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Internal image potential in semiconductors: Effect on scanning tunneling microscopy
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The tunneling of electrons from a semiconductor surface to a metal tip, across a vacuum gap, is

influenced by two image interactions: an attractive image potential in the vacuum region, which lowers

the apparent tunneling barrier, and a repulsive image potential in the semiconductor interior, which

raises it for conduction-band electrons. We report on detailed calculations of tunneling currents and ap-

parent barrier heights for a model metal-vacuum-semiconductor junction which utilize semiclassical

dielectric functions to compute the image potential in all three regions. The effect of image forces is

found to be small compared to that of either the vacuum barrier or tip-induced band bending. In partic-
ular, the image-induced barrier in the semiconductor has only a minor influence on either the apparent
barrier height or the shape of current-voltage characteristics, both of which are routinely measured in

scanning-tunneling-microscopy experiments. This finding is explained by a qualitative WKB analysis

and several simple arguments.

I. INTRQDUCTIQN

@~=[(—1/A )d 1nI/ds] (2)

where A =1.025 eV '~ A '. The utility of (2) stems
both from the fact that it is an experimentally accessible

Electron tunneling through a junction is often treated
by considering independent electrons moving in an
effective potential. The simplest model potential for a
metal-vacuum-metal (MVM) junction is the rectangular
barrier, but it is well known that image forces modify this
potential significantly. Calculations based on classical
electrostatics, for example, reveal that the image interac-
tion reduces the effective vacuum barrier by lowering its
maximum height and slightly narrowing its width. '

More realistic quantum-mechanical calculations employ-
ing the density-functional formalism indicate that the
lowest-order correction to this classical picture is simply
a displacement of the effective image plane by several
tenths of an angstrom, along with a smooth matching of
the vacuum potential outside the surface to the minimum
of the conduction band in the metal interior. ' The re-
sulting vacuum barrier height then depends on the gap
spacing s, and is well approximated by

4(s) =@o- CX

S Sp

where Np represents the average work function of the
metal electrodes, sp accounts for the shift in image plane

0

positions, and 0;-10eV A.
The scanning tunneling microscope (STM), with which

one can precisely adjust s, and hence continuously vary
the vacuum barrier, is a potentially valuable tool for in-
vestigating this effect. By modulating the distance be-
tween tip and sample at a frequency outside the
microscope's feedback bandwidth, and detecting a syn-
chronous ac tunnel current, one can extract an apparent
barrier height defined by

V, (z)= g (f3P')"
ns —z (n +1)s —z

for an extra point charge q located at z (0, with z =0 the
position of the semiconductor-vacuum interface, and

quantity, and that in a Wentzel-Kramers-Brillouin
(WKB) approximation for the rectangular barrier it
yields the correct barrier height. Early experiments on
metals, however, revealed no discernible reduction in @~
by image forces at separations of more than a few
angstroms. This insensitivity is due not to the absence of
image effects, but, rather, to the particular form of the
potential in (1), for which a WKB analysis shows that the
first-order term in an expansion of 4z in powers of s
vanishes. Similar lines of reasoning further supported
the conclusion that the apparent barrier height (2) is un-
likely to be a sensitive probe of the image potential in
MVM tunneling at large distances. Nevertheless, the
question of image effects and their relevance to STM ex-
periments continues to hold great interest. Subsequent
investigators have addressed a number of fundamental is-
sues, including the role of nonplanar geometry, ' the
precise nature of the effective vacuum barrier at short dis-
tances, ' ' and the influence of the dynamic image in-
teraction in time-dependent tunneling. '

If we replace one of the metal electrodes by a semicon-
ductor to form a metal-vacuum-semiconductor (MVS)
junction, then the image correction to the vacuum poten-
tial at large distances will be similar to that of the MVM
junction when scaled to reAect the dielectric behavior
of the semiconductor. ' A qualitatively different
phenomenon now appears, however, in that tunneling
electrons experience an additional image force in the
semiconductor interior due to the finite polarizability of
that medium. In a classical multiple-image analysis
of the planar MVS or semiconductor-vacuum-
semiconductor (SVS) junction, this "internal" image po-
tential is given by the expression' '
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z =s the position of the vacuum-metal interface. Here, e,
is the static dielectric permittivity of the semiconductor
and

6'0

s+60
(4)

V, (z) = U, (P,P', g),
877E0S

where e0 is the permittivity of vacuum; a corresponding
expression defines p'. For an MVS junction, p'=1. The
internal image potential (3) leads to an effective increase
in the semiconductor band gap near an ideal
semiconductor-vacuum interface, since electrons in the
conduction band are repelled from the surface whereas
electrons in the valence band are attracted. ' Image-
induced features of this kind have, in fact, recently been
proposed as an explanation for the thickness-dependent
energy shifts observed in both x-ray photoemission spec-
troscopy and Auger electron spectroscopy spectra of thin
SiOz films on silicon substrates. ' The situation is exactly
reversed at an ideal semiconductor-metal interface where
the band gap is effectively decreased, a phenomenon al-
ready anticipated from the quantum many-body point of
view.

To explicitly show the functional dependence on gap
spacing, Eq. (3) may be written in scaled form' as

ascribed to the short-range nature of the induced barrier
in the semiconductor, which therefore appears nearly
transparent. It is the purpose of this paper to reexamine
the question of observing such image effects in an MVS
junction under more general circumstances.

To do so, we first review briefly the phenomenology of
apparent barrier heights in tunneling experiments at un-

pinned