result of the non-affinity of the system. Next a lemma is derived that will help

determine the relative degree of Σ2.

Lemma 3.3. Origin belongs to the set Ω1 given in Definition 3.2.2.

Proof. Consider the open-loop system Σ2. The necessary condition for passivity with

positive definite storage function is

Lf0V (x) ≤ 0.

This indicates that the system is stable in the Lyapunov sense. Further, by Laselle’s

theorem [64] it is known that the state of this open-loop system will enter the set

{x ∈ Rn : Lf0V (x) = 0}. This is exactly the set Ω1 in Definition 3.2.2. This result

also can be shown by Barbalat’s lemma [65].
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Further, the set Ω1 contains the invariant sets of the system. Since origin is the

fixed-point of the system Σ1, it is concluded that it belongs to the set Ω1. This

completes the proof.

The next theorem analyzes the relative degree of the passive system Σ2.

Theorem 3.4. Suppose Σ2 is passive with a C2 storage function V which is positive

definite. If g0(0) and ∂h
∂x

(0) have full rank, then Σ2 has relative degree (1, 1, . . . , 1)

at (x = 0,u = 0).

Proof. The relative degree of Σ2 is one if
[
∂ẏ
∂u

]
(0,0) is non-singular, or

∂ẏ

∂u
(0,0) =

{
∂h

∂x
g0(x) +

∂

∂u

[
∂h

∂x

[
m∑
i=1

uiRi(x,u)

]
u

]}
(0,0)

=
∂h

∂x
g0(0) (3.14)

= Lg0h(0)

are m×m and non-singular. The above relations are obtained by using the smooth

property of the vector fields. Hence conditions for which (3.14) holds true need to

be determined. This is carried out in the following two steps.

Firstly, since Σ2 is passive, it satisfies the necessary conditions given in Defini-

tion 3.2.2. But property (ii) in Definition 3.2.2 is defined only for set Ω1. Hence the

first step in the proof is to show that origin belongs to this set. This has been shown

in Lemma 3.3. Thus, from property (ii) of Definition 3.2.2

∂

∂x

[
gT0 (x)

∂V

∂x

]
g0(x) =

∂h

∂x
g0(x) (3.15)

is satisfied at x = 0. Differentiating and using the fact ∂V
∂x

(0) = 0 in (3.15)
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gT0 (0)
∂2V

∂x2
(0)g0(0) =

∂h

∂x
g0(0). (3.16)

The rest of the proof proceeds similar to Proposition 2.44 given in [63]. The Hessian

∂2V
∂x2 (0) is symmetric positive definite by properties of the storage function and can

be factored as RTR with some matrix R. Then,

gT0 (0)RTR(0)g0(0) =
∂h

∂x
g0(0). (3.17)

Since ∂h
∂x

(0) = gT0 (0)RTR(0) is assumed to be full rank, Rg0(0) has full rank. Hence

it is concluded that ∂h
∂x

g0(0) is m×m and full rank. This completes the proof.

Remark 3.3.1. For an affine system, the conditions of Definition 3.2.2 are satisfied

for all control inputs. Since the relative degree for an affine system does not depend

on input, Theorem 3.4 consequently reduces to Proposition 2.44 [63].

The next result examines the nature of the zero dynamics of Σ2.

Theorem 3.5. Suppose Σ2 is passive with a C2 storage function V which is positive

definite. If g0(0) and ∂h
∂x

(0) have full rank, then zero dynamics of Σ2 locally exist

about (x = 0,u = 0) and is weakly minimum phase.

Proof. From Theorem 3.4, Σ2 has a well-defined relative degree and local zero dynam-

ics exist. Let the set Ω2 = {x ∈ Rn : h(x) = 0} define the points on the zero-output

manifold. By definition of Σ2 this set contains the origin. By Lemma 3.3 origin is

also contained in the set Ω1. Thus, in order to study the local nature of the zero

dynamics about the origin, only those state trajectories that fall in the intersection

set Ω2

⋂
Ω1 need to be considered. On these set of points properties (i) through (ii)

of Theorem 3.1 hold. Hence,
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V̇ = Lf(x,u)V

= Lf0V + Lg0V u + uTLR(x,u)V u (3.18)

= uTLR(x,u)V u.

By Definition 3.2.1, for passive systems V̇ ≤ yTu. Furthermore, this condition

becomes V̇ ≤ 0 on the set Ω2

⋂
Ω1. This inference along with condition (3.18) implies

that the origin is Lyapunov stable and hence zero dynamics is weakly minimum phase.

This completes the proof.

Theorems 3.4 and 3.5 together give the necessary conditions for feedback equiv-

alence to a passive system. This result is summarized by the following theorem.

Theorem 3.6. Suppose g0(0) and ∂h
∂x

(0) have full rank. The necessary conditions

for transforming Σ2 into a passive system with C2 positive definite storage function

V using static state-feedback compensation are:

(i) Σ2 has relative degree {1, 1, . . . , 1} and

(ii) is weakly minimum phase

Proof. From Theorem 3.4 and Theorem 3.5 it is known that the resulting system will

have relative degree (1, 1, . . .) with weakly minimum phase zero dynamics. Further,

it is well understood that relative degree and zero dynamics are invariant under static

feedback [66][Lemma 2.4]. Hence the conditions in the proof follow.

Theorem 3.6 extends the powerful feedback equivalence approach to general non-

linear systems. It provides necessary conditions for a system to be made passive

by feedback under mild restrictions. The equivalent theorem for affine systems de-

rived in [58] shows that Theorem 3.6 is also sufficient for feedback passivity. But
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the topological and nonlinear nature of non-affine systems hinders this result to be

sufficient.

3.4 Control Synthesis for Stabilization

This section returns to the question of control design for general non-affine sys-

tems. The central idea for stabilization is based upon Definition 3.3.1 and Theo-

rem 3.6. Suppose the control is decomposed as u(x) = α(x) + ν(x) and the first

component α(x) is used to ensure the non-affine system under consideration is pas-

sive through input ν(x). Then through Definition 3.3.1 asymptotic stabilization

is guaranteed under zero-state detectability conditions. The proof that this control

choice in fact asymptotically stabilizes a non-affine system is the focus of this section.

3.4.1 Control Synthesis for Multi-Input Non-Affine Systems

The first result is given for the following non-affine system:

Σ : ẋ = f(x,u); x(0) = x0 (2.4)

with state-space X = Rn and set of input values U = Rm. The set U of admissible

inputs consists of all U -valued piecewise continuous functions defined on R. The

vector field f(.) is continuously differentiable map defined on the open subset O ⊂

Rn. Without loss of generality, origin is chosen as the equilibrium of Σ. Necessary

definitions for zero-state observability for a passive system are reviewed next. Toward

this end, define the following vector fields

f
0
(x) = f(x,α(x)) ∈ Rn (3.19a)

g(x,ν(x)) =

(∫ 1

0

∂f(x,α(x) + γ)

∂γ

∣∣∣∣
γ=θν

dθ

)
∈ Rn×m (3.19b)

g0

i
= g

i
(x,0) ∈ Rn. (3.19c)
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With these definitions Σ is equivalently represented as

ẋ = f
0
(x) + g(x,ν(x))ν(x) (3.20)

where u(x) = α(x) + ν(x) has been used.

Definition 3.4.1. [38] Suppose Σ is passive through input ν(x) and dummy output

h(x,ν(x)). It is locally zero-state detectable if there is a neighbourhood N of x = 0

such that ∀ x0 = x ∈ N

h(φ(t,x;ν),ν)|ν=0 = 0 ∀ t ≥ 0⇒ lim
t→∞

φ(t,x; 0) = 0. (3.21)

If N = Rn, then it is zero-state detectable. A system is locally (respectively

globally) zero-state observable if there is a neighbourhood N of x = 0 such that

∀ x0 = x ∈ N (respectively Rn)

h(φ(t,x; 0),0) = 0 ∀ t ≥ 0⇒ x = 0. (3.22)

The next two conditions test the detectability and observability properties of Σ

with input ν(x) and output h(x,ν(x)). Let the distribution

D = span
{
adkf

0
g0

i
: 0 ≤ k ≤ n− 1, 1 ≤ i ≤ m

}

and two sets Ω and S, associated with D be defined as

Ω =
{

x ∈ N ⊆ Rn : Lkf
0
V (x) = 0, k = 1, . . . , r

}
, (3.23)

S =
{

x ∈ N ⊆ Rn : Lkf
0
LτV (x) = 0, ∀τ ∈ D, k = 0, 1, . . . , r − 1

}
(3.24)
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where V (x) : Rn → R is a Cr; r ≥ 1 function. The notation adkf
0
g0
i

is standard for

Lie bracket.

Definition 3.4.2. [38] Suppose the system Σ is passive with Cr(r ≥ 1) storage

function V , which is positive definite and proper. Then, Σ is zero-state detectable if

Ω ∩ S = {0}.

The following theorem provides sufficiency conditions for asymptotic stabilization

of the system Σ described in (2.4) and equivalently in (3.20).

Theorem 3.7. Suppose V is C2 positive-definite Lyapunov function and the func-

tions α(x) and ν(x) are designed such that Lf
0
V ≤ 0 and ν(x) + [LgV ]T = 0

respectively. If Ω ∩ S = {0}, then the control u(x) = α(x) + ν(x) asymptotically

stabilizes the system Σ.

Proof. Asymptotic stabilization is shown using LaSelle’s invariant principle and Lya-

punov’s direct method. The rate of change of the Lyapunov function about the

trajectories of Σ given in (3.20) is

V̇ =Lf
0
V + LgV ν(x). (3.25)

Then, through construction of α(x)

V̇ ≤ LgV ν(x). (3.26)

Through Definition 3.2.1 (3.26) is passive with the output y =
(
LgV

)T
. Since

Ω
⋂
S = {0}, this passive system is zero-state detectable. By Definition 3.3.1 Σ is

asymptotically stabilized by input ν(x) = −LgV . Hence, the result follows. This

completes the proof.
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Theorem 3.7 is a powerful result that guarantees asymptotic stabilization for all

non-affine nonlinear systems. The concept of control synthesis is general and re-

lies upon separate construction of stiffness and damping functions α(x) and ν(x)

respectively. The necessary conditions for existence of α(x) for a class of systems

with outputs independent of control was derived in Theorem 3.6. The construction of

ν(x) has received considerable attention in literature under the label ‘passivity-based

control’. The requirements of zero-state detectability is a consequence of employing

pure output feedback for passive systems [38], [39], [67]. Hence, the conditions in

Theorem 3.7 can be relaxed by use of other methods for control of open-loop stable

systems. The construction of control input α(x) is discussed next.

3.4.2 Construction of Control for Single-Input Non-Affine Systems

The second result formulates constructive feedback control to stabilize an unsta-

ble single-input non-affine system in the Lyapunov sense. State-feedback control is

synthesized using the sufficiency conditions of Lyapunov’s direct method. Consider

the class of single-input non-affine system

Σ :

ẋ1 = f1(x)

ẋ2 = f2(x)

...

ẋn = fn(x, u)

or Σ = f̄(x, u) (2.3)

where x ∈ Rn is the state, u ∈ R is the control input and f̄ : Rn×R→ R is sufficiently

smooth. Assume that Σ satisfies Assumption 2.2. Without loss of generality, the

origin is the equilibrium of Σ. Using the smoothness properties of vector field in Σ

rearrange (2.3) as

Σ : ẋ = f̄(x, 0) +Bḡ(x, u) (3.27)
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where matrix B is defined as

B = [0, 0, · · · , 0, 1]T (3.28)

and the vector fields f̄(x, 0) and ḡ(x, u) represent the internal and external forces

acting on Σ respectively. The control objective is to Lyapunov-stabilize the origin of

Σ. The following lemma provides sufficiency conditions the control law must satisfy

for stabilization.

Lemma 3.8. Suppose V is C2 positive-definite Lyapunov function and Σ satisfies

Assumption 2.2. Then Σ is locally stabilizable by a control law α : D → R that

satisfies the following conditions:

(i) sign(ḡ(x, α(x))) = −sign((∇V )n) and

(ii) |(∇V )nḡ(x, α(x))| ≥ |
〈
∇V, f̄(x, 0)

〉
|

where (∇V )n is the nth row element of the gradient ∇V . Further if ḡ(x, 0) = 0 the

control can be turned off for stable operating regions or α = 0, if |
〈
∇V, f̄(x, 0)

〉
| <=

0.

Proof. From Lyapunov’s second method, the sufficient condition for the system Σ to

be stable is

V̇ =
〈
∇V, f̄(x, 0) +Bḡ(x, α)

〉
≤ 0. (3.29)

For all states satisfying Assumption 2.2,

〈∇V,Bḡ(x, α)〉 < 0

〈∇V,Bḡ(x, α)〉 ≤ −
〈
∇V, f̄(x, 0)

〉
imply stability and the desired result follows through definition of matrix B.

45



Further, for states in domain D that satisfy |
〈
∇V, f̄(x, 0)

〉
| <= 0, α = 0 ensures

Lyapunov stability if ḡ(x, 0) = 0. This completes the proof.

Remark 3.4.1. Note positive-definite control Lyapunov function defined in Lemma 3.8

is a Lyapunov function candidate for results in Theorem 3.7. Thus, asymptotic stabi-

lization follows from Theorem 3.7 with α(x) defined using conditions of Lemma 3.8.

Next the main result for construction of α(x) using Lemma 3.8 is derived.

Theorem 3.9. Suppose V is a C2 Lyapunov function and Σ satisfies Assumption 2.2.

Further assume |ḡ(x, α)| ≥ R(x)|α|ρ for some R(x) > 0 ∀ x and ρ > 0. Then origin

of Σ is locally stabilizable by a control law α : D → R that satisfies

(i) sign(ḡ(x, α(x))) = −sign((∇V )n) and

(ii) |(∇V )n|R(x)|α|ρ = |
〈
∇V, f̄(x, 0)

〉
|

where (∇V )n is the nth row element of the gradient ∇V . Further if ḡ(x, 0) = 0 the

control can be turned off for stable operating regions or α = 0, if |
〈
∇V, f̄(x, 0)

〉
| <=

0.

Proof. The proof follows directly from Lemma 3.8. The magnitude of control α is

determined from condition (ii) of Lemma 3.8. For Lyapunov stability,

|(∇V )nḡ(x, α(x))| ≥ |
〈
∇V, f̄(x, 0)

〉
| (3.30)

needs to be satisfied. This condition gives the minimum control energy required to

stabilize the origin in the Lyapunov sense. From properties of norm and definition

of R(x) condition (ii) of Theorem 3.9 follows. Hence condition (i) and (ii) provide

an algorithm for correct direction and magnitude computation of control α(x) to

maintain Lyapunov stability. This completes the proof.
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Lemma 3.8 and Theorem 3.9 give an explicit algorithm for transforming an open-

loop unstable non-affine system to Lyapunov-stable. The important contribution of

the control scheme is that no assumptions regarding the control influence have been

made. These algorithms along with passivity-based control asymptotically stabilize

Σ through Theorem 3.7. Application of these results is presented next.

3.5 Numerical Examples

3.5.1 Purpose and Scope

The preceding theoretical developments are demonstrated with simulation. The

first example qualitatively analyses the performance and design procedure for an one-

dimensional system. The second example implements the results of Theorem 3.9 for

stabilization of continuously stirred chemical reactor. This example demonstrates

that stabilization can be guaranteed by appropriate synthesis of α(x) alone. The

third example develops control laws for a nonlinear magnetic levitation system. The

purpose is to synthesize an asymptotically stabilizing controller that is consistent

with the dynamics of the problem.

3.5.2 One-Dimensional Non-Affine Unstable Dynamics

The purpose of this subsection is to verify the theoretical developments through

an open-loop unstable non-affine system. The example considered is a polynomial

system of degree three. The control law for this example was developed through

analytical root solving techniques in [37]. Here an alternate control law formulation is

presented to globally stabilize the origin. Additionally, the simplicity of this example

allows analytical verification of the control development proposed. Consider the

following system:

ẋ = x− 2u3. (3.31)
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It is open-loop unstable and satisfies Assumption 2.2 through quadratic Lyapunov

function V (x) = 1
2
x2. The objective is to globally stabilize the origin of (3.31)

through static compensation.

The origin of the system given in (3.31) cannot be stabilized by a fixed gain

controller. To see this behaviour, suppose the control takes the form u = Kx in

(3.31). The resulting closed-loop dynamics is ẋ = x − 2K3x3. This system has the

following equilibrium solutions

x∗ =

 0 for all K

± 1√
2K3

for K > 0.
(3.32)

These equilibrium solutions and their local stability properties are presented in Fig-

ure 3.1 for different values of the feedback gain K. This bifurcation map illustrates

that the origin always remains unstable and only an infinitely high-gain can force

stability. Furthermore, the system has three equilibrium solutions for all positive val-

ues of the feedback gain. The non-zero equilibrium solutions converge to the origin

at infinite gain. High-gain feedback limits capabilities of the system and is not a de-

sirable solution. An alternative solution to regulate the system is to switch feedback

gains in accordance with the current state. As an example, suppose the feedback

gain for (3.31) was initialized to K0 = 1.5. Figure 3.1 and (3.32) conclude that the

state would stabilize to xsteady = ±0.384 depending on its initial condition. Thus, in

order to stabilize the origin, the feedback gain needs to be switched to another value.

One of the several ways of switching is shown in the phase portrait in Figure 3.2.

The phase portrait shows that the state begins on the blue curve corresponding to

u = 1.5x. The origin can be stabilized only if the state switches onto the green curve

that corresponds to K = 1/|x|2/3. This switch needs to be made exactly when the
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Figure 3.1: Stable (solid lines) and unstable (broken line) equilibrium solutions of
(3.31) with u = Kx

two curves meet otherwise the state would settle at steady state of the blue curve and

remain there forever. Similar trend can be seen in Figure 3.3 where phase portraits

for four different feedback gains is presented. Only the green curve stabilizes the

origin and all other curves must intersect with this curve to regulate the state. This

observation agrees with the conclusion drawn from Figure 3.1 that only infinite gain

can stabilize the origin.

System (3.31) exhibits a fundamental phenomenon observed in control of non-

affine systems. These systems in general cannot be stabilized by a fixed static com-

pensator. Switching curves for (3.31) were determined analytically through the study

of the bifurcation map given in Figure 3.1. But for high dimensional systems, gener-

ation and analyses of these maps requires substantial system knowledge and offline

processing. Additionally, the number of times the control must switch and conditions

for which these switches must occur depends on the initial condition of the physical
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Figure 3.2: Phase portrait of (3.31) with control u = Kx

Figure 3.3: Phase portrait for (3.31) with control u = Kx for four feedback gains
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system. In the following, real-time implementable globally stabilizing controller is

synthesized using Theorem 3.7 that is independent of the initial condition.

3.5.2.1 Controller Design

In this section, the feedback control of the following form u = α(x) + ν(x) is

constructed in three steps using the conditions given in Theorem 3.7.

The first step proceeds by substituting the control form in (3.31) and defining

vector fields given in (3.19). This results in

f
0
(x) = x− 2α3(x) (3.33)

g(x, ν(x)) = −6α2(x)− 6α(x)ν(x)− 2ν2(x) (3.34)

g0(x) = −6α2(x). (3.35)

In the second step construct α(x) to ensure Lyapunov stability of f
0
(x). With

V (x) = 1
2
x2, this condition requires

2xα3(x) ≥ x2. (3.36)

The following is one choice for α(x) that satisfies (3.36) for all x ∈ R:

α(x) =



1
3√2
x if |x| ≥ 1;

− 1
3√2

if −1 < x < 0;

0 if x = 0 ;

1
3√2

if 0 < x < 1.

(3.37)

Using α(x) defined above the dynamics f
0
(x) becomes
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f
0
(x) =



x− x3 if |x| ≥ 1;

x+ 1 if −1 < x < 0;

0 if x = 0 ;

x− 1 if 0 < x < 1.

(3.38)

Note f
0
(x) described in (3.38) has three stable fixed points x = −1, x = 0 and x = 1.

Thus, the dynamics of the system (3.31) is rendered stable for all time.

The third step proceeds with construction of control input ν(x) that enforces

stability of the origin. Toward this end, recall with design of α(x) the dynamics of

f
0
(x) is Lyapunov stable. Thus, the system in (3.20) can be seen as an open-loop

stable system with respect to input ν(x). Control laws for such a class of systems

has been addressed by passivity-based methods and following the formulation given

in [39] to construct control input ν(x)

ν(x) = −
γ(x)Lg0V (x)

1 + |Lg0V (x)|2
(3.39)

where γ(x) = β
1+x2(1+4+36α2(x))2

, Lg0V (x) is the Lie derivative of V (x) along [0; g0(x)].

The design parameter 0 < β < 1 bounds the control input.

Theorem 3.7 guarantees that the control input α(x) + ν(x) asymptotically sta-

bilizes an open-loop unstable stable system if Ω
⋂
S = {0}. A routine calculation

shows that Lf
0
V (x) = 0 for Ω = {−1, 0, 1}. Additionally,

0 = Lg0V (x) = −6xα2(x) (3.40)

0 = L[f
0
,g0]V (x) (3.41)

is satisfied for x = 0. Hence Ω
⋂
S = {0} for all x ∈ R. Hence it can be con-
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cluded that the control form α(x) + ν(x) globally asymptotically stabilizes the origin.

Reference [37] designed u = 3
√
x as the control law for the prescribed system using

inversion which only locally regulates the system (3.31).

3.5.2.2 Results and Discussion

The proposed control law given in (3.37) and (3.39) was validated in simulation.

The design parameter β was set to 0.9. The initial condition was chosen as x(0) = 1.

The behaviour of the open-loop system and the system with control input u = α(x)

is presented in Figure 3.4. As expected the open-loop behaviour is unstable and the

system with u = α(x) stays at x = 1 for all time. The closed-loop response is shown

in Figure 3.5. The initial magnitude of the control input ν(x) is small (specifically

ν(x) = 0.00029) but greater than zero to ensure the state of the system becomes less

than 1. (Difficult to see in the figure. At time t = 2seconds, the state is x(2) = 0.993.)

The control is dominated by α(x) since the dynamics f
0
(x) inherently pushes the

system toward origin. By construction in (3.39), the magnitude of ν(x) increases

when the state reaches near origin to asymptotically regulate the dynamics. This is

consistent with earlier conclusions that high-gain feedback is required to stabilize the

origin. From then on the control is turned off and the system stays at origin for all

future time. Note the discontinuous nature of the control is an artifact of the choice

of α(x).

3.5.3 Continuously Stirred Tank Reactor

The second non-affine system is a constant volume reactor and the objective

is to control the concentration of the tank through coolant flow. This example

demonstrates asymptotic stabilization through design of α(x) using conditions of

Theorem 3.9. The system is represented as
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Figure 3.4: System response of (3.31) for u = 0 and u = α(x)

Figure 3.5: Closed-loop system response of (3.31) and control effort
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ẋ1 = 1− x1 − a0x1 exp(−104/x2) (3.42a)

ẋ2 = 350− x2 + a1x1 exp(−104/x2) +a3u(1− exp(−a2/u))(350− x2) (3.42b)

where 0 < x1 < 1 is the concentration of the tank in mol/l, x2 > 350 is the

temperature of the tank in ◦K and u ≥ 0 is the coolant flow rate in mol/min.

The system parameters [68] are given in Table 3.1. The control influence in (3.42) is

nonlinear in the control and not monotonic in any variable. This trend is presented in

Figure 3.6. The two-dimensional surface plots obtained by varying temperature and

coolant flow rate are shown in Figure 3.7 and Figure 3.8 respectively. Owing to this

nonlinear behaviour previous studies have used neural-network based control designs

to stabilize the concentration of the reactor[68], [69]. In this section an alternate

constructive memoryless form of control is derived.

Table 3.1: Continuously stirred tank reactor model parameters

Parameter Value

a0 7.2× 1010min−1

a1 1.44× 1013

a2 6.987× 102

a3 0.01

3.5.3.1 Controller Design

The first step in developing a control law is to cast the system into form of Σ given

in (2.3). However, the origin is not the equilibrium of the system given in (3.42). The

equilibrium solutions are obtained by solving the following transcendental equations:
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Figure 3.6: Control influence of the continuously stirred tank reactor

Figure 3.7: Control influence plotted with respect to temperature
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Figure 3.8: Control influence plotted with respect to coolant flow rate

0 = 1− x1∗ − a0x1∗ exp(−104/x2∗) (3.43a)

0 = 350− x2∗ + a1x1∗ exp(−104/x2∗) . (3.43b)

Rewrite the concentration as x1∗ = 1/(1 + a0 exp(−104/x2∗)) and solve for roots of

0 = 350− x2∗ + exp(−104/x2∗)[350a0 + a1 − a0x2∗]. (3.44)

The algebraic equation given in (3.44) has a unique root x2∗ = 549.01257025◦K.

Using (3.43) the unique root for concentration is x1∗ = 0.001128849277mol/l. Define

the states e1 = x1−x1∗ and e2 = x2−x2∗ to shift the equilibrium to origin. Routine

calculation gives the following system:

57



ė1 = c− e1 − a0(x1∗ + e1) exp(−104/(x2∗+e2)) (3.45a)

ė2 = d− e2 + a1(e1 + x1∗) exp(−104/(x2∗+e2))

+ a3u(1− exp(−a2/u))(350− x2 − e2) (3.45b)

where c = a0x1∗ exp(−104/x2∗) and d = −a1x1∗ exp(−104/x2∗). In compact form

f̄(e, 0) =

 c− e1 − a0(x1∗ + e1) exp(−104/(x2∗+e2))

d− e2 + a1(e1 + x1∗) exp(−104/(x2∗+e2))

 (3.46)

and

ḡ(e, u) = a3u(1− exp(−a2/u))(350− x2 − e2). (3.47)

The second step proceeds with design of control input α(e) to stabilize (3.45).

Suppose V = 1
2
(e2

1 + e2
2) is a C2 Lyapunov function. The correct sign of control is

determined using condition (i) of Theorem 3.9, that is

sign(ḡ(e, α)) = −sign(e2) (3.48a)

or sign(a3(350− x2∗ − e2))sign(α)sign(1− exp(−a2/α)) = −sign(e2) (3.48b)

Using the facts that sign(1− exp−(a2/α)) = 1 for all control values,

sign(α) = − sign(e2)

sign(a3(350− x2∗ − e2))
. (3.49)

The magnitude is computed using condition (ii) of Theorem 3.9

|α| =

 β
|〈∇V,f̄(e,0)〉|

|a3e2(350−x2∗−e2)−1| for e2 6= 0

0 otherwise
(3.50)

where the denominator is adjusted to avoid singularity and β ≥ 1. The constant β
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determines how negative the control influence is made. Value of β = 1 ensures that

system is only Lyapunov stable where as for asymptotic stability guarantees β > 1.

Hence, through Theorem 3.9 asymptotic stability in the operating region 0 < x1 < 1

and x2 > 350 is guaranteed.

3.5.3.2 Results and Discussion

Controller performance for regulating the non-affine system (3.42) is presented in

Figure 3.9 and Figure 3.10. The constant in (3.50) is set to β = 1.5 in simulation.

The initial condition errors are e10 = 0.001mol/l and e20 = 50◦K. The results show

that origin is asymptotically stable equilibrium for (3.45) and consequently the trim

solutions (x1∗, x2∗) are stabilized for (3.42). Notice the coolant flow rate settles down

to origin once the trim solutions are obtained. Additionally, the control computed

using (3.49) is positive as desired and no apriori information regarding the domain

of solutions has been employed in the control design.

3.5.4 Magnetic Levitation System

Consider the control of a metallic ball with magnetic field being derived by the

current passing through a coil. The current through the coil is the control input and

the goal is to stabilize the vertical position of the ball to a specified reference. The

dynamics of the system is described as

ė1 = e2, (3.51a)

ė2 = g − k0

(l0 + xref + e1)2
u2. (3.51b)

The physical parameters of the system[70] are g = 9.81m/s2, l0 = 0.01m and

k0 = 1m/s2/A2. The error in position of the ball is given by e1 and error in velocity
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Figure 3.9: States and computed control of continuously stirred tank reactor

Figure 3.10: Error in system response and steady state solution for continuously
stirred tank reactor
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of the ball is represented as e2. The desired position of ball is specified as xref = 3mm.

3.5.4.1 Controller Design

The control design proceeds by substituting the controller of the form u(e) =

α(e) + ν(e) into (3.51). This results in

ė1 = e2, (3.52a)

ė2 = g − k0

(l0 + xref + e1)2
α2(e)

− 2k0α(e)

(l0 + xref + e1)2
ν(e)− k0

(l0 + xref + e1)2
ν2(e). (3.52b)

Compare (3.52) and (3.19) and notice

f
0
(e) =

 e2

g − k0
(l0+xref+e1)2

α2(e)

 (3.53)

and

g(e, ν) = − 2k0α(e)

(l0 + xref + e1)2
− k0

(l0 + xref + e1)2
ν(e). (3.54)

Begin construction of α(e) by picking a positive-definite function V (e) =
e21+e22

2
.

The following choice of α(e)

α(e) =

 0 if e1 + g ≤ 0;√
|e1+g|
k0

(l0 + xref + e1); otherwise
(3.55)

satisfies condition given in Theorem 3.9 for the dynamics f
0
(e) given in (3.53). The

construction of ν(e) follows similar to the one-dimensional example and is derived[39]

as

ν(e) = − γ(e)Lg0V (e)

1 + ||Lg0V (e)||2
(3.56)
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Figure 3.11: Time derivative of the Lyapunov function along trajectories of (3.51)
with u = α(e) and ν(e) = 0

where
ρ(e) = − 2k0

(l0 + xref + e1)2
,

γ(e) =
β

1 + [||∂V
∂e
||ρ(e)]2

(3.57)

g0(e) =

 0

− 2k0α(e)
(l0+xref+e1)2

 (3.58)

Lg0V (e) = − 2k0e2α(e)

(l0 + xref + e1)2
,

define the appropriate functions.

Theorem 3.7 guarantees asymptotic stabilization of (3.51) by control u(e) =

α(e) + ν(e) only if zero-state detectability conditions are met. In order to determine
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Figure 3.12: State space showing the different values of the time derivative of Lya-
punov function for (3.51)

the set Ω, substitute (3.55) into f
0
(e) given in (3.53). This results in

f
0
(e) =

 e2

−|e1 + g|+ g

 . (3.59)

Using (3.59) and quadratic Lyapunov function V (e) the set is obtained as Ω =

{e1 ∈ [−g,∞)
⋂
e2 = 0}. This set is graphically represented in Figure 3.11 and Fig-

ure 3.12. Careful examination shows that the unstable maglev system cannot be

stabilized in the region (e1 < −g, e2 < 0). But physically all points e1 < 0 can be

discarded as the vertical position of the ball can only take positive values. Hence,

it is concluded that the the choice of α(e) given in (3.55) stabilizes all physically

feasible positions of the ball in the Lyapunov sense.

The set S is determined by setting Lg0V (e) = 0 and L[f
0
,g0]V (e) = 0 where

g0 = [0; g
0
]. This gives the solution S = {e1 = −g or e1 = 0

⋂
e2 = 0}. Hence the
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only physically feasible solution is (e1 = 0, e2 = 0) and the set Ω
⋂
S = {0}. Thus,

asymptotic stability is guaranteed by Theorem 3.7 in the region (e1 ≥ 0, e2 ∈ R).

3.5.4.2 Results and Discussion

The simulation results of the closed-loop magnetic levitation system is presented

in Figure 3.13 and Figure 3.14. The design parameter β in this case was set to 0.5.

Notice that the control u = α(e) stabilizes the unstable maglev system in Lyapunov

sense. Recall, the control input is the current through the coil and varying this

changes the strength of the magnetic field. The effect is clearly visible in Figure 3.13.

The error in position and velocity of the ball varies with change in strength of the

magnetic field. The combined control u(e) = α(e)+ν(e) ensures that this Lyapunov

stable system globally settles down at the origin (Seen in Figure 3.14). Notice that

the control input settles down to a constant value which is consistent with the physics

of the problem.

Figure 3.13: Response of the magnetic levitation system for u = α(e)
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Figure 3.14: Closed-loop response of the magnetic levitation system and applied
control

3.6 Closing Remarks

In this section the design procedure for analytical construction of control for un-

stable non-affine systems was proposed. Toward this end, several new results were

derived and analyzed. This work extended the applicability of the well-established

control law design procedures to unstable non-affine systems. The method presented

provides a feedback stabilizer for general class of systems. The analytical devel-

opments and the simulation results indicate that α(x) makes the system passive,

while the control ν(x) provides the required perturbation to establish stabilization

(clearly seen in results of the magnetic levitation system). Furthermore, the method

proposed does not require the control influence to be non-singular throughout the

domain of interest. The benefits and limitations of the proposed methods are sum-

marized below:
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3.6.1 Benefits

1. Sufficient conditions for asymptotic stabilization a general non-affine system

with static compensation have been derived that are independent of the oper-

ating conditions of the system.

2. The proposed control laws are real-time implementable and do not require

immense offline processing unlike some of the switching schemes [48] proposed

in literature.

3. No assumptions regarding the properties of the control influence have been

made. Dynamic compensation techniques in [40], [46] require the control influ-

ence to be monotonic and non-zero for all values of state and control. Unlike

these methods, the proposed method are general and can stabilize the system

of the form ẋ = x− 2xu4 by appropriate design of α(x).

4. Owing to the energy-based concept that is utilized for construction of the

control, the results obtained are consistent with the physics of the problem

and do not violate system constraints.

