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Electron transport in normal-metal Õsuperconductor junctions
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On the basis of the Keldysh method of nonequilibrium systems, we develop a theory of electron tunneling
in normal-metal–superconductor junctions. By using the tunneling Hamiltonian model~being appropriate for
the tight-binding systems!, the tunneling current can be exactly obtained in terms of the equilibrium Green
functions of the normal metal and the superconductor. We calculate the conductance of various junctions. The
discrepancy between the present treatment and the well-known scheme by Blonder, Tinkham, and Klapwijk is
found for some junctions of low interfacial potential barrier.
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I. INTRODUCTION

One of the powerful methods of detecting the quasipa
cle states in a superconductor is to measure the conduct
of a junction made up of a normal-metal and a superc
ductor ~NS!. There have been developed many theories
scribing the electron-tunneling phenomenon. In the case
the high interfacial potential-barrier limit, the linear-respon
theory is a well-known description.1 But it is not valid for
describing the electron transport in the low potential-bar
limit.

To calculate the conductance in more general ca
Blonder, Tinkham, and Klapwijk~BTK! have developed a
theory by supposing that the system is in such a nonequ
rium state that only the incoming particles have equilibriu
distributions.2 This theory has been widely used for analy
ing the tunneling phenomena in various NS junctions, a
also has been extended for investigating electronic tunne
in Josephson junctions.3

When a finite voltage is applied to a junction, the electr
transport in the junction is a nonequilibrium process. W
would like to consider the case when the current pass
through the junction is a constant. The electron transp
process is then a steady state. Such a nonequilibrium p
lem can be solved by the Keldysh approach.4 In fact, this
approach has been applied by a number of investigators
studying the tunneling in junctions of normal metals5,6 and
the electron transport under impurity scattering.7

In this paper, we present a tunneling theory along t
direction. We will start with a tunneling-Hamiltonian mod
defined in a square lattice. This model is appropriate for
tight-binding systems. The tunneling current can be exa
obtained in terms of the equilibrium Green functions of t
normal metal and the superconductor. By so doing, all
effects of external voltage on the tunneling current can
rigorously taken into account. Moreover, it can be extend
to study the tunneling in the point-contact junctions as in
scanning-tunneling microscope measurement.
PRB 610163-1829/2000/61~21!/14759~6!/$15.00
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II. FORMALISM

We consider a junction consisting of a normal metal
the left side and a superconductor~SC! on the right side. In
the Nambu representation, the tunneling Hamiltonian
scribing the electron-transport processes in the junction
given by

HT5(
lr

~cr
†T̂rl cl1cl

†T̂lr cr !, ~1!

wherecr
†5(cr↑

† ,cr↓) is the field operator for particles in th
right superconductor, andcl

† is similarly defined for the left

metal, T̂rl 5T̂lr
† 5t0(uyr2yl u)s3, and yr and yl are, respec-

tively, the coordinates of the sitesr andl along the interface.
The r and l summations in Eq.~1! run over the edge~inter-
face! sites on the two sides of the junction, respectively. T
function t0(uyr2yl u) may be taken as real. For simplicity o
description, we suppose that the lattice sites$r% along the
edge are equally spaced the same as$ l %. Suppose there is a
voltageV applied between the junction, the total Hamiltonia
of the system is given by

H5H01HT[Hl2eVNl1Hr1HT , ~2!

whereHl and Hr are the intrinsic Hamiltonians of the lef
metal and the right superconductor, respectively, andNl is
the total electron number of the left metal. We here adopt
tight-binding model forHr which contains a hopping term
and an attraction term. ForHl , we keep only the hopping
term.

To define the tunneling-current operator, we first consi
the charge operator for the right SC. Apart from a constan
can be written as

Q52e(
r

cr
†s3cr . ~3!

The operator of the current through the junction from left
right is then obtained as
14 759 ©2000 The American Physical Society
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Î 5 i @H,Q#5 ie(
lr

~cr
†s3T̂rl cl2cl

†T̂lr s3cr !. ~4!

Now, let us choose the unperturbed state described byH0
as our reference system. This reference system consis
the unperturbed normal metal and the SC on two sides of
junction, each of them in its own equilibrium state. For t
purpose of employing the grand canonical ensembles, we
Kl5Hl2(m l1eV)Nl and Kr5Hr2m rNr to describe the
normal metal and the SC, respectively. Here,m l andm r are,
respectively, the chemical potentials of the normal metal
the SC, andNr is the total number of electrons in the SC. A
the steady state, we havem r5m l1eV in order to maintain
charge neutrality in the bulk of each side. To calculate
statistical average of a physical quantity, we need to w
the related operators in the interaction picture. An operato
physical quantity, e.g., the currentÎ (t), in the interaction
picture at timet is defined as

Î ~ t !5exp~ iH 0t ! Î exp~2 iH 0t !.

