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Electron transport in normal-metal/superconductor junctions
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On the basis of the Keldysh method of nonequilibrium systems, we develop a theory of electron tunneling
in normal-metal—superconductor junctions. By using the tunneling Hamiltonian nitoeiely appropriate for
the tight-binding systemsthe tunneling current can be exactly obtained in terms of the equilibrium Green
functions of the normal metal and the superconductor. We calculate the conductance of various junctions. The
discrepancy between the present treatment and the well-known scheme by Blonder, Tinkham, and Klapwijk is
found for some junctions of low interfacial potential barrier.

I. INTRODUCTION Il. FORMALISM

We consider a junction consisting of a normal metal on
One of the powerful methods of detecting the quasipartithe left side and a superconduct®C) on the right side. In
cle states in a superconductor is to measure the conductand® Nambu representation, the tunneling Hamiltonian de-
of a junction made up of a normal-metal and a superconscribing the electron-transport processes in the junction is
ductor (NS). There have been developed many theories dediven by
scribing the electron-tunneling phenomenon. In the case of

the h|gh interfacial potent|al-b§1rr_|er I|m|t., the Ilnear—response Ho= 2 (C;r-T-”CIJrCIT-Al-”Cr)’ 1)
theory is a well-known descriptiohBut it is not valid for r

describing the electron transport in the low potential-barrier i ) ) ) )
limit. wherec; =(c;; ,c; ) is the field operator for particles in the

To calculate the conductance in more general casesight superconductor, angf is similarly defined for the left
Blonder, Tinkham, and KlapwijKBTK) have developed a metal,'T'H='T'frr=t0(|yr—y||)a3, andy, andy, are, respec-
theory by supposing that the system is in such a nonequilibtively, the coordinates of the sitesandl along the interface.
rium state that only the incoming particles have equilibriumTher andl summations in Eq(1) run over the edgéinter-
distributions? This theory has been widely used for analyz-face sites on the two sides of the junction, respectively. The
ing the tunneling phenomena in various NS junctions, andunctionto(|y,—y;|) may be taken as real. For simplicity of
also has been extended for investigating electronic tunnelinffescription, we suppose that the lattice sifgsalong the
in Josephson junctions. edge are equally spaced the samdlasSuppose there is a

When a finite voltage is applied to a junction, the electronvoltageV appligd b.etween the junction, the total Hamiltonian
transport in the junction is a nonequilibrium process. WePf the system is given by
would like to consider the case when the current passing
through the junction is a constant. The electron transport

process is then a steady state. Such a nonequilibrium profnere 1 and H, are the intrinsic Hamiltonians of the left
lem can be solved by the Keldysh approéd!m. fact, this  metal and the right superconductor, respectively, Binds
approach has been applied by a number of investigators fqpe total electron number of the left metal. We here adopt the
studying the tunneling in junctions of normal metdiaind tight-binding model forH, which contains a hopping term
the electron transport under impurity scatterfing. and an attraction term. Fdd,, we keep only the hopping

In this paper, we present a tunneling theory along thigerm.
direction. We will start with a tunneling-Hamiltonian model To define the tunneling-current operator, we first consider
defined in a square lattice. This model is appropriate for thehe charge operator for the right SC. Apart from a constant, it
tight-binding systems. The tunneling current can be exactl¢can be written as
obtained in terms of the equilibrium Green functions of the
normal metal and the superconductor. By so doing, all the T
effects of external voltage on the tunneling current can be Q= _ezr: Cr 3Gy - )
rigorously taken into account. Moreover, it can be extended
to study the tunneling in the point-contact junctions as in theThe operator of the current through the junction from left to
scanning-tunneling microscope measurement. right is then obtained as

H=H%+H;=H,—eVN+H,+H, ()
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. . . where7 is the Keldysh time-ordering operator.
| =i[H,Q]=ie|E (closThci—c/ Ty oac,). 4 With the above definitions, the current under the statisti-
' cal average can be expressed as
Now, let us choose the unperturbed state described oy

as our reference system. This reference system consists of I=e>, ReTrosT,(1)G(t,1). (10)
the unperturbed normal metal and the SC on two sides of the
junction, each of them in its own equilibrium state. For the
purpose of employing the grand canonical ensembles, we u
Ki=H,—(u,+eV)N, and K,=H,—u,N, to describe the
normal metal and the SC, respectively. Heig and i, are,
respectively, the chemical potentials of the normal metal an(ge
the SC, and\, is the total number of electrons in the SC. At
the steady state, we haye = u,+eV in order to maintain
charge neutrality in the bulk of each side. To calculate th
statistical average of a physical quantity, we need to writ
the related operators in the interaction picture. An operator o

physical quantity, e.g., the curreh(t), in the interaction
picture at timet is defined as

To calculate the current, we need to know the Green'’s func-

Sfon G (t,t). It can be determined from the Dyson equa-

tions.