5. Numerical examples illustrates that the nature of the control function α(x)

is continuous but not differentiable. This result is obtained by satisfying the

nonlinear inequality of Theorem 3.9. It is interesting to note that this result has

been proven in [3][Corollary 5.8.8]. It was shown that any nonlinear systems

whose linear counterparts are unstable cannot be locally C1 stabilizable. Thus,

the derived control laws arrive at this well-known result without making any

prior assumptions about the nature of the vector fields.
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3.6.2 Limitations

1. Satisfying sufficient conditions of Theorem 3.7 sometimes requires iteration and

is not constructive.

2. The theoretical developments and conclusions from simulation results are valid

only for time-invariant control non-affine problems.
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4. ASYMPTOTIC STABILIZATION AND SLOW STATE TRACKING OF

CONTROL-AFFINE, TWO TIME SCALE SYSTEMS1

4.1 Introduction

This section discusses methods of solution to address the second objective detailed

in Section 2, repeated below for convenience:

ẋ = f1(x, z) + f2(x, z)u (2.5a)

εż = g1(x, z) + g2(x, z)u (2.5b)

where x ∈ Rm is vector of slow variables, z ∈ Rn is the vector of fast variables, u ∈ Rp

is control input to be determined and initial conditions for the state variables have

been specified. The control objective is to enforce the slow state to asymptotically

track an atleast twice continuously differentiable time-varying bounded specified tra-

jectory, or x(t)→ xr(t) as t→∞. It is assumed that the control is sufficiently fast

than all the system variables.

Although many researchers have studied the control problem for standard sin-

gularly perturbed systems, the feedback control design for non-standard singularly

perturbed systems remains an open research area. The lack of an explicit small

parameter and complexity of constructing the slow manifold are essential difficul-

ties. This is because non-standard systems cannot be decomposed into reduced slow

and fast systems using the asymptotic expansion technique[15]. The alternative ge-

ometric approach describes the motion of the full-order system using the concept

1Parts of this section reprinted with permission from “Kinetic state tracking for a class of
singularly perturbed systems”, Siddarth, Anshu and Valasek, John, 2011. Journal of Guidance,
Control, and Dynamics, Vol. 34, No. 3, pp 734-749, Copyright c©2011 by Siddarth, Anshu and
Valasek, John.
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of invariant manifolds and produces the exact same reduced-order models, but with

different assumptions about the system. Asymptotic methods assume that the dy-

namical system possesses isolated roots, while the geometric approach is more general

and takes into consideration multiple non-isolated roots of nonlinear systems. The

geometric approach is employed as the model-reduction in the proposed schemes. At

the heart of each control scheme lies the concepts of geometric singular perturbation

theory and composite Lyapunov approach, with details in Appendices A and B.

This section is organized as follows. Reduced-order systems for the dynamical

model under consideration are constructed using Geometric Singular Perturbation

Theory (GSPT), and are detailed in Section 4.2. Sections 4.3 and 4.4 present two

different approaches developed by the author to accomplish asymptotic tracking of

affine-in-control singularly perturbed systems. The benefits and limitations of both

the approaches are identified and performance is demonstrated through numerical

simulation. Concluding remarks and salient features of the developed approaches are

discussed in Section 4.5.

4.2 Model Reduction

Following the definitions given in Appendix A, the system considered in (2.5) is

the slow system. Equivalent representation in the fast time scale τ = t−t0
ε

with t0

being the initial time is given as

x′ = ε [f1(x, z) + f2(x, z)u] (4.1a)

z′ = g1(x, z) + g2(x, z)u. (4.1b)

The following reduced-order models are obtained by formally substituting ε = 0 in

(2.5) and (4.1) respectively.
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Reduced slow system is:

ẋ = f1(x, z) + f2(x, z)u (4.2a)

0 = g1(x, z) + g2(x, z)u (4.2b)

and reduced fast system is:

x′ = 0 (4.3a)

z′ = g1(x, z) + g2(x, z)u (4.3b)

The dynamics of the resulting reduced slow system is restricted to m dimensions

and constrained to lie upon a smooth manifold defined by the set

M0 : z = h0(x,u) (4.4)

satisfying the algebraic equation (4.2b) that are identically the fixed points of (4.3b).

Thus the flow on this manifold is described by the differential equation

ẋ = f1(x,h0(x,u)) + f2(x,h0(x,u))u (4.5)

if the reduced fast system is stable about the manifold M0. Furthermore GSPT

concludes that the solutions of the full-order slow system lie on the manifold

Mε : z = h(x,u, ε) (4.6)

and are O(ε) close to M0.
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4.3 Approach I: Modified Composite Control

The thrust of asymptotic stabilization of system in (2.5) using composite control

technique[20] lies on the identification of an isolated manifold M0 for reduced slow

system and ensuring that this manifold is the unique stabilizing fixed point of the

reduced fast system. However, due to the underlying nonlinearity of the system this

manifold cannot always be determined analytically in terms of the slow variables and

the control signals. The developed approach shows that it is possible to accomplish

asymptotic stabilization and bounded tracking under certain conditions using an

approximation of the manifold and modified composite control technique.

The remainder of section 4.3 is arranged as follows: Firstly, an important connec-

tion between the center manifold theory and the manifold under interest is revisited.

This result is then used to formulate the control law and analyze stability of the

closed-loop system. The technique is verified in simulation for a generic enzyme

kinetic model and an F/A-18A Hornet model.

4.3.1 Center Manifold and Its Computation

Fenichel’s theorem ( Theorem A.0.1 in Appendix A) is a powerful tool to study

the behaviour of stiff dynamical systems. It asserts that the solutions of the full-

order singularly perturbed system can be approximated by the solution of the lower-

dimensional reduced slow system, provided the fast dynamics are stable about the

manifoldM0. In other words, there exists an invariant manifoldMε that isO(ε) close

toM0. But this result does not provide the procedure to compute the manifoldM0.

Results from center manifold theory are recalled to obtain an approximate analytical

form of the manifold in terms of the system state variables.

To demonstrate these concepts, consider the following open-loop counterpart of
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system given in (2.5)

ẋ = f1(x, z) (4.7a)

εż = g1(x, z). (4.7b)

Assuming the fast dynamics is stabilizing, then the manifold Mε defined as

Mε : z = h(x, ε) (4.8)

is invariant for some t ≥ t∗. Thus, differentiating this expression with respect to t,

ż =
∂h

∂x
ẋ (4.9)

and using (4.7) results in the manifold condition

ε
∂h

∂x
f1(x,h(x, ε)) = g1(x,h(x, ε)). (4.10)

Note that substituting ε = 0 in the manifold condition returns the algebraic equation

satisfied by set of points on the manifold M0. Although implicit function theorem

guarantees the existence of the manifold, the exact computation of the manifold us-

ing (4.10) is very difficult since solving this condition is equivalent to solving the

complete nonlinear system. One approximate approach is to substitute a perturba-

tion expansion for h(x, ε) = h0(x) + εh1(x) + O(ε2) into (4.10) and then solve for

each order of h(x, ε). This perturbation expansion may be employed if the domain

of interest is known. However in control formulation the inverse problem is usually

encountered. The domain of interest depends on the controller form which in turn

depends on the analytical manifold expressed as smooth function of its arguments.
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This problem is addressed by following the approach proposed in [71] and is discussed

below.

The computation procedure proposed in [71] has been laid out for dynamical

systems with center manifolds. For completeness, the first step is to check whether

the manifold Mε is the center manifold of the singularly perturbed system. In

order to study this behaviour fast system is rewritten using the technique called

suspension [72]

x′ = εf1(x, z) (4.11a)

ε′ = 0 (4.11b)

z′ = g1(x, z). (4.11c)

Assume that the origin is the fixed point of (4.11), that is f1(0,0) = 0 and g1(0,0) =

0. Then the perturbed system obtained by linearizing these equations about the

origin (x = 0, ε = 0,h(0, 0) = 0) is written in compact form as

∆w′ = Fw + F1z (4.12a)

∆z′ = Lz + L1w (4.12b)

where w = [x, ε]T , ∆w and ∆z denote the perturbation quantities while F , F1, L, and

L1 are constant matrices of appropriate size. Note that since the system is linearized

about ε = 0, all eigenvalues of F have zero real parts while all eigenvalues of L

have negative real parts. Thus, it is concluded that the manifoldMε is precisely the

center manifold and it spans the generalized eigenvectors associated with eigenvalues

with zero real parts. This manifold is defined for all small values of the slow state

x and the perturbation parameter ε. The requirement on eigenvalues of F supports
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the existence of time scales in the system, for if the eigenvalues were nonzero then

all states would be fast variables and the system is not singularly perturbed. This

suggests that the eigenvalue restriction on F is always satisfied by systems with the

multiple time scale property. The other requirement of negative eigenvalues of L is

to ensure that the trajectories not on the manifold approach it in forward time.

From the above analysis h(x, ε) is known to be the center manifold. If the origin

is the fixed point of the linearized system, then the theorem from [71] asserts that one

can approximate h(x, ε) to any degree of accuracy. For functions φ : Rm × R→ Rn

which are Cr−1 (r defined as in Assumption A.1 of Appendix A) in the neighbourhood

of the origin, the operator is defined as

(Mφ)(x, ε) = ε
∂φ

∂x
f1(x, φ(x, ε))− g1(x, φ(x, ε)). (4.13)

Note that by (4.10) (Mh)(x, ε) = 0.

Definition 4.3.1. [71] Let φ : Rm×R→ Rn satisfy φ(0, 0) = 0 and |(Mφ)(x, ε)| =

O(C(x, ε)) for |x| → 0 and ε→ 0 where C(.) is a polynomial of degree greater than

one, then

|h(x, ε)− φ(x, ε)| = O(C(x, ε)). (4.14)

Definition 4.3.1 implies that an approximate function φ(x, ε) can be determined

for small values of x and ε. The condition φ(0, 0) = 0 is to ensure that the ori-

gin remains the fixed point. To demonstrate the procedure consider the following

example [71]:

ẋ = xz + ax3 + bz2x (4.15a)

εż = −z + cx2 + dx2z (4.15b)
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The following system is obtained upon linearization about the origin:

∆x′ = 0 (4.16a)

∆ε′ = 0 (4.16b)

∆z′ = −1. (4.16c)

It is seen that the system possesses a center manifold z = h(x, ε). To approximate

h, define:

(Mφ)(x, ε) = ε
∂φ

∂x

[
xφ(x, ε) + ax3 + bφ2(x, ε)x

]
+ φ(x, ε)− cx2 − dx2φ(x, ε) (4.17)

Hence if φ(x, ε) = cx2 is chosen, then (Mφ)(x, ε) = O (|x4|+ |εx4|) and from the

Definition 4.3.1 it is concluded h(x, ε) = cx2 + O (|x4|+ |εx4|). Since the reduced

fast system is stabilizing, the stability of the complete system can be analyzed by

studying the flow on the manifold

ẋ = (a+ c)x3 + bc2x5 +O(|x5|+ |εx5|). (4.18)

4.3.2 Control Law Development

The central idea in the formulation is the following. It is well understood that

the complete system dynamics remains O(ε) close to the reduced slow system, if the

reduced fast system is stabilizing about the manifold M0. This fact is employed

to develop a stable closed-loop system. It is proposed that two separate stabilizing

controllers be designed for each of the subsystems about the manifold approximation

determined using center manifold theory and their composite be fed to the complete

system.
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The objective is to augment the two time scale system with state feedback

controllers such that the system follows a specified continuous twice differentiable

bounded trajectory xr(t). The first step is to transform the system given in (2.5)

into a non-autonomous stabilization problem. Define the error signal as x̃(t) =

x(t)− xr(t). Then

˙̃x = f1(x̃,xr, z) + f2(x̃,xr, z)u− ẋr (4.19a)

εż = g1(x̃,xr, z) + g2(x̃,xr, z)u. (4.19b)

The objective is to seek the control vector of the form u = us + uf , where slow

controller

us = Γs (x̃,xr, ẋr) (4.20)

and fast controller

uf = Γf (x̃, z,xr, ẋr) . (4.21)

Substituting the controls into (4.19)

˙̃x = f1(x̃,xr, z) + f2(x̃,xr, z) [Γs (x̃,xr, ẋr) + Γf (x̃, z,xr, ẋr)]− ẋr (4.22a)

εż = g1(x̃,xr, z) + g2(x̃,xr, z) [Γs (x̃,xr, ẋr) + Γf (x̃, z,xr, ẋr)] (4.22b)

Assume that the right-hand side of (4.22) is C2, i.e. the vector fields satisfy As-

sumption A.1 with r = 2. From Fenichel’s theorem A.0.1 it can be concluded that

there exists a manifold

Mε : z = h(x̃, ε,xr, ẋr) (4.23)

that satisfies the manifold condition
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ε
∂h

∂t
+ ε

∂h

∂x̃
˙̃x = g1(x̃,xr,h(x̃, ε,xr, ẋr)) + g2(x̃,xr,h(x̃, ε,xr, ẋr))Γs (x̃,xr, ẋr)

+ g2 (x̃,xr,h(x̃, ε,xr, ẋr)) Γf (x̃,h(x̃, ε,xr, ẋr),xr, ẋr) . (4.24)

Note that the manifold is time-dependent since the system under consideration is

non-autonomous due to the time-varying nature of xr(t). Define the error between

the fast states and the manifold Mε as z̃ = z − h(x̃, ε,xr, ẋr). The transformed

system with the origin as the equilibrium is expressed as

˙̃x = f1 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) + f2 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) Γs (x̃,xr, ẋr)

+ f2 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) Γf (x̃, z̃,h(x̃, ε,xr, ẋr),xr, ẋr)− ẋr (4.25a)

ε ˙̃z = g1 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) + g2 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) Γs (x̃,xr, ẋr)

+ g2 (x̃,xr, z̃,h(x̃, ε,xr, ẋr)) Γf (x̃, z̃,h(x̃, ε,xr, ẋr),xr, ẋr) (4.25b)

− ε
∂h

∂t
− ε∂h

∂x̃
˙̃x.

Note that the error z̃ = 0 when the manifold condition is satisfied. It is known that

the exact manifold h(x̃, ε,xr, ẋr) is impossible to compute. Let φ(x̃,xr, ẋr,Γs) be an

approximate manifold obtained using the procedure presented in subsection 4.3.1.

The approximate manifold is chosen to contain terms independent of ε, similar to

the example considered at the end of subsection 4.3.1. Define the operator

(Mφ)(x̃, ε,xr, ẋr,Γs,Γf ) = ε
∂φ

∂t
+ ε

∂φ

∂x̃
˙̃x− g1(x̃,xr, φ(x̃,xr, ẋr,Γs))

− g2(x̃,xr, φ(x̃,xr, ẋr,Γs))Γs (x̃,xr, ẋr) (4.26)

− g2(x̃,xr, φ(x̃,xr, ẋr,Γs))Γf (x̃, φ(x̃,xr, ẋr,Γs),xr, ẋr)

and let (Mφ)(t, x̃, ε) = O(C(x̃, ε,xr, ẋr)) that depends on the choice of controls Γs
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and Γf . Further, assume

Assumption 4.1. Control choice Γs and Γf lead to O(C(x̃, ε = 0,xr, ẋr)) = 0.

The exact manifold is given as h(x̃, ε,xr, ẋr) = φ(x̃,xr, ẋr,Γs)+O(C(x̃, ε,xr, ẋr))

with the above choice of φ(x̃,xr, ẋr,Γs). Substituting the approximate expression

for the manifold into (4.25)

˙̃x = f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

+ f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) Γs (x̃,xr, ẋr) (4.27a)

+ f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) Γf (x̃, z̃,xr, ẋr,Γs)− ẋr

ε ˙̃z = g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) Γs (x̃,xr, ẋr) (4.27b)

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) Γf (x̃, z̃,xr, ẋr,Γs)

− ε
∂(φ+O(C(x̃, ε,xr, ẋr)))

∂t
− ε∂(φ+O(C(x̃, ε,xr, ẋr)))

∂x̃
˙̃x

Note that Γf is a function of Γs due to the choice of φ(x̃,xr, ẋr,Γs). The reduced

slow and fast systems for the system given in (4.27) are obtained by substituting

ε = 0, resulting in the reduced slow system:

˙̃x = f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γs (x̃,xr, ẋr) (4.28a)

+ f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)− ẋr

0 = g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γs (x̃,xr, ẋr) (4.28b)

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)
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and reduced fast system:

x̃′ = 0 (4.29a)

z̃′ = g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γs (x̃,xr, ẋr) (4.29b)

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)

In general the composite control approach first computes the slow control Γs re-

quired to maintain stability of the reduced slow system by assuming that the fast

states lie upon the manifold and Γf = 0. In the next step the fast control Γf is

designed to satisfy two conditions; guarantee uniform convergence of the fast states

onto the manifold, and remain inactive when the fast state remains on the mani-

fold. The second condition is implemented to avoid affecting the conclusions drawn

about the reduced slow system stability. In the proposed control scheme, the second

condition is avoided by designing Γf ahead of Γs. Thus, design Γf (x̃, z̃,xr, ẋr,Γs)

as a function of Γs such that (4.29b) is transformed into the closed-loop reduced fast

system

z̃′ = −Lf (x̃, z̃,xr, ẋr) + Kf (z̃) (4.30)

such that −Lf (x̃,0,xr, ẋr) + Kf (0) = 0. With this choice of Γf and assumptions

about vector fields Lf and Kf , z̃ = 0 becomes the isolated root of (4.28b). Therefore

the reduced slow system reduces to

˙̃x = f1 (x̃,xr, φ(x̃,xr, ẋr,Γs))

+ f2 (x̃,xr, φ(x̃,xr, ẋr,Γs)) Γs (x̃,xr, ẋr) (4.31)
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+f2 (x̃,xr, φ(x̃,xr, ẋr,Γs)) Γf (x̃,0,xr, ẋr,Γs)− ẋr

The only unknown in (4.31) is Γs and therefore it may be designed to transform the

reduced slow system into the closed-loop reduced slow system

˙̃x = −Fs(x̃,xr, ẋr) + Gs(x̃) (4.32)

and exact forms of Γf (x̃, z̃,xr, ẋr), φ(x̃,xr, ẋr).Correspondingly, C(x̃, ε,xr, ẋr) can

be determined through relations given in (4.30) and (4.26) respectively.

Remark 4.3.1. In the reduced systems obtained, z̃ = z − φ(x̃,xr, ẋr) by virtue of

Assumption 4.1. Thus at the implementation level the control Γf is a function of

known quantities.

The complete closed-loop system is obtained by rewriting (4.27) as

˙̃x = f1 (x̃,xr, φ(.)) + f2 (x̃,xr, φ(.)) Γs (x̃,xr, ẋr)

+ f2 (x̃,xr, φ(.)) Γf (x̃,0,xr, ẋr,Γs)− ẋr

+ f1 (x̃,xr, z̃ + φ(.))− f1 (x̃,xr, φ(.))

+ [f2 (x̃,xr, z̃ + φ(.))− f2 (x̃,xr, φ(.))] Γs (x̃,xr, ẋr)

+ f2 (x̃,xr, z̃ + φ(.)) Γf (x̃, z̃,xr, ẋr,Γs)− f2 (x̃,xr, φ(.)) Γf (x̃,0,xr, ẋr,Γs)

+ f1 (x̃,xr, z̃ + φ(.) +O(C(x̃, ε,xr, ẋr)))− f1 (x̃,xr, z̃ + φ(.)) (4.33)

+ [f2 (x̃,xr, z̃ + φ(.) +O(C(x̃, ε,xr, ẋr)))− f2 (x̃,xr, z̃ + φ(.))] Γs (x̃,xr, ẋr)

+ [f2 (x̃,xr, z̃ + φ(.) +O(C(x̃, ε,xr, ẋr)))

− f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γf (x̃, z̃,xr, ẋr,Γs)
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ε ˙̃z = g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γs (x̃,xr, ẋr)

+ g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)

+ g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ [g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) (4.34)

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γs (x̃,xr, ẋr)

+ [g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γf (x̃, z̃,xr, ẋr,Γs)

− ε
∂(φ+O(C(x̃, ε,xr, ẋr)))

∂t
− ε∂(φ+O(C(x̃, ε,xr, ẋr)))

∂x̃
˙̃x

Using the closed-loop reduced systems (4.30), (4.32); (4.33), (4.34) become

˙̃x = −Fs(x̃,xr, ẋr) + Gs(x̃)

+ f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))− f1 (x̃,xr, φ(x̃,xr, ẋr,Γs))

+ [f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))− f2 (x̃,xr, φ(x̃,xr, ẋr,Γs))] Γs (x̃,xr, ẋr)

+ f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)

− f2 (x̃,xr, φ(x̃,xr, ẋr,Γs)) Γf (x̃,0,xr, ẋr,Γs) (4.35)

+ f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ [f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γs (x̃,xr, ẋr)

+ [f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γf (x̃, z̃,xr, ẋr,Γs)
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ε ˙̃z = −Lf (x̃, z̃,xr, ẋr) + Kf (z̃)

+ g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

+ [g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr))) (4.36)

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γs (x̃,xr, ẋr)

+ [g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))] Γf (x̃, z̃,xr, ẋr,Γs)

− ε
∂(φ+O(C(x̃, ε,xr, ẋr)))

∂t
− ε∂(φ+O(C(x̃, ε,xr, ẋr)))

∂x̃
˙̃x

Remark 4.3.2. If φ(x̃,xr, ẋr) is the unique manifold for the complete system, then the

terms of O(C(x̃, ε,xr, ẋr)) are identically zero and the closed-loop complete system

given in (4.35) and (4.36) take the form as in [9] and [20], which have been proven

to be closed-loop stable.

4.3.3 Stability Analysis

The following theorem [73] summarizes the main result of the developed approach.

Theorem 4.1. Suppose the controls us and uf are designed according to (4.30)

and (4.32), and Assumption 4.1 and conditions (a)-(h) hold. Then for all initial

conditions (x̃, z̃) ∈ Dx ×Dz the composite control u = us + uf uniformly stabilizes

the nonlinear singularly perturbed system given in (2.5) for all ε < ε∗, where ε∗

is given by the inequality (4.42) and the error signals x̃(t) and z̃(t) are uniformly

bounded by (4.43) and (4.44) respectively.

Proof. Closed-loop system stability is analyzed using the composite Lyapunov func-

tion approach[22]. It is required to prove that the closed-loop system behaviour

remains close to the closed-loop reduced slow system. Suppose that there exists
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quadratic Lyapunov functions V (t, x̃) = 1
2
x̃T x̃ andW (t, z̃) = 1

2
z̃T z̃ for the closed-loop

reduced-order models given in (4.32) and (4.30) respectively, satisfying the following

conditions:

(a) V (t, x̃) is positive-definite and decrescent, that is

c1||x̃||2 ≤ V (t, x̃) ≤ c2||x̃||2, x̃ ∈ Dx ⊂ Rm

(b)

∂V

∂x̃

[
− Fs(x̃,xr, ẋr) + Gs(x̃)

]
≤ −α1||x̃||2 − b1||x̃||, α1 > 0, b1 ≥ 0

(c) There exists a constant β1 > 0 such that

∂V

∂x̃

[
f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))− f1 (x̃,xr, φ(x̃,xr, ẋr,Γs))

]
+
∂V

∂x̃

[
f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))

−f2 (x̃,xr, φ(x̃,xr, ẋr,Γs))
]
Γs (x̃,xr, ẋr)

+
∂V

∂x̃

[
f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs)) Γf (x̃, z̃,xr, ẋr,Γs)

−f2 (x̃,xr, φ(x̃,xr, ẋr,Γs)) Γf (x̃,0,xr, ẋr,Γs)
]
≤ β1||x̃||||z̃||

(d) There exist constants β2 > 0, β3 > 0 and β4 ≥ 0 such that

∂V

∂x̃

[
f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− f1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))
]

+
∂V

∂x̃

[
f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))
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− f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))
]
Γs (x̃,xr, ẋr)

+
∂V

∂x̃

[
f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− f2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))
]
Γf (x̃, z̃,xr, ẋr,Γs) ≤ εβ2||x̃||2

+ εβ3||x̃||||z̃||+ εβ4||x̃||

(e) W (t, z̃) is positive-definite and decrescent scalar function satisfying,

c3||z̃||2 ≤ W (t, z̃) ≤ c4||z̃||2, z̃ ∈ Dz ⊂ Rn

(f)

∂W

∂z̃
(−Lf (x̃, z̃,xr, ẋr) + Kf (z̃)) ≤ −α2||z̃||2, α2 > 0

(g) There exist scalars β5 > 0, β6 > 0 and β7 ≥ 0 such that

∂W

∂z̃
[g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g1 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))]

+
∂W

∂z̃

[
g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))
]
Γs (x̃,xr, ẋr)

+
∂W

∂z̃

[
g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs) +O(C(x̃, ε,xr, ẋr)))

− g2 (x̃,xr, z̃ + φ(x̃,xr, ẋr,Γs))
]
Γf (x̃, z̃,xr, ẋr,Γs)

≤ εβ5||z̃||2 + εβ6||x̃||||z̃||+ εβ7||z̃||

(h) There exist constants β8 ≥ 0 and β9 > 0 such that

− ∂W

∂z̃

[
ε
∂(φ+O(C(x̃, ε,xr, ẋr)))

∂t
+ ε

∂(φ+O(C(x̃, ε,xr, ẋr)))

∂x̃
˙̃x

]
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≤ εβ8||z̃||+ εβ9||x̃||||z̃||

Conditions (a),(b) and (e),(f) are conditions for asymptotic stability of closed-loop

reduced-order models. The constant b1 in condition (b) depends upon the bounds

of the specified trajectory xr(t) and its derivative ẋr. If the control Γs is designed

to maintain regulation of the closed-loop slow subsystem then b1 = 0. Additionally,

conditions (c), (d) and (g),(h) are interconnection conditions obtained by assuming

the vector fields are locally Lipschitz. The constants β4, β7, and β8 appear due to

the time-varying nature of the manifold and depend upon the bounds of xr(t) and its

derivative ẋr. The constant β8 also depends upon the derivative ẍr, which is known

to be bounded by the choice of the reference trajectory.

Consider the Lyapunov function candidate

ν(t, x̃, z̃) = (1− d)V (t, x̃) + dW (t, z̃); 0 < d < 1 (4.37)

for the closed-loop system given in (4.35) and (4.36) with the design constant d.

From the properties of V and W it follows that ν(t, x̃, z̃) is positive-definite and

decrescent. The derivative of ν along the trajectories of (4.35) and (4.36) is given by

ν̇ = (1− d)
∂V

∂x̃
˙̃x +

d

ε

∂W

∂z̃
z̃′. (4.38)

Substituting conditions (a)-(h) into (4.38)

ν̇ ≤ − (1− d)
[
α1||x̃||2 − b1||x̃||+ β1||x̃||||z̃||+ εβ2||x̃||2 + εβ3||x̃||||z̃||

+ εβ4||x̃||
]
− d
[α2

ε
||z̃||2 + β5||z̃||2 + β6||x̃||||z̃||+ β7||z̃|| (4.39)

+ β8||z̃||+ β9||x̃||||z̃||
]
.
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Collecting like terms

ν̇ ≤ − (1− d)(α1 − εβ2)||x̃||2 − (1− d)(b1 − εβ4)||x̃||+ ((1− d)β1 (4.40)

+ ε(1− d)β3 + dβ6 + dβ9)||x̃||||z̃|| − d
(α2

ε
− β5

)
||z̃||2 − d(−β7 − β8)||z̃||.

Rearrange (4.40) to get

ν̇ ≤

 ||x̃||
||z̃||


T  −(1− d)(α1 − εβ2) Ξ

Ξ −d
(
α2

ε
− β5

)

 ||x̃||
||z̃||


− ||x̃|| {(α1 − εβ2)||x̃|| − (εβ4 − b1)} − ||z̃||

{(α2

ε
− β5

)
||z̃|| − (β7 + β8)

}
. (4.41)

where Ξ = 1−d
2

(β1 + εβ3) + d
2
(β6 +dβ9). The matrix becomes negative definite when

d(1− d)(α1 − εβ2)
(α2

ε
− β5

)
<

1

4
((1− d)(β1 + εβ3) + d(β6 + β9))2 (4.42)

Thus there exists an upper bound ε∗ and upper bounds on the errors

x̃b =
εβ4 − b1

(α1 − εβ2)
(4.43)

z̃b =
β7 + β8(
α2

ε
− β5

) (4.44)

for which ν̇ ≤ 0. From the Lyapunov theorem it can then be concluded that the

closed-loop signals x̃ and z̃ are uniformly bounded for all initial conditions (x̃, z̃) ∈

Dx × Dz. Consequently the control vector u = Γs + Γf is bounded. Furthermore,

since the trajectory xr(t) is bounded the manifold h(x̃, z̃,xr, ẋr) and the closed-loop

signals x(t) and z(t) are bounded. This completes the proof.

Remark 4.3.3. Notice the weight d introduced in the composite of Lyapunov functions
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appears in the inequality for the upper-bound on the perturbation parameter. Thus,

by varying the value of d the robustness of the controller to the singular perturbation

parameter may be adjusted accordingly. Furthermore, as expected the upper-bounds

on the states are only dependent on the properties of the system and not on this free

parameter.

The following corollary gives an interesting result for the stabilization problem.

Corollary 4.2. Suppose the controls us and uf are designed according to (4.30)

and (4.32), and Assumption 4.1 and conditions (a)-(h) hold with x̃ = x and z̃ = z.

Then for all initial conditions (x, z) ∈ Dx ×Dz, the composite control u = us + uf

asymptotically stabilizes the origin of the nonlinear singularly perturbed system in

(2.5) for all ε < ε∗s, where ε∗s is given by the inequality (4.46).

Proof. Note that in this case the manifold h(x, ε) is not time-varying, with x̃ = x

and z̃ = z. Since this problem is autonomous the decrescent conditions on the

Lyapunov functions V and W can be relaxed. The constants β4, β7, and β8 in

conditions (d),(g),(h) are all equal to zero and the constant b1 = 0, since xr = 0 and

ẋr = 0. With these modifications and d = 0.5, (4.41) is modified as

ν̇ ≤0.5

 ||x||
||z||


T  −(α1 − εβ2) 1

2
(β1 + εβ3 + β6 + β9)

1
2
(β1 + εβ3 + β6 + β9) −

(
α2

ε
− β5

)

 ||x||
||z||


(4.45)

Therefore, there exists an ε∗s such that ν̇ < 0 where ε∗s satisfies the following inequality

(α1 − εβ2)
(α2

ε
− β5

)
<

1

4
((β1 + εβ3) + (β6 + β9))2 (4.46)

This completes the proof.
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Remark 4.3.4. Theorem 4.1 and Corollary 4.2 depend upon the approximation of the

invariant manifold leading to local results. If it were possible to obtain the expression

of the exact manifold these results would be valid globally.

Remark 4.3.5. Fenichel’s theorem implies that the behaviour of the complete non-

linear system remains close to the reduced slow system if the reduced fast system

is stable. Theorem 4.1 and Corollary 4.2 state the same result for the closed-loop

singularly perturbed system.

4.3.4 Numerical Examples

4.3.4.1 Purpose and Scope

The preceding theoretical developments are demonstrated with simulation. The

first example is a generic planar nonlinear system. This planar example enables

the study of the geometric constructs which are generally difficult to visualize in

higher-dimension problems. A step-by-step procedure of controller development is

detailed for the system to track a desired slow kinetic state. A comparison between

the manifold approximation and the attained actual fast state is made. The closed-

loop results are studied for a sinusoidal time-varying trajectory and the regulator

problem. The second example develops control laws for a nonlinear F/A-18A Hornet

model. The objective of this example is to test the performance of the controller for a

highly nonlinear two time scale system. It is required to perform a turning maneuver

while maintaining zero sideslip and tracking a specified angle-of-attack profile.

4.3.4.2 Generic Two Degrees-of-Freedom Nonlinear Kinetic Model

The fast dynamics of a generic kinetic model [72][Ch.3,Sec.3.6] is modified to

include an arbitrarily chosen quadratic nonlinearity in the fast state and a ‘pseudo’
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control term with unit effectiveness

ẋ = −x+ (x+ 0.5)z + u (4.47a)

εż = x− (x+ 1)z + z2 + u. (4.47b)

In this example x ∈ R and z ∈ R represent the slow and the fast states respectively.

The control u ∈ R is developed to track a smooth desired slow state trajectory xr(t).

Note that in the limit ε→ 0

ẋ = −x+ (x+ 0.5)z + u (4.48a)

0 = x− (x+ 1)z + z2 + u (4.48b)

and the transcendental equation has two isolated solutions for the manifold. In order

to stabilize the system using composite control the designer is required to choose one

of these solutions. But the domain for the fast state is unknown and none of the

solutions can be discarded. The following control formulation discusses how this

issue is considered in the proposed approach.

Assume that the unknown exact manifold is represented by h(x, ε, xr, ẋr) such

that the slow state follows the desired trajectory. Define the errors x̃ = x − xr

and z̃ = z − h(x̃, ε, xr, ẋr). The objective is to seek the control vector of the form

u = us + uf , where

us = Γs (x̃, xr, ẋr) ;uf = Γf (x̃, z̃, xr, ẋr) . (4.49)

Using the definitions given in (4.49) transform the system given in (4.47) into error

coordinates
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˙̃x = −(x̃+ xr) + (x̃+ xr + 0.5)(z̃ + h(x̃, ε, xr, ẋr))− ẋr + Γs + Γf (4.50a)

ε ˙̃z = (x̃+ xr)− (x̃+ xr + 1)(z̃ + h(x̃, ε, xr, ẋr))

+ (z̃ + h(x̃, ε, xr, ẋr))
2 + Γs + Γf − ε

∂h

∂t
− ε∂h

∂x̃
˙̃x (4.50b)

Let φ(x̃, xr, ẋr,Γs) be the approximate manifold. Define the error introduced in the

manifold condition, defined in (4.24) due to this approximation as

(Mφ)(x̃, xr, ẋr) = ε
∂φ

∂t
+ ε

∂φ

∂x̃
˙̃x− x̃−xr + (x̃+xr)φ(.) +φ(.)−φ(.)2−Γs−Γf (4.51)

such that the exact manifold is

h(x, ε, xr., ẋr) = φ(x, xr, ẋr,Γs) + (Mφ)(x̃, xr, ẋr). (4.52)

Select φ(x̃, xr, ẋr,Γs) = x̃+ xr + Γs so that

(Mφ)(x̃, xr, ẋr) = ε
∂φ

∂t
+ ε

∂φ

∂x̃
˙̃x+ (x̃+ xr)(x̃+ xr + Γs)− φ(.)2 − Γf . (4.53)

Recall that the fast controller is designed to ensure z̃ = 0 becomes the isolated

manifold such that exact manifold in (4.52) and its approximation match upto O(1).