This operator can be further rewritten in terms of the fie
operators,

Î ~ t !522e Im (
lr

cr
†~ t !s3T̂rl ~ t !cl~ t !, ~5!

wherecr
†(t)5exp(iKrt)cr

† exp(2iKrt) @and a similar definition

for cl(t)#, T̂rl (t)5T̂lr
† (t)5T̂rl exp(ieVts3). The form forÎ (t)

as given by Eq.~5! is convenient for the statistical averag
over the grand canonical ensembles. Similarly, the tunne
Hamiltonian can be written as

HT~ t !5(
lr

@cr
†~ t !T̂rl ~ t !cl~ t !1cl

†~ t !T̂lr ~ t !cr~ t !#. ~6!

For applying the Keldysh method, it is convenient to d
fine the field operator,

f r
†~ t !5@cr

†~ t1!,cr
†~ t2!#, ~7!

where the subscripts1 and2 on time t mean the operator
defined in the time branches (2`,`) and (̀ ,2`), respec-
tively. Accordingly, we define a perturbation Hamiltonian

Hc~ t !5(
lr

@f r
†~ t !Trl

c ~ t !f l~ t !1f l
†~ t !Tlr

c ~ t !f r~ t !#, ~8!

where

Trl
c ~ t !5S T̂rl ~ t ! 0

0 2T̂rl ~ t !
D [tzT̂rl ~ t !. ~9!

The matrixtz is the third Pauli matrix defined in the spac
corresponding to the two time branches. To distinguish w
that, we reserves3 as the third Pauli matrix defined in th
particle-hole space. The Green function is defined as

Gi j ~ t,t8!52 i ^T @Scf i~ t !f j
†~ t8!#&,

Sc5T expF2 i E
2`

`

dtHc~ t !G ,
of
e
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d

e
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whereT is the Keldysh time-ordering operator.
With the above definitions, the current under the stati

cal average can be expressed as

I 5e(
lr

Re Trs3T̂rl ~ t !Glr ~ t,t !. ~10!

To calculate the current, we need to know the Green’s fu
tion Glr (t,t). It can be determined from the Dyson equ
tions.

Let L andR denote the Green’s functions~as 434 matri-
ces! for the left metal and the right SC, respectively~with the
superscript 0 for the unperturbed ones!. By assuming that the
system is uniform along the direction parallel to the inte
face, we can then work in the momentum space. Here,
momentum is parallel to the interface. The Dyson equati
are

Gk~ t,t8!5E dt1Lk
0~ t,t1!Tk

c†~ t1!Rk~ t1 ,t8!, ~11!

Rk~ t,t8!5Rk
0~ t,t8!

1E dt1E dt2Rk
0~ t,t1!Sk~ t1 ,t2!Rk~ t2 ,t8!,

~12!

Sk~ t1 ,t2!5Tk
c~ t1!Lk

0~ t1 ,t2!Tk
c†~ t2!, ~13!

whereTk
c(t)5tzT̂k exp(ieVts3), T̂k5t0(k)s3, and the range

of time integrals is from2` to `. Note that the Green’s
functionLk

0(t1 ,t2)5Lk
0(t12t2) consists of four diagonal ma

trices. The factors exp(ieVt1s3) and exp(ieVt2s3) commute
with the matrix Lk

0(t1 ,t2). The self energySk(t1 ,t2)
5Sk(t12t2), and thereby the Green’s functionRk(t,t8)
5Rk(t2t8) are functions of time difference. We can, ther
fore, take the Fourier transformation of the Dyson equatio
In the frequency space, these equations have the usual f
except

Sk~v!5Tk
c~0!Lk

0~v1eVs3!Tk
c†~0!. ~14!

With the help of the Dyson equations, we can write the fa
tor ( rl T̂rl (t)Glr (t,t) in the expression ofI as

(
rl

T̂rl ~ t !Glr ~ t,t !5(
k
E

2`

` dv

2p
tzSk~v!Rk~v!. ~15!

Inserting Eq.~15! into Eq. ~10! and taking the trace of time
branch space, we have

I 5e(
k
E

2`

` dv

2p
t0
2 Re Trs3M 1~L fR2

0 1L1
0 Rf !M 2

~16!

with

M 65@12t0
2L6

0 R6
0 #21,

L f5tanh@~v1eVs3!/2kBT#~L1
0 2L2

0 !,

Rf5tanh~v/2kBT!~R1
0 2R2

0 !,
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L1
0 5L2

0†5L0~k,v1eVs31 i0!,

R1
0 5R2

0†5R0~k,v1 i0!.