Let L andR denote the Green’s functiortas 4x 4 matri-

9 for the left metal and the right SC, respectivéhith the

superscript 0 for the unperturbed oheBy assuming that the

system is uniform along the direction parallel to the inter-

ace, we can then work in the momentum space. Here, the
omentum is parallel to the interface. The Dyson equations

Gy(t,t')= f dtLR(tt) TR (t)R(ty ), (1D)
T(t)=exp(iH )1 exp( —iH®t).
" — p0 ’
This operator can be further rewritten in terms of the field Re(t,") =R (1,t")
operators,

f dtlf dt,RY(t,t1) S (g, 1) Re(to,t'),

1(t)=—2elm ; cl(t)yasTh(te(t), (5) 12

wherecT(t) exp(K t)c exp(—iK,t) [and a similar definition St ) =TSt Lty 1) TE (), (13
for c,(t)], Ty (t) = T ()= T, exp{eVios). The form fori (t)
as given by Eq(5) is convenient for the statistical average Where Ti(t) =, T, exp(eVioy), Ti=to(k)s, and the range

over the grand canonical ensembles. Similarly, the tunnelin§f time mtegrals is from—o to «. Note that the Green'’s
Hamiltonian can be written as functionL(t; ,t,) = LR(t;—t,) consists of four diagonal ma-

trices. The factors ex@\Vto3) and expieVihos) commute

with the matrix Lp(t;,t,). The self energy3,(t;,t,)

=3,(t1—ty), and thereby the Green’s functioR(t,t")

=Ry (t—t") are functions of time difference. We can, there-
For applying the Keldysh method, it is convenient to de-fore, take the Fourier transformation of the Dyson equations.

fine the field operator, In the frequency space, these equations have the usual forms

except
sl =[cl(t,),clt)], (7)

_T¢C 0 ct
where the subscript$ and — on timet mean the operators 2 @) =T O)L (0 +eVoy)Ty (0), (14
defined in the time branches-¢0,) and (<, — =), respec-  With the help of the Dyson equations, we can write the fac-
tively. Accordingly, we define a perturbation Hamiltonian, or 5,7, (1)G, (t,t) in the expression of as

HT<t)=; [clOTh(Wem+c/(OT (e ()], (6)

t)=; [$/(DTRDS(D)+ S (TR ()], () ; 7,06, (1,1) 2 f 5T S ()R (w). (15
where Inserting Eq.(15) into Eq.(10) and taking the trace of time-
A branch space, we have
rl(t) 0 ~
I(t) 0 ~ ETzTrI(t)- (9)
—Tu(t) |—e2 —t0 Re TrosM ;. (L{R® +LOR()M _

The matrix 7, is the third Pauli matrix defined in the space
corresponding to the two time branches. To distinguish with
that, we reserver; as the third Pauli matrix defined in the with
particle-hole space. The Green function is defined as

Gij(t,t")=—i(T[S;hi(t) B/ (1)]),

(16)

M.=[1-t3L2R2]71,
L¢=tanH (o +eVo3)/2kgT](L2 — L),

Se=T exf{ ml detHc(t)}’ R;=tanH w/2ksT)(R% —R),
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LS =L2"=L Kk, 0 +eVos+i0), Ey.= +E(q, k)= = Ve¥(q, k) +A%q, k), (20

R3=R9T= RO(K,w+i0). where ¢%'s are the plane-wave sqlution to the infinite sys-
tem, e(q,k) = — 4t cosgcosk—u (with u the chemical po-
HereL® andR% (L° andR°) are the retarde¢advanceyl  tentia), A(q,k)=—4A singsink. The coefficientsa,,,, are
Green'’s functiongas 2x< 2 matrices in the Nambu spgoaf determined by the boundary conditionjat 1. The summa-
equilibrium stateL; and R; are the Keldysh functiong?  tion overa in Eq. (19) runs over all the outgoing compo-
=|to(k)|?, kg is the Boltzmann constant, an@l is the hents with E(q,.k)=E(q, k). It is worth noticing that
temperature of the system. By noting the relationshipgsometimes we may have complgy’s, the summation then