In order to do so, develop the reduced fast system for the error system given in (4.50)

x̃′ = 0 (4.54a)

z̃′ = −(x̃+ xr + 1)z̃ + z̃2 + 2z̃φ(.) + x̃+ xr − (x̃+ xr + 1)φ(.)

+ φ(.)2 + Γs + Γf (4.54b)
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Design

Γf = −Af z̃ − 2z̃φ(.) + (x̃+ xr + 1)φ(.)− x̃− xr − φ2 − Γs (4.55)

such that the closed-loop reduced fast system becomes

z̃′ = −(x̃+ xr + 1 + Af )z̃ + z̃2 (4.56)

where Af is the feedback gain. The next step is to determine the slow controller Γs.

Develop the reduced slow system and substitute for Γf from (4.55) to get

˙̃x = −2x̃− 2xr + (x̃+ xr + 0.5)z̃ − ẋr

− φ(.)2 − 2z̃φ(.) + (2x̃+ 2xr + 1.5)φ(.)− Af z̃ (4.57a)

0 = −(x̃+ xr + 1 + Af )z̃ + z̃2 (4.57b)

Since z̃ = 0 is the unique root of the algebraic solution given in (4.57b), the resulting

reduced slow system becomes

˙̃x = −2x̃− 2xr − ẋr − φ(.)2 + (2x̃+ 2xr + 1.5)φ(.). (4.58)

Substitute the expression for φ(.) in (4.58) to get

˙̃x = −2x̃− 2xr − ẋr + (2x̃+ 2xr + 1.5)(x̃+ xr + Γs)− (x̃+ xr + Γs)
2.(4.59)

Design the slow controller Γs as

Γs = −x̃− xr + ẋr − Ax̃ (4.60)
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with A as the feedback gain to result in the following closed-loop reduced slow system:

˙̃x = −(2− 2ẋr + 2Axr + 1.5A− 2Aẋr)x̃+ (−A2 − 2A)x̃2

+ (−2xr + 0.5ẋr + 2xrẋr − ẋ2
r). (4.61)

In order to implement the control laws use the slow controller Γs from (4.60) to

develop the approximate manifold

φ = ẋr − Ax̃ (4.62)

and the fast controller

Γf = (−A2 − A)x̃2 + x̃(ẋr + 2Aẋr − Axr) + 2Ax̃z̃

− z̃(2ẋr + Af )− ẋ2
r + xrẋr. (4.63)

Recall that this design ensures (Mφ)(x̃, xr, ẋr) = 0 in the limit ε → 0. Thus by

definition of the exact manifold given in (4.52), the error z̃ = z − φ(.), where φ(.)

given in (4.62) is used for implementation of the controllers. Finally, the control laws

Γs and Γf are expressed in original coordinates as

Γs = −x+ ẋr − A(x− xr) (4.64a)

Γf = (−A2 − A)(x− xr)2 + (x− xr)(ẋr + 2Aẋr − Axr)

+ 2A(x− xr)(z − φ(.))− (z − φ(.))(2ẋr + Af )− ẋ2
r + xrẋr. (4.64b)
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The control laws developed in (4.64) are verified in simulation for time-varying

reference and stabilization. The following presents the results for these two cases.

Case (a) Controller performance for tracking a continuously time-varying sine-wave

of 0.2sin(0.2t) is presented in Figure 4.1. The feedback gains chosen are A = 3

and Af = 1. The domain of the errors are Dx = [−0.3 0.3] and Dz =

[−1.5 1.5]. The domain of convergence of the complete system is limited due

to two factors. First, the fast controller given in (4.64b) locally asymptotically

stabilizes the reduced fast system about the error z̃ = 0. This can be observed

by the studying the closed-loop reduced fast dynamics given in (4.56). Second,

the slow controller locally stabilizes reduced slow system about the tracking

error x̃ = 0, resulting in local convergence properties of the complete system.

The approximate tracking is a result of the manifold approximation made for

control design. Several constants in conditions (a)-(h) are computed as α1 = 1,

b1 = 0.26, β1 = 1.4, β2 = 30, β3 = 0, β4 = 0.686, α2 = 1, β5 = 1.96, β6 = 250,

β7 = 0.5096, β8 = 3.778 and β9 = 250. These values and a choice of d = 0.3

results in ε∗ = 2000 >> 1. From the simulation results it is seen that the

system response is bounded for all time. Additionally, for simulations with

ε = 0.2 the bounds x̃b = 0.0818 and z̃b = 4.701, the control is bounded for

all time. Note that the fast state response remains close to its approximation

φ(t, x).

Case (b) This case simulates the regulator problem with xr = 0 and ẋr(t) = 0. The

control laws are the same as derived in (4.64). The constants b1 = 0, β4 = 0,

β7 = 0, and β8 = 0 while the other constants have the same values as in Case

1(a) and ε∗s = 1000 >> 1. The results are presented in Figure 4.2, which shows

that the system asymptotically settles down to the origin.
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Figure 4.1: Case (a) Kinetic slow state compared to specified sine-wave reference,
fast state compared to manifold approximation and computed control

Figure 4.2: Case (b) Kinetic slow state, fast state compared to manifold approxima-
tion and computed control (regulator problem)
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4.3.4.3 Lateral/Directional Maneuver for F/A-18A Hornet Aircraft

The complete nonlinear dynamic model in the stability-axes is represented by

nine states (M,α, β, p, q, r, φ, θ, ψ) and four controls (η, δe, δa, δr). For this example

the vector [M,α, β, φ, θ, ψ]T comprise the slow states and the angular rates [p, q, r]T

comprise the fast states. The aerodynamic database for the symmetric F/A-18A

Hornet (seen in Figure 4.3) is used [74]. The aerodynamic coefficients are given

as analytical functions of the sideslip angle, angle-of-attack, angular rates and the

control surface deflections. Considering the number of controls available only three

of the six slow states can be controlled. Throttle is maintained constant at η = 0.523

and is not used as a control. This is a result of using dynamic inversion [75]. The

control objective is to perform a 45 degree turn at or near zero sideslip angle while

tracking a specified angle-of-attack profile. Pitch attitude angle θ and bank angle φ

are left uncontrolled.

Figure 4.3: F/A-18A Hornet external physical characteristics

The control laws are developed according to the theory developed in the previous

subsections. For brevity only the equations required for incorporating the control

law in the simulation are presented here. Since the aircraft equations of motion

are highly coupled, the first step is to transform them into slow and fast sets. Let

x = [α, β, ψ]T represent the subset of the slow states and u = [δe, δa, δr]
T represent
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the control variables

ẋ = f11(x,M, θ, φ) + f12(x, θ, φ)z︸ ︷︷ ︸
f1(.)

+f2(x,M)u (4.65a)

εż = g11(z) + g12(x,M) + g13(x,M)z︸ ︷︷ ︸
g1(.)

+g2(x,M)u. (4.65b)

The parameter ε is introduced on the left-hand side of the (4.65b) to indicate the

time scale difference between body-axis angular rates and the other states [10]. In

the translational equations of motion functions such as gravitational forces and aero-

dynamic forces due to angle-of-attack and sideslip angle are collectively represented

as f11(x,M, θ, φ). Terms in the translational equations of motion due to the cross

products between the angular rates and the slow states are labeled f12(x, θ, φ)z. The

remaining terms in the slow state equations are the control effectiveness terms labeled

f2(x,M). The nonlinearity in the fast dynamics due to the cross product between the

angular rates is represented by g11(z). The aerodynamic moment terms that depend

solely upon the slow state are denoted as g12(x,M) and the aerodynamic moment

terms that depend linearly on the angular rates are denoted as g13(x,M). The term

g2(x,M) is the control effectiveness term in the angular rate dynamics. The exact

form of these functions is derived in Appendix C. Define the errors x̃ = x− xr and

z̃ = z − h(x̃, ε,xr, ẋr,M) and transform (4.65) into error coordinates equivalent to

(4.25)

˙̃x = f11(x̃,xr,M, θ, φ) + f12(x̃,xr, θ, φ) [z̃ + h(.)]

+ f2(x̃,x,M) [Γs + Γf ]− ẋr (4.66a)

ε ˙̃z = g11(z̃,h(.)) + g12(x̃,xr,M) + g13(x̃,xr,M) [z̃ + h(.)]

+ g2(x̃,xr,M) [Γs + Γf ]− ε
∂h

∂t
− ε∂h

∂x̃
˙̃x− ε ∂h

∂M
Ṁ (4.66b)
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Note that for the aircraft example the manifold will also be a function of Mach

number. Let

Φ(x̃,xr, ẋr,Γs) = −g13
−1(x̃,xr,M) [g12(x̃,xr,M) + g2(x̃,xr,M)Γs] (4.67)

be the approximate manifold such that manifold condition (4.24) becomes

(MΦ)(x̃,xr, ẋr,Γs) = ε
∂Φ

∂t
+ ε

∂Φ

∂x̃
˙̃x + ε

∂Φ

∂M
Ṁ − g11(Φ)− g2(x̃,xr,M)Γf . (4.68)

To design the fast controller Γf , develop the reduced fast system

x̃′ = 0 (4.69a)

z̃′ = g11(z̃,Φ(.)) + g12(x̃,xr,M) + g13(x̃,xr,M) [z̃ + Φ(.)]

+ g2(x̃,xr,M) [Γs + Γf ] (4.69b)

Using dynamic inversion and (4.67) design

Γf = g2
−1(x,xr,M) [−Af z̃− g11(z̃,Φ(.))− g13(x̃,xr,M)z̃] (4.70)

where Af is the chosen feedback gain. Then the closed-loop reduced system becomes

z̃′ = −Af z̃. (4.71)

Comparing with (4.30)

Lf (.) = Af z̃; Kf (.) = 0. (4.72)
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Similarly, develop the reduced slow system

˙̃x = f11(x̃,xr,M, θ, φ)− f12(x̃,xr, θ, φ)g13
−1(x̃,xr,M)g12(x̃,xr,M)

− f2(x̃,xr,M)g2
−1(x̃,xr,M)g11(Φ)− ẋr (4.73)

+
[
−f12(x̃,xr, θ, φ)g13(x̃,xr,M)−1g2(x̃,xr,M) + f2(x̃,xr,M)

]
Γs.

Then the following choice of slow controller

Γs = B−1 {−Ax̃ + ẋr}+ B−1 {−f11(x̃,xr,M, θ, φ)}

+ B−1
{
f12(x̃,xr, θ, φ)g13

−1(x̃,xr,M)g12(x̃,xr,M)
}

(4.74)

with B = [−f12(x̃,xr, θ, φ)g13(x̃,xr,M)−1g2(x̃,xr,M) + f2(x̃,xr,M)] and A is the

feedback gain gives the following closed-loop reduced slow system:

˙̃x = −Ax̃− f2(x̃,xr,M)g2
−1(x̃,xr,M)g11(Φ(.)) (4.75)

where Φ(.)is obtained from (4.67). Note by the choice of Γf , (4.68) becomes

(MΦ)(x̃,xr, ẋr,Γs) = ε
∂Φ

∂t
+ ε

∂Φ

∂x̃
˙̃x + ε

∂Φ

∂M
Ṁ (4.76)

and thus O(C(ε = 0, x̃,xr, ẋr)) = 0. Furthermore, since the aerodynamic moments

are a function of the angular rates, matrix g13(x̃,xr,M) is full-rank. The control

effectiveness terms g2(x̃+xr,M) represent the aerodynamic moment coefficients due

to control effector deflections, which are nonzero.

The control laws are verified in simulation. The specified maneuver is a 45 degree

turn near zero sideslip angle while simultaneously tracking a step input in angle-of-

attack. The flight condition is Mach 0.3 at 20,000 feet altitude (0.3/20k). The
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trim and initial conditions are α(0) = 2deg, p(0) = 4deg/sec, q(0) = −2deg/sec,

r(0) = 2deg/sec. The feedback gain matrices are

A =


1 0 0

0 1 0

0 0 1

 , Af =


5 0 0

0 5 0

0 0 5

 . (4.77)

Note that for an aircraft, the parameter ε is normally only introduced in the

modeling stage to take advantage of the presence of different time scales in the

system. In reality this parameter is a function of the flight condition and is difficult

to quantify. Thus, it is advantageous to derive and implement controllers that do not

require knowledge of this parameter. Theorem 4.1 guarantees the existence of the

bound ε∗, but the nonlinearity of this example restricts its analytical computation.

Figures 4.4-4.7 evaluate control law performance for the specified maneuver. Af-

ter initial transients settle out the angle-of-attack, sideslip angle and heading angle

states closely track the reference. The angle-of-attack error is within ±0.2deg and the

sideslip angle tracking error is within ±0.2deg throughout the maneuver. The head-

ing angle is maintained within ±0.25deg. Close tracking of the slow states implies

that the fast states are successfully being driven onto the approximate manifold, as

in seen in Figure 4.6. The angular rates are smooth and errors are within ±2deg/sec.

The control surface deflections are within bounds and generate the desired nonzero

angular rates. In this example the Mach number, pitch-attitude angle and bank an-

gle remain bounded by virtue of the reference trajectory design. Recall that bounded

tracking demands that the angular rates remain bounded and consequently the Eu-

ler angles remain bounded through the exact kinematic relationships. Additionally,

since angle-of-attack is being tracked and thrust remains constant, Mach number
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Figure 4.4: F/A-18A lateral/directional maneuver: Mach number, angle of attack
and sideslip angle responses, 0.3/20k

remains bounded.

Figure 4.5: F/A-18A lateral/directional maneuver: kinematic angle responses,
0.3/20k
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Figure 4.6: F/A-18A lateral/directional maneuver: angular rates, 0.3/20k

Figure 4.7: F/A-18A lateral/directional maneuver: control responses, 0.3/20k
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4.3.5 Summary

Closed-loop stability and uniform boundedness of all signals demonstrated above

was shown by the author in [73] using the modified composite Lyapunov approach.

The stability proof detailed in the subsections above provide additional conditions

that the system must satisfy such that the closed-loop system behaviour remains

close to the closed-loop reduced-order systems. These conditions capture the effect

of the singular perturbation parameter that was neglected in the control design. The

asymptotic tracking results of standard singularly perturbed systems given by Saberi

and Khalil[20] are shown to be a special case of the proposed approach. The stability

proof also provides designers with a conservative upper-bound for the singular per-

turbation parameter such that closed-loop stability results hold. Additionally, upper

bounds for all the states of the system are analytically determined. The benefits and

limitations of the proposed approach are summarized below:

4.3.5.1 Benefits

1. The proposed approach extends composite control technique to a larger class

of nonlinear singularly perturbed systems that are nonlinear in both the slow

and the fast states.

2. Asymptotic stabilization and bounded local uniform tracking is guaranteed for

non-standard singularly perturbed systems.

3. Exact knowledge of the singular perturbation parameter is not required as

the controllers are designed using reduced-order models independent of the

perturbation parameter.

4. The stability of the closed-loop system is robust to changes in singular per-

turbation parameter and is guaranteed to hold for a range of perturbation
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parameter values.

5. The technique does not require the control to appear in affine form. This

is because the control design is based on the reduced-order systems obtained

using general nonlinear concepts of geometric singular perturbation theory and

center manifolds that are represented by ordinary differential equations.

4.3.5.2 Limitations

1. The vector fields need to be at least twice continuously differentiable to en-

sure that the manifold and the control computed is continuous and sufficiently

smooth.

2. The control variables need to have actuator dynamics faster than all the system

states, since all available control variables are employed in stabilization of both

the slow and fast subsystems. This stabilization is possible only when the

controller responds faster than the system response.

3. The technique is limited to a class of non-standard models. It cannot be applied

to systems with infinite manifolds such as ẋ = tan z+ u, εż = x− u where any

real value of the fast state comprises the manifold for the system.

4. The fast control is dependent on the slow control resulting in a complicated

design procedure. This is because the fast controller is designed ahead of the

slow controller.

4.4 Approach II

Only local stabilization results have been shown in [73](Approach I above) for a

general class of nonlinear systems as a consequence of employing approximation to
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the manifold and modified composite control technique. In this approach the objec-

tive is to develop control laws that achieve desired slow state tracking while globally

stabilizing the nonlinear singularly perturbed system. As before geometric singular

perturbation theory is retained for model-reduction but the central difference is to

consider the fast states as additional control variable. For sake of clarity consider

only the stabilization problem of the nonlinear singularly perturbed system. By

specifying the desired closed-loop dynamics for the reduced slow system, a smooth

relation for the fast state in terms of the slow state and the control can be computed.

Furthermore, if the control variable is designed such that the computed fast state

becomes the stable unique manifold of the reduced fast system, then global stabi-

lization is guaranteed. Clearly the above approach can be extended for the general

tracking problem. These ideas are mathematically formulated and analyzed in this

section.

4.4.1 Control Law Development

The objective is to augment the two time scale system given in (2.5) with con-

trollers such that the slow state of the system follows smooth, bounded, time-varying

trajectories xr(t). The first step is to transform the problem into a non-autonomous

stabilization control problem. Define the tracking error signal as

x̃(t) = x(t)− xr(t) (4.78)

and express the two time scale system as

˙̃x = F(x̃, z,xr, ẋr,u) (4.79a)

εż = G(x̃, z,xr,u) (4.79b)

104



where F(x̃, z,xr, ẋr) , f1(x̃ + xr, z) − ẋr + f2(x̃ + xr, z)u, G(x̃, z,xr,u) , g1(x̃ +

xr, z) + g2(x̃ + xr, z)u have been defined for convenience. Using the procedure

described in Section 4.2, obtain the reduced-order models for the above two time

scale system.

Reduced slow system is given as:

˙̃x = F(x̃, z,xr, ẋr,u) (4.80a)

0 = G(x̃, z,xr,u) (4.80b)

and reduced fast system:

x̃′ = 0 (4.81a)

z′ = G(x̃, z,xr,u) (4.81b)

In order to ensure x̃ = 0 is an asymptotically stable equilibrium of the reduced

slow system (4.80) define a positive-definite and decrescent Lyapunov function that

satisfies:

Condition 1. V (t, x̃) : [0,∞)×Dx → R is continuously differentiable and Dx ⊂ Rm

contains the origin, such that

0 < ψ1(||x̃||) ≤ V (t, x̃) ≤ ψ2(||x̃||)

for some class K functions ψ1(.) and ψ2(.).

Design a manifold z = h(x̃,xr, ẋr,u) such that the slow state error system (4.80a)

satisfies:

Condition 2. ∂V
∂t

+ ∂V
∂x̃

F(x̃,h,xr, ẋr,u) ≤ −α1ψ
2
3(x̃), α1 > 0 where ψ3(.) is a
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continuous positive-definite scalar function that satisfies ψ3(0) = 0.

Conditions 1 and 2 complete the design of control for the reduced slow system.

Notice that the manifold h(x̃,xr, ẋr,u) computed in the above control design is a

function of the control u which is unknown. From the discussion detailed in Section

4.2, it is known that this manifold is a fixed point of the reduced fast system

x̃′ = 0 (4.82a)

z′ = G(x̃, z,xr,u). (4.82b)

The complete system will have the properties of the reduced slow system if the fast

state asymptotically stabilizes about h(.). This condition is enforced by designing

the control signal u. Define the error in the fast state vector z̃ := z− h and rewrite

(4.82b) as

z̃′ = G(x̃, z̃,xr,u) (4.83)

while noting that h′ = εḣ = 0 for the reduced fast system. Define a positive-definite

and decrescent Lyapunov function that satisfies:

Condition 3. W (t, x̃, z̃) : [0,∞)×Dx ×Dz → R is continuously differentiable and

Dz ⊂ Rn contains the origin, such that

0 < φ1(||z̃||) ≤ W (t, x̃, z̃) ≤ φ2(||z̃||)

for some class K functions φ1(.) and φ2(.).

Design u such that the closed-loop reduced fast system (4.83) satisfies:

Condition 4. ∂W
∂z̃

G(x̃, z̃,xr,u) ≤ −α3φ
2
3(z̃), α3 > 0 where φ3(.) is a continuous

positive-definite scalar function that satisfies φ3(0) = 0.

This completes the control design.
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4.4.2 Stability Analysis

The following theorem [76] summarizes the main result of this section.

Theorem 4.3. Suppose the control u of the system (2.5) is designed according to

the Conditions 1 − 6. Then for all initial conditions, (x̃, z̃) ∈ Dx ×Dz, the control

uniformly asymptotically stabilizes the nonlinear singularly perturbed system (2.5)

and equivalently drives the slow state x(t)→ xr(t) for all ε < ε∗ defined (4.90).

Proof. The closed-loop complete system in the error coordinates is given as

˙̃x = F(x̃, z̃ + h,xr) (4.84a)

ε ˙̃z = G(x̃, z̃ + h,xr)− εḣ (4.84b)

Closed-loop system stability of the system states is analyzed using the composite

Lyapunov function approach[9]. Consider a Lyapunov function candidate

ν(t, x̃, z̃) = (1− d)V (t, x̃) + dW (t, x̃, z̃); 0 < d < 1 (4.85)

for the complete closed-loop system. From the properties of V and W it follows that

ν(t, x̃, z̃) is positive-definite and decrescent. The derivative of ν along the trajectories

of (4.84) is given by

ν̇ = (1− d)
[∂V
∂t

+
∂V

∂x̃
˙̃x
]

+ d
[∂W
∂t

+
∂W

∂x̃
˙̃x +

1

ε

∂W

∂z̃
z̃′
]
. (4.86)

Note that the vector fields in (4.84) can also be expressed as

F(x̃, z̃ + h,xr, ẋr) = F(x̃,h,xr, ẋr) + F(x̃, z̃ + h,xr, ẋr)− F(x̃,h,xr, ẋr). (4.87)
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Suppose that Lyapunov functions V and W also satisfy the following conditions with

βi ≥ 0 and γi ≥ 0.

Condition 5. ∂V
∂x̃

F(x̃, z̃ + h,xr, ẋr)− ∂V
∂x̃

F(x̃,h,xr, ẋr) ≤ β1ψ3(x̃)φ3(z̃).

Condition 6.

∂W

∂t
+

[
∂W

∂x̃
− ∂W

∂z̃

∂h

∂x̃

]
˙̃x− ∂W

∂z̃

∂h

∂xr
ẋr −

∂W

∂z̃

∂h

∂ẋr

ẍr ≤ γ1φ
2
3(z̃) + β2ψ3(x̃)φ3(z̃)

Conditions 5 and 6 enforce restrictions upon the difference between the complete

system and the reduced systems. Use Conditions 1− 6 into (4.86) and rearrange to

get:

ν̇ ≤ −ΨTKΨ (4.88)

K =

 (1− d)α1 −1
2

[(1− d)β1 + dβ2]

−1
2

[(1− d)β1 + dβ2] dα2

ε
− dγ1

 (4.89)

where Ψ = [ψ3, φ3]T and matrix K given in (4.89) is positive-definite for ε < ε∗

defined as

ε∗ =
α1α2

α1γ1 + 1
4d(1−d)

[(1− d)β1 + dβ2]2
. (4.90)

By definition of the continuous scalar functions ψ3 and φ3 it follows that ν̇ is negative

definite. By Lyapunov theorem it is concluded that (x̃, z) = (0,h(0,xr, ẋr)) is

uniformly asymptotic stable equilibrium of the closed-loop system (4.84). Further,

from definition of the tracking error it is concluded that x(t)→ xr(t) asymptotically.

Since the desired trajectory is smooth and bounded all the other signals remain

bounded for all time. This completes the proof.
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4.4.3 Numerical Examples

4.4.3.1 Purpose and Scope

The purpose of this section is to illustrate the preceding theoretical developments

and demonstrate the controller performance for both standard and non-standard

forms. The first example is taken from [20] and the purpose is to see how the pro-

posed approach compares with composite control for standard singularly perturbed

systems. The objective of the second example is to compare the performance of the

two approaches developed in this chapter for the generic enzyme kinetic model de-

scribed in Section 4.3. The third example analyzes the performance and robustness

characteristics of the controller for non-standard form of singularly perturbed system

with infinite manifolds.

4.4.3.2 Standard Singularly Perturbed Model

The following example is taken from [20]. The objective is to design a regulator

to stabilize both the slow and the fast state in the domain Dx ∈ [−1, 1] and Dz =

[−1/2, 1/2] of

ẋ = xz3 (4.91a)

εż = z + u. (4.91b)

The reduced-order models for the system under study are:

reduced slow system:

ẋ = xz3 (4.92a)

0 = z + u (4.92b)
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and reduced fast system:

x′ = 0 (4.93a)

z′ = z + u. (4.93b)

Notice that the algebraic equation in the reduced slow system has an isolated root

for the fast state, thus the system given is in standard form.

The controller is designed using the same Lyapunov functions and closed-loop

characteristics as in [20]. Using V (x) = 1
6
x6 as Lyapunov function for the slow

subsystem, the desired manifold h = −x 4
3 satisfies condition 2 with α1 = 1 and

ψ3(x) = |x|5. The control is designed as u = −3z − 2x
4
3 to satisfy condition 4 with

Lyapunov function W = 1
2
(z − h)2, α3 = 2 and φ3(x, z) = |z − h|. The closed-loop

system with z̃ = z − h becomes

ẋ = x(z̃ + h)3 (4.94a)

ε ˙̃z = −2z̃ +
4

3
εx

4
3 (z̃ + h)3. (4.94b)

The other constants in the inequality (4.88) in the domain of interest are β1 = 7/4,

β2 = 4/3 and γ1 = 7/3. Thus asymptotic stabilization is guaranteed for all ε < 0.4286

with choice of d = 21/37. Notice that the control law designed is exactly the same

as that obtained using composite control.

4.4.3.3 Generic Two Degrees-of-Freedom Nonlinear Kinetic Model

The control design for generic two degrees-of-freedom model given in (4.47) de-

scribed in Section 4.3.4.2 is presented. The following presents a discussion of how

asymptotic tracking can be guaranteed using the approach developed earlier.

The objective is to seek the control vector that guarantees asymptotic slow
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state tracking. Assume that the fast variables have settled onto the exact mani-

fold h(x̃, xr, ẋr). Define errors x̃ = x − xr and z − h(.) and rewriting system (4.47)

in error coordinates,

˙̃x = −x̃− xr − ẋr + (x̃+ xr + 0.5)[z̃ + h] + u(x̃, z̃) (4.95a)

ε ˙̃z = x̃+ xr − (x̃+ xr + 1)[z̃ + h] + [z̃ + h]2 + u(x̃, z̃). (4.95b)

Then the resulting reduced slow system becomes

˙̃x = −x̃− xr + (x̃+ xr + 0.5)h+ u(x̃, 0). (4.96)

The manifold h(x̃, xr, ẋr) is designed to enforce asymptotic tracking of the desired

slow state

h(x̃, xr, ẋr) =
−Ax̃+ ẋr + x̃+ xr − u(x̃, 0)

(xr + x̃+ 0.5)
(4.97)

where A is the feedback gain. The resulting reduced slow system becomes

˙̃x = −Ax̃. (4.98)

The control is computed to ensure the fast variables settle onto the manifold given

in (4.97). The reduced fast system is given as

x̃′ = 0 (4.99a)

z̃′ = x̃+ xr − (x̃+ xr + 1)[z̃ + h] + [z̃ + h]2 + u(x̃, z̃). (4.99b)
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The following feedback control design

u(x̃, z̃) = −x̃− xr + (x̃+ xr + 1)(z̃ + h)− (z̃ + h)2 − Af z̃ (4.100)

with Af is the feedback gain results in closed-loop reduced fast system of the form

z′ = −Af z̃. The resulting exact manifold h(x̃, xr, ẋr) satisfies the following relation

that is determined by substituting (4.100) in (4.97):

h2 − (2x̃+ 2xr + 1.5)h+ [−Ax̃+ ẋr + 2x̃] = 0. (4.101)

Either one of the solutions of the exact manifold given in (4.101) may be chosen for

control design. The lesser of the two solutions

h(x̃, xr, ẋr) = x̃+ xr + 0.75− 0.5
√

(2x̃+ 2xr + 1.5)2 − 4[(−A+ 2)x̃+ 2xr + ẋr]

(4.102)

is chosen for implementation in this example. Note the manifold φ obtained in

approach I is an approximation of the above equality.

The controller developed above is verified in simulation. The specified reference

is a continuously time-varying sine-wave of 0.2 sin(t). The results are presented in

Figure 4.8. The closed-loop gains for both the approaches are chosen as A = 3 and

Af = 1. The initial conditions are x(0) = 0.3 and z(0) = 0.3. From the simu-

lation results it is seen that the system response for Modified composite/Approach

I is bounded for all time. The fast state lags the exact manifold causing the error

in the slow-state response. The analytic bounds on the states are determined to be

x̃b = 0.0818 and z̃b = 4.701. The simulation results show that Approach II accom-

plishes asymptotic tracking since the fast state more closely follow the exact manifold
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Figure 4.8: Closed-loop response and computed control of (4.47) using modified
composite approach and approach II for ε = 0.2

required for tracking. Results of approach I apply only locally in the domain of the

errors are Dx = [−0.3 0.3] and Dz = [−1.5 1.5], whereas Approach II guarantees

global asymptotic tracking. Using Lyapunov methods the upper bound for both the

approaches was found to be ε∗ = 2000.

4.4.3.4 Non-Standard Singularly Perturbed Model

Consider the following unstable linear system:

ẋ = z − u (4.103a)

εż = x+ u. (4.103b)

The objective is to stabilize the system about x = 0 and z = 0 or equivalently to

find the control u(x, z) for regulation. Notice that the algebraic equation obtained by

setting ε = 0 has infinitely many solutions and composite control cannot be applied.
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The control design procedure using the definitions x̃ := x and z̃ := z − h(x̃) is

summarized below.

The reduced slow system is

˙̃x = h− u(x̃, 0) (4.104a)

0 = x̃+ u(x̃, 0). (4.104b)

Recall that in designing for the manifold h it is assumed the error in fast states z̃ is

identically zero and thus the control reduces to u(x̃, 0). Choose h = −α1x̃+ u(x̃, 0).

With V (x̃) = 1
2
x̃2 condition 2 is satisfied with ψ3(e) = x̃.

The reduced fast system is

x̃′ = 0 (4.105a)

z̃′ = x̃+ u(x̃, z̃). (4.105b)

Choose u(x̃, z̃) = −x̃ − α2z̃. With W (x̃, z̃) = 1
2
z̃2 condition 4 is satisfied with

φ3(z̃) = z̃.

The manifold h as a function of the slow state error, x̃ is computed using the

control computed above. This gives

h = −α1x̃+ u(x̃, 0) ≡ −(1 + α1)x̃. (4.106)

The closed-loop slow system is

˙̃x = −α1x̃+ (1 + α2)z̃ (4.107a)

ε ˙̃z = −α2z̃ + (1 + α1)ε [−α1x̃+ (1 + α2)z̃] . (4.107b)
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Table 4.1: Maximum values of upper-bound ε∗

α1 α2 ε∗ d
1 1 0.25 0.5
1 0.1 0.04545 0.355

0.1 1 0.4543 0.95
0.1 0.1 0.08264 0.91

The interconnection conditions are satisfied with constants β1 = (1 + α2), β2 =

−α1(1 + α2) and γ1 = (1 + α1)(1 + α2). The upper-bound on the perturbation

parameter given in (4.90) is computed as

ε∗ =
α1α2

(1 + α1)(1 + α2)α1 + 1
d(1−d)

c2
(4.108)

with c = 1
2

[(1− d)β1 + dβ2]. Equation (4.108) gives the relation between the design

constants αi and the upper-bound ε∗. This dependence is qualitatively analyzed

by plotting the upper-bound as a function of weight d for different choice of αi.

Figure 4.9 and Table 4.1 summarize the results. The plot indicates that decreasing

α2 results in major changes in trend of the upper-bound curve. The upper-bound

reduces and suggests that stability is guaranteed for a small class of systems. This

can also be seen by noting that α2 affects the fast system stability and in turn the

closed-loop system stability. Change in α1 primarily affects the reduced slow system

and consequently only the performance of the system. Thus a decrease in α1 does not

cause the upper-bound to decrease. These trends suggest that a judicious choice of

parameters α1 and α2 must be made to achieve desired performance and robustness

properties of the closed-loop system.