HereL1
0 andR1

0 (L2
0 andR2

0 ) are the retarded~advanced!
Green’s functions~as 232 matrices in the Nambu space! of
equilibrium state,L f and Rf are the Keldysh functions,t0

2

5ut0(k)u2, kB is the Boltzmann constant, andT is the
temperature of the system. By noting the relationsh
R1(k,2v)52s2R2(k,v)s2 , L1(k,2v1eVs3)
52s2L2(k,v1eVs3)s2, it is enough to only take the fre
quency integral in Eq.~16! in the range (0,̀ ). The front
factors in the Keldysh functions take part of the roles
quasiparticle distribution functions. The additional ter
2eVs3 reflects the chemical potential shifts of the quasip
ticles in the left metal.

III. GREEN’S FUNCTIONS OF THE EQUILIBRIUM
STATE

To calculate the tunneling currentI, we need to know the
Green’s functionsL0 andR0. If we know the wave functions
cn and energiesEn of the quasiparticles, e.g., for the SC, w
can obtainR0 by

R0~k,v!5(
n

cncn
†

v2En
, ~17!

where cn takes the edge value. Since we have taken
Fourier transformation for the dependence on the coordin
parallel to the interface, the wave functioncn( j ) depends on
the x coordinates~normal to the edge! of lattice sites, j
5$1,2, . . .%; the edge value iscn(1).

For illustration, we here consider ad-wave SC and sup
pose that the order parameter is constant everywhere.
wave functions can be determined analytically by t
Bogoliubov–de Gennes~BdG! equation. As an example, w
consider the tight-binding model defined in a semi-infin
square lattice with a$11% edge. The BdG equation reads8

(
j

Hi j cn~ j !5Encn~ i !, ~18!

where H j j 52ms3 , H j , j 21522t cosks32i2D sinks1 for
j >2, H j , j 11522t cosks31i2D sinks1, otherwiseHi j 50, t
is the hopping energy of electrons between nearest-neig
sites, andD is the order parameter. Here, we have used
unit A2/a ~with a the lattice constant! for the momentumk,
andk is confined to a Brillouin zone (2p/2,p/2). There are
two kinds of solutions to Eq.~18!: The continuum states an
the surface bound states.

The continuum states are generally degenerate. To di
guish them, we can consider each eigenwave function c
tains a unique incoming wave component or a unique ou
ing wave component. We then characterize the w
function by the incoming wave numberqm or the outgoing
wave numberqa . For example, the wave function and e
ergy of stateqm can be written as

ck,m~ j !5Fck,m
0 ~ j !2(

a
amack,a

0 ~ j !G /A2, ~19!
s

f
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Ek,m56E~qm ,k!56Ae2~qm ,k!1D2~qm ,k!, ~20!

wherec0’s are the plane-wave solution to the infinite sy
tem, e(q,k)524t cosqcosk2m ~with m the chemical po-
tential!, D(q,k)524D sinqsink. The coefficientsama are
determined by the boundary condition atj 51. The summa-
tion over a in Eq. ~19! runs over all the outgoing compo
nents with E(qa ,k)5E(qm ,k). It is worth noticing that
sometimes we may have complexqa’s, the summation then
should be taken at thoseqa’s corresponding to decaying
waves.

The number of the bound states is determined by
Levinson theorem.9 Under the assumption that the order p
rameter is constant, we only have the state withEn50 for
each uku<km (km is very close to the Fermi wave
number!.8,10 For En50, it can be shown that the two com
ponentsuk( j ) andvk( j ) satisfy the relation

vk~ j !5 iluk~ j !, l561. ~21!

Supposeuk( j )5zj with z (uzu,1) a complex quantity for
the general solution. Corresponding toz, we have a complex
numberq52 i ln(z). The equationE(q,k)50 determining
the eigenvalue reduces to

t~z1z21!cosk1l~z2z21!D sink1m/250. ~22!