Ry (k,— 0)=—0yR_(k,w) 0y, L. (K,—w+eVos) should be taken at thosg,’s corresponding to decaying
=—o0,5L _(k,o+eVoj)o,, itis enough to only take the fre- Wwaves. . .
quency integral in Eq(16) in the range (0¢). The front The number of the bound states is determined by the

factors in the Keldysh functions take part of the roles ofLevinson theorerd.Under the assumption that the order pa-
quasiparticle distribution functions. The additional termrameter is constant, we only have the state Vith=0 for

— eV reflects the chemical potential shifts of the quasipareach |k|<kn, (ky is very close to the Fermi wave
ticles in the left metal. numbeyj.®1° For E,=0, it can be shown that the two com-

ponentsu,(j) anduv,(j) satisfy the relation

ll. GREEN'S FUNCTIOSI\_I;_(I_)I; THE EQUILIBRIUM () =iNuj), A=+1. 21)
Supposeu,(j)=2" with z (|z]<1) a complex quantity for
the general solution. Correspondingzave have a complex
numberg=—iIn(2). The equationE(q,k)=0 determining
the eigenvalue reduces to

To calculate the tunneling currehtwe need to know the
Green’s functiond.? andR°. If we know the wave functions
¢, and energieg,, of the quasiparticles, e.g., for the SC, we
can obtainR® by

t(z+z Ycosk+N(z—z YA sink+u/2=0. (22

Yt
RO(k,w):; wi—Enn (17)  The solutions to Eq(22) are
— 2 2
where ¢, takes the edge value. Since we have taken the z.=[~p=Nu?=(ci—cy)ll(cit\ey), (23

Fourier transformation for the dependence on the coordinategnere ¢, =4t cosk and c,=4A sink. Note z,z_=(c;
parallel to the interface, the wave functign(j) depends on  _\c.)/(c,+\c,), therefore,\=sgnk) whereby |z, z_|
the x coordinates(normal to the edgeof lattice sites,] <1. The wave function is given by

={1,2,...}; the edge value ig(1).

For illustration, we here considerdawave SC and sup- ue(j)=(2, =2 )INy, (24)
pose that the order parameter is constant everywhere. The 5 S S
wave functions can be determined analytically by thewith Ni=2[(1—z:[9) "+ (1-[z-|9) " -2 Re(1

Bogoliubov—de Genne8dG) equation. As an example, we —z*z_) "] the normalization constant. This wave function
consider the tight-binding model defined in a semi-infinitesatisfies the boundary conditionsjat 1 andj— o provided
square lattice with 411} edge. The BdG equation redds |z.|<1.If ,u2<(c§—c§), thenz, andz_ are complex con-
jugates of each other, arld.|<1. On the other hand, if
,u2>(c§—c§), both of them are real. In this case, there may
be no bound state unless bdth |<1.
_ ) With the knowledge of the wave functions, the Green'’s
where Hjj=—uo3, Hjj_1=—2tcoskos—i2Asinke; for  fynction R® can be calculated by Eq17). As for L° of the
]=2,Hjj+1= — 2t coskas+i2A sinko, otherwiseH;;=0,t  normal metal, it contains only the continuum states. The
is the hopping energy of electrons between nearest-neighbgfave functions can be obtained immediately from Edp)
sites, andA is the order parameter. Here, we have used th%y settingA=0. The resulted Green’s function is given by
unit \/2/a (with a the lattice constaitfor the momentunk,
andk is confined to a Brillouin zone-{ 7/2,7/2). There are 0 2 (m sif g
two kinds of solutions to Eq:18): The continuum states and L(k,w)= ;J; dqm. (29)
the surface bound states.