The system given in (4.103) is the linearized model of the nonlinear, non-standard
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Figure 4.9: Upper-bound as a function of the weight, d for different values of αi

form [29]

ẋ = tan z − u (4.109a)

εż = x+ u. (4.109b)

Notice that the fast state appears nonlinearly in the slow dynamics and hence

determining a manifold h to meet the control objective can be difficult. Instead, the

same controller that was developed for the linear counterpart is used. The resulting

closed-loop system with α1 = α2 = 0.5 is

ẋ = 1.75x+ tan z + 0.5z (4.110a)

εż = −0.75x− 0.5z. (4.110b)

Notice that the controller converts the non-standard form into a standard form

which uniquely restricts the system onto the desired manifold, which in this case
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Figure 4.10: Nonlinear system (4.109) closed-loop response (ε = 0.1)

is h = −1.5x. It is clear that due to the nonlinear nature of the system and lo-

cal control design, the domain of attraction is now restricted to a subspace of the

two-dimensional Euclidean space. The upper-bound on the singular perturbation

parameter is computed as ε∗ = 2
9

for d = 3
5
. Theorem 4.3 guarantees stability for

the domain Dx ∈ [0,−1) and Dz ∈ [−1, 2]. Simulation results indicate that stability

is maintained for all ε < 0.4 and the nonlinear system is asymptotically stabilized

in the domain Dx ∈ [−2, 2] and Dz ∈ [−1.5, 2]. Simulation results for the case of

ε = 0.1 are shown in Figure 4.10. Notice that the non-zero control is applied until

the fast state falls onto the desired manifold.

4.4.4 Summary

The stability of the closed-loop system using Lyapunov approach [76] shows global

uniform asymptotic tracking for the nonlinear system and provides an analytical up-

per bound for the singular perturbation parameter for the results to hold. Additional

conditions on the terms neglected in the reduced-order models are also determined.
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The technique requires that the dynamics of the reduced slow system depend upon

the fast variables. This does not impose any additional restriction and is satisfied for

singularly perturbed systems in general. Note that if the dynamics of the slow states

did not depend on the fast variables then the presence of multiple scales need not

be addressed. The benefits and limitations of the proposed approach are detailed

below.

4.4.4.1 Benefits

1. Asymptotic stabilization and asymptotic slow-state tracking is accomplished

for non-standard singularly perturbed systems, including systems with infinite

manifolds.

2. Second, not all controllers are required to be fast and controllers with different

speeds can be addressed in comparison to composite control and approach I[73]

that requires all control variables to be sufficiently fast.

3. Third, the control laws are computed using Lyapunov-based designs that are

able to capture the nonlinear behaviour that is lost in linearization of the sys-

tem. Owing to this, the global or local nature of results are relaxed from the

complexities of analytic construction of the manifold and are entirely a conse-

quence of the choice of underlying controllers for the reduced-order models.

4. Additionally, the control laws developed are independent of the singular pertur-

bation parameter. Also an upper bound for the scalar perturbation parameter

is derived as a necessary condition for asymptotic stability.

5. The control is not required to be in affine form as the control design is based on

reduced-order systems obtained using geometric singular perturbation theory.
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4.4.4.2 Limitations

1. The vector fields need to be at least twice continuously differentiable to ensure

that the manifold and the control computed is sufficiently smooth.

2. The fast variables whose manifolds are not prescribed by control design of the

reduced slow system need to have stable dynamics to ensure complete system

stability.

4.5 Closing Remarks

In this section, basic methodologies for asymptotic tracking of slow states of

non-standard singularly perturbed systems have been developed. Two control law

formulations based on geometric singular perturbation theory concepts have been

presented. The salient features of the techniques developed are compared and de-

tailed below.

1. Systems Handled: Geometric singular perturbation theory plays an integral

part in convergence and stability properties of the developed techniques. Con-

sequently the control problem of a two time scale system is reduced down to

appropriate control design for two lower-dimensional nonlinear systems. Fur-

ther, these controllers may be designed using any nonlinear technique available

and suitable for system under consideration. Thus the stabilization results do

not require the system to be affine in control.

It must be noted that modified composite approach stabilizes only a class

of non-standard systems due to center manifold approximation. The second

approach presented has no such limitations and applies to all classes of non-

standard systems.
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2. Required Actuator Characteristics: Modified composite control technique

employs all the available control signals for stabilizing both the reduced slow

and the reduced fast systems. This requires that all the available actuators

respond sufficiently fast relative to the inherent state response.

This requirement is slightly weakened in the second approach. Recall that

in this approach the control signals stabilize the reduced fast system and the

reduced slow system is stabilized by the fast states alone. If the system under

study possesses actuators that are relatively slower than the fast states, then

these can be employed along with the fast states to control the reduced slow

system. However, note that sufficient number of fast actuators must still be

available to ensure the stability of the fast states.

3. Convergence Characteristics: Both the developed approaches guarantee

asymptotic regulation for the two time scale system. However, the domain of

convergence of each of these approaches depends on the manifold approxima-

tion and underlying controllers respectively. Furthermore, the tracking perfor-

mance of each of these schemes is independent of the reference trajectory and

uniform boundedness and asymptotic behaviour is demonstrated respectively.

4. Robustness: Both the control formulations presented in this chapter demon-

strate robustness to the singular perturbation parameter. In fact, the control

schemes are also robust to system parameter changes and bounded disturbances

since Lyapunov methods are employed for control design. Unlike modified com-

posite approach, the convergence of the second approach fails to white-noise

disturbance exogenous input as the stability depends on identifying the mani-

fold exactly.
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5. Design Procedure: The design of control laws using modified composite

approach becomes increasingly complex with increase in degrees-of-freedom

due to dependence of the fast controller upon the slow controller. Hence the

design procedure is sequential. On the other hand, the control synthesis using

second approach is less complicated and sequential in nature. Both the control

schemes are causal, that is depend only on current value of the states and are

real-time implementable.

In summary, control formulations presented in this chapter extend the composite

control scheme for non-standard forms of singularly perturbed systems. The methods

are robust to parameter variations and do not require knowledge of the singular

perturbation parameter. The second approach further weakens the requirement of

fast actuators, thus opening doors for stabilization of multiple-time scale systems of

the form (2.1), which is the subject matter of Section 6.
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5. SIMULTANEOUS TRACKING OF SLOW AND FAST TRAJECTORIES FOR

CONTROL-AFFINE, TWO TIME SCALE SYSTEMS1

5.1 Introduction

This section addresses the third objective detailed in Section 2. The following

nonlinear singularly perturbed model represents the class of two time scale dynamical

systems considered with

ẋ = f1(x, z) + f2(x, z)u (2.5a)

εż = g1(x, z) + g2(x, z)u (2.5b)

and the output

y =

 x

z

 (5.1)

where x ∈ Rm is the vector of slow variables, z ∈ Rn is the vector of fast variables,

u ∈ Rp is the input vector and y ∈ Rm+n is the output vector. ε ∈ R+ is the singular

perturbation parameter that satisfies 0 < ε << 1. The vector fields f1(.), f2(.),g1(.)

and g2(.) are assumed to be sufficiently smooth and p ≥ (m + n). The control

objective is to drive the output so as to track sufficiently smooth, bounded, time-

varying trajectories such that x(t)→ xr(t) and z(t)→ zr(t) as t→∞.

5.2 Control Formulation and Stability Analysis

The central idea in the development is the following. If the manifold is unique and

an asymptotically stable fixed point of the reduced fast system, geometric singular

1Parts of this section reprinted from Advances in Aerospace Guidance, Navigation and Control,
2011, pp 235-246, “Global tracking control structures for nonlinear singularly perturbed aircraft
systems”, Siddarth, Anshu and Valasek, John, c©Springer-Verlag Berlin Heidelberg; with kind
permission from Spinger Science and Business Media.
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perturbation theory concludes that the complete system follows the dynamics of the

reduced slow system globally. Therefore, for a tracking problem addressed in this

section it is desired that this manifold lie exactly on the desired fast state reference

for all time. This condition can be enforced if the nonlinear algebraic set of equations

is augmented with a controller that enforces the reference to be the unique manifold

and simultaneously drives the slow states to their specified reference. These ideas are

mathematically formulated and analyzed in the following sections.

5.2.1 Control Law Development

The objective is to augment the two time scale system with controllers such that

the system follows smooth, bounded, time-varying trajectories [xr(t), zr(t)]
T . The

first step is to transform the problem into a non-autonomous stabilization control

problem. Define the tracking error signals as

e(t) , x(t)− xr(t) (5.2a)

ξ(t) , z(t)− zr(t). (5.2b)

Substituting (2.5), the tracking error dynamics are expressed as

ė = f1(x, z) + f2(x, z)u− ẋr , F(e, ξ,xr, zr, ẋr) + G(e, ξ,xr, zr)u (5.3a)

εξ̇ = g1(x, z) + g2(x, z)u− εżr , L(e, ξ,xr, zr, εżr) + K(e, ξ,xr, zr)u. (5.3b)

The control law is formulated using the reduced-order models for the complete sta-

bilization problem, which are obtained using the procedure developed in Section 4.2.

The reduced slow system is given as

ė = F(e, ξ,xr, zr, ẋr) + G(e, ξ,xr, zr)u0 (5.4a)

0 = L(e, ξ,xr, zr,0) + K(e, ξ,xr, zr)u0 (5.4b)
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where the subscript 0, for the control input signifies control for the slow subsystem

and is referred to as the slow control from here on. The following reduced fast system

is derived by assuming that the slow control u0 is known

e′ = 0 (5.5a)

ξ′ = L(e, ξ,xr, zr, z
′
r) + K(e, ξ,xr, zr)(u0 + uf ) (5.5b)

and uf is treated as the control input which is referred as the fast control. It is

known that the fast tracking error ξ will settle onto the manifold that is a function

of the error e and control input u0, which may not necessarily be the origin. To steer

both errors to the origin, the control input must be designed such that the origin

becomes the unique manifold of the reduced slow system given in (5.4). Therefore,

the slow controller u0 is designed to take the form

 G(e, ξ,xr, zr)

K(e, ξ,xr, zr)

u0 = −

 F(e, ξ,xr, zr, ẋr)

L(e, ξ,xr, zr,0)

+

 Aee

Aξξ

 (5.6)

where Ae and Aξ specify the desired closed-loop characteristics. With this choice of

slow control, the reduced fast system becomes

e′ = 0 (5.7a)

ξ′ = L(e, ξ,xr, zr, z
′
r)− L(e, ξ,xr, zr,0) + Aξξ + K(e, ξ,xr, zr)uf . (5.7b)

To stabilize the fast subsystem, the fast control uf is designed as

 G(e, ξ,xr, zr)

K(e, ξ,xr, zr)

uf =

 0

L(e, ξ,xr, zr,0)− L(e, ξ,xr, zr, z
′
r)

 . (5.8)
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Thus, the composite control u = u0 + uf satisfies G(e, ξ,xr, zr)

K(e, ξ,xr, zr)

u = −

 F(e, ξ,xr, zr, ẋr)

L(e, ξ,xr, zr, z
′
r)

+

 Aee

Aξξ

 (5.9)

assuming that the rank of

 G(.)

K(.)

 ≥ (m + n). The complete closed-loop and

reduced slow system for this control law are given as

ė = Aee (5.10a)

εξ̇ = Aξξ. (5.10b)

and

ė = Aee (5.11a)

0 = Aξξ. (5.11b)

respectively. Observe that with the proposed control law the nonlinear algebraic set

of equations in (5.4b) have been transformed to a linear set of equations in (5.11b).

With the proper choice of Aξ, it is guaranteed that ξ = 0 is the unique manifold

for both the complete and the reduced slow systems. Furthermore, this manifold is

exponentially stable as can be deduced from the reduced fast system

e′ = 0 (5.12a)

ξ′ = Aξξ. (5.12b)

The control law proposed in (5.9) is independent of the perturbation parameter ε.

Furthermore it is a function of z′r that implies that the reference trajectory chosen
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for the fast states must be faster when compared to the reference of the slow states.

Additionally, as for all singular perturbation techniques to work; the closed-loop

eigenvalues Ae and Aξ must be chosen so as to maintain the time scale separation.

5.2.2 Stability Analysis

The following theorem [77] summarizes main result of this section.

Theorem 5.1. Suppose the control u of the system (2.5) is designed according to

(5.9) and satisfies properties 1 − 4. Then for all initial conditions, the control uni-

formly exponentially stabilizes the nonlinear singularly perturbed system (2.5) and

equivalently drives the output x(t)→ xr(t) and z(t)→ zr(t) for all ε < ε∗ defined in

(5.18).

Proof. Complete system stability is analyzed using the composite Lyapunov function

approach[9]. Suppose that positive definite Lyapunov functions V (t, e) = eTe and

W (t, ξ) = ξT ξ exist for the reduced-order models, satisfying the following properties:

1. V (t,0) = 0 and γ1||e||2 ≤ V (t, e) ≤ γ2||e||2 ∀t ∈ R+, e ∈ Rm, γ1 = γ2 = 1,

2. (∇eV (t, e))TAee ≤ −α1e
Te, α1 = 2|λmin(Ae)|,

3. W (t,0) = 0 and γ3||ξ||2 ≤ W (t, ξ) ≤ γ4||ξ||2 ∀t ∈ R+, ξ ∈ Rn, γ3 = γ4 = 1,

4. (∇ξW (t, ξ))TAξξ ≤ −α2ξ
T ξ, α2 = 2|λmin(Aξ)|.

Next, consider the composite Lyapunov function ν(t, e, ξ) : R+ × Rm × Rn → R+

defined by the weighted sum of V (t, e) and W (t, ξ) for the complete closed-loop

system

ν(t, e, ξ) = (1− d)V (t, e) + dW (t, ξ); 0 < d < 1. (5.13)
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The derivative of ν(t, e, ξ) along the closed-loop trajectories (5.10) is given by

ν̇ = (1− d)(∇eV )T ė + d(∇ξW )T ξ̇ (5.14a)

ν̇ = (1− d)(∇eV )TAee +
d

ε
(∇ξW )TAξξ. (5.14b)

Using properties 1-4, (5.14) becomes

ν̇ ≤ −(1− d)α1e
Te− d

ε
α2ξ

T ξ (5.15a)

ν̇ ≤ −

 e

ξ


T  (1− d)α1 0

0 d
ε
α2


 e

ξ

 . (5.15b)

Following the approach proposed in [43], add and subtract 2αν(t, e, ξ) to (5.15) to

get

ν̇ ≤ −

 e

ξ


T  (1− d)α1 0

0 d
ε
α2


 e

ξ

+ 2α(1− d)V + 2αdW − 2αν (5.16)

where α > 0. Substitute in (5.16) for the Lyapunov functions V (t, e) and W (t, ξ) to

get

ν̇ ≤ −

 e

ξ


T  (1− d)α1 − 2α(1− d) 0

0 d
ε
α2 − 2αd


 e

ξ

− 2αν. (5.17)

If ε satisfies

ε < ε∗ =
α2

2α
(5.18)

provided α1 > 2α, then from the definitions of α2, α and d it can be concluded

that the matrix in (5.17) is positive definite. Then the derivative of the Lyapunov
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function is lower-bounded by

ν̇ ≤ −2αν. (5.19)

Since the composite Lyapunov function lies within the following bounds

(1− d)γ1||e||2 + dγ3||ξ||2 ≤ ν(t, e, ξ) ≤ (1− d)γ2||e||2 + dγ4||ξ||2 (5.20)

or

γ11

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 e

ξ


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ ν(t, e, ξ) ≤ γ22

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 e

ξ


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(5.21)

where γ11 = min ((1− d)γ1, dγ3) and γ22 = min ((1− d)γ2, dγ4), the derivative of the

Lyapunov function can be expressed as

ν̇ ≤ −2αγ11

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 e

ξ


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. (5.22)

From the definition of the constants γ11, γ22, and α, and invoking Lyapunov’s Direct

Method[65]; uniform exponential stability in the large of (e = 0, ξ = 0) can be

concluded. Furthermore, since the reference trajectory xr(t) and zr(t) is bounded,

it is concluded that the states x(t) → xr(t) and z(t) → zr(t) as t → ∞. Since the

matrix

 G(.)

K(.)

 is restricted to be full rank, examining the expression for u in (5.9)

it is concluded that u ∈ L∞. This completes the proof.

Remark 5.2.1. Recall that for the special case of state regulation the system dynamics

in (5.3) become autonomous. In such a case, the result of global exponential stability
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is obtained with less-restrictive conditions on the Lyapunov functions V (e), W (ξ),

and consequently ν(e, ξ). Similar conclusions were made in [43] for the stabilization

problem of a special class of singularly perturbed systems where the control affects

only the fast states. Note that for the special class of systems considered in [43],

the non-diagonal elements of the matrix in (5.17) are nonzero and the bound on the

parameter ε is slightly different.

Remark 5.2.2. From (5.17), a conservative upper bound for α is α < α1

2
, and conse-

quently ε∗ ≈ α2

α1
. Therefore, qualitatively this upper bound is indirectly dependent

upon the choice of the closed-loop eigenvalues.

5.3 Numerical Examples

5.3.1 Purpose and Scope

The purpose of this section is to demonstrate the methodology and controller

performance for two non-standard forms of two-time scale systems. The first exam-

ple is the generic enzyme kinetic model and the objective is to study the robustness

properties of the controller for different values of the perturbation parameter. The

second example is an under-actuated, nonlinear, singularly perturbed system. The

system studied is a nonlinear, coupled, six degrees-of-freedom F/A-18A Hornet air-

craft detailed in Appendix C.

5.3.2 Generic Two Degrees-of-Freedom Nonlinear Kinetic Model

Consider the generic enzyme kinetic model given in (4.47) modified to obtain a

fully-actuated system

ẋ = −x+ (x+ 0.5)z + u1 − 2u2 (5.23a)

εż = x− (x+ 1)z + z2 + u1 + 3u2. (5.23b)
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The objective is to simultaneously track smooth trajectories xr(t) and zr(t). Define

the errors e = x− xr and ξ = z − zr and rewrite (5.23) in error coordinates

ė = −(e+ xr) + (e+ xr + 0.5)(ξ + zr) + u1 − 2u2 − ẋr (5.24a)

εėz = e+ xr − (e+ xr + 1)(ξ + zr) + (ξ + zr)
2 + u1 + 3u2 − εżr (5.24b)

similar to (5.3). The controller design and simulation results are detailed below.

Assume that the control vector is a sum of slow and fast control u0 and uf

respectively. Further assume that the fast controller remains inactive when the fast

state lies ideally on the manifold zr. Then the reduced slow system is given as

ė = −(e+ xr) + (e+ xr + 0.5)(ξ + zr) + u10 − 2u20 − ẋr (5.25a)

0 = e+ xr − (e+ xr + 1)(ξ + zr) + (ξ + zr)
2 + u10 + 3u20. (5.25b)

Using feedback linearization the slow control components are designed to ensure

that the slow state follows desired trajectory xr and the fast state remain on the

manifold zr with χ = e+ xr defined for convenience

 u10

u20

 =
1

5

 3 2

−1 1


 −α1e+ χ− (χ+ 0.5)(ξ + zr) + ẋr

−α2ξ − χ+ (χ+ 1)(ξ + zr)− (ξ + zr)
2

 (5.26)

where α1 and α2 are feedback gains. The reduced fast system is given as

e′ = 0 (5.27a)

e′z = e+ xr − (e+ xr + 1)(ξ + zr) + (ξ + zr)
2 + u10 + 3u20 + u1f

+ 3u2f − z′r. (5.27b)
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With the slow controller defined in (5.26), the purpose of the fast controller is to

ensure the derivative information of the fast reference is captured. Thus,

 u1f

u2f

 =
1

5

 3 2

−1 1


 0

z′r

 . (5.28)

The complete control is the composite of (5.26) and (5.28)

 u1s

u2s

 =
1

5

 3 2

−1 1


 −α1e+ χ− (χ+ 0.5)(ξ + zr) + ẋr

−α2ξ − χ+ (ξ + 1)(ξ + zr)− (ξ + zr)
2 + z′r

 . (5.29)

The specified references are xr = 2 sin(t) and zr = 2 cos(5t). Notice that the

reference trajectories are chosen to maintain a time scale difference. The fast-time

scale is τ = 5t and ε = 1
5

= 0.2. The derivatives of the reference trajectories are

ẋr = 2 cos(t) and żr = −10 sin(5t). The derivative of the fast state reference in the

fast time scale is z′r = −2 sin(5t). Note that this time scale difference was chosen

by the designer. The actual system may be perturbed differently. In simulation, the

actual system was chosen to have ε = 0.01. The feedback gains were α1 = 1 and

α2 = 3. Figure 5.1 presents the closed-loop response of the system. Notice that the

slow states asymptotically track the reference specified. The fast state however lags

the reference slightly because the time scales for the system and the reference are

different. Figure 5.2 shows simulation results on the system with ε = 0.2. Notice

that there is no phase lag in the fast state trajectory and the reference. Lyapunov

methods show that this behaviour is guaranteed for ε < 0.3. The results show that

the control signals remain bounded throughout.
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Figure 5.1: Enzyme kinetic model: simultaneous tracking of slow and fast states and
computed control for ε = 0.01

Figure 5.2: Enzyme kinetic model: simultaneous tracking of slow and fast states and
computed control for ε = 0.2
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5.3.3 Combined Longitudinal and Lateral/Directional Maneuver for a

F/A-18 Hornet

In this example, closed-loop characteristics such as stability, accuracy, speed of

response and robustness are qualitatively analyzed for the F/A-18 model detailed in

Appendix C. The F/A-18A Hornet model is expressed in stability axes. Since it is

difficult to cast the nonlinear aircraft model into the singular perturbation form of

(2.5), the perturbation parameter ε is introduced in front of those state variables that

have the fastest dynamics. This is done so that the results obtained for ε = 0 will

closely approximate the complete system behaviour (with ε = 1). This is called forced

perturbation technique and is commonly used in the aircraft literature [10], [78].

Motivated by experience and previous results, the six slow states are Mach number

M , angle-of-attack α, sideslip angle β and the three kinematic states: bank angle

φ, pitch-attitude angle θ, and heading angle ψ. The three body-axis angular rates

(p, q, r) constitute the fast states. The control variables for this model are elevon

δe, aileron δa and rudder δr; which are assumed to have sufficiently fast enough

actuator dynamics. The convention used is that a positive deflection generates a

negative moment. The throttle η is maintained constant at 80%, because slow engine

dynamics require introduction of an additional time scale in the analysis; which is

the subject matter of Section 6. The aerodynamic stability and control derivatives

are represented as nonlinear analytical functions of aerodynamic angles and control

surface deflections. Quaternions are used to represent the kinematic relationships

from which the Euler angles are extracted. The details of these relationships are

discussed in [79].

The combined longitudinal-lateral/directional maneuver requires tracking of the

fast variables, in this case body-axis pitch and roll rates; while maintaining zero
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sideslip angle. The maneuver consists of an aggressive vertical climb with a pitch

rate of 25 deg/sec followed by a roll at a rate of 50 deg/sec while maintaining zero

sideslip angle. The Mach number and angle-of-attack are assumed to be input-to-

state stable. The initial conditions are: Mach number of 0.4 at 15, 000 feet, an

angle-of-attack of 10 deg and elevon angle of −11.85 deg. All other states are zero.

The control design closely follows the developments presented in Section 5.2 and is

not repeated here.

Simulation results in Figures 5.3-5.8 show that all controlled states closely track

their references. At two seconds the aircraft is commanded to perform a vertical

climb and after eight seconds the pitch rate command changes direction and Mach

number drops. The lateral/directional states and controls are identically zero un-

til the roll command is introduced at time equals 15 seconds. Observe that all of

the states asymptotically track the reference. Figure 5.4 shows that the elevon de-

flection remains within specified limits [74] throughout the vertical climb, and the

commanded roll produces a sideslip angle which is negated by application of the rud-

der. The aileron and the rudder deflections remain within bounds while the aircraft

rolls and comes back to level flight. The maximum pitch-attitude angle is 81 deg,

maximum bank angle is 81 deg (see Figure 5.6) and the maximum sideslip error is

±4deg. The quaternions and the complete trajectory are shown in Figure 5.7 and

Figure 5.8 respectively. Note that after completing the combined climb and roll ma-

neuver, the aircraft is commanded to remain at zero sideslip angle, roll rate, and

pitch rate. It then enters a steady dive as seen in Figure 5.8 with all other aircraft

states bounded. The controller response is judged to be essentially independent of

the reference trajectory designed. The robustness properties of the controller are

quantified by the upper bound ε∗. For this example, the design variables are d = 0.5,

α1 = 10, α = 2, and α2 = 15, so the upper bound becomes ε∗ = 7.5. Therefore for
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Figure 5.3: Body axis angular rate response for F/A-18A combined longitudinal and
lateral/directional maneuver

all ε < ε∗ global asymptotic tracking is guaranteed and in this case ε = 1.

5.4 Closing Remarks

In summary, a control law for global asymptotic tracking of both the slow and

the fast states for a general class of nonlinear singularly perturbed systems was

developed. A composite control approach was adopted to satisfy two objectives.

First, it enforces the specified reference for the fast states to be ‘the unique mani-

fold’ of the fast dynamics for all time. Second, it ensures that the slow states are

tracked simultaneously as desired. Following [77] stability of the closed-loop signals

was analyzed using the composite Lyapunov approach and controller performance

was demonstrated through numerical simulation of a nonlinear kinetic model and

coupled, six degrees-of-freedom model of an F/A-18A Hornet. The control laws

were implemented without making any assumptions about the nonlinearity of the

six degrees-of-freedom aircraft model.
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Figure 5.4: Commanded control surface deflections for F/A-18A combined longitu-
dinal and lateral/directional maneuver

Figure 5.5: Mach number and angle of attack response for F/A-18A combined lon-
gitudinal and lateral/directional maneuver
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Figure 5.6: Sideslip angle and kinematic angle response for F/A-18A combined lon-
gitudinal and lateral/directional maneuver

Figure 5.7: Quaternion parameters for F/A-18A combined longitudinal and lat-
eral/directional maneuver
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Figure 5.8: Three dimensional trajectory for F/A-18A combined longitudinal and
lateral/directional maneuver

Based on the results presented in this section, the following conclusions are drawn.

First, both positive and negative angular rate commands were seen to be perfectly

tracked by the controller and consistent tracking was guaranteed independent of

the desired reference trajectory. Second, throughout the maneuver the controller

demonstrated global asymptotic tracking even though the desired reference trajectory

requires the aircraft to switch between linear and nonlinear regimes. This robust

performance of the controller was shown to hold for all ε < ε∗ = 7.5. The benefits

and the limitations of the proposed approach are detailed below:

5.4.1 Benefits

1. The reduced-order approach is shown to be applicable for simultaneous tracking

of both slow and fast states of non-standard singularly perturbed systems.

2. Although feedback-linearization was employed to design slow control in (5.26)

and fast control in (5.28), the control variable is not required to be in affine
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form. Infact, any control technique that ensures properties 1 − 4 are satisfied

may be employed.

3. Asymptotic tracking results are shown to be robust for a range of singular

perturbation values using composite Lyapunov approach. Furthermore, since

geometric singular perturbation theory is employed for model-reduction, ex-

act knowledge about the perturbation parameter is not required. This is an

important consideration for systems such as aircraft where quantifying this pa-

rameter can be difficult. However, the reference trajectories must be chosen

such that time scale properties of the original system are preserved.

5.4.2 Limitations

1. The vector fields are required to be at least twice differentiable such that the

control is sufficiently smooth.

2. The system must be fully-actuated. In case the system is under-actuated, the

uncontrolled degrees-of-freedom are required to be stable to ensure closed-loop

asymptotic results.

3. The actuator dynamics should be sufficiently fast, since all the control channels

are used in stabilizing both the reduced slow and the reduced fast systems.

139



6. CONTROL OF NONLINEAR, NON-AFFINE, NON-STANDARD MULTIPLE

TIME SCALE SYSTEMS

6.1 Introduction

This section addresses the fourth objective detailed in Section 2. The class of non-

linear singularly perturbed dynamical systems being considered are repeated below

for convenience with

S :



ẋ = f(x, z, δ)

εδ̇ε = fδε(δε,uε, ε)

µż = g(x, z, δ, µ);

%δ̇% = fδ%(δ%,u%, %)

(2.1)

where x ∈ Rm, is the vector of slow variables, z ∈ Rn is the vector of fast variables,

δ = [δε, δ%]
T ∈ Rp is the vector of actuator commands with δε ∈ Rl and δ% ∈ Rp−l, u =

[uε,u%]
T ∈ Rp is the input vector that is to be computed with uε ∈ Rl and u% ∈ Rp−l.

The singular perturbation parameters ε ∈ R, µ ∈ R and % ∈ R measure the time scale

separation explicitly and satisfy Assumption 2.1. All the vector fields are assumed to

be sufficiently smooth. The control objective is to drive the slow state so as to track

sufficiently smooth, bounded, time-varying trajectories or x(t) → xr(t) as t → ∞.

The control laws developed here extend approach II detailed in Section 4.4. The

necessary background and control formulation are detailed in the following sections.

6.2 Background: Reduced-Order Models

The system considered in (2.1) is labeled the Slow System and the independent

variable t is called the slow time scale. Notice that the slow variables evolve at a
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rate of O(1) whereas all the other states evolve faster at rates of O(1
ε
), O( 1

µ
) and

O(1
%
). Hence (2.1) describes the evolution of all the other states relative to the rate

of evolution of the slow variables. So it is called the slow system. In order to study

the rate of evolution of the system states relative to either the slow actuators δε, the

fast variables z, or the fast actuators δ%, the slow system (2.1) is represented in three

other time scales. These representations are given by Sε, Sµ and S% defined below.

Slow actuator system is

Sε :



x̆ = εf(x, z, δ)

δ̆ε = fδε(δε,uε, ε)

µ
ε
z̆ = g(x, z, δ, µ)

%
ε
δ̆% = fδ%(δ%,u%, %)

(6.1)

where˘represents the derivative with respect to the time scale τε = t−t0
ε

and t0 is the

initial time. Fast system is

Sµ :



x′ = µf(x, z, δ)

δε
′ = µ

ε
fδε(δε,uε, ε)

z′ = g(x, z, δ, µ)

%
µ
δ%
′ = fδ%(δ%,u%, %)

(6.2)

where ′ is the derivative with respect to the time scale τµ = t−t0
µ

. Fast actuator

system is

S% :



x̌ = %f(x, z, δ)

δ̌ε = %
ε
fδε(δε,uε, ε)

ž = %
µ
g(x, z, δ, µ)

δ̌% = fδ%(δ%,u%, %)

(6.3)
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and ˇ represents derivative with respect to the time scale τ% = t−t0
%

. Observe that

the systems S , Sε, Sµ and S% defined above are all equivalent. The subscripts

denote the parameter used to define the respective ‘stretched time scale’ in which

the systems have been expressed.

Geometric singular perturbation theory [5] examines the behaviour of these singu-

larly perturbed systems by studying the geometric constructs of their discontinuous

limiting behaviour as ε→ 0, µ→ 0 and %→ 0. Using Assumption 2.1 the reduced-

order models thus obtained are:

reduced slow system:

S 0 :



ẋ = f(x, z, δ)

0 = fδε(δε,uε, 0)

0 = g(x, z, δ, 0)

0 = fδ%(δ%,u%, 0)

(6.4)

reduced slow actuator system:

Sε
0 :



x̆ = 0

δ̆ε = fδε(δε,uε, 0)

0 = g(x, z, δ, 0)

0 = fδ%(δ%,u%, 0)

(6.5)

reduced fast system:

Sµ
0 :



x′ = 0

δε
′ = 0

z′ = g(x, z, δ, 0)

0 = fδ%(δ%,u%, 0)

(6.6)
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and reduced fast actuator system:

S%
0 :



x̌ = 0

δ̌ε = 0

ž = 0

δ̌% = fδ%(δ%,u%, 0).

(6.7)

Superscript 0 has been introduced to emphasize that these systems describe the

limiting behaviour. Notice the dynamics of the reduced slow system are constrained

to lie upon an m dimensional smooth manifold defined by the set of points (x) ∈ Rm

that satisfy the algebraic equations of S 0:

M0 :


δ0
ε = δε(x,uε)

z0 = z(x, δε, δ%)

δ0
% = δ%(x,u%).

(6.8)

This set of points is identically the fixed points of the Sε
0, Sµ

0 and S%
0 reduced

systems respectively. This observation assists in making two important conclusions.

First, the flow on the manifold M0 (and respectively the flow of the reduced slow

system S 0) is described by the differential equation

ẋ = f(x, z0, δ0
ε , δ

0
%) (6.9)

if the reduced systems are stable about their respective fixed points. Second, the

flow on the manifold determines the asymptotic behaviour of the solutions of the

slow system S . Specifically, if the dynamics of (6.9) are locally asymptotically

stable about the manifold, then it can be concluded that the slow system S in (2.1)
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is also locally asymptotically stable [72]. Furthermore, the flow on the manifold

approximates the solution of the slow system S . Refer to [5],[80] for details.

6.3 Control Formulation and Stability Analysis

Geometric singular perturbation theory suggests that the stability properties of

the slow system S depend upon the properties of the reduced slow system S 0 and

that in turn relies upon the identification of the manifold M0. If the manifold can

be uniquely identified as a function of the control vector u, then under certain con-

ditions the control objective is met by designing controllers that ensure the reduced

systems Sε
0, Sµ

0 and S%
0 are uniformly stable about their fixed points and S 0

asymptotically follows the desired reference xr(t). But as discussed in the Section 1,

the identification of the manifold M0 is not feasible for non-standard forms.

Here the reduced-order models and the results of singular perturbation theory are

employed by considering the manifold in (6.8) with (δ0
ε , z

0, δ0
%) as intermediate control

variables. Recall, similar ideas were implemented in approach II (see Section 4.4 ) and

shown to asymptotically guarantee slow-state tracking for a two-time scale system.

Motivated by these results, the control law is formulated in the following five steps.