The solutions to Eq.~22! are

z65@2m6Am22~c1
22c2

2!#/~c11lc2!, ~23!

where c154t cosk and c254D sink. Note z1z25(c1
2lc2)/(c11lc2), therefore, l5sgn(k) whereby uz1z2u
,1. The wave function is given by

uk~ j !5~z1
j 2z2

j !/Nk , ~24!

with Nk
252@(12uz1u2)211(12uz2u2)2122 Re(1

2z1* z2)21# the normalization constant. This wave functio
satisfies the boundary conditions atj 51 and j→` provided
uz6u,1. If m2,(c1

22c2
2), thenz1 andz2 are complex con-

jugates of each other, anduz6u,1. On the other hand, if
m2.(c1

22c2
2), both of them are real. In this case, there m

be no bound state unless bothuz6u,1.
With the knowledge of the wave functions, the Green

function R0 can be calculated by Eq.~17!. As for L0 of the
normal metal, it contains only the continuum states. T
wave functions can be obtained immediately from Eq.~18!
by settingD50. The resulted Green’s function is given b

L0~k,v!5
2

pE0

p

dq
sin2 q

v2e~q,k!s3
. ~25!

IV. COMPARISON WITH THE BTK THEORY

Obviously, the present treatment is a nonperturbat
theory. It takes into account all the effects of the volta
within the model. At this point, it is instructive to compar
our theory with the BTK theory. In the BTK model, only th
incoming particles in each side of the junction are describ
by the equilibrium distributions with the chemical potenti
shift of the left metal due to the external voltage. But, t
outgoing particles are not described by the equilibrium d
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tributions. The quasiparticle states in the whole system
determined by the Bogoliubov–de Gennes equation tha
independent of the external voltage. The tunneling curren
calculated as the result of the current by the incident parti
from the left metal minus that from the right SC. In contra
in the present consideration, the particle distributions are
ferred to the reference system. Since in the interaction
ture, the tunneling Hamiltonian depends on time, there c
not be quasiparticle states for the whole system. Each sta
both sides of the junction has its lifetime because of
nonequilibrium process between the interface. From
Green’s function, the lifetime of a quasiparticle is dete
mined by the inverse of the imaginary part of the self-ener
In this approach, the transport process is treated by
equivalent of time-dependent perturbation theory to all
ders, which leads to lifetimes. The electron transport is
process of quasiparticles decaying. On the other hand, in
BTK model, the transport process is treated by the tim
independent perturbation theory to all orders, which de
mines the quasiparticle states in the whole system, with
finitive lifetimes for the continuum states. Therefore, t
mechanisms of electron transport through the junction by
two theories are very different.

For numerical comparison, we need to present the B
scheme in the lattice model. The basic work in the schem
to solve the BdG equation for the wave functions of qua
particles in the whole system. An eigenwave function ch
acterized by an incoming wave in the left metal can be w
ten as the incoming wave plus all the reflected wa
~including the Andreev and the ordinary reflections!, with the
transmitted waves in the right SC including all the outgoi
waves. One needs only then consider the boundary cond
at the interface barrier. By denoting the wave functions in
left and right sides, respectively, byc l( j ) with j 5$21,
22, . . .% andc r( j ) with j 5$1,2, . . .%, the BdG equation a
the interface barrier reads

H21,22c l~22!1H21,21c l~21!1T̂k
†c r~1!5Ec l~21!,

~26a!

T̂kc l~21!1H1,1c r~1!1H1,2c r~2!5Ec r~1!. ~26b!

Equations~26a! and~26b! are nothing but the boundary con
ditions. With the wave functions, one can immediately c
culate the tunneling current according to the BTK theory

To see the difference between the present and the B
theories, we have carried out the numerical calculations
the tunneling conductance

G5
dI

dV
~27!

for normal-metal–d-wave superconductor junctions wit
$110% and $100% interface at various barrier strengths. F
presentation, we normalizeG by Ne2/p (\51) with N be-
ing the total number of the lattice sites on one side of
interface. The basic parameters for the SC aret5176 meV,
hole concentrationd50.15, attractive potential between th
nearest-neighbor sitesv5124 meV. The transition tempera
ture Tc and the order parameterD0 are obtained asTc
590 K, and D0[4DuT50516.7 meV, respectively. As
stated before, the Hamiltonian of the left metal contains o
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the hopping term. We assume that the hopping energie
both sides of the junction are the same. For simplicity,
choose the tunneling matrix element ast0(k)5t0.

The numerical result for the normalized conductance a
function of V for an NS (d-wave! junction with $100% inter-
face atT50 is shown in Fig. 1. The tunneling paramet
t0 /t50.5 is used. Though the interfacial potential barrier
this parameter is not very high, the agreement between B
and the present theories is very good. A smallt0 means a
high interfacial potential barrier. At the high potential barri
limit, both theories reproduce the linear response result@1#.
However, att0 /t51 corresponding to a weak barrier, th
discrepancy is clear as shown in Fig. 2. At weak barrier a
small voltageueVu<D0, the Andreev reflection is the pre

FIG. 1. ConductanceG as a function of the voltageV for an NS
(d-wave! junction with $100% interface atT50 andt0 /t50.5. The
present calculation~solid line! is compared with the BTK resul
~dashed line!.