The continuum states are generally degenerate. To distin-
guish them, we can consider each eigenwave function con- V. COMPARISON WITH THE BTK THEORY

tains a unique incoming wave component or a unique outgo- opyiously, the present treatment is a nonperturbative

ing wave component. We then characterize the wavgneory. |t takes into account all the effects of the voltage
function by the incoming wave numbey, or the outgoing ithin the model. At this point, it is instructive to compare
wave numben, . For example, the wave function and en- o theory with the BTK theory. In the BTK model, only the

ergy of stateq,, can be written as incoming particles in each side of the junction are described
by the equilibrium distributions with the chemical potential

|0 iy 0 : shift of the left metal due to the external voltage. But, the

V(D= icull) % Auathall) 2, 19 outgoing particles are not described by the equilibrium dis-

; Hij #n(i)=Enin(i), (18)
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tributions. The quasiparticle states in the whole system are 0.7 . T .
determined by the Bogoliubov—de Gennes equation that is
independent of the external voltage. The tunneling current is
calculated as the result of the current by the incident particles
from the left metal minus that from the right SC. In contrast,

in the present consideration, the particle distributions are re- 0.5
ferred to the reference system. Since in the interaction pic-

ture, the tunneling Hamiltonian depends on time, there can-

not be quasiparticle states for the whole system. Each state in © 0.4
both sides of the junction has its lifetime because of the
nonequilibrium process between the interface. From the
Green’s function, the lifetime of a quasiparticle is deter-

0.3 N|D {100} |

mined by the inverse of the imaginary part of the self-energy. t/t=05

In this approach, the transport process is treated by the 0.2 - 0 .
equivalent of time-dependent perturbation theory to all or- T=0

ders, which leads to lifetimes. The electron transport is the

process of quasiparticles decaying. On the other hand, in the 0-1_2 '1 (') 1' 5

BTK model, the transport process is treated by the time-

independent perturbation theory to all orders, which deter- eV/A,

mines the quasiparticle states in the whole system, with in-

finitive lifetimes for the continuum states. Therefore, the FIG. 1. Conductancg as a function of the voltagé for an NS

mechanisms of electron transport through the junction by théd-wave junction with {100} interface aff=0 andt,/t=0.5. The

two theories are very different. present calculatiorisolid line) is compared with the BTK result
For numerical comparison, we need to present the BTKdashed ling

scheme in the lattice model. The basic work in the scheme is

to solve the BdG equation for the wave functions of quasithe hopping term. We assume that the hopping energies of

particles in the whole system. An eigenwave function charboth sides of the junction are the same. For simplicity, we

acterized by an incoming wave in the left metal can be writ-choose the tunneling matrix elementtgék) =t,,.

ten as the incoming wave plus all the reflected waves The numerical result for the normalized conductance as a

(including the Andreev and the ordinary reflectipngith the  function of V for an NS @d-wave junction with {100} inter-

transmitted waves in the right SC including all the outgoingface atT=0 is shown in Fig. 1. The tunneling parameter

waves. One needs only then consider the boundary conditio /t=0.5 is used. Though the interfacial potential barrier at

at the interface barrier. By denoting the wave functions in thehis parameter is not very high, the agreement between BTK

left and right sides, respectively, by(j) with j={—1, and the present theories is very good. A sniglimeans a

—2,...}andy(j) with j={1,2, .. .}, the BdG equation at high interfacial potential barrier. At the high potential barrier

the interface barrier reads limit, both theories reproduce the linear response rd4dylt
. However, atty/t=1 corresponding to a weak barrier, the
Hogoth(=2)+H 1 1 (= 1)+ Ty (1) =Eh(— 1), discrepancy is clear as shown in Fig. 2. At weak barrier and
(263 small voltage|eV|<A,, the Andreev reflection is the pre-
T (= 1) +Hy 1 (1) +Hy o (2)=Ey(1). (26b) 20 : : :
Equationg26a and(26b) are nothing but the boundary con-
ditions. With the wave functions, one can immediately cal- N|D {100}
culate the tunneling current according to the BTK theory.
To see the difference between the present and the BTK A fft=1
theories, we have carried out the numerical calculations of 15 F / N\ T=0 -
the tunneling conductance / \
G= al 2 ©
for normal-metald-wave superconductor junctions with 1.0
{110 and {100 interface at various barrier strengths. For
presentation, we normaliz® by Ne?/« (A=1) with N be-
ing the total number of the lattice sites on one side of the Present
interface. The basic parameters for the SCtar&d76 meV,
hole concentratio®=0.15, attractive potential between the 0.5 : : :
nearest-neighbor sites= 124 meV. The transition tempera- 2 -1 0 1 2
ture T, and the order parametek, are obtained asl, eV/A,