In the first step, the manifolds δ0
ε (t,x, δ

0
%) and z0(t,x, δ0

%) are determined to ensure

asymptotic stability of the reduced slow system S 0 about the desired reference. In

this step it is assumed that the fast actuators have settled down to their respective

fixed point δ0
%, which is unknown and is determined later. The second step proceeds

with the design of the control vector uε(t,x, δε) to ensure the reduced slow actuator

system S 0
ε uniformly stabilizes about the fixed point δ0

ε (t,x, δ
0
%) designed in the first

step. Similarly, the manifold z0(t,x, δ0
%) is made the fixed-point of the reduced fast

system S 0
µ through the design of the manifold δ0

%(t,x, δε, z) in the third step. The

fourth step formulates the control vector u%(t,x, δε, z, δ%) to ensure δ0
% becomes the
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fixed-point of the reduced fast actuator system, S 0
% . The final step proceeds with

robustness analysis through Lyapunov functions to ensure the stability properties

of the reduced systems established in steps one through four carry forward to their

counterparts S , Sε, Sµ and S%.

These ideas are mathematically formulated and developed in Section 6.3.

6.3.1 Control Formulation

We start by defining the tracking error signal as

e(t) := x(t)− xr(t) (6.10)

and express the slow system S given in (2.1) as1

S :



ė = F(t, e, z, δ) := f(e + xr, z, δ)− ẋr

εδ̇ε = fδε(δε,uε, ε)

µż = G(t, e, z, δ, µ) := g(e + xr, z, δ, µ)

%δ̇% = fδ%(δ%,u%, %).

(6.11)

Step 1 : Design slow manifolds δ0
ε (t, e, δ

0
%) and z0(t, e, δ0

%) for the reduced slow

system S 0 such that the slow states asymptotically track the desired reference xr(t),

or e = 0 becomes the uniformly asymptotically stable equilibrium of S 0. Toward

this end, define a positive-definite and decrescent Lyapunov function that satisfies

(i) V (t, e) : [0,∞) ×De → R is continuously differentiable and De ⊂ Rm contains

the origin such that

0 < ψ1(‖e‖) ≤ V (t, e) ≤ ψ2(‖e‖)
1Note, for convenience, the notation S , Sε and so on is retained in this subsection for the

system written in error coordinates.
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for some class K functions ψ1(.) and ψ2(.), and

(ii) design the manifolds δ0
ε (t, e, δ

0
%) and z0(t, e, δ0

%) such that closed-loop reduced

slow system S 0 satisfies

∂V

∂t
+
∂V

∂e
F(t, e, z0, δ0

ε , δ
0
%) ≤ −α1ψ

2
3(e), α1 > 0

where ψ3(.) is a continuous scalar function that satisfies ψ3(0) = 0.

Note the manifolds are time-varying due to the varying nature of the desired reference

xr(t).

Step 2: Design the control uε to ensure the slow actuator states asymptotically

approach the manifold δ0
ε (t, e, δ

0
%). Define the error in the actuator state as eδε :=

δε − δ0
ε (t, e, δ

0
%) and rewrite the reduced slow actuator system S 0

ε as

Sε
0 :


ĕ = 0

ĕδε = fδε(eδε + δ0
ε ,uε, 0)− δ̆0

ε

0 = G(t, e, z, δ, 0); 0 = fδ%(δ%,u%, 0).

(6.12)

δ̆0
ε is the derivative of the manifold in the limit ε→ 0 determined as:

δ̆0
ε = lim

ε→0

[
∂δ0

ε

∂t

dt

dτε
+
∂δ0

ε

∂e
ĕ +

∂δ0
ε

∂δ0
%

δ̆0
%

]
(6.13)

= 0

using the definition of time scale τε, reduced slow actuator system S 0
ε in (6.12) and

the fact that δ0
% is a fixed point of the reduced slow actuator system.

In order to design the control vector uε(t, e, eδε), define a positive-definite and

decrescent Lyapunov function W (t, e, eδε) that satisfies
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(iii) W (t, e, eδε) : [0,∞)×De×Deδε
→ R is continuously differentiable and Deδε

⊂

Rl contains the origin such that

0 < Φ1(‖eδε‖) ≤ W (t, e, eδε) ≤ Φ2(‖eδε‖)

for some class K functions Φ1(.) and Φ2(.).

(iv) Using the Lyapunov function candidate W (t, e, eδε), design for the control

uε(t, e, eδε) such that closed-loop reduced slow actuator system satisfies

∂W

∂eδε
fδε(eδε + δ0

ε ,uε, 0) ≤ −α2Φ2
3(eδε), α2 > 0

where Φ3(.) is a continuous scalar function and Φ3(0) = 0.

Step 3: Define the error in the fast variables as ez := z − z0 and design the

manifold δ0
%(t, e, eδε, ez) such that the fast variables asymptotically stabilize about

the manifold z0(t, e, δ0
%). Note the manifold for the fast variables in this design step

z0(t, e, δ0
%) = z0

(
t, e, δ0

%(t, e, eδε ,0)
)

is a function of the error in slow actuator state eδε

and not of the fixed point δ0
ε (t, e, δ

0
%). This is because the slow actuator state evolves

at a relatively slow rate and the assumption that the slow actuator has settled down

to its fixed point cannot be made. The reduced fast system S 0
µ rewritten in error

coordinates is

Sµ
0 :



e′ = 0

eδε
′ = 0

ez
′ = G(τµ, e, ez + z0, eδε , δ

0
%, 0)

0 = fδ%(δ%,u%, 0)

(6.14)
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using the fact

z0′ = lim
µ→0

[
∂z0

∂t

dt

dτµ
+
∂z0

∂e
e′ +

∂z0

∂eδε
eδε
′ +

∂z0

∂δ0
%

δ0
%
′
]

(6.15)

= 0.

For the design of the manifold δ0
%(t, e, eδε, ez), define a positive-definite and decrescent

Lyapunov function that satisfies

(v) Z(t, e, eδε , ez) : [0,∞) × De × Deδε
× Dez → R is continuously differentiable

and Dez ⊂ Rn contains the origin such that

0 < $1(‖ez‖) ≤ Z(t, e, eδε , ez) ≤ $2(‖ez‖)

for some class K functions $1(.) and $2(.).

(vi) Design δ0
%(t, e, eδε, ez) such that the closed-loop reduced fast system, S 0

µ satis-

fies

∂Z
∂ez

G(τµ, e, ez, eδε , δ
0
%, 0) ≤ −α3$

2
3(ez), α3 > 0

where $3(.) is a continuous scalar function that satisfies $3(0) = 0.

With the knowledge of manifold δ0
% (t, e, eδε, ez), the manifolds for the slow actuator

variables and the fast states can be determined by using δ0
ε (t, e, δ

0
%) =

δ0
ε (t, e, δ

0
%(t, e,0,0)) and z0(t, e, δ0

%) = z0
(
t, e, δ0

%(t, e,0,0)
)

in condition (ii) and

z0(t, e, δ0
%) = z0

(
t, e, δ0

%(t, e, eδε ,0)
)

in condition (vi) respectively.

Step 4: Design the control vector u% to enforce uniform asymptotic stabilization

of the fast actuators about the manifold δ0
% (t, e, eδε , ez). Similar to the previous

design steps, define the error in the fast actuator states eδ% := δ% − δ0
% and rewrite
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the reduced fast actuator system S 0
% in the error coordinates

S%
0 :


ě = 0; ěδε = 0

ěz = 0

ěδ% = fδ%(eδ% + δ0
%,u%, 0)

(6.16)

where

δ̌0
% = lim

%→0

[
δ0
%

dt

dt

dτ%
+
∂δ0

%

∂e
ě +

∂δ0
%

∂eδε
ěδε +

∂δ0
%

∂ez

ěz

]
(6.17)

= 0.

Define a positive-definite and decrescent Lyapunov function that satisfies

(vii) Y(t, e, eδε , ez, eδ%) : [0,∞) × De × Deδε
× Dez × Deδ%

→ R for the reduced

fast actuator system S 0
% that is continuously differentiable and Deδ%

⊂ Rp−l

contains the origin such that

0 < υ1(‖eδ%‖) ≤ Y(t, e, eδε , ez, eδ%) ≤ υ2(‖eδ%‖)

for some class K functions υ1(.) and υ2(.).

(viii) Design u%(t, e, eδε , ez, eδ%) such that the closed-loop reduced fast actuator sys-

tem S 0
% satisfies

∂Y
∂eδ%

fδ%(eδ% + δ0
%,u%, 0) ≤ −α4υ

2
3(eδ%), α4 > 0

where υ3(eδ%) is a continuous scalar function and υ3(0) = 0.

Step 5: Verify the following interaction conditions are satisfied:
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(ix) ∂V

∂e

[
F(t, e, ez + z0, eδε + δ0

ε , eδ% + δ0
%)− F(t, e, z0, δ0

ε , δ
0
%)
]
≤ β1ψ3(e)Φ3(eδε)

+ β2ψ3(e)$3(ez) + β3ψ3(e)υ3(eδ%)

(x) ∂W

∂eδε

[
fδε(eδε + δ0

ε ,uε, ε)− fδε(eδε + δ0
ε ,uε, 0)

]
≤ εγ1Φ2

3(eδε) + εβ4ψ3(e)Φ3(eδε)

(xi) ∂W

∂t
+
∂W

∂e
ė− ∂W

∂eδε
δ̇0
ε ≤ γ2Φ2

3(eδε) + β5ψ3(e)Φ3(eδε)

+ β6Φ3(eδε)$3(ez) + β7Φ3(eδε)υ3(eδ%)

(xii) ∂Z
∂ez

[
G(t, e, ez, eδε , eδ% + δ0

%, µ)−G(t, e, ez, eδε , eδ% + δ0
%, 0)

]
≤

µβ8ψ3(e)$3(ez) + µγ3$
2
3(ez) + µβ9Φ3(eδε)$3(ez) + µβ10$3(ez)υ3(eδ%)

(xiii) ∂Z
∂ez

[
G(t, e, ez, eδε , eδ% + δ0

%, 0)−G(t, e, ez, eδε , δ
0
%, 0)

]
≤ β11$3(ez)υ3(eδ%)

(xiv) ∂Z
∂t

+
∂Z
∂e

ė +
∂Z
∂eδε

ėδε −
∂Z
∂ez

ż0 ≤ γ4$
2
3(ez)

+ β12ψ3(e)$3(ez) + β13Φ3(eδε)$3(ez) + β14$3(ez)υ3(eδ%) +
β15

ε
ψ3(e)$3(ez)

+
β16

ε
Φ3(eδε)$3(ez)

(xv) ∂Y
∂t

+
∂Y
∂e

ė +
∂Y
∂eδε

ėδε +
∂Y
∂ez

ėz −
∂Y
∂eδ%

δ̇0
% ≤ +γ5υ

2
3(eδ%) + β17ψ3(e)υ3(eδ%)

+ β18Φ3(eδε)υ3(eδ%) + β19$3(ez)υ3(eδ%) +
β20

ε
ψ3(e)υ3(eδ%) +

β21

ε
Φ3(eδε)υ3(eδ%)

+
β22

µ
ψ3(e)υ3(eδ%) +

β23

µ
$3(ez)υ3(eδ%) +

β24

µ
Φ3(eδε)υ3(eδ%) +

γ6

µ
υ2

3(eδ%)
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(xvi) ∂Y
∂eδ%

[
fδ%(eδ% + δ0

%,u%, %)− fδ%(eδ% + δ0
%,u%, 0)

]
≤ +%β25ψ3(e)υ3(eδ%)

+ %β26$3(ez)υ3(eδ%) + %β27Φ3(eδε)υ3(eδ%) + %γ7υ
2
3(eδ%)

where βi and γi are constants and the inequalities hold for all e ∈ De, eδε ∈ Deδε
,

ez ∈ Dez and eδ% ∈ Deδ%
. Conditions (ix) - (xvi) capture the deviation between the

reduced-order models and the complete systems. This completes the control design

procedure.

6.3.2 Stability Analysis

The following theorem summarizes the main result of the section.

Theorem 6.1. Suppose the control u(t, e, eδε , ez, eδ%) of the system, S , (2.1) is de-

signed according to Steps 1-5, then for all initial conditions (e, eδε , ez, eδ%) ∈ De ×

Deδε
×Dez ×Deδ%

, the control uniformly asymptotically stabilizes the nonlinear sin-

gularly perturbed system (2.1) and equivalently drives the slow state x(t)→ xr(t) for

all ε < ε∗, µ < µ∗ and % < %∗ with respective upper-bounds defined as

ε∗ :=
α1α2

α1(γ1 + γ2) + 1
4wvww

[wvβ1 + ww(β4 + β5)]2
(6.18)

µ∗ :=
Nµ

Dµ

(6.19)

%∗ :=
N%

D%

. (6.20)

where

Nµ = (wvα1b− a2)α3wz

Dµ = wvα1d
2 − 2acd+ bc2 + wz(wvα1b− a2)(γ3 + γ4)

N% = wyα4

D% = η
σ

+ wy(γ5 + γ7 + γ6
µ

)

(6.21)
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Various other constants in (6.18) and (6.21) are

σ = wvα1(bg − d2)− a2g + 2adc− bc2

η = λ+ wvα1(bh2 − dfh− f(dh− gf))

+a2h2 + adhe+ af(hc− ge) + cfah

−cf(fc− de)− cbhe

λ = e[a(dh− gf)− b(ch− eg) + d(cf − de)]

a = − [wvβ1+ww(β4+β5)]
2

b = wwα2

ε
− wwγ1 − wwγ2

c = − [wvβ2+wz(β8+β12+
β15
ε

)]
2

d = − [wwβ6+wz(β9+β13+
β16
ε

)]
2

e = − [wvβ3+wy(β17+β25+
β20
ε

+
β22
µ

)]
2

f = − [wwβ7+wy(β18+β27+
β21
ε

+
β24
µ

)]
2

g = wzα3

µ
− wzγ3 − wzγ4

h = − [wz(β10+β14+
β11
µ

)+wy(β19+β26+
β23
µ

)]
2

j = wyα4

%
− wyγ5 − wyγ7 − wyγ6

µ

(6.22)

and wi are positive design constants 0 < wi < 1.

Proof. The closed-loop slow system S in the error coordinates is given as

ė = F(t, e, ez + z0, eδε + δ0
ε , eδ% + δ0

%)

εėδε = fδε(eδε + δ0
ε ,uε, ε)− εδ̇0

ε (t, e)

µėz = G(t, e, ez, eδε , eδ% + δ0
%, µ)− µż0(t, e, eδε)

%ėδ% = fδ%(eδ% + δ0
%,u%, %)− %δ̇0

%(t, e, eδε , ez).

(6.23)

Closed-loop system stability of the system states is analyzed using the composite
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Lyapunov function approach[9]. Consider a Lyapunov function candidate

ϑ(t, e, eδε , ez, eδ%) = (1− ww − wz − wy)V (t, e) + wwW (t, e, eδε)

+ wzZ(t, e, eδε , ez) + wyY(t, e, eδε , ez, eδ%). (6.24)

where wi are positive weights. Let wv = (1−ww −wz −wy). From the properties of

V , W , Z and Y it follows that ϑ(t, e, eδε , ez, eδ%) is positive-definite and decrescent.

The derivative of ϑ along the trajectories of (6.23) is:

ϑ̇ = wv

{
∂V

∂t
+
∂V

∂e
ė

}
+ ww

{
∂W

∂t
+
∂W

∂e
ė +

∂W

∂eδε
ėδε

}
+ wz

{
∂Z
∂t

+
∂Z
∂e

ė +
∂Z
∂eδε

ėδε +
∂Z
∂ez

ėz

}
(6.25)

+ wy

{
∂Y
∂t

+
∂Y
∂e

ė +
∂Y
∂eδε

ėδε +
∂Y
∂ez

ėz +
∂Y
∂eδ%

ėδ%

}
.

Substitute (6.23) and rearrange (6.25) to get

ϑ̇ =wv
∂V

∂t
+ wv

∂V

∂e

[
F(t, e, z0, δ0

ε , δ
0
%)− F(t, e, z0, δ0

ε , δ
0
%)

+ F(t, e, ez + z0, eδε + δ0
ε , eδ% + δ0

%)
]

+ ww
∂W

∂t

+ ww
∂W

∂e
ė− ww

∂W

∂eδε
δ̇0
ε +

ww
ε

∂W

∂eδε
fδε(eδε + δ0

ε ,uε, 0)

+
ww
ε

∂W

∂eδε

[
fδε(eδε + δ0

ε ,uε, ε)− fδε(eδε + δ0
ε ,uε, 0)

]
+ wz

{
∂Z
∂t

+
∂Z
∂e

ė +
∂Z
∂eδε

ėδε −
∂Z
∂ez

ż0

}
+
wz
µ

∂Z
∂ez

[
G(t, e, ez, eδε , δ

0
%, 0)

+ G(t, e, ez, eδε , eδ% + δ0
%, 0)−G(t, e, ez, eδε , δ

0
%, 0)

]
+
wz
µ

∂Z
∂ez

[
G(t, e, ez, eδε , eδ% + δ0

%, µ)
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−G(t, e, ez, eδε , eδ% + δ0
%, 0)

]
+ wy

{
∂Y
∂t

+
∂Y
∂e

ė +
∂Y
∂eδε

ėδε +
∂Y
∂ez

ėz −
∂Y
∂eδ%

δ̇0
%

}
+
wy
%

∂Y
∂eδ%

[
fδ%(eδ% + δ0

%,u%, 0) (6.26)

+ fδ%(eδ% + δ0
%,u%, %)− fδ%(eδ% + δ0

%,u%, 0)
]

Using the properties given in (ii),(iv),(vi),(viii) and (ix)-(xvi), (6.26) results in

ϑ̇ ≤ −ΨTKΨ (6.27)

K =



wvα1 a c e

a b d f

c d g h

e f h j


(6.28)

where Ψ =
[
ψ3(e) Φ3(eδε) $3(ez) υ3(eδ%)

]T
and elements of matrix K are de-

fined in (6.22). The matrix K in (6.28) is positive-definite for all ε < ε∗, µ < µ∗ and

% < %∗ defined in (6.18), (6.19) and (6.20). By definition of the continuous scalar

functions ψ3,Φ3, $3 and υ3, it follows that ϑ̇ is negative definite. By the Lyapunov

theorem [60] it is concluded that (e, δε, z, δ%) = (0, δ0
ε , z

0, δ0
%) is uniformly asymptotic

stable equilibrium of the closed-loop system (4.84). Further, from the definition of

the tracking error (6.10) it is concluded that x(t)→ xr(t) asymptotically. Since the

desired trajectory is assumed to be smooth and bounded with bounded first-order

derivatives, all the other signals remain bounded for all time.

The weights wi have been introduced to form a convex combination of the Lya-

punov functions. The freedom to choose these parameters can be employed to obtain
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less conservative estimates of the upper bounds of the perturbation parameters and

domain of convergence as shown in numerical examples of Section 4.4.3.4. Similar

weights were used in composite control approach and their effect is discussed in [9].

This completes the proof.

6.4 Numerical Examples

6.4.1 Purpose and Scope

This section illustrates the preceding theoretical developments and demonstrates

the controller performance for both standard and non-standard forms of singularly

perturbed systems. Two examples are presented. The first example implements

the proposed approach for a two time scale standard system. The second example

demonstrates the control design for a multiple time scale system of the form (2.1)

with deadzone actuator characteristics.

6.4.2 Standard Two Time Scale Model

Consider (Exercise problem 11.9 [60]):

ẋ = z (6.29a)

µż = −x− exp z − µz + 1 + u (6.29b)

The objective is to design a regulator to stabilize the slow state, thus e := x. Let

ez = z − z0, where z0(e) is the manifold. The system given in (6.29) has two time

scales with no slow actuators and one fast control, therefore Step. 2 and Step. 4 do

not apply. The control design proceeds as follows:

Step 1: The reduced slow system S 0 is given as

ė = z0 (6.30a)

0 = −e− exp z0 + 1 + u. (6.30b)
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Choose z0 = −2e. With Lyapunov function V (e) = 1
2
e2, properties (i) and (ii) are

satisfied with ψ3(e) = e and α1 = 2.

Step 3: The reduced fast system S 0
µ is

e′ = 0 (6.31a)

e′z = −e− exp(ez + z0) + u+ 1. (6.31b)

Choose u = e − 1 − 4ez + exp (ez + z0). With Lyapunov function Z(ez) = 1
2
e2
z,

properties (iii) and (iv) are satisfied with $3(ez) = ez and α3 = 4.

Step 5: The interaction conditions are satisfied with constants, β1 = 0; β2 =

1; β3 = 0, β8 = α1; γ3 = −1; β9 = β10 = 0, β11 = 0, γ4 = α1; β12 = −α2
1. All other

constants being zeros.

The closed-loop system becomes

ė = −2e+ ez (6.32a)

µėz = −4ez + µ[−2e+ ez] (6.32b)

The various constants of matrix K in (4.89) are c = −wv−2wz
2

, g = 4wz
µ
− wz and

a = b = d = e = f = h = j = 0. For this example, the matrix K degenerates to 2×2

and the upper-bound is determined by requiring the determinant of the degenerate

matrix to be positive. This gives the following equality:

µ∗ =
8wz(1− wz)

2wz(1− wz) + c2
(6.33)

where wv = 1−wz has been used. With the optimum choice of wz = 1
3

and µ∗ = 2 it

is concluded that the system (6.29) is globally asymptotically stable about the origin
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for µ < 2.

Note that in this example, stability can be studied through the eigenvalues of the

closed-loop system given in (6.32). This analysis suggests that the system is stable

for all values of µ < 10000. Thus, the upper-bounds determined in Theorem 6.1 are

conservative and provides only sufficient conditions for stability.

6.4.3 Non-Standard Multiple Time Scale System

To demonstrate asymptotic tracking for multiple time scale systems, consider the

following open-loop unstable system:

ẋ1 = x2 + z + δε + δ% (6.34a)

ẋ2 = x1 + z + 2δε + 4δ% (6.34b)

εδ̇ε = −δε + uε (6.34c)

ε2ż = x1 + 2δε + 3δ% (6.34d)

with a fast actuator that satisfies

δ% =


u% + 0.4; u% ≤ −0.4

0; −0.4 ≤ u% ≤ 0.4

u% − 0.4; u% ≥ 0.4.

(6.35)

In this example, the perturbation parameter µ := ε2. The fast actuator δ% is infinitely

many times fast and parameter % is identically zero. The control is designed following

the procedure outlined in Section 6.3.

Step 1: The reduced slow system S 0 in error coordinates e1 := x1 − x1r(t) and
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e2 := x2 − x2r(t) is

ė1 = e2 + z0(t, e, δ0
%) + δ0

ε (t, e) + δ0
%(t, e, δ

0
ε , z

0)

+ (x2r − ẋ1r) (6.36a)

ė2 = e1 + z0(t, e, δ0
%) + 2δ0

ε (t, e) + 4δ0
%(t, e, δ

0
ε , z

0)

+ (x1r − ẋ2r) (6.36b)

assuming the actuator states and the fast variable have settled down onto their

respective manifolds. Choose

δ0
ε (t, e) =− 3δ0

%(t, e, δ
0
ε , z

0)− [ẋ1r + x1r − x2r − ẋ2r] (6.37a)

z0(t, e, δ0
%) =− e1 − e2 + 2δ0

%(t, e, δ
0
ε , z

0)

+ [x1r − 2x2r + 2ẋ1r − ẋ2r] (6.37b)

as the manifolds to asymptotically stabilize the errors. With the Lyapunov function

candidate V (e) = 1
2
e2

1 + 1
2
e2

2, property (ii) is satisfied with α1 = 1 and ψ3(e) =√
e2

1 + e2
2.

Step 2: The commanded slow control is designed as

uε = δε − 2eδε (6.38)

to ensure that the slow actuator state achieves the desired manifold and correspond-

ingly eδε := δε−δ0
ε (t, e) stabilizes about zero. Property (iv) is satisfied with quadratic

Lyapunov function W (eδε) = 1
2
e2
δε

with α2 = 2 and Φ(eδε) = eδε .
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Step 3: The reduced fast system S 0
µ is written as

e′z = e1 + 2eδε + 2δ0
ε (t, e) + 3δ0

%(t, e, δε, z) + x1r (6.39)

and the manifold

δ0
%(t, e, δε, z) =

−e1 − 2eδε − 2δ0
ε (t, e)− 4ez − x1r

3
(6.40)

ensures error ez := z−z0(t, e, δε) is uniformly asymptotically stable about the origin.

The manifolds can be written in system states by carrying out the following three

steps. First, substitute for the manifolds given in (6.37) into (6.40) to get

δ0
%(t, e, δε, z) =

−e1 − 2eδε + 6δ0
%(t, e, δ

0
ε , z

0)− 4ez

3
2[ẋ1r + x1r − x2r − ẋ2r]− x1r

3
. (6.41)

Thus,

δ0
%(t, e, δ

0
ε , z

0) =
e1

3
+

[−x1r − 2ẋ1r + 2x2r + 2ẋ2r]

3
. (6.42)

As expected, δ0
%(t, e, δ

0
ε , z

0) is only a function of the slow state error and time. Second,

use (6.42) in (6.37) and determine δ0
ε (t, e) and consequently δ0

%(t, e, δε, z). This results

in the following expressions:

δ0
ε (t, e) = − e1 − [−ẋ1r + x2r + ẋ2r] (6.43a)

δ0
%(t, e, δε, z) = +

1

3

[
e1 − 2(δε − δ0

ε (t, e))− 4(z − z0(t, e, δε))

+ [−x1r − 2ẋ1r + 2x2r + 2ẋ2r]
]
. (6.43b)
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Finally,

z0(t, e, δε) =
1

3

[
− e1 − 3e2 − 4(δε − δ0

ε (t, e))

+[x1r + 2ẋ1r − 2x2r + ẋ2r]
]

(6.44)

is obtained using δ0
%(t, e, δε, z

0) from (6.43b) in (6.37). Property (vi) is satisfied with

Lyapunov function as Z(ez) = 1
2
e2
z with α3 = 4 and $(ez) = ez.

Step 4: The control u2 is determined using the algebraic relations given in (6.35).

Step 5: The various constants can be easily determined as β1 = −4, β2 = −17
3

,

γ2 = −2, β5 = −1, β6 = −4
3
, β12 = −5

3
, β13 = −16

3
, γ4 = −59

3
, β16 = −8

3
and the rest

are all zeros.

The above control design is verified in simulation. For convenience, the weights

wi are set to unity and using (6.18) the upper-bound is computed as ε∗ = 0.4705.

The upper-bound µ∗ = 0.1107 is determined by assuming ε = 0.1. Thus, The-

orem 6.1 guarantees global asymptotic stability of (6.34). The controller (spec-

ified by (6.43b),(6.44), (6.38) and (6.35)) was tested in simulation by specifying

x1r(t) = sin(t) and x2r(t) = −2 cos(2t). The transient response in Figure 6.1 and

Figure 6.2 show that within two seconds the slow state transients die out and the

fast state follows the desired manifold. This behaviour is the result of close tracking

of the commanded inputs. The control profile for the fast actuator in Figure 6.3

presents the deadband characteristics of the controller.

6.5 Closing Remarks

An exact slow tracking controller was developed that utilizes the dependence of

the slow state dynamics upon the fast states and applies to both standard and non-

standard singularly perturbed systems. The sequential design procedure was proven
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Figure 6.1: Multiple time scale non-standard system: closed-loop response for ε =
0.05

Figure 6.2: Multiple time scale non-standard system: computed control time history
for ε = 0.05

161



Figure 6.3: Multiple time scale non-standard system: fast control deadband charac-
teristics ε = 0.05

to stabilize a four time scale singularly perturbed system and can also be extended

to systems with greater than four time scales.

Based on the stability proof and simulation results presented in the section the

following conclusions are drawn. First, the estimate of the upper-bound is conser-

vative and the theorem provides sufficiency conditions for stability. Second, the

domain of convergence is dependent upon the underlying controllers developed for

the reduced-order systems. Two of the examples showed that global results can

be guaranteed by identifying controllers that satisfy the specified conditions for the

complete space spanned by the system states. Third, the control design process is

independent of the perturbation parameter. An estimate is required only in a fi-

nal design step to determine the upper-bounds on the perturbation parameters and

guarantee robustness properties of the controller. This estimate can be computed

using non-dimensionalization. The benefits and limitations of the exact approach

presented in Section 2 apply here.
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7. SOME APPLICATIONS TO CONTROL OF WEAKLY MINIMUM AND

NON-MINIMUM PHASE, NONLINEAR DYNAMICAL SYSTEMS1

7.1 Introduction

This section considers applications to benchmark non-minimum phase dynami-

cal systems. It will be shown that the methods detailed in Section 6 will guaran-

tee asymptotic tracking while providing real-time implementable control solutions.

This work is motivated by the fact that most of these applications exhibit multiple

time scales but are not represented in the form (2.1) studied earlier in this disser-

tation. There has been some work in literature that outline sequential procedures

to obtain the desired form [9] but these methods require identifying a global trans-

formation which is not always feasible. In this section, forced singular perturbation

technique [81] will be employed to identify the fast variables and the perturbation

parameters will be introduced only at the modeling stage. For each of the different

applications studied, a description of the system is followed by time scale analysis and

control synthesis. Finally, results are presented and closing remarks are discussed.

7.2 The Beam and Ball Experiment

The first dynamical model under study is the beam and ball experiment shown

in Figure 7.1. The setup consists of a beam that can only rotate in the vertical plane

by applying torque at the center of the beam, and a ball that is free to roll along the

beam. It is desired that the ball always remains in contact with the beam and that

1Parts of this section reprinted with permission from “Output tracking of non-minimum phase
dynamics”, Siddarth, Anshu and Valasek, John, 2011. AIAA Guidance, Navigation, and Con-
trol, Conference, (Portland, Oregon), AIAA 2011-6487 Copyright c©2011 by Siddarth, Anshu and
Valasek, John and “Tracking control for a non-minimum phase autonomous helicopter”, Siddarth,
Anshu and Valasek, John, 2012. AIAA Guidance, Navigation, and Control, Conference, (Min-
neapolis, Minnesota), AIAA 2012-4453 Copyright c©2012 by Siddarth, Anshu and Valasek, John.
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Figure 7.1: The beam and ball experiment setup

the rolling occurs without slipping. The goal is to track any trajectory from a class

of admissible trajectories. The position of the ball from the center is labeled r and

the angle θ is the inclination the beam makes with the horizontal.

The beam and ball system is one of the most popular laboratory models used

to teach control engineering. It is open-loop unstable and exhibits the peaking phe-

nomenon. This property is best understood by studying the forces acting on the

ball. Figure 7.2 indicates that at any instant two forces influence the ball’s motion.

Notice, the gravitational force due to weight (represented as mg) of the ball always

tries to pull the ball toward the center of the beam. The centrifugal force on the

ball exerted due to rotation of the beam opposes gravitational force and tries to

push the ball off the beam. This force is a function of the angular rate at which the

beam rotates. It is clear that the ball can be kept on the beam only through the

gravitational force. As the weight of the ball is constant only sin θ can be used for

stabilization.

However, if the ratio of the centrifugal force to the weight of the ball
∣∣∣mrθ̇2mg

∣∣∣ > 1

the ball cannot be controlled. Even worse, this ratio acts as positive feedback on the

system causing the angular rate of the beam to continually increase. This “peaking”
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Figure 7.2: Forces acting on the beam and ball experiment

of the angular rate leads to instability and eventually the ball flies off the beam.

This simple experiment captures a phenomenon seen in most modern aircraft. In

an interesting article Kokotović [82] cites supersonic pilot John Hauser’s following

words “I can feel nonlinear aircraft dynamics on this toy system”.

7.2.1 Dynamical Model

The dynamics of the beam and the ball setup is described by the translational

motion of the ball and rotational motion of the beam. Consider the axes system

shown in Figure 7.1. The position vector of the ball from the center of the beam in

the body axes is ~p = rb̂1. The angular velocity of the body frame with respect to

the inertial frame is ~ω = θ̇b̂3, with b̂3 pointing out of the paper. Using this notation

the velocity and the acceleration of the ball expressed in the body frame are

~v = ṙb̂1 + rθ̇b̂2 (7.1a)

~a = (r̈ − rθ̇2)b̂1 + (2ṙθ̇ + rθ̈)b̂2. (7.1b)

The angular acceleration of the beam is

~α = θ̈b̂3. (7.2)
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Figure 7.3: The beam and ball experiment: free body diagram

The equations of motion are derived using Newton’s and Euler’s second law of mo-

tion [79], [83]. Toward this end, the free-body diagram for the forces acting on the

setup are determined. In Figure 7.3 the reaction force N is exerted by the beam on

the ball. The force due to pure rolling is denoted as Fr. The torque acting on the

system is represented by τ . Using the orthonormal transformation


b̂1

b̂2

b̂3

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



î

ĵ

k̂

 (7.3)

the force and moment vector in the body frame is

~F = (Fr −mg sin θ)b̂1 + (N −mg cos θ)b̂2 (7.4a)

~L = (τ −Nr)b̂3. (7.4b)

Figure 7.4: Rotation motion of the ball
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Using the kinematic relations given in (7.1) and (7.2) and the above force relations

the following equations are obtained

m(r̈ − rθ̇2) = Fr −mg sin θ (7.5a)

m(2ṙθ̇ + rθ̈) = N −mg cos θ (7.5b)

(J + Jb)θ̈ = τ −Nr (7.5c)

where J and Jb represent the moment of inertia of the beam and the ball about

the pivot respectively. The reaction force N is given by the relation (7.5b). The

other reaction force Fr is determined by studying the rotation of the ball. Figure 7.4

indicates that the ball rotates about its own center making an angle φ. The torque

about the center is Jbφ̈. Thus, the reaction force becomes

Fr =
Jbφ̈

a′
(7.6)

where a′ is the distance from the center of the ball to the point of contact with the

beam. From geometry the distance the ball covers by rotating is L = Rφ where R

is the radius of the ball. Hence the acceleration is L̈ = Rφ̈. But distance L is the

change in the position of the ball from center since the ball experiences pure roll.