FIG. 2. The same as Fig. 1 but att0 /t51.
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dominant contribution to the conductance in the BTK theo
Under the present assumption, however, the transport is
to the decay of quasiparticles in both sides. Such a deca
process is more complex than the BTK picture. The diff
ence between the two theories at smallueVu is mainly due to
the different treatment of the tunneling Hamiltonian~i.e.,
time-dependent vs time-independent perturbation theo!.
The voltage effect inL0 is important only at largeueVu,
because the relevant dimensionless parameter is the
eV/EF ~with EF the Fermi energy of the left metal!. The
voltage effect is more evident atV,0 than atV.0, because
more precisely the parameter is actuallyueV/(EF1eV)u. At
negative voltage, the chemical potential of the left me
shifts upward, resulting in electrons right below the Fer
surface within the energy range (EF1eV,EF) transferring
into the right SC. At positive voltage, the states in the ene
range (EF ,EF1eV) in the left metal are available for th
electrons in the right SC to transfer in.

In Fig. 3, we show the results for the junctions with$110%
interface att0 /t51. In this case, the results by both theori
are in excellent agreement. The agreement is even bett
smaller t0. At ueVu,D0, the conductanceG is given by a
broadened zero-bias peak. Actually, there are zero-en
bound states in the right SC near the interface, with lifeti
due to tunneling. The tunneling current is predominan
conducted by these states. The width of the broadenin
mainly determined by the tunneling parametert0 rather than
by the external voltage. Because of the existence of th
states, the particle transmission through the junction
ueVu,D0 is a resonant process. These resonance states
in the BTK model as well. At least ateV50, both theories
produce the same resonance states with the same en
broadening. Therefore, we can understand the exce
agreement neareV50.

The discrepancy between the two theories is even m
clear for the normal-metal–conventional-superconduc

FIG. 3. ConductanceG as a function of the voltageV for an NS
(d-wave! junction with $110% interface atT50 andt0 /t50.5. The
present calculation~circles! is compared with the BTK resul
~squares!.
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junctions. Figure 4 shows the result for an NS (s-wave! junc-
tion with $100% interface atT50 and t0 /t51. The param-
eters for the SC are, the chemical potentialm520.3t, the
on-site pairing parameterD050.02t. The conductance pre
dicted by the present theory is only about 78% of that
BTK for ueVu/D0<1 where the conductance is almost a co
stant. Qualitatively, the electron transport in this junction
similar to that in the NS (d-wave! junction with $100% inter-
face. The explanation for Fig. 2 applies here.

V. AN APPROXIMATION SCHEME

When eV/EF!1, the dependence ofL0 on the external
voltage is very weak. We can then dropeV in L0. By this
approximation, the conductanceG is given by

G522e2(
k
E

2`

` dv

2p
t0
2 Tr Im~R2

0 M 2s3M 1!s3 Im L1
0 g,

~28!

where g5cosh22@(v1s3eV)/2kBT#/2kBT is the only fact
which depends oneV. In Fig. 4, the result by Eq.~28! is also
plotted. At small voltage, the approximation is in very go
agreement with our main theory. However, at large volta
the approximation reproduces the BTK result. This clea
shows that the discrepancy between our main theory and
BTK theory at small voltage is not due to the voltage effe
in L0. In the case ofeV/EF!1, Eq.~28! is a simple but good
scheme for calculation of the conductance.

VI. SUMMARY

In summary, on the basis of the Keldysh approach,
have developed a theory of electron transport in norm
metal–superconductor junctions to all orders in the app

FIG. 4. ConductanceG as a function of the voltageV for an NS
~conventional SC! junction with $100% interface atT50 and t0 /t
51. The present calculation~dotted line with circles! is compared
with the BTK ~dashed line!, and the approximated~solid line! re-
sults.
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voltage and the barrier strength. In the present scheme
tunneling current is given in terms of renormalized Gree
functions of a steady state. It can give a reliable descrip
of the electron tunneling, including the ballistic transport
NS junctions. We have calculated the tunneling conducta
for various NS junctions using the present formalism a
have compared it with the BTK theory. In most cases, b
B

v

he
s
n

ce
d
h

theories agree with each other. However, for some juncti
of low barrier strength, the discrepancy between the t
theories can be sizable.
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