=90 K, and Ay=4A|;_,=16.7 meV, respectively. As
stated before, the Hamiltonian of the left metal contains only FIG. 2. The same as Fig. 1 butit/t=1.
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20 T T T 18 T T T
N|D {110} . _
o Present 16 L N|S {100} i BTK
fft=1 o BTK et | — Approx.
/= ' | ~o- Present
15 14 T=0 [ | s
l
l
Q)
1.0
0 5 1 1 1 0 6 | | |
-2 -1 0 1 2 -4 -2 0 2 4
eV/A, eV/A,
FIG. 3. Conductanc® as a function of the voltagé for an NS FIG. 4. Conductanc& as a function of the voltage for an NS

(d-wave junction with {110 interface afT=0 andty/t=0.5. The  (conventional STjunction with {100} interface atT=0 andty/t

present calculation(circles is compared with the BTK result =1. The present calculatiofotted line with circlesis compared

(squares with the BTK (dashed ling and the approximategsolid line) re-
sults.

dominant contribution to the conductance in the BTK theory.. . . )
Under the present assumption, however, the transport is dugnctions. Figure 4 shows the result for an NSwave junc-
to the decay of quasiparticles in both sides. Such a decayingPn With 1100 interface afT=0 andt,/t=1. The param-
process is more complex than the BTK picture. The differ-€ters for the SC are, the chemical potenjat — 0.3, the

ence between the two theories at snaW] is mainly due to ~ ON-Site pairing parametek,=0.02. The conductance pre-
the different treatment of the tunneling Hamiltonigire., ~ dicted by the present theory is only about 78% of that of

time-dependent vs time-independent perturbation theory BTK for |e\(|/40s1 where the conductance is almost a con-
The voltage effect inL® is important only at largdeVl, sFar)t. Qualltatl_vely, the electron-trangport in this Jl,!nCtIOﬂ is
because the relevant dimensionless parameter is the rafgMilar to that in the NSd-wave junction with {100 inter-
eVIE (with E the Fermi energy of the left mejalThe  face. The explanation for Fig. 2 applies here.
voltage effect is more evident &t<0 than atv>0, because
more precisely the parameter is actuayw/(E-+eV)|. At V. AN APPROXIMATION SCHEME
negative voltage, the chemical potential of the left metal 0
shifts upward, resulting in electrons right below the Fermi When eV/Eg<1, the dependence &f” on th(? external
surface within the energy rang&{+eV,E;) transferring Voltage is very weak. We can then drely in L. By this
into the right SC. At positive voltage, the states in the energy#PProximation, the conductan€®is given by
range Eg,E-+eV) in the left metal are available for the g
electrons in the right SC to transfer in. _ * lo , 0 0

In Fig. 3, we show the results for the junctions witig ~ C —2e2; _opl T IMR-M_osM.JosimL.g,
interface at,/t=1. In this case, the results by both theories (29
are in excellent agreement. The agreement is even better at
smallerty. At |[eV|<A,, the conductanc& is given by a  where g=cosh 7 (w+03eW)/2kgT]/2kgT is the only fact
broadened zero-bias peak. Actually, there are zero-energyhich depends orV. In Fig. 4, the result by Eq28) is also
bound states in the right SC near the interface, with lifetimeplotted. At small voltage, the approximation is in very good
due to tunneling. The tunneling current is predominantlyagreement with our main theory. However, at large voltage,
conducted by these states. The width of the broadening ithe approximation reproduces the BTK result. This clearly
mainly determined by the tunneling parameigrather than  shows that the discrepancy between our main theory and the
by the external voltage. Because of the existence of thesBTK theory at small voltage is not due to the voltage effect
states, the particle transmission through the junction foin L°. In the case 0&V/EL<1, Eq.(28) is a simple but good
leV|<A, is a resonant process. These resonance states exs&theme for calculation of the conductance.
in the BTK model as well. At least a&V=0, both theories
produce the same resonance states with the same energy
broadening. Therefore, we can understand the excellent
agreement neaV=0. In summary, on the basis of the Keldysh approach, we

The discrepancy between the two theories is even morhave developed a theory of electron transport in normal-
clear for the normal-metal-conventional-superconductometal—superconductor junctions to all orders in the applied

VI. SUMMARY
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voltage and the barrier strength. In the present scheme, thheories agree with each other. However, for some junctions
tunneling current is given in terms of renormalized Green’sof low barrier strength, the discrepancy between the two
functions of a steady state. It can give a reliable descriptioftheories can be sizable.
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