Hence L̈ = −r̈. The minus sign has been added for consistency. Finally using (7.6),

Fr = − Jbr̈
a′R

. (7.7)

Combining relations (7.5a) through (7.5c) with (7.7) results in

(
m+

Jb
a′R

)
r̈ −mrθ̇2 = −mg sin θ (7.8a)

(mr2 + J + Jb)θ̈ = τ − 2mrṙθ̇ −mgr cos θ. (7.8b)
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Rearrange (7.8) to obtain the following state-space form

ṙ = v (7.9a)

v̇ = −Bg sin θ +Brq2 (7.9b)

θ̇ = q (7.9c)

q̇ = u (7.9d)

with u as the control variable and

B =
m

m+ Jb
a′R

(7.10a)

τ = 2mrṙθ̇ +mgr cos θ + (mr2 + J + Jb)u. (7.10b)

The beam and ball experiment is a benchmark control problem for systems with

no relative degree. Recall relative degree is the number of times output must be

differentiated in order to have the input appear explicitly. The output in this case

is the distance of the ball from the center of the beam. Differentiating

y = r (7.11a)

ẏ = v (7.11b)

ÿ = −Bg sin θ +Brq2 (7.11c)

...
y = −Bg cos θq +Bvq2 + 2Brqu (7.11d)

the control appears in the third derivative. But the coefficient 2Brq becomes zero

whenever the angular velocity of the beam or the ball position are zero. Therefore,

the relative degree is not well defined and feedback linearization cannot be used
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for control. Approximate input-output linearization has been shown to demonstrate

bounded output tracking [84, 85]. In this section, asymptotic tracking is demon-

strated using approach detailed in Section 6.

7.2.2 Time Scale Separation Analysis

In order to use the theoretical developments of this dissertation, the time scale

properties of the beam and ball experiment are analyzed. The system is non-

dimensionalized to determine whether or not it exhibits multiple time scale be-

haviour. Assume a set of reference quantities (t0, r0, v0, θ0, q0, u0, B0, g0) that are

all positive. Using these reference quantities several non-dimensional variables are

defined as follows:

t̂ = t/t0, r̂ = r/r0, v̂ = v/v0, θ̂ = θ/θ0 (7.12a)

q̂ = q/q0, B̂ = B/B0, ĝ = g/g0. (7.12b)

Using the definitions above, the equations of motion given in (7.9) are transformed

to the following non-dimensional form:

˙̂r =

[
v0t0
r0

]
v̂ (7.13a)

˙̂v = −
[
t0B0g0

v0

]
B̂ĝ sin(θ0θ̂) +

[
t0B0r0q

2
0

v0

]
B̂r̂q̂2 (7.13b)

˙̂
θ =

[
t0q0

θ0

]
q̂ (7.13c)

˙̂q =

[
t0u0

q0

]
û. (7.13d)

Based on the fact that the angular rate evolves faster than translational motion,
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set ε = θ0
t0q0

and µ = q0
t0u0

. Further use the conditions

B0 = B, g0 = g,
v0t0
r0

= 1, θ0 = θ (7.14a)

t0B0g0

v0

=
t0B0r0q

2
0

v0

, or r0q
2
0 = g0. (7.14b)

This gives five conditions for eight free reference quantity variables. The sixth con-

dition is found by ensuring the translational kinematics are of O(1). Thus,

v0

r0

=
B0g0

v0

or B0g0r0 = v2
0. (7.15)

For the final conditions take

q0 = q, u0 = u. (7.16)

The next step is to verify that ε and µ are in fact small quantities. This is done by

substituting physical parameters given in Table 7.1 in the above equations. Let the

control limit be u0 = 1 and maximum angular deflection be θ0 = 1 and angular rate

be q0 = π/6rad/sec. With these values

r0 =
g0

q2
0

= 35.782m (7.17a)

v0 =
√
B0g0r0 = 18.73m/sec (7.17b)

t0 =
v0

B0g0

= 1.91sec (7.17c)

µ =
q0

t0u0

= 0.27426 (7.17d)

ε =
θ0

t0q0

= 0.1047. (7.17e)

Thus, it is concluded that µ and ε are both of same order and the system exhibits
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Table 7.1: Beam and ball setup parameters

Parameter Value
m 0.50kg
g 9.81m/sec2

R 0.05m
Jb

2
5
mR2kgm2

a′ Rm
J 0.02kgm2

B 0.999

two time scales. The system given in (7.9) is equivalently represented as

ṙ = v (7.18a)

v̇ = −Bg sin θ +Brq2 (7.18b)

µθ̇ = q (7.18c)

µq̇ = u (7.18d)

where µ is included entirely for modeling purposes and is set to one in simulation.

7.2.3 Control Formulation

The control development follows closely the steps detailed in Section 6. For

brevity, only the equations required for implementation are detailed.

Step 1: The reduced slow system S 0 in error coordinates er := r − rr(t) and

ev := v − vr(t) with vr = ṙr is

ėr = ev (7.19a)

ėv = −Bg sin θ0 +Bq02
(er + rr)− v̇r (7.19b)

q0(t, er, ev, θ
0) = 0 (7.19c)

u(t, er, ev, θ
0, q0) = 0 (7.19d)

171



where θ0(t, er, ev) and q0(t, er, ev, θ
0) represent the fast manifolds. Rearrange (7.19)

to get

ėr = ev (7.20a)

ėv = −Bg sin θ0 − v̇r. (7.20b)

With Lyapunov function V (er, ev) = K
2
e2
r + 1

2
e2
v; with K > 0 and manifold

θ0 = arcsin
[−v̇r + Cev +Der]

Bg
(7.21)

property (ii) of Theorem 6.1 is satisfied with α1 = D−K
2

and ψ3 =
√
e2
r + e2

v. The

feedback gains C and D are design constants that determine the closed-loop poles

of the reduced slow system.

Step 2: The reduced fast system S 0
µ is

e′θ = eq + q0(t, er, ev, eθ) (7.22a)

e′q = u(t, er, ev, eθ, eq)− q′0 (7.22b)

with the errors eθ := θ− θ0(t, er, ev) and eq = q− q0(t, er, ev, eθ). In order to stabilize

the errors (eθ, eq) backstepping is employed. Let W = 1
2
e2
θ. Then the manifold

q0(t, er, ev, eθ) = −ρeθ stabilizes the error eθ. Further let ν = u − q′0. Using the

Lyapunov function Z = 1
2
e2
θ + 1

2
e2
q condition (vi) of Theorem 6.1 is satisfied with

α3 = ρ and $ =
√
e2
θ + e2

q with the control law ν = −eθ − ρ2eq; ρ2 > ρ. The

derivative of the manifold q′0 = −ρ(eq + q0) and results in the following control law

u(t, er, ev, eθ, eq) = −eθ − ρ2eq − ρ(eq + q0). (7.23)
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Figure 7.5: Control implementation block diagram for the beam and ball experiment

Step 3: Finally the interconnection conditions are satisfied with constants β2 =

B‖rr + 1‖ −Bg, γ = C(1 + ρ), β3 = −CD
Bg

(1 + ρ)‖rr + 1‖+ C2

Bg
(1 + ρ), rest all being

zeros.

The above control synthesis procedure is summarized in a block diagram shown

in Figure 7.5.

7.2.4 Results and Discussion

The physical parameters for the experiment are as described in Table 7.1. The

beam is two meters in length, that is one meter on each side from the pivot. It

is desired that the ball moves 0.75meters on each side of the beam. The desired

trajectory is rr(t) = A cos(πt
5

) with A = 0.750m. The linear open-loop model about

chosen reference is non-minimum phase with a zero in the right-half plane. Figure 7.6

indicates that the poles lie exactly on the imaginary axis close to the origin while

the zero is in the right half plane.

This non-minimum phase system is controlled by theoretical developments pre-
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Figure 7.6: Open-loop poles (’x’ marker) and zero (’o’ marker) of the beam and ball
experiment

sented above. The constants are chosen as C = 4, D = 4, ρ = 4, ρ2 = 8. Note

that these constants are chosen such that the time scale behaviour is preserved in

the closed-loop system. With these constants, Theorem 6.1 guarantees asymptotic

stability for all ε < 0.2 with d = 0.637. Figures 7.7 through 7.12 present the simula-

tion results. The position output and the tracking error is shown in Figure 7.7 and

Figure 7.8 respectively. Notice that after the transient settles out perfect position

tracking is achieved. The error remains within ±|1.56|cm.

This perfect output tracking indicates that the internal states are bounded and

follow their desired values closely (See figures 7.9 through 7.10). The error between

the desired computed manifold and the actual system response is within 0.3598deg

and ±0.503deg/sec. The control input required to accomplish the exact output

tracking is shown in Figure 7.11 and Figure 7.12. The peaks around the first few sec-

onds are due to the arbitrarily chosen initial conditions that are not the equilibrium

solution for the system.
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Figure 7.7: The beam and ball experiment: position of the ball

Figure 7.8: The beam and ball experiment: error in tracking
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Figure 7.9: The beam and ball experiment: inclination of the beam

Figure 7.10: The beam and ball experiment: angular rate of the beam
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Figure 7.11: The beam and ball experiment: computed control

Figure 7.12: The beam and ball experiment: torque required
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7.2.5 Summary

A state-feedback control law synthesis procedure for output tracking of weakly

minimum phase beam and ball experiment was developed. The desired pitch-rate

internal state trajectory was determined online to stabilize the unstable open-loop

system. This controller exploits the presence of inherent two time scales of the sys-

tem. Based on the results presented, the following conclusions are drawn. The final

output remains close to the desired reference trajectory for all times. This perfect

output tracking is a result of close internal state trajectory following. Addition-

ally, Figure 7.5 shows that the controller is causal and independent of the reference

trajectory. Finally, Theorem 6.1 guarantees global asymptotic tracking.

7.3 Hover Control for an Unmanned Three Degrees-of-Freedom

Helicopter Model

The second study develops a general control law for precision position tracking

of a nonlinear non-minimum phase dynamics of an autonomous helicopter shown in

Figure 7.13. The single-rotor helicopter is constrained to fly in the longitudinal plane.

The axis along the body of the helicopter is represented by (X, Y, Z). The helicopter

model is allowed to pitch about the Y axis. TM and TT are the thrusts produced

by the main and the tail rotor respectively. The angle a1s is the longitudinal tilt

the tip path plane makes with respect to the shaft of the main rotor. The goal is

develop and verify real-time implementable control laws that follow desired output

trajectories while stabilizing the unstable internal dynamics using main rotor thrust

TM and angle a1s as controls.

Hover control of a helicopter is one of the most challenging non-minimum phase

control problems. To qualitatively analyze this behaviour consider the helicopter

shown in Figure 7.13. The motion of the helicopter is described in North-East-
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Figure 7.13: Unmanned autonomous helicopter model

Down frame shown as (X, Y, Z) in the figure. Assume that the helicopter model is

allowed to pitch only about the Y axis. TM and TT are the thrusts generated by the

main and the tail rotor respectively that keep the vehicle aloft. The angle a1s is the

longitudinal tilt the tip path plane makes with respect to the shaft of the main rotor.

Side view of Figure 7.13 shows that non-zero tilt induces a component of the main

rotor thrust along the horizontal X axis and consequently the helicopter propels

forward. Hence, in order to remain in hover the main rotor thrust and the angle

a1s need to be controlled. However, changing this angle has another consequence.

The forward component of the thrust that it creates induces a clockwise pitching

moment about the center of gravity of the vehicle causing the nose to drop. In order

to remain level, the angle a1s needs to be corrected. But doing so alters the forces

acting on the helicopter and the vehicle departs from hover. For the helicopter under

study, it will be shown in Section 7.3.1 that desired TM and a1s required to maintain

hover lead to unstable oscillatory pitching motion.

Previous studies for hover control assume that the dynamical behaviour of a heli-
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copter is similar to that of a VTOL aircraft as both these vehicles have direct control

over the aerodynamic lift. Hence several studies employ the control developments

proposed for VTOL aircraft [84]. The formulation in [84] assumes that the force

contribution from the longitudinal tilt angle a1s is negligible. Such a simplification

removes the coupling between the forces and the pitching moment and makes the

resultant dynamical model, approximately input-output linearizable. Reference [86]

used feedback linearization for stabilizing the resulting approximate model in order

to guarantee bounded transient errors. More recently back-stepping has been used

for control of small autonomous helicopters[87], [88], [89]. Other control techniques

based upon the approximate model include dynamic-inversion[90] and neural-network

based adaptation[91]. In order to mitigate the limitations due to under-actuation

some techniques take advantage of the inherent multiple time scale behaviour of

helicopters. Reference [92] compared linear and nonlinear control designs for the

approximate model using the fast rotational dynamics as virtual control variables. A

similar approach was proposed in [93] wherein Lyapunov based methods were used

to guarantee stability of a radio/control helicopter model using the approximate

dynamics.

As a consequence of neglecting the coupling between the forces and the moments,

application of aforementioned methods is limited in operating regime and to reference

commands that do not require to be precisely followed. Exact output tracking was

demonstrated by retaining the coupling terms in [94] through stable-inversion of a

linear helicopter model. This inversion computed the desired input-state trajectory

that along with feedforward and feedback control led to asymptotic output tracking.

Approach in [94] emphasized that internal-state feedback is necessary to stabilize a

non-minimum phase system. However, the method required an infinite time preview

and knowledge of the complete output trajectory beforehand.
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From the above discussion it is understood that helicopter control design poses

three major challenges. First, the coupling between forces and moments generated

due to rotor is significant and must not be ignored during control design [28]. But re-

taining this coupling makes the system non-minimum phase and difficult to stabilize.

Second, a non-minimum phase system cannot be asymptotically stabilized in real-

time with available control techniques and control design requires substantial offline

processing. Third, current real-time implementable approaches that are independent

of the reference trajectory are limited in performance and operating regime.

The following sections presents a control design procedure that addresses the

above technical challenges and validates the general nonlinear control procedure de-

veloped in Section 6 for a three-dimensional longitudinal model of an autonomous

helicopter. Section 7.3.1 describes the helicopter model under study and examines

analytically the non-minimum phase properties of the vehicle and Section 7.3.2 anal-

yses its inherent time scale properties. The nonlinear control design and stability of

the closed-loop system is analyzed in Section 7.3.3. Simulation validation for hover

control is discussed in Section 7.3.4. Finally, remarks are presented in Section 7.3.5.

7.3.1 Model Description and Open-Loop Analysis

In this section the governing equations of the helicopter model are presented.

Then, the exact input-output linearization of the model is carried out and it is

shown that the system has oscillatory internal dynamics. The effect of neglecting

the coupling between the forces and moments is also discussed.

7.3.1.1 Vehicle Description

The helicopter model is written with respect to earth-fixed inertial coordinates.

The forces and moments act in the body frame shown in Figure 7.13. The origin of

the body fixed frame is the center of gravity of the platform and it is assumed that
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this moves with the motion of the fuselage. The three degrees-of-freedom equations

of motion of a symmetric helicopter model in hover (assuming the lateral/directional

components are in equilibrium) are as follows:

 ẋ

ż

 =

 cos θ sin θ

− sin θ cos θ


 u

w

 (7.24a)

 mu̇

mẇ

 =

 −qw + Fx

qu+ Fz

+

 cos θ − sin θ

sin θ cos θ


 0

mg

 (7.24b)

θ̇ = q (7.24c)

Iy q̇ = M (7.24d)

where x is the inertial position, positive pointing north, z is the inertial position,

positive down, u and w are body forward and vertical velocities respectively, θ is

the pitch-attitude angle, positive counter-clockwise and q is the body pitch-rate. Iy

represents the moment of inertia about the Y-axis, m mass of the helicopter and g

is acceleration due to gravity. Fx and Fy are body forces in the forward and vertical

direction. S.I unit system is followed and all angles are in rad. In general the

above set is augmented with dynamic equations of longitudinal flapping. However,

it is assumed that the time-constant for the flapping of conventional rotor blades

corresponds to one-quarter of a rotor revolution [95][pp 558-559] and this justifies

the use of rigid-body equations for describing the motion.

The body forces (Fx, Fz) and pitching moment M are generated by the main

rotor and controlled by TM , main rotor thrust and a1s longitudinal tilt of the tip

path plane of the main rotor with respect to the shaft. The parameter hM denotes

the distance between c.g and main rotor positive in the downward direction, lM is
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Table 7.2: Helicopter model parameters

Parameter Value
m 4.9kg
Iy 0.271256kgm2

hM 0.2943m
lM −0.015m
QT 0.0110Nm
Ma 25.23Nm/rad

the distance between the c.g and main rotor along forward direction and QT is the

tail rotor torque. The aerodynamic model given below is taken from [86].

Fx = −TM sin a1s (7.25a)

Fz = −TM cos a1s (7.25b)

M = Maa1s − FxhM + FzlM −QT (7.25c)

with the system parameters given in Table 7.2.

7.3.1.2 Exact and Approximate Input-Output Linearization

The non-minimum phase properties of the model under consideration are ana-

lyzed by studying the input-output relationship. The desired outputs for the control

design are the inertial coordinates of the vehicle, namely (x, z) pointing north and

down respectively. Control inputs available are the main rotor thrust TM and longi-

tudinal tilt a1s. Taking second derivative of each output,

 ẍ

z̈

 =
1

m

 cos θ sin θ

− sin θ cos θ


 Fx

Fz

+

 0

g

 (7.26)

it is found that the relative degree of each output is two. This implies that the

rotational dynamics given in (7.24c), (7.24d) constitute the internal dynamics of the
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system.

In order to analyze the internal stability of the system, the zero dynamics of the

system needs to be examined. Toward this end, the control vector (TM , a1s) that

constraints the outputs and its derivatives on the origin is computed. From (7.26)

and relations given in (7.25) the following solution is determined.

 TM

a1s

 =

 mg

−θ

 (7.27)

Using the moment relation given in (7.25c) and the constrained control solution

(7.27) the zero dynamics are characterized by the following equations

θ̇ = q (7.28a)

q̇ =
1

Iy
[−Maθ −mg(hM sin θ − lM cos θ)−QT ] (7.28b)

The stability of the above system is analyzed by linearizing about the trim values

θ∗ = 0.018rad and q∗ = 0rad/sec.

 ∆θ̇

∆q̇

 =

 0 1

1
Iy

(−Ma −mghM cos θ∗ +mglM sin θ∗) 0


 ∆θ

∆q

 (7.29)

The linearized eigenvalues are ±12.0439j and no conclusions about the stability of

the system can be drawn. Rewrite the internal dynamics (7.28a) and (7.28b) as

θ̈ =
1

Iy
(−Maθ −mg(hM sin θ − lM cos θ)−QT ) (7.30)

to notice that the pitch-attitude dynamics does not contain any damping terms.

In order to analyze its stability consider the quadratic positive-definite Lyapunov
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function Vθ = 1
2
Ma

Iy
θ2 + 1

2
q2. The rate of change of the Lyapunov function along the

trajectories of (7.28) is

V̇θ =
Ma

Iy
θθ̇ + qq̇ (7.31a)

= −mg
Iy
hMq sin θ +

mg

Iy
lMq cos θ − 1

Iy
QT q (7.31b)

= −
[
QT

Iy
+
mg

Iy
h(θ)

]
q. (7.31c)

Note the function h(θ) = hM sin θ − lM cos θ is monotonically increasing on the

set θ ∈ [−π/2, π/2]. This observation along with the parameters given in ta-

ble 7.2 conclude that V̇θ < 0 on the set {θ ∈ [−0.0509, π/2]
⋂
q ∈ [0,∞)}

⋃
{θ ∈

[−pi/2,−0.0509]
⋂
q ∈ (−∞, 0]}. On this set (θ∗, q∗) is the only equilibrium point

and hence from the Poincaré-Bendixson [60] criterion it is concluded that a family

of periodic orbits exist.

This conclusion is confirmed in simulation and the results are presented in Fig-

ure 7.14 and Figure 7.15. In fact the conclusions drawn from the Poincaré-Bendixson

criterion are conservative since the simulation shows that a continuum of periodic

orbits exist for the complete state-space. Thus the control inputs that stabilize the

inertial position of the helicopter excite the periodic behaviour in pitch and exact

input-output linearization is not a desirable control solution for the longitudinal

model under study.

Notice the non-minimum phase behaviour is due to the nonlinear coupling be-

tween forces and pitching moment denoted by h(θ) in (7.31). This coupling comes

through longitudinal tilt solution determined in (7.27) to produce the required trans-

lational forces. This dependence is explicitly seen by expanding the force terms given

in the right-hand side of (7.26) and are obtained as follows
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Figure 7.14: Time response of the pitching motion of helicopter model in (7.24)

Figure 7.15: Phase portrait illustrating the oscillatory response of the pitching mo-
tion of helicopter model in (7.24)
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Xf = −TM sin(θ + a1s) (7.32a)

Zf = −TM cos(θ + a1s) +mg (7.32b)

In the above equations Xf and Zf represent the forces in the inertial plane acting

along the north and down directions respectively. Approximate input-output lin-

earization of the output dynamics is possible by neglecting the dependence of the

longitudinal tilt on the forces. The approximate forces thus obtained are

Xapp = −TM sin θ (7.33a)

Zapp = −TM cos θ +mg. (7.33b)

The exact and approximate forces acting on the helicopter under study are shown

in Figure 7.16 and Figure 7.17 for hover simulated in Section 7.3.4. Initially the

helicopter is flying at an arbitrary flight condition and the forces are non-zero.

Figure 7.16: Exact and approximate forces in the horizontal direction in hover

Notice after two seconds the vehicle enters steady state and the exact horizontal
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Figure 7.17: Exact and approximate forces in the vertical direction in hover

Figure 7.18: Error in exact and approximate forces in hover
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and vertical forces become identically zero. However, the approximate horizontal

forces remains non-zero. The error in the exact and approximate forces is shown

in Figure 7.18. The error is over 100% in the horizontal forces while negligible in

the vertical forces. This conclusion is consistent with the fact that rotor blade tilt

induces a horizontal component of force in the helicopter and is not negligible. As

mentioned earlier some studies use the approximate form given in (7.33) for control

design. However, due this large error limits these methods to guarantee only local

bounded tracking. In this work, the coupling terms are retained and asymptotic

tracking is guaranteed.

7.3.2 Time Scale Analysis of the Helicopter Model

In this section, an important observation regarding inherent time scale charac-

teristics of the model under consideration is made. This is done by studying the rate

of change of the non-dimensional system equations. Toward this end, define a set

of reference parameters (t0, x0, z0, u0 = w0 = V0, θ0, q0,m0, Fx0, Fz0,M0, g0, Iy0) and

denote the respective dimension-less quantities as

t̂ = t/t0 x̂ = x/x0 ẑ = z/z0 û = u/u0 (7.34a)

ŵ = w/w0 θ̂ = θ/θ0 q̂ = q/q0. (7.34b)

The original dimensional equations given in (7.24) are transformed into following

non-dimensional form using definitions given in (7.34).

dx̂

dt̂
=

[
t0V0

x0

]
{û cos θ + ŵ sin θ} (7.35a)

dẑ

dt̂
=

[
t0V0

z0

]
{−û sin θ + ŵ cos θ} (7.35b)
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dû

dt̂
= −

[
t0q0

m0

]
q̂ŵ

m̂
+

[
t0Fx0

m0V0

]
F̂x
m̂
−
[
t0g0

V0

]
ĝ sin θ (7.36a)

dŵ

dt̂
=

[
t0q0

m0

]
q̂û

m̂
+

[
t0Fz0
m0V0

]
F̂z
m̂

+

[
t0g0

V0

]
ĝ cos θ (7.36b)

dθ̂

dt̂
=

[
t0q0

θ0

]
q̂ (7.36c)

dq̂

dt̂
=

[
t0M0

q0Iy0

]
M̂

Îy
(7.36d)

Without loss of generality assign

[
t0V0

x0

]
=

[
t0V0

z0

]
= 1 (7.37)

and
[
q0Iy0
t0M0

]
= µ where µ << 1. This leads to

dx̂

dt̂
= {û cos θ + ŵ sin θ} (7.38a)

dẑ

dt̂
= {−û sin θ + ŵ cos θ} (7.38b)

dû

dt̂
= −

[
µt20M0

m0Iy0

]
q̂ŵ

m̂
+

[
t0g0

V0

]{
F̂x
m̂
− ĝ sin θ

}
(7.38c)

dŵ

dt̂
=

[
µt20M0

m0Iy0

]
q̂û

m̂
+

[
t0g0

V0

]{
F̂z
m̂

+ ĝ cos θ

}
(7.38d)

dθ̂

dt̂
=

[
µt20M0

Iy0θ0

]
q̂ (7.38e)

µ
dq̂

dt̂
=
M̂

Îy
(7.38f)

where Fx0 = Fz0 = m0g0 has been used. Notice that for any reasonable value of

the mass of the vehicle
[
µt20M0

m0Iy0

]
= µ. Then m0 =

[
t20M0

Iy0

]
and

[
µt20M0

Iy0θ0

]
=
[
µm0

θ0

]
is an

O(1/ε) quantity as the ratio of pitch-angle and mass of the vehicle is very small and

ε > µ. Finally, assuming that the vehicle is in hover
[
t0g0
V0

]
= 1 the non-dimensional

form is obtained
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dx̂

dt̂
= {û cos θ + ŵ sin θ} (7.39a)

dẑ

dt̂
= {−û sin θ + ŵ cos θ} (7.39b)

dû

dt̂
= −µq̂ŵ

m̂
+

{
F̂x
m̂
− ĝ sin θ

}
(7.39c)

dŵ

dt̂
= µ

q̂û

m̂
+

{
F̂z
m̂

+ ĝ cos θ

}
(7.39d)

ε
dθ̂

dt̂
= q̂ (7.39e)

µ
dq̂

dt̂
=
M̂

Îy
(7.39f)

Notice the above equations indicate that the rotational dynamics evolves faster than

the translational counterpart. The above equations can be cast in the following

compact form

ẋ = f(x, s, z,u, ε, µ) (7.40a)

εṡ = h(x, s, z,u, ε, µ) (7.40b)

µż = g(x, s, z,u, ε, µ). (7.40c)

where x = [x, z, u, w]T are the slow variables, s = [θ]T is the intermediate variable,

z = [q]T is the fast variable and u = [TM , a1s]
T is the control input to the system.

The singular perturbation parameters ε and µ characterize the different time scales

in the system and satisfy 0 < µ < ε << 1.

7.3.3 Control Formulation and Stability Analysis

The control development follows the procedure detailed in Section 6. The inherent

time scale behaviour is exploited and manifold for the pitch-attitude angle θd and

rotor thrust TM are determined first to ensure asymptotic position tracking. The
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next step computes the desired pitch-rate manifold qd to ensure the pitch-attitude

angle follows θd. The final step determines the angle a1s required to maintain desired

pitch rate qd. This procedure allows computation of an unique reference for the

internal states and stability follows from Theorem 6.1. Recall, proof for results

given in Theorem 6.1 start with a singularly perturbed model and show stability

for a range of singular perturbation parameter bounds. These results can also be

concluded through use of Lyapunov’s direct method for the helicopter model given in

(7.24) which is not in singularly perturbed form. This alternate method is analyzed

in this section. It will be shown that following this alternate procedure also requires

some form of “interconnection” conditions to be satisfied.

7.3.3.1 Control Synthesis

Using the procedure described in Section 7.3.2, the reduced slow system for (7.24)

is obtained as ẋ

ż

 =

 cos θd sin θd

− sin θd cos θd


 u

w

 (7.41a)

 mu̇

mẇ

 =

 −qdw + Fx

qdu+ Fz

+

 cos θd − sin θd

sin θd cos θd


 0

mg

 (7.41b)

where θd and qd are manifolds to be determined. Take additional derivatives of the

position coordinates to rewrite (7.41) as ẍ

z̈

 =
1

m

 cos θd sin θd

− sin θd cos θd


 Fx

Fz

+

 0

g

 . (7.42)

Equation (7.42) shows that the pitch-attitude angle along with the control variables

effect the position dynamics. Thus, employ the pitch-attitude angle and the main
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rotor thrust TM to accomplish the control objective. Toward this end, rewrite (7.42)

as

mẍ = −TM sin(a1s(θd, qd) + θd) (7.43a)

mz̈ = −TM cos(a1s(θd, qd) + θd) +mg. (7.43b)

Note in forming the reduced slow system the fast variables have been assumed to

be on the desired manifolds (θd, qd). Hence, the longitudinal tilt used in the design

of slow control variables is a function of these desired manifolds. Further, define the

tracking errors x̃ := x− xr and z̃ := z− zr. Let the desired dynamics be specified as

mẍ = m(ẍr − α ˙̃x− βx̃) (7.44a)

mz̈ = m(z̈r − α1
˙̃z − β1z̃). (7.44b)

Combining (7.43) and (7.44), the following relations are obtained

TM = m

√
(ẍr − α ˙̃x− βx̃)2 + (z̈r − α1

˙̃z − β1z̃ − g)2 (7.45)

θd = arctan
(ẍr − α ˙̃x− βx̃)

(z̈r − α1
˙̃z − β1z̃ − g)

− a1s(θd, qd). (7.46)

Remark 7.3.1. The choice of using main rotor thrust, TM over the longitudinal tilt for

stabilization of the reduced slow system was made considering their actuation time

constants. It is well understood that thrust generation takes longer than rotation of

an actuator surface or in this case the rotor blade.

Equations (7.45) and (7.46) complete the design for the slow variables of the

system. Notice however that the manifold qd is unknown at this point. Toward this

end, formulate the intermediate subsystem as reduced intermediate system:
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x̆ = 0 (7.47a)

θ̆ = qd (7.47b)

M = 0 (7.47c)

where˘is derivative with respect to t−t0
ε1

. The manifold qd must be designed to ensure

the pitch-attitude follows θd. This can be satisfied by the following relation obtained

using dynamic inversion

qd = −Kθ(θ − θd) (7.48)

where Kθ is the feedback gain.

The desired manifolds given in (7.46) and (7.48) depend on the longitudinal tilt

a1s which is unknown. From the discussion detailed in Section 7.3.2, it is known

(7.48) is a fixed point of the

reduced fast system:

x′ = 0 (7.49a)

θ′ = 0 (7.49b)

q′ =
M

Iy
(7.49c)

Thus, it is required that the following relation holds for all time

M = −IyKq(q − qd) (7.50)

where Kq is the feedback gain. Rearrange (7.50) using the definitions in (7.25c),
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(7.46) and(7.48) to get

TMhM sin(a1s)− TM lM cos(a1s) +Maa1s = QT − IyKq(q − qd) (7.51)

The nonlinear equation in (7.51) is solved for the control a1s using the small-angle

assumption

a1s =

[
QT + TM lM
TMhM +Ma

]
−
[

IyKq

TMhM +Ma

]
q̃ (7.52)

where q̃ := q − qd. Note (7.51) can also be solved using the non-affine techniques

proposed in Section 3. For completeness substitute (7.52) back in (7.46) and (7.48)

to compute the desired internal states

θd = arctan
(ẍr − α ˙̃x− βx̃)

(z̈r − α ˙̃z − β1z̃ − g)
−
[
QT + TM lM
TMhM +Ma

]
(7.53a)

qd = −Kθθ +Kθ arctan
(ẍr − α ˙̃x− βx̃)

(z̈r − α ˙̃z − β1z̃ − g)
−Kθ

[
QT + TM lM
TMhM +Ma

]
(7.53b)

This completes the control design procedure. The above control synthesis procedure

is summarized in a block diagram shown in Figure 7.19.

7.3.3.2 Stability Analysis

The following theorem summarizes the main result of this section.

Theorem 7.1. Suppose the controls TM and a1s of the system (7.24) are designed

according to the feedback relations given in (7.45) and (7.52). Then for initial con-

ditions in the operating region |θ̃| < 15deg, |a1s| ≤ 25deg and 0 < TM ≤ 69.48 the

control uniformly asymptotically stabilizes the non-minimum phase helicopter model

(7.24) and equivalently drives the states x(t) → xr(t) and z(t) → zr(t) keeping all

other states and control inputs bounded.
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Figure 7.19: Control implementation for control of autonomous helicopter model

Proof. The closed-loop system system in error coordinates is given as

˙̃x = x̃1 (7.54a)

˙̃x1 =
1

m
Fx cos(θ̃ + θd) +

1

m
Fz sin(θ̃ + θd)− ẋ1r (7.54b)

˙̃z = z̃1 (7.54c)

˙̃z1 = − 1

m
Fx sin(θ̃ + θd) +

1

m
Fz cos(θ̃ + θd) + g − ż1r (7.54d)

˙̃θ = qd + q̃ − θ̇d (7.54e)

˙̃q =
Md + (M −Md)

Iy
− q̇d (7.54f)

where θ̃ := θ − θd, q̃ := q − qd and

Md = Maa1s + TMhMa1s − TM lM −QT (7.55)

is the moment obtained after making the small-angle approximation in arriving at
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(7.52). The closed-loop system is equivalently written as

˙̃x = x̃1 (7.56a)

˙̃x1 =
1

m
Fx cos θd +

1

m
Fz sin θd − ẋ1r (7.56b)

+
1

m
Fx

[
cos(θ̃ + θd)− cos θd

]
+

1

m
Fz

[
sin(θ̃ + θd)− cos θd

]
˙̃z = z̃1 (7.56c)

˙̃z1 = − 1

m
Fx sin θd +

1

m
Fz cos θd + g − ż1r (7.56d)

− 1

m
Fx

[
sin(θ̃ + θd)− sin θd

]
+

1

m
Fz

[
cos(θ̃ + θd)− cos θd

]
˙̃θ = qd + q̃ − θ̇d (7.56e)

˙̃q =
Md + (M −Md)

Iy
− q̇d. (7.56f)

Using the relations in (7.44), (7.48) and (7.50) rearrange (7.56) to get

˙̃x = x̃1 (7.57a)

˙̃x1 = −αx̃1 − βx̃+
1

m
cos θd[Fx − Fx(a1s(θd, qd))] +

1

m
sin θd[Fz − Fz(a1s(θd, qd))]

+
1

m
Fx

[
cos(θ̃ + θd)− cos θd

]
+

1

m
Fz

[
sin(θ̃ + θd)− cos θd

]
(7.57b)

˙̃z = z̃1 (7.57c)

˙̃z1 = −α1z̃1 − β1z̃ −
1

m
sin θd[Fx − Fx(a1s(θd, qd))] +

1

m
cos θd[Fz − Fz(a1s(θd, qd))]

− 1

m
Fx

[
sin(θ̃ + θd)− sin θd

]
+

1

m
Fz

[
cos(θ̃ + θd)− cos θd

]
(7.57d)

˙̃θ = −Kθθ̃ + q̃ − θ̇d (7.57e)

˙̃q = −Kq q̃ +
M −Md

Iy
− q̇d. (7.57f)

Closed-loop system stability of the system states is analyzed using the Lyapunov
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function approach. Consider a positive-definite and decrescent Lyapunov function

candidate

V (x̃, x̃1, z̃, z̃1, θ̃, q̃) =
1

2

[
βx̃2 + x̃2

1 + β1z̃
2 + z̃2

1 + θ̃2 + q̃2
]

(7.58)

for the complete closed-loop system. The derivative of V along the trajectories of

(7.57) is given by

V̇ =− αx̃2
1 +

1

m
cos θd[Fx − Fx(a1s(θd, qd))]x̃1 +

1

m
sin θd[Fz − Fz(a1s(θd, qd))]x̃1

+
1

m
Fx

[
cos(θ̃ + θd)− cos θd

]
x̃1 +

1

m
Fz

[
sin(θ̃ + θd)− cos θd

]
x̃1 (7.59)

− α1z̃
2
1 −

1

m
sin θd[Fx − Fx(a1s(θd, qd))]z̃1 +

1

m
cos θd[Fz − Fz(a1s(θd, qd))]z̃1

− 1

m
Fx

[
sin(θ̃ + θd)− sin θd

]
z̃1 +

1

m
Fz

[
cos(θ̃ + θd)− cos θd

]
z̃1

−Kθθ̃
2 + θ̃q̃ − θ̃θ̇d −Kq q̃

2 +
M −Md

Iy
q̃ − q̃q̇d.

Using the Lipschitz behaviour of the vector fields on the domain defined in Theo-

rem 7.1 the following conditions hold

| sin(θ̃ + θd)− sin θd| ≤ 0.35|θ̃| (7.60)

|Fx − Fx(a1s(θd, qd))| ≤ |TM |
∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |q̃| (7.61)

| cos(θ̃ + θd)− cos θd| ≈ 0 (7.62)

|Fz − Fz(a1s(θd, qd))| ≈ 0. (7.63)

Note conditions given in (7.62) and (7.63) give bounds on the magnitude of the error

between the exact and approximate vertical force. This bound remains close to zero

for large changes in θ̃ and this condition was numerically verified for the model under
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study in Section 7.3.1. Resulting derivative of the Lyapunov function given in (7.59)

using conditions (7.60) through (7.63) becomes

V̇ ≤− αx̃2
1 +

1

m
|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |x̃1||q̃|+ 0.35
1

m
|TM ||x̃1||θ̃|

− α1z̃
2
1 + 0.35|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |z̃1||q̃| (7.64)

+ 0.35
1

m
|TM ||a1s||z̃1||θ̃| −Kθθ̃

2 + θ̃q̃ − θ̃θ̇d

−Kq q̃
2 +

M −Md

Iy
q̃ − q̃q̇d.

The time derivative of the manifolds θd and qd is determined next. Toward this

end, rearrange (7.46) as

tan γ =
Xdes(t)

Zdes(t)
(7.65)

where γ = θd + a1s(θd, qd), Xdes = ẍr −αx̃1− βx̃ and Zdes = z̈r −α1z̃1− βz̃− g have

been defined for convenience. Differentiate (7.65) to get

γ̇ =
cos γ

TM/m
Ẋdes −

sin γ

TM/m
Żdes (7.66)

using the fact TM/m =
√

(X2
des + Z2

des) and definition of the angle γ. The time rate

of change of the longitudinal tilt a1s(θd, qd) is determined by differentiating (7.52)

along the inertial position trajectories.

˙a1s =
d

dt

[
TM lM +QT

TMhM +Ma

]
=

[
lMMa − hMQT

(TMhM +Ma)2

]
ṪM (7.67)

where ṪM = m sin γẊdes +m cos γŻdes. Combine (7.66) and (7.67), to determine the
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derivative of the manifolds

θ̇d = m

[
cos γ

TM
− aT sin γ

]
Ẋdes +m

[
− sin γ

TM
− aT cos γ

]
Żdes (7.68)

q̇d = −Kθ
˙̃θ (7.69)

where

aT =
LMMa − hMQT

(TMhM +Ma)2
(7.70)

and the various derivatives are a function of closed-loop system dynamics. Using

properties (7.60) through (7.63) and (7.57)

|Ẋdes| ≤ αβ|x̃|+ (α2 − β)|x̃1|

+
1

m
|TM |

∣∣∣∣ αIyKq

TMhM +Ma

∣∣∣∣ |q̃|+ 0.35
α

m
|TM ||θ̃| (7.71a)

|Żdes| ≤ α1β1|z̃|+ (α2
1 − β1)|z̃1|

+
0.35

m
|TM |

∣∣∣∣ α1IyKq

TMhM +Ma

∣∣∣∣ |q̃|+ 0.35
α1

m
|TM ||θ̃|. (7.71b)

Combine (7.68), (7.71) and (7.64) to get

V̇ ≤− αx̃2
1 +

1

m
|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |x̃1||q̃|+ 0.35
1

m
|TM ||x̃1||θ̃|

− α1z̃
2
1 + 0.35|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |z̃1||q̃|+ 0.35
1

m
|TM ||a1s||z̃1||θ̃| (7.72)

−Kθθ̃
2 + |θ̃||q̃|+ (|θ̃|+Kθ|q̃|)|θ̇d| −Kq q̃

2 + (Kθ −K2
θ )|θ̃||q̃|.

By definition aT is a small quantity and |cosγ| = | sin γ| ≤ 1, define κ = m
|TM |

which

is again a small quantity. Substitute for time rate of change of the manifold θd into
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(7.72) to get

V̇ ≤− αx̃2
1 +

1

m
|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |x̃1||q̃|+ 0.35
1

m
|TM ||x̃1||θ̃|

− α1z̃
2
1 + 0.35|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ |z̃1||q̃|+ 0.35
1

m
|TM ||a1s||z̃1||θ̃|

−Kθθ̃
2 + |θ̃||q̃| −Kq q̃

2 + (Kθ −K2
θ )|θ̃||q̃| (7.73)

+ κ(|θ̃|+Kθ|q̃|)

[
αβ|x̃|+ (α2 − β)|x̃1|+ α1β1|z̃|+ (α2

1 − β1)|z̃1|

− 1

m
|TM |

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ (α + 0.35α1)|q̃| − 0.35(α + α1)
1

m
|TM ||θ̃|

]

Rearrange (7.73) to get

V̇ ≤ −ΨTKΨ (7.74)

where Ψ = [x̃, x̃1, z̃, z̃1, θ̃, q̃]
T and matrix K is given below

K =



0 0 0 0 µ1 µ2

0 −α 0 0 µ3 µ4

0 0 0 0 µ5 µ6

0 0 0 −α1 µ7 µ8

µ1 µ3 µ5 µ7 αθ µ9

µ2 µ4 µ6 µ8 µ9 αq


(7.75)

where

αθ = −Kθ − 0.35(α + α1)
|TM |
m

(7.76a)

αq = −Kq − |TM |m
κKθ(α + 0.35α1)

∣∣∣ IyKq
TMhM+Ma

∣∣∣ (7.76b)
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and

µ1 =
καβ

2
(7.77a)

µ2 = Kθµ1 (7.77b)

µ3 = 0.35|TM |
2m

+ 0.5κ(α2 − β) (7.77c)

µ4 = 1
2m
|TM |

∣∣∣ IyKq
TMhM+Ma

∣∣∣+ 0.5κKθ(α
2 − β) (7.77d)

µ5 =
κα1β1

2
(7.77e)

µ6 = Kθµ5 (7.77f)

µ7 = 0.1527|TM |
2m

+ 0.5κ(α2
1 − β1) (7.77g)

µ8 = 0.35
2m
|TM |

∣∣∣ IyKq
TMhM+Ma

∣∣∣+ 0.5κKθ(α
2
1 − β1) (7.77h)

µ9 = 0.5(Kθ −K2
θ + 1)− κ |TM |

2m

∣∣∣∣ IyKq

TMhM +Ma

∣∣∣∣ (α + 0.35α1)

− 0.35κKθ(α + α1)
1

2m
|TM | (7.77i)

are constants, function of the feedback gains. Hence, the matrix K is negative semi-

definite by appropriate choice of the feedback gains. Note the semi-definiteness

property is due to the small values of constants µ1, µ2, µ5 and µ6. Since V̇ ≤ 0 and

V > 0, all terms in V ∈ L∞ that is {x̃, x̃1, z̃, z̃1, θ̃, q̃}inL∞. Furthermore, since the

reference trajectory states are bounded, all terms in expressions for TM and a1s in

(7.45) and (7.52) respectively are bounded. Hence the right hand side of the closed-

loop system in (7.57) is bounded and thus Ψ̇ ∈ L∞. Thus using Barbalat’s lemma it

is concluded that signals of vector Ψ → 0 as t → ∞ and the result in Theorem 1.4

follows. This completes the stability analysis.

Remark 7.3.2. Conditions (7.60) through (7.63) and (7.71) are Lipschitz conditions

on the terms that were neglected in the reduced-order model construction. Similar
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conditions are also required in proof of Theorem 6.1.

7.3.4 Results and Discussion

The purpose of this section is to illustrate the preceding theoretical develop-

ments and demonstrate the controller performance for an autonomous helicopter

model. The reference trajectory and all its derivatives are set to zero to illustrate

the stabilizing performance of the controller for the open-loop non-minimum phase

system (discussed in Section 7.3.1.2). The feedback gains were chosen to preserve

the time scale nature of the helicopter model α = α1 = 2,β = β1 = 1, Kθ = 3 and

Kq = 10. The various constants for matrix K are µ1 = µ5 = 0.082, µ2 = µ6 = 0.245,

µ3 = 2.26, µ4 = 0.755, µ7 = 1.06, µ8 = 0.5 and µ9 = −4.68. The corresponding

eigenvalues of the matrix K are λ1,2 = 0.00, λ3 = −1.65, λ4 = −1.99, λ5 = −8.62

and λ6 = −22.39 and Theorem 7.1 guarantees asymptotic stability. The initial con-

ditions chosen were x(0) = −2m, z(0) = 2m, u(0) = w(0) = 0m/sec, θ(0) = 15deg

and q(0) = 30deg/sec.

Figure 7.20 through Figure 7.25 present the closed-loop response of the helicopter.

The controller demonstrated asymptotic tracking irrespective of the desired reference

trajectory in the domain (x, z, u, w, θ, q) ∈ [−50, 50]m×[−15, 50]m×[−30, 20]m/sec×

[−5, 20]m/sec× (−π/2, π/2)rad× [−π, π]rad/sec. Notice that the large initial con-

dition errors die out within the first 6seconds. The forward velocity is increased in

order to correct the error in forward position. Close output tracking is a result of

precision desired manifold following by the internal states. The pitch-attitude angle

settles down to the trim value of 0.018rad(1.03deg) that is automatically computed

by the manifold (7.53a).

The time scale behaviour of the system states is apparent in the time histo-

ries. Notice that the pitch-rate starts to follow the desired manifold within 2seconds
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followed by the response of the pitch-attitude angle closely tracking the desired man-

ifold within 4seconds. The transient errors of the slowest and also the outputs of the

problem under study die out in 6seconds.

The control inputs are shown in Figure 7.24 and Figure 7.25. The control inputs

settle down to the trim values TM = 48.02N and a1s = −0.018rad(−1.03deg) once

the system errors have stabilized about the origin. The two-dimensional trajectory of

the helicopter is shown in Figure 7.26. Initially the helicopter corrects the large error

in the pitch-attitude angle. This is done by reducing the requirements on pitch-rate

and in turn the longitudinal tilt. After this correction, the vehicle starts climbing to

the desired hover position. From then on, the helicopter remains in hover.

Figure 7.20: Closed-loop output response of the helicopter: position histories
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Figure 7.21: Closed-loop output response of the helicopter: velocity histories

Figure 7.22: Closed-loop pitch-attitude dynamics of the helicopter
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Figure 7.23: Closed-loop pitch rate dynamics of the helicopter

Figure 7.24: Main rotor thrust for hover control of helicopter
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Figure 7.25: Longitudinal tilt for hover control of helicopter

Figure 7.26: Closed-loop trajectory of the helicopter
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7.3.5 Summary

A control formulation for output tracking of an autonomous nonlinear non-

minimum phase helicopter was developed. The desired internal-state reference and

feedback control to stabilize the unstable internal dynamics were computed using

the inherent time scales of the system. Controller performance was demonstrated

through numerical simulation for the helicopter in hover.

Based on the results presented, the following conclusions are drawn. The final

output tracking error for the positions remained within |0.0010|. This perfect output

tracking was a result of perfect internal state tracking that was achieved by the

nonlinear feedback law. The results of Theorem 7.1 are restricted in operating regime

due to the small angle approximation made in (7.52). Unlike previous approaches

this limitation is not due to simplifications made to the dynamical model and can

be improved by use of non-affine control methods. In fact the conclusions regarding

operating region of the controller from Theorem 7.1 are conservative. As shown in

the simulation section, the controller demonstrates stable performance for a large

operating region. Additionally, the controller is causal and does not require any

prior information or preview of the desired reference.

7.4 Nap-of-the-Earth Maneuver Control for Conventional Take-off and

Landing Aircraft

The final example under study is the non-minimum phase dynamical model of a

three degrees-of-freedom conventional aircraft shown in Figure 7.27. The axes along

the body of the aircraft is represented as (x̂b, ẑb). The inertial and the stability axes

are shown by (̂i, k̂) and (x̂s, ẑs) respectively. The goal is to track forward and vertical

inertial velocity commands that correspond to nap-of-the-earth (NOE) maneuver

using the control variables, thrust u1 and pitching moment u2. NOE is a low altitude
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Figure 7.27: Reference frames and forces acting on the aircraft

maneuver usually flown to avoid detection. The aircraft follows the terrain closely

at high airspeeds and low angle-of-attack throughout the maneuver. In this section,

control laws to autonomously fly the NOE maneuver are developed.

Output tracking control for conventional take-off and landing (CTOL) aircraft is

a well known non-minimum phase problem. The non-minimum phase characteristics

of the dynamical model under study are due to the downward force induced by the

pitching moment. Consider Figure 7.27 to qualitatively analyze this phenomenon.

Note thrust u1 opposes the aerodynamic drag D and causes forward motion of the

aircraft. The vertical motion of the aircraft is due to the aerodynamic lift L induced

at non-zero angle-of-attack, α. Hence, the thrust u1 along with the pitching moment

u2 are required to accomplish the desired velocity responses. However, the pitch-up

moment u2 required to change angle-of-attack induces a downward force Fz that

tends to reduce the altitude of the vehicle. This means that small corrections to the
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pitching moment are required to maintain desired aerodynamic lift. But changing the

pitching moment to bring about desired translational motion leaves the rotational

dynamics uncontrolled. Most often in CTOL aircraft (also verified for the model

under study) thrust and pitching moment desired for translational motion excites

the unstable oscillatory behaviour of the rotational dynamics.

Previous studies for control of CTOL aircraft neglect the downward force being

induced and modify the output to obtain approximate input-output linearization.

The technique presented in [96] modified the output to remove right half-plane ze-

ros. A similar technique was employed in [97] to track pilot g commands while

satisfying flying quality specifications. These approaches were able to guarantee ‘lo-

cal’ tracking that is specific to the desired flight condition and reference trajectory.

Another approximate approach proposed in [98] took a sufficient number of deriva-

tives of the output such that the control and its higher-order derivatives appear in

the equation. The paper proposed to modify the sign of some of the control deriva-

tives in order to render the modified output dynamics minimum phase. In contrast

to the former, Shklnikov and Shtessel [99] modified the sliding surface to ensure that

the right half-plane zeros are canceled out. The system was required to be in normal

form with bounded nonlinearities and the technique was demonstrated for an F-16

aircraft[100]. Considering the local nature of these works [101] proposed a controller

which separates the internal dynamics into linear and nonlinear parts. The linear

part was stabilized by linear state feedback, whereas the nonlinear part was stabi-

lized only when the system strayed away from the trajectory. In an effort to control

the V/STOL slightly non-minimum phase aircraft, [84] neglected terms that are the

cause of this unstable behaviour and proved that a stable controller can be designed

using the approximate model.

Another class of the literature takes advantage of the multiple time scale be-
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haviour of air vehicles. Lee and Ha [102] designed an autopilot for a Skid-To-Turn

(STT) missile by splitting the dynamics into slow and fast components. The slow

subsystem was composed of the zero dynamics and was indirectly controlled by the

controllable fast subsystem. A similar approach was proposed by Lee and Ha[103]

wherein the normal form of a nonlinear I/O feedback linearizable system was trans-

formed to a two time scale system by a change of coordinates. But in this case

the fast subsystem constituted the zero dynamics and a modified composite control

scheme was employed to stabilize the complete system.

In addition to the approximate schemes described above, low gain feedback ap-

proaches have been proposed in the literature for nonlinear systems with the upper

triangular form [104], [105], [106]. The exact output tracking approach proposed

in [107], [108] employed a combination of feed-forward and feedback control. The

feed-forward control was found using inversion, given a desired output trajectory and

its higher-order derivatives. The stable inversion was non-causal and required the

infinite time preview of the complete output trajectory.

It is well-understood from literature and previous examples that internal-state

feedback is necessary to stabilize a non-minimum phase system. Moreover, exact

output tracking is achieved only when the desired internal state trajectory is tracked.

Motivated by this fact, this section develops an exact output tracking control tech-

nique for non-minimum aircraft system using control developed in Section 6. This

section makes three major contributions. First, the output dynamics are not re-

quired to have a well-defined relative degree with respect to the input. The idea

is to take a sufficient number of derivatives of the output and cast the system in

a singularly perturbed form. This procedure forces the internal states of the sys-

tem to behave as the fast variables. It also allows the internal states to be used

as ‘pseudo-control variables’ for output tracking. A sequential procedure is devel-
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oped to compute the internal states that ensure asymptotic output tracking and the

controller is designed to force the internal states to follow the computed trajectory.

Second, full-state feedback controller designed is independent of any particular oper-

ating condition and desired output trajectory. Third, for the first time the controller

explicitly considers the slow thrust response during design of the control and show

asymptotic output tracking. Previous studies assume that all controllers respond

sufficiently fast. However, it will be shown that these designs when implemented to

slow throttle systems perform poorly.

7.4.1 Dynamical Model and Open-Loop Analysis

In this section governing equations are derived for the aircraft model and the

exact input-output linearization of the model is carried out. It is shown that system

has unstable internal dynamics.

7.4.1.1 Vehicle Description

The aircraft model is written with respect to earth-fixed inertial coordinates. The

forces and moment act in the body (x̂b, ẑb) and stability axes (x̂s, ẑs). The aircraft

model has three degrees-of-freedom: horizontal and vertical position (x, z), and pitch

attitude angle θ. The two available controls are thrust u1 and pitching moment u2.

Using this notation, the position, velocity and acceleration vector in the inertial

frame measured from origin O are

~p = xî− zk̂ (7.78a)

~v = ẋî− żk̂ (7.78b)

~a = ẍî− z̈k̂ (7.78c)
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where negative sign is consistent with positive altitude. Similarly the angular accel-

eration about the body ŷb axis is

~α = θ̈ŷb (7.79)

The equations of motion are derived using Newton’s and Euler’s second law of motion.

Toward this end, the force and moment vector acting on the body are collected as

~F = mgk̂ + u1x̂b −Dx̂s + Fz ẑb − Lẑs (7.80a)

~M = u2ŷb (7.80b)

The orthogonal transformations

Rsb =

 cosα − sinα

sinα cosα

 (7.81a)

Rib =

 cos θ − sin θ

sin θ cos θ

 (7.81b)

denote the rotation matrices between stability to body and inertial to body frames

respectively. Using the relations given in (7.81) the resultant forces in the inertial

axes are

~F = [u1 cos θ −D cos(θ − α)− L sin(θ − α) + Fz sin θ] î (7.82)

+ [−u1 sin θ + Fz cos θ +D sin(θ − α)− L cos(θ − α) +mg] k̂.

Hence, using the kinematic relations given in (7.78), (7.79) and the above relations

the following equations of motion are obtained:
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mẍ = u1 cos θ −D cos(θ − α)− L sin(θ − α) + Fz sin θ (7.83a)

mz̈ = u1 sin θ − Fz cos θ −D sin(θ − α) + L cos(θ − α)−mg (7.83b)

Iyθ̈ = u2 (7.83c)

where Fz = εu2 and Iy is moment of inertia of the aircraft about the ŷb axis. The

aerodynamic forces are L = aL(u2 + w2)(1 + cα) , D = aD(u2 + w2)(1 + b(1 + cα)2)

and other physical constants for the Douglas DC-8 are given in Table 7.3 [109].

Table 7.3: Aircraft model parameters

Parameter Value

m 85000kg

Iy 4× 106kgm2

g 9.81ms−2

aL
30m
g

aD
2m
g

b 0.01

c 6

ε 0.3mg/Iy

7.4.1.2 Exact Input-Output Linearization

The non-minimum phase properties of the aircraft are analyzed by studying the

input-output relationship. The desired outputs for the control design are the veloci-

ties (ẋ,−ż) of the aircraft. From the equations of motion given in (7.83) it is found

that the relative degree is one and the rotational dynamics constitute the internal

dynamics. The stability of the internal dynamics is analyzed by studying the zero
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dynamics of the aircraft. Toward this end, the control vector (u1, u2) that constraint

the output and its derivative to zero are determined as

u1 = −mg sin θ

cos 2θ
(7.84a)

u2 = −mg
ε

cos θ

cos 2θ
. (7.84b)

Using the above constrained control solution the rotational dynamics becomes

Iyθ̈ = −mg
ε

cos θ

cos 2θ
. (7.85)

The equilibrium solutions of (7.85) are θ∗ = ±π/2. About these trim solutions the

gradient of function h(θ) = cos θ
cos 2θ

is

∂h

∂θ
=
− sin θ

cos 2θ
+

2 cos θ tan 2θ

cos2θ
(7.86)

which upon substitution yields ∂h
∂θ
|θ∗=π/2 = 3.33 and ∂h

∂θ
|θ∗=−π/2 = −3.33. This gives

the following linear models

∆θ̈ = −3.33∆θ about θ∗ = π/2 (7.87a)

∆θ̈ = 3.33∆θ about θ∗ = −π/2. (7.87b)

From the eigenvalues of (7.87) it is concluded that θ∗ = π/2 is a center and θ∗ = −π/2

is a saddle point. This conclusion was verified in simulation and Figure 7.28 and

Figure 7.29 present the results. The phase portrait shows that a continuum of closed

orbits exist about θ∗ = π/2. The outer curves marks the boundary of these orbits

and any further perturbation is unstable. Clearly response about either of the trim

solutions is undesirable and exact input-output linearization is not possible.
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Figure 7.28: Phase portrait illustrating the oscillatory response of pitching motion
of the aircraft model given in (7.83)

Figure 7.29: Time response of the pitching motion of the aircraft model given in
(7.83)
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Note this oscillatory behaviour is due to the nonlinear function h(θ). This term

appears due to the constraint moment solution required to produce the desired force.

As mentioned in the introduction neglecting this force/moment coupling leads to ap-

proximate input-output linearization. However, this leads to local and approximate

tracking performance. In this work the coupling is retained and asymptotic tracking

is guaranteed.

7.4.2 Time Scale Analysis of the Aircraft Model

In this section, an important observation regarding the inherent time scale char-

acteristics of the DC-8 model under study is made. Toward this end, rewrite the

equations of motion given in (7.83) as first order differential equations

ẋ = u (7.88a)

ż = w (7.88b)

u̇ =
1

m

[
u1 cos θ + Fz cos θ −D cos(θ − α)− L sin(θ − α)

]
(7.88c)

ẇ =
1

m

[
u1 sin θ − Fz cos θ −D sin(θ − α) + L cos(θ − α)

]
− g (7.88d)

θ̇ = q (7.88e)

q̇ =
u2

Iy
(7.88f)

where u and w are the forward and vertical velocities in the inertial frame and q is

the body pitch rate. The angle-of-attack is defined as

α = θ − tan−1 w

u
. (7.89)

Let the reference quantities be denoted as (t0, x0, z0, u0, w0, θ0, q0), (u10, u20), and

(D0 = L0 = u10 = Fz0). With these definitions the dimensional equations given in
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(7.88) are transformed into the following non-dimensional form

dx̂

dt̂
=

[
t0u0

x0

]
û (7.90a)

dẑ

dt̂
=

[
t0w0

z0

]
ŵ (7.90b)

dû

dt̂
=

[
t0u10

m0u0

]
û1 cos θ −

[
t0Fz0
m0u0

]
F̂z sin θ

−
[
t0D0

m0u0

]
D̂ cos(θ − α)−

[
t0L0

m0u0

]
L̂ sin(θ − α) (7.90c)

dŵ

dt̂
=

[
t0u10

m0w0

]
û1 sin θ −

[
t0Fz0
m0w0

]
F̂z cos θ

−
[
t0D0

m0w0

]
D̂ sin(θ − α) +

[
t0L0

m0w0

]
L̂ cos(θ − α)−

[
t0g

w0

]
(7.90d)

dθ̂

dt̂
=

[
t0
q0

θ0

]
q̂ (7.90e)

dq̂

dt̂
=

[
t0u20

Iyq0

]
û2. (7.90f)

Assume the aircraft is straight and level mg = L0 = D0 = u10 = Fz0 = εu20 and

t0u0 = x0 = z0 = t0w0. Additionally let t0u10 = mw0. With these simplifications the

non-dimensional form in (7.90) reduces to

dx̂

dt̂
= û (7.91a)

dẑ

dt̂
= ŵ (7.91b)

dû

dt̂
= û1 cos θ − F̂z sin θ − D̂ cos(θ − α)− L̂ sin(θ − α) (7.91c)

dŵ

dt̂
= û1 sin θ − F̂z cos θ − D̂ sin(θ − α) + L̂ cos(θ − α)− 1 (7.91d)

dθ̂

dt̂
=

[
t0
q0

θ0

]
q̂ (7.91e)

dq̂

dt̂
=

[
t0mg

εIyq0

]
û2. (7.91f)
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Given physical quantities in Table 7.3 the constant
[
t0mg
εIyq0

]
= 400 with t0 = 120sec

and q0 = 1rad/sec. This is a very large quantity and thus it can be concluded that

the rotational dynamics evolve faster. With above conclusion note
[
t0θ0
q0

]
= 120 is

a large quantity for θ0 = 1rad. Thus the pitch rate and the pitch-attitude angle

evolves faster than the translational velocities, where (x, y, u, w) evolve at a rate of

O(1). Finally including the first-order actuator dynamics for throttle and pitching

moment (7.91) is cast in the following desired singularly perturbed form

ẋ = u (7.92a)

ż = w (7.92b)

u̇ =
1

m

[
δε cos θ + εδ% cos θ −D cos(θ − α)− L sin(θ − α)

]
(7.92c)

ẇ =
1

m

[
δε sin θ − εδ% cos θ −D sin(θ − α) + L cos(θ − α)

]
− g (7.92d)

εδ̇ε = −0.2(δε − u1) (7.92e)

εθ̇ = q (7.92f)

µq̇ =
u2

Iy
(7.92g)

%δ̇% = −20(δ% − u2) (7.92h)

with singular perturbation parameters 0 < ε < µ < % << 1. As before the singular

perturbation parameters have been introduced entirely for modeling purposes and

are set to one in the simulation.

7.4.3 Control Formulation

The control development follows closely the steps detailed in Section 6. As the

control objective is to track desired velocity commands, the translational kinematic

equations need not be considered in the design and are not repeated below. For
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brevity, only those equations required for implementation are detailed.

Step 1: The reduced slow system S 0 in error coordinates eu := u − ur and

ew := w − wr is

ėu =
1

m

[
δ0
ε cos θ0 −D0 cos(θ0 − α)− L0 sin(θ0 − α)

]
− u̇r (7.93a)

ėw =
1

m

[
δ0
ε sin θ −D0 sin(θ0 − α) + L0 cos(θ0 − α)

]
− g − ẇr (7.93b)

q0(t, eu, ew, θ
0) = 0 (7.93c)

δ0
%(t, eu, ew, θ

0, q0) = 0 (7.93d)

where θ0(t, eu, ew) and δ0
ε (t, eu, ew) represent the manifolds to be computed and

L0 and D0 are lift and drag determined using these manifold definitions. With

Lyapunnov function V (eu, ew) = 1
2
e2
u + 1

2
e2
w and relations

−α1meu = δ0
ε cos θ0 −D0 cos(θ0 − α)− L0 sin(θ0 − α)−mu̇r (7.94a)

−α1mew = δ0
ε sin θ0 −D0 sin(θ0 − α) + L0 cos(θ0 − α)−mg −mẇr(7.94b)

property (ii) of Theorem 6.1 is satisfied with α1 > 0 and ψ3 =
√
e2
u + e2

w. Simplifying

(7.94) the manifold θ0(t, eu, ew) is solved using the nonlinear relation

−α1m(eu sin θ0 − ew cos θ0) = −D0 sinα− L0 cosα +mg cos θ0

−mu̇r sin θ0 +mẇr cos θ0. (7.95)

The manifold for thrust δ0
ε (t, eu, ew) is determined using (7.95) as

δ0
ε (t, eu, ew) = −α1m(eu cos θ0 + ew sin θ0) +D0 cosα− L sinα +mu̇r cos θ0

+mg sin θ0 +mẇr sin θ0. (7.96)
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Step 2: The reduced intermediate system S0
ε is represented as

ĕδε = −0.2eδε − 0.2δ0
ε + 0.2u1 (7.97a)

ĕθ = q0(t, eu, ew, eθ) (7.97b)

with the errors

eθ := θ − θ0(t, eu, ew) (7.98a)

eδε := δε − δ0
ε (t, eu, ew). (7.98b)

With Lyapunov function W = 1
2
e2
θ + 1

2
e2
δε

and the manifold

u1 = δ0
ε + eδε −

α2

0.2
eδε (7.99a)

q0(t, eu, ew, eθ) = −α2eθ (7.99b)

property (iv) of Theorem 6.1 is satisfied with α2 > 0 and Φ3 = 4
√
e2
θ + e2

δε
.

Step 3: The reduced fast system S 0
µ is given as

e′q = δ0
%(t, eu, ew, eθ, eq)/Iy (7.100)

where eq = q − q0(t, eu, ew, eθ). With Lyapunov function Z = 1
2
e2
q the pitching

moment manifold

δ0
%(t, eu, ew, eθ, eq) = −α3Iyeq (7.101)

using proportional controller satisfies property (vi) of Theorem 6.1 with α3 > 0 and

$ = |eq|.
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Step 4: The reduced fast actuator system S 0
% is developed as

ěδ% = −20eδ% − 20δ0
% + 20u2 (7.102)

with eδ% := δ% − δ0
%(t, eu, ew, eθ, eq). The pitching moment

u2 = δ0
%(t, eu, ew, eθ, eq) + eδ% −

α4

20
eδ% (7.103)

stabilizes S 0
% with Lyapunov function Y = 1

2
e2
δ%

. Property (viii) of Theorem 6.1 is

satisfies with υ3 = |eδ%| and α4 > 0.

Step 5: Finally, with feedback gains α1 = α2 = 4, α3 = 4 and α4 = 6 the various

constants in Theorem 6.1 can be easily determined as β5 = 16, β7 = 0.5, β13 = −16,

β15 = 4, β18 = −256, β19 = −16, γ6 = 0 and rest all zeros. For convenience, the

weights are set to unity and the upper-bound is computed as ε∗ = 0.25 . The upper-

bound µ∗ = 0.02 is determined by assuming ε = 0.1 and ρ∗ = 1.06 with µ = 0.01.

Thus, Theorem 6.1 guarantees asymptotic stability for all signals of (7.88).

The above control synthesis procedure is summarized in a block diagram shown

in Figure 7.30.

7.4.4 Results and Discussion

The control objective is to perform a nap-of-the-earth maneuver that tracks a

constant velocity at low altitude [109]. The forward velocity is commanded to be

constant at 145ms−1 and the vertical velocity is chosen as wd = 125π
60

sin(πt
60

). The

nonlinear equation (7.95) was solved using the constrained optimizer fsolve in MAT-

LAB with arbitrarily chosen initial conditions. The small angle assumption was made

for angle-of-attack to ease the computational burden. The goal of this simulation

was to test the performance of the control developed in Section 7.4.3 in comparison

with a controller that does not consider explicitly the speed of controllers during
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Figure 7.30: Control implementation for conventional take-off and landing aircraft

design. This was done by following steps of Section 6 with the assumption that all

controllers are fast. In simulation the formulated control laws were implemented

with slow throttle dynamics. The feedback gains for both the controllers were kept

same for a fair comparison.

The results are presented in Figures 7.31 through Figure 7.42. Figure 7.31 through

Figure 7.33 compare the forward and the vertical velocities to their respective de-

sired references. Notice close tracking is demonstrated with an error of 0.002ms−1

in forward velocity and ±0.049ms−1 in vertical velocity in the case with actuator

feedback corresponding to development given in Section 7.4.3. However, huge errors

in the forward velocity are seen when slow thrust response is not included in the con-

trol design. The corresponding control commands are presented in Figure 7.34 and

Figure 7.35. Thrust is seen to settle down to its equilibrium value of 3.694 × 108N

while the moment varies accordingly to provide sufficient upward force. The initial

transient in applied moment is shown in Figure 7.36. As expected the directions of

the vertical velocity and the applied moment are opposite: positive moment induces

a negative downward force and reduces the vertical velocity to its desired value.
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Figure 7.31: Closed-loop response of aircraft: forward velocity

Figure 7.32: Closed-loop response of aircraft (after three seconds): vertical velocity
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Figure 7.33: Closed-loop response of aircraft (initial transient): vertical velocity

Figure 7.34: Closed-loop response of aircraft: applied thrust
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Figure 7.35: Closed-loop response of aircraft (after eight seconds): applied moment

Figure 7.36: Closed-loop response of aircraft (initial transient): applied moment
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Figure 7.37: Closed-loop response of aircraft (after three seconds): pitch rate

Figure 7.38: Closed-loop response of aircraft (initial transient): pitch rate
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Figure 7.39: Closed-loop response of aircraft (after three seconds): pitch-attitude
angle

Figure 7.40: Closed-loop response of aircraft (initial transient): pitch-attitude angle
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Figure 7.41: Closed-loop response of aircraft: two dimensional trajectory

Figure 7.42: Closed-loop trajectory of the aircraft with actuator state feedback
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Therefore, for the first 60 seconds the moment is negative, after which it changes

sign. The case without actuator state feedback does not provide enough thrust

and hence the forward velocity command is not tracked. In the other case perfect

output tracking indicates that the internal aircraft states are stable. This behaviour

is seen in Figure 7.37 through Figure 7.40. The pitch attitude angle (Figure 7.40) is

bounded and behaves as expected. A climb produces an increase in pitch attitude

angle and a descent produces a negative value. The pitch rate behaviour seen in

Figure 7.37 agrees with the commanded trajectory. The initial transient of pitch rate

are continuous as seen in Figure 7.38. Note that the controller without actuator state

feedback also generates the same internal state trajectories. This is because these

solutions were determined assuming the pitch-attitude angle and pitch-rate respond

fast and which holds true for the aircraft. In comparison with results published in

Reference [109], this exact internal state trajectory was obtained using the technique

proposed in [107]. The complete two-dimensional trajectory is shown in Figure 7.41.

Notice that difference in thrust completely alters the performance of control design

without actuator state feedback. The three-dimensional trajectory for the aircraft

model with actuator state feedback is shown in Figure 7.42.

7.4.5 Summary

A control formulation for output tracking of a general class of nonlinear non-

minimum phase aircraft was developed. The desired internal-state reference and

feedback control to stabilize the unstable internal dynamics were posed as an asymp-

totic slow tracking problem for singularly perturbed systems. Based on the results

presented, the following conclusions are drawn. The perfect output tracking was a

result of perfect internal state tracking that was achieved by the nonlinear feedback

law. The tracking error was within |0.002| for the forward velocity and |0.049| for
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the vertical velocity. The controller demonstrated asymptotic tracking irrespective

of the desired reference trajectory. The controller was causal and did not require

any preview of the desired reference. Owing to the nonlinear nature of (7.95) the

controller is not real-time implementable and requires offline computation.

7.5 Closing Remarks

Applications of the general nonlinear control design procedure developed in Sec-

tion 6 to three benchmark non-minimum phase systems was presented. Starting from

the open-loop analysis, this section detailed step by step procedure for determining

the inherent time scale properties of the system and representing the dynamical

equations in singularly perturbed form. Block diagrams along with control synthesis

procedure for real-time implementation was presented.

Based on the results and theoretical developments presented, the following con-

clusions are drawn. First, the control technique is applicable to several class of

non-minimum phase problems. The beam and ball experiment is an example of a

system with no well-defined relative degree and Lyapunov stable internal dynamics.

The helicopter and aircraft systems are examples of systems with unstable inter-

nal dynamics. Moreover, exact input-output linearization for these systems is not

desirable and approximate input-output linearization does not guarantee desired per-

formance. Second, the sequential procedure is not dependent upon the underlying

controller for the reduced-order models. Any feedback control methodology can be

used. Back-stepping, Lyapunov-based control, proportional feedback control and dy-

namic inversion were some techniques used in the examples presented. Third, owing

to the sequential nature of the design, determination of the internal state trajectory

is independent of the operating condition. Fourth, the hover control example proves

that the interconnection conditions are not an artifact of the design procedure. This
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was shown through use of dynamical model instead of the singularly perturbed model

to prove stability. Fifth, the aircraft example demonstrates that better performance

is guaranteed by the developed control laws for systems that have slow actuator dy-

namics and are difficult to control. The benefits and limitations of the approach are

detailed below:

7.5.1 Benefits

1. First, the control laws developed apply to several class of non-minimum phase

systems ranging from those that do not have well-defined relative degree to

those that have unstable internal dynamics. Physical examples with two, three

and four inherent time scales were shown.

2. Second, the sequential nature of the design procedure guarantees asymptotic

output stabilization for a large operating regime since desired internal state

trajectory computation is causal and does not require knowledge of reference

trajectory beforehand.

3. The control development is independent of the underlying nonlinear control

technique. This means that the design procedure is applicable to a large class

of continuous time dynamical systems.

4. Fourth, the controller demonstrates better performance for systems with slow

actuators over other time scale design procedures that require fast actuator

dynamics.

5. Fifth, as a byproduct the time scale procedure justifies the stability guarantees

of approximate input-output linearization and provides quantitative reasons

for its low performance.

232



7.5.2 Limitations

1. As mentioned in Section 6, determination of the manifold, or in this case the

internal state trajectory depends upon a non-affine control technique. Due to

limited availability of these procedures, sometimes the desired internal state

reference is forced to be computed beforehand. In this section, the desired

pitch-attitude angle for the nap-of-the-earth was computed offline.

2. Verification of interconnection conditions becomes cumbersome with higher

dimensions.
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8. CONCLUSIONS AND RECOMMENDATIONS

This dissertation investigated feedback control methodologies and developed rig-

orous techniques to address the stabilization problem for non-affine in control, non-

standard multiple time scale systems. Toward this end, novel control law procedures

were synthesized to address the three major open challenges identified in Section 1.

Applications of the developed methodologies were shown for several examples from

science and engineering. This section reviews the contributions made by this work,

conclusions drawn from the theoretical developments as well as numerical simulations

and details recommendations for future work.

8.1 Contributions of Research

This research is novel and makes the following nine major contributions to the

field of nonlinear control theory:

1. The result given in Theorem 3.1 gives a generalization of the famous Kalman-

Yakubovich-Popov lemma for non-affine systems under mild restrictions. This

new result helps to determine whether or not an input-output description of a

nonlinear system is passive. It is expected that this generalization will play a

vital role in developing adaptive control laws for nonlinear systems based on

Lyapunov’s direct method analogous to its linear counterpart.

2. Theorem 3.6 extends the powerful feedback passivation approach for non-affine

systems. This static compensation technique provides conditions under which

a nonlinear system can be made passive through state-feedback and forms the

basis for stabilization of general non-affine systems.
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3. Theorem 3.7 presents for the first time, a general control law design proce-

dure for asymptotic stabilization of non-affine systems using memoryless state-

feedback without making any assumptions regarding the control influence or

nature of nonlinearities present in the dynamical model. This result along with

constructive control law given in Theorem 3.9 asymptotically stabilizes a class

of single-input systems.

4. Two new hierarchical control design procedures, presented in Section 4 and Sec-

tion 6, accomplish slow state tracking for non-standard singularly perturbed

systems without imposing any assumptions about the solution of the tran-

scendental equations or the effect of the control variables. As discussed in

Section 2.3 construction of manifolds for non-standard systems is difficult and

the cause of local bounded results.

5. The sequential design procedures of Section 4 and Section 6 are Lyapunov-based

designs because of which the global or local nature of the closed-loop results

are relaxed from the complexities of analytic construction of the manifold and

entirely a consequence of underlying controllers for reduced-order models. This

contribution provides the control engineer the freedom to choose a desired state-

feedback technique that is suitable for the nonlinear system under study.

6. The asymptotic tracking approach for multiple time scale systems given in

Theorem 6.1 addresses systems with controllers that have different speeds of

response. This is an advance over the composite control technique and was

verified in simulation (Section 7.4) to demonstrate better steady-state time-

response compared to other time scale procedures.

7. Theorem 5.1 outlines a procedure for simultaneous slow and fast state track-
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ing for non-standard singularly perturbed systems for the first time using the

reduced-order model approach and without making any assumptions about

construction of the manifold.

8. The control law design procedures for both two and multiple time scale systems

developed in Sections 4, 5 and 6 of this dissertation are not a function of

the singular perturbation parameter, nor require any knowledge of it. This is

an important contribution for aerospace applications, where quantifying this

parameter is extremely difficult.

9. Finally, the results given in Theorem 6.1 for control of multiple time scale

systems have been shown to guarantee real-time implementable exact output

tracking for a class of non-minimum phase systems. This is an advance over

the exact output tracking approach known in literature that requires immense

offline processing and is dependent upon the desired reference trajectory.

8.2 Conclusions

Based on the theoretical developments and numerical simulation results presented

in this dissertation, the following conclusions are drawn:

1. A universal construction formula for non-affine control systems similar to Son-

tag’s formula for affine systems is not possible due to inherent nonlinear dy-

namic behaviour. Theorem 3.7 gives a unified construction procedure for design

of static-feedback for all class of non-affine systems.

2. Application of Theorem 3.7 to non-affine dynamical systems (See Section 3.5)

shows that stiffness function α(x) is the solution of a nonlinear inequality and

is consequently obtained to be discontinuous in nature. This behaviour is
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consistent with the result given in [Corollary 5.8.8][3] that proves that open-

loop unstable systems cannot be C1 stabilizable.

3. The sequential design procedure developed here for asymptotic stabilization

of multiple time scale systems essentially converts the open-loop non-standard

form into a closed-loop standard form (See example given in Section 4.4.3.4).

This ensures that all conclusions from singular perturbation methods remain

valid and reduced-order models can be employed for design.

4. Numerical simulation results presented in Sections 4, 5 and 6 indicate that

the upper-bound estimate for the singular perturbation parameter is conser-

vative and overall stability is guaranteed to hold even for higher values of the

perturbation parameter.

5. Control of non-minimum phase examples presented in Section 7 indicates that

inherent multiple time scale behaviour is the cause of unstable internal dynam-

ics in some systems and is the reason for stability guarantees of approximate

input-output linearizations proposed in the past.

6. Several singularly perturbed system examples presented in this dissertation

conclude that interaction conditions due to composite Lyapunov approach for

stability are difficult to verify as the dimension of the system model increases.

However, the hover control for a helicopter discussed in Section 7.3 indicates

that these conditions are not dependent on composite Lyapunov approach and

are in fact an artifact of multiple time scale systems. The stability conclusions

drawn from this example indicate that as long as the closed-loop gains chosen

maintain sufficient time scale separation between the slow and fast modes of

the system, these conditions are satisfied.
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8.3 Recommendations

Several recommendations are made here based on the research presented in this

dissertation:

1. Stabilization of singularly perturbed systems with control constraints: Control

design procedures developed in this dissertation assume the control variables

can take any value in the real vector space. In order for these control methods

to be applicable for a larger class of physical systems, control constraints need

to be imposed in the synthesis procedure. This can be done by employing

available constrained control techniques as the underlying controllers to satisfy

the conditions of the hierarchical procedure given in Theorem 6.1.

2. Constructive control algorithm for large class of non-affine systems: Investi-

gation of static feedback control developed in Section 3 demonstrates that the

desired control is the solution of a nonlinear inequality. This inequality was

further separated to determine the specific conditions upon the magnitude and

the direction of the desired input signal. Theorem 3.9 provides a construc-

tive control law for a class of single input non-affine systems that satisfy these

conditions. These results can be extended to a larger class of single-input non-

affine systems by developing quantitative relationships between different vector

norms and using this information for satisfying the inequalities.

3. Optimal control for non-standard singularly perturbed systems: The reduced-

order model approach has been extensively used in the past to remove stiffness

and reduce the order of optimal control problems for standard singularly per-

turbed systems. This was done by restricting the fast states on the isolated

manifold. For non-standard systems, the reduced-order models can still be re-
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tained by employing the fast states as intermediate level controls for optimizing

the slow states. It is expected that modified composite control and Approach

II detailed in this dissertation can be used to approximate the optimal solution

to an accuracy of O(ε).

4. Pure output feedback control of nonlinear systems: The techniques developed

in this dissertation for continuous-time dynamical systems require complete

state information for feedback. This assumption is quite restrictive and output

feedback methodologies need to be explored. This can be done by introduction

of an observer in the dynamical model under consideration. It is expected that

the stability guarantees of the developed control laws will be valid as long as

additional observability conditions are met and the observer responds faster

than the fastest state of the physical system.

5. Multiple time scale approach for propulsion-controlled aircraft: As mentioned

in the introduction the control techniques presented in this dissertation can be

used to address the slow times of response of throttle. Better performance of

the proposed methods compared to conventional approach was demonstrated

for the nap-of-the-earth maneuver with slow engine response in Section 7.4.

The developed techniques can be extended to address the propulsion-control

problem by inclusion of an adaptive outer loop to address the uncertainties

arising in the system due to control surface failure.
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APPENDIX A

REVIEW OF GEOMETRIC SINGULAR PERTURBATION THEORY

Singular perturbation theory is a tool used to obtain the reduced-order approx-

imations of the full-order equations of motion which are difficult to analyze. The

theory is valid so long as the singular perturbation parameter remains sufficiently

small and the time-scale behaviour is preserved. The Method of Matched Asymp-

totic Expansions[110] and its variation, the Method of Composite Expansions[110]

have been the foremost methods employed to develop these reduced-order models.

The alternative geometric approach describes the motion of the full-order system

using the concept of invariant manifolds. Both approaches produce the exact same

reduced-order models, but with different assumptions about the system. Asymptotic

methods assume that the dynamical system possesses isolated roots, while the geo-

metric approach is more general and takes into consideration multiple non-isolated

roots of nonlinear systems.

To introduce the necessary concepts of geometric singular perturbation theory,

consider the nonlinear autonomous open-loop dynamical system

ẋ = f(x, z) (A.1a)

εż = l(x, z) (A.1b)

with x ∈ Rm and z ∈ Rn. Note that the following results also apply to non-

autonomous systems. The model in (A.1) can be rewritten in the fast time-scale

τ = (t−t0)
ε

as
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x′ = εf(x, z) (A.2a)

z′ = l(x, z) (A.2b)

The independent variables t and τ are referred as the slow and the fast time-

scales respectively and (A.1) and (A.2) (referred as the slow and the fast systems

respectively) are equivalent whenever ε 6= 0. This is not the case in the limit ε→ 0.

The fast system reduces to n dimensions with variables x as constant parameters

producing the reduced fast system:

x′ = 0 (A.3a)

z′ = l(x, z) (A.3b)

On the other hand, the order of the slow system reduces to m dimensions and results

in a set of differential-algebraic equations, producing the reduced slow system:

ẋ = f(x, z) (A.4a)

0 = l(x, z) (A.4b)

The reduced slow system appears to be a locally flattened vector space of the

complete slow system. Thus the set of points (x, z) ∈ Rm×Rn is expected to have a

Cr smooth manifoldM0 of dimension m inside the zero set of function l(.), provided

the functions f(.) and l(.) are assumed to be Cr.

Assumption A.1. The functions f(x, z) and l(x, z) are sufficiently smooth so that

Cr with r ≥ 1.

The requirement to be continuous and at least once differentiable assures smooth-

256



ness of the manifold M0. The flow on this manifold evolves as

ẋ = f(x,h0(x)) (A.5)

where h0(x) is the solution of the algebraic part in (A.4) that defines the manifold

M0 : z = h0(x); x ∈ Rm, z ∈ Rn. (A.6)

When viewed from the perspective of the reduced fast system, the manifold M0 is

the set of fixed points (x,h0(x)) and thereforeM0 is trivially invariant. If every fixed

point (x,h0(x)) of the reduced fast system is assumed to be hyperbolic, then starting

from arbitrary initial conditions the flow will exponentially fast settle down onto the

manifold after which the flow evolves according to (A.5). Equivalently, the flow

normal to the manifold is faster than that tangential to it. Such a manifold is said to

be normally hyperbolic. Furthermore, a normally hyperbolic invariant manifold has

local, Cr smooth, stable and unstable manifolds: WS
loc(M0) and WU

loc(M0). These

manifolds are unions over all (x) in M0 of the local stable and unstable manifolds

of the reduced fast system’s hyperbolic fixed points (x,h0(x)).

To show these concepts consider the following example. Let

ẋ = −x+ xz (A.7a)

εż = x− z − z3 (A.7b)

so that the reduced slow system is

ẋ = −x+ x2 (A.8a)

z = x (A.8b)
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defined for |x| < 1 and the reduced fast system is

x′ = 0 (A.9a)

z′ = x− z − z3 (A.9b)

The solution of the algebraic equation in (A.8) is z = x which is also the fixed

point of (A.9) for small values of the slow state. The invariant manifold is given

by M0 : z = x. The origin is the stable hyperbolic equilibrium of the reduced

slow system so any trajectory starting on the manifold approaches the origin in

forward time as seen in Figure A.1. Studying the reduced fast system suggests

that for any point with non-zero initial condition z(0), the flow approaches normal

to the manifold. Intuitively one may conclude that for initial conditions not on

the manifold the reduced fast system describes the transition to the manifold, after

which the system evolves according to the reduced slow system (see in Figure A.2).

Furthermore, since only points in the domain |x| < 1 approach the manifold at

an exponential rate forward in time, the complete space is not the stable manifold

WS(M0).

For the full-order system, similar inferences can be made. The presence of ε

in A.1 indicates that the fast variables grow relatively faster than the other states

of the system. If their open-loop system is stabilizing, these states quickly settle

down to their equilibrium. The other variables continue to evolve in time with the

fast variables fixed by an equilibrium hypersurface. Mathematically, ∃t∗ : t∗ > t0,

after which the solutions x(t, ε) and z(t, ε) lie on a distinct m dimensional-invariant

manifold Mε:

Mε : z = h(x, ε); x ∈ Rm, z ∈ Rn (A.10)
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Figure A.1: Trajectories of singularly perturbed slow system given in (A.7) (blue
lines) compared with reduced slow system (A.8) (pink lines)

Figure A.2: Trajectories of singularly perturbed slow system given in (A.7) (blue
lines) compared with reduced slow system (A.8) (pink lines) and reduced fast system
(A.9) (black lines)
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For the system in (A.7) the manifold varies with the singular perturbation parameter.

Consider Figure A.2 to study this behaviour. To generate this figure, ε was chosen

to be 0.05. For a fixed initial condition the flow evolves in two parts: one component

along the manifoldMε which is governed by the reduced slow system and the other

component in the normal direction whose flow is governed by the reduced fast system.

Points that are already on the manifold are seen to evolve similar to the flow sketched

in Figure A.1. Thus the reduced-order models provide good insight into the behaviour

of the full-order system. It is apparent that if the reduced fast system were unstable

then an initial condition not on the manifold would move farther away in time.

Additionally, since the manifold M0 is defined for small values of the slow state,

the dynamics of the reduced slow system closely approximate the dynamics of the

complete system only for the restricted state domain. This fact is illustrated in

Figure A.3.

The geometric constructs discussed above are formal statements of Fenichel’s

persistence theory [5] which assumes the slow system given in (A.1) satisfies

Assumption A.2. There exists a set M0 that is contained in {(x, z) : l(x, z) = 0}

such that M0 is a compact boundary-less manifold.

Assumption A.3. M0 is normally hyperbolic relative to the reduced fast system

and in particular, it is required that for all points z ∈ M0, there are k (respectively

l) eigenvalues of Dzl(0, z) with positive (respectively negative) that real parts are

bounded away from zero, where k + l = n.

Under these conditions the following theorem due to Fenichel [5] for compact

boundary-less manifolds

Definition A.0.1. Let the slow system satisfy Assumption A.1, Assumption A.2

and Assumption A.3. If ε > 0 is sufficiently small, then there exists a manifold Mε
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Figure A.3: Trajectories of singularly perturbed slow system given in (A.7) (blue
lines) compared with reduced slow system (A.8) (pink lines) for large state values

that is Cr−1 smooth locally invariant under the fast system and Cr−1 O(ε) close to

M0. In addition, there exist perturbed local stable and unstable manifolds of Mε

and they are Cr O(ε) close, for all r <∞, to their unperturbed counterparts.

The above results by Fenichel apply to more general singularly perturbed systems

than the slow system (A.1) discussed in this appendix. The reader is referred to [72]

for further details. Additionally, these concepts have been extended for systems with

multiple inherent time scales and [80], [111] present insightful discussions.
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APPENDIX B

COMPOSITE LYAPUNOV APPROACH FOR STABILITY ANALYSIS OF

SINGULARLY PERTURBED SYSTEMS

Stability properties of a standard singularly perturbed system are concluded by

studying the underlying geometric constructs of the reduced-order models. These

conclusions provide qualitative insights regarding the nature of the response in for-

ward time. In order to quantify these results, researchers use Lyapunov’s direct

method to determine the nature of stability (such as uniform, asymptotic or expo-

nential) and the domains of attraction. The main idea is to use a combination of the

Lyapunov functions of the lower-order models to study the stability of the complete

singularly perturbed system. This composite Lyapunov function approach has been

extensively used in literature to develop different sufficiency conditions for studying

stability of different class of singularly perturbed systems [23], [112], [113]. This

dissertation follows closely the developments for general class of nonlinear systems

given in [114].

To present the necessary concepts, consider the following nonlinear standard sin-

gularly perturbed system

ẋ = f(x, z) (B.1a)

εż = g(x, z, ε) (B.1b)

where x ∈ Dx ⊂ Rm is the vector of slow variables and z ∈ Dz ⊂ Rn is the

vector of fast variables. Assume that origin is the unique equilibrium in the domain

Dx and Dz. The objective is to analyze the stability properties of the origin in
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this domain. Toward this end, develop the reduced-order models for the singularly

perturbed system. Following developments of geometric singular perturbation theory

(see Appendix A for details) the reduced-order slow system is defined by setting ε = 0

in (B.1) to get

ẋ = f(x, z) (B.2a)

0 = g(x, z, 0) (B.2b)

Assume z = h(x) is the unique solution of the algebraic equation of (B.2) in the

domain Dx and Dz. Then the reduced system can be expressed as

ẋ = f(x,h(x)) (B.3)

Assume that the reduced-order system (B.3) satisfies:

(i) Suppose there exists a positive-definite Lyapunov function V (x) such that

∂V

∂x
f(x,h(x)) ≤ −α1Ψ2(x)

with α1 > 0 and Ψ(x) is a continuous scalar function in the domain x ∈ Bx

that satisfies Ψ(0) = 0.

This assumption ensures that origin of the reduced slow system is asymptotically

stable over the domain x ∈ Bx.

The reduced fast system is represented in the time scale τ = t−t0
ε

x′ = 0 (B.4a)

z′ = g(x, z, 0) (B.4b)
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Note the solution z = h(x) is also the equilibrium of the reduced fast system. Define

error z̃ := z− h(x) and rewrite (B.4) in error coordinates

z̃′ = g(x, z̃ + h(x), 0) (B.5)

with x as a parameter. Assume the origin of the reduced fast system (B.5) is asymp-

totically stable.

(ii) Suppose there exists a positive-definite Lyapunov function W (x, z̃) such that

∂W

∂z̃
g(x, z̃ + h(x), 0) ≤ −α2Φ2(z̃)

with α2 > 0 and Φ(z̃) is a continuous scalar function in the domain z̃ ∈ Bz

that satisfies Φ(0) = 0.

Note condition (ii) is stronger than condition (i) as origin z̃ = 0 is required to

asymptotically stable uniformly for all values of x.

The central idea in analyzing stability for (B.1) is to consider the complete sin-

gularly perturbed model as an interconnection of the reduced-order models. In order

to do see this, rewrite (B.1) in error coordinates

ẋ = f(x, z̃ + h(x)) (B.6a)

ε ˙̃z = g(x, z̃ + h(x), ε)− ε∂h

∂x
f(x, z̃ + h(x)) (B.6b)

Clearly the reduced-order models are systems obtained from (B.6) in the limit ε→ 0.

In order to make use of the stability properties of the reduced-order models given in

conditions (i) and (ii) to analyze (B.6) a weighted sum of the Lyapunov functions is
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constructed. Let this function be defined as

ν(x, z̃) = (1− d)V (x) + dW (x, z̃); 0 < d < 1 (B.7)

where V and W are as defined in conditions (i) and (ii) and d is a free parameter.

The derivative of this composite Lyapunov function along (B.6) gives

ν̇ =(1− d)
∂V

∂x
f(x, z̃ + h(x)) + d

∂W

∂x
f(x, z̃ + h(x))

+
d

ε

∂W

∂z̃

[
g(x, z̃ + h(x), ε)− ε∂h

∂x
f(x, z̃ + h(x))

]
=(1− d)

∂V

∂x
f(x,h(x)) +

d

ε

∂W

∂z̃
g(x, z̃ + h(x), 0) (B.8)

+ (1− d)
∂V

∂x

[
f(x, z̃ + h(x))− f(x,h(x))

]
+
d

ε

∂W

∂z̃

[
g(x, z̃ + h(x), ε)− g(x, z̃ + h(x), 0)

]
+ d
[∂W
∂x
− ∂W

∂z̃

∂h

∂x

]
f(x, z̃ + h(x))

The derivative of the composite Lyapunov function is represented as sum of five

terms. The first two terms are the derivatives of V and W along the reduced slow

and fast systems respectively. These terms are negative from conditions (i) and (ii).

The third term represents the difference between the singularly perturbed model and

reduced slow system. This error occurs because of arbitrary initial conditions for the

fast variables which do not lie on the solution h(x). The fourth term captures the

effect of neglecting the singular perturbation parameter ε. Finally, the fifth term in

(B.8) is the difference between the fast dynamics of the complete singularly perturbed

model (B.6) and the reduced fast system given in (B.5). Suppose these error terms

satisfy with βi ≥ 0 and γi ≥ 0:

(iii)
∂V

∂x

[
f(x, z̃ + h(x))− f(x,h(x))

]
≤ β1Ψ(x)Φ(z̃)
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(iv) ∂W

∂z̃

[
g(x, z̃ + h(x), ε)− g(x, z̃ + h(x), 0)

]
≤ εγ1Φ2(z̃) + εβ2Ψ(x)Φ(z̃)

(v) [∂W
∂x
− ∂W

∂z̃

∂h

∂x

]
f(x, z̃ + h(x)) ≤ β3Ψ(x)Φ(z̃) + γ2Φ2(z̃)

Using conditions (i) through (v), (B.8) becomes

ν̇ =− (1− d)α1Ψ2(x) + [(1− d)β1 + dβ2 + dβ3] Ψ(x)Φ(z̃) (B.9)

− d
[α2

ε
− (γ1 + γ2)

]
Φ2(z̃)

or rearrange to get

ν̇ = −ΓT (x, z̃)KΓ(x, z̃) (B.10)

where

Γ(x, z̃) =

 Ψ(x)

Φ(z̃)

 (B.11)

and

K =

 (1− d)α1 −1
2

[(1− d)β1 + dβ2 + dβ3]

−1
2

[(1− d)β1 + dβ2 + dβ3] d
[
α2

ε
− (γ1 + γ2)

]
 (B.12)

The inequality (B.10) is quadratic in Γ(x, z̃) and thus negative definite whenever the

determinant of matrix K is positive. This implies

d(1− d)α1

[α2

ε
− (γ1 + γ2)

]
>

1

4
[(1− d)β1 + dβ2 + dβ3]2 (B.13)
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Figure B.1: Sketch of the upper-bound ε∗ as a function of the parameter d

or whenever

ε <
α1α2

(γ1 + γ2)α1 + 1
4d(1−d)

[(1− d)β1 + dβ2 + dβ3]2
= ε∗(d) (B.14)

The upper bound ε∗(d) depends on the free parameter d and this dependence is

sketched in Figure B.1. The bound takes on maximum value

ε∗ =
α1α2

γ1 + γ2)α1 + β1(β2 + β3)
(B.15)

for d = β1
β1+β2+β3

. This condition implies that for all ε < ε∗ the origin of the singularly

perturbed model (B.6) or equivalently (B.1) is asymptotically stable in the domain

x ∈ Dx and z ∈ Dz and for d1 < d < d2.

Finally, it must be mentioned conditions (iii) through (v) are generally called the

interconnection or interaction conditions. These conditions will be satisfied if the
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underlying Lyapunov functions V and W are quadratic that is their partials satisfy

∥∥∥∥∂V∂x

∥∥∥∥ ≤ k1Ψ(x) (B.16a)∥∥∥∥∂W∂x

∥∥∥∥ ≤ k2Φ(z̃) (B.16b)∥∥∥∥∂W∂z̃

∥∥∥∥ ≤ k3Φ(z̃) (B.16c)

Furthermore, the vector fields are Lipschitz

‖f(x, z̃ + h(x))− f(x,h(x))‖ ≤ k4Φ(z̃) (B.17a)

‖f(x,h(x))‖ ≤ k5Ψ(x) (B.17b)

‖g(x, z̃ + h(x), ε)− g(x, z̃ + h(x), 0)‖ k6Φ(z̃) (B.17c)

For an exhaustive discussion about quadratic Lyapunov functions and their use for

stability, the reader is referred to texts [9] and [60].
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APPENDIX C

NONLINEAR F/A-18 HORNET AIRCRAFT MODEL

The nonlinear mathematical model of the aircraft are represented by the following

dynamic and kinematic equations:

Ṁ =
1

mvs

[
Tmη cosα cos β − 1

2
CD (α, q, δe) ρvs

2M2S −mg sin γ

]
(C.1a)

α̇ = q − 1

cosβ
{(p cosα + rsinα) sinβ} (C.1b)

− 1

cos β

{ 1

mvsM

[
Tmη sinα +

1

2
CL(α, q, δe)ρvs

2M2S

− mg cosµ cos γ
]}

β̇ =
1

mvsM

[
−Tmη cosα sin β +

1

2
CY (β, p, r, δe, δa, δr) ρvs

2M2S (C.1c)

+ mg sinµ cos γ] + (p sinα− r cosα)

ṗ =
Iy − Iz
Ix

qr +
1

2Ix
ρvs

2M2SbCl (β, p, r, δe, δa, δr) (C.1d)

q̇ =
Iz − Ix
Iy

pr +
1

2Iy
ρvs

2M2ScCm(α, q, δe) (C.1e)

ṙ =
Ix − Iy
Iz

pq +
1

2Iz
ρvs

2M2SbCn(β, p, r, δe, δa, δr) (C.1f)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (C.1g)

θ̇ = q cosφ− r sinφ (C.1h)

ψ̇ = (q sinφ+ r cosφ) sec θ (C.1i)

Wind axes orientation angles µ and γ are defined as follows:

sin γ = cosα cos β sin θ − sin β sinφ cos θ − sinα cos β cosφ cos θ(C.2a)

sinµ cos γ = sin θ cosα sin β + sinφ cos θ cos β − sinα sin β cosφ cos θ (C.2b)

cosµ cos γ = sin θ sinα + cosα cosφ cos θ (C.2c)
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In order to write the equations in the form of (4.65a) and (4.65b),

f11(x,M, θ, φ) =


− 1
mvsM cosβ

[
1
2
CL(α)ρvs

2M2S −mg cosµ cos γ
]

1
mvsM

[
1
2
CY (β) ρvs

2M2S +mg sinµ cos γ
]

0

 (C.3)

f12(x, θ, φ) =


−cosα tan β 1 − sinα tan β

sinα 0 − cosα

0 sec θ sinφ cosφ sec θ

 (C.4)

f2(x,M) =


− 1

2m cosβ
ρvsMSCLδe 0 0

0 1
2m
CYδaρvsMS 1

2m
CYδrρvsMS

0 0 0

 (C.5)

g11(z) =


Iy−Iz
Ix

qr

Iz−Ix
Iy

pr

Ix−Iy
Iz

pq

 (C.6)

g12(x,M) =


1

2Ix
ρvs

2M2SbCl (β)

1
2Iy
ρvs

2M2ScCm(α)

1
2Iz
ρvs

2M2SbCn(β)

 (C.7)
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g13(x,M) =


1

2Ix
ρvs

2M2SbClp 0 1
2Ix
ρvs

2M2SbClr

0 1
2Iy
ρvs

2M2ScCmq 0

1
2Iz
ρvs

2M2SbCnp 0 1
2Iz
ρvs

2M2SbCnr

 (C.8)

g2(x,M) =


0 1

2Ix
ρvs

2M2SbClδa
1

2Ix
ρvs

2M2SbClδr

1
2Iy
ρvs

2M2ScCmδe 0 0

0 1
2Iz
ρvs

2M2SbCnδa
1

2Iz
ρvs

2M2SbCnδr

 (C.9)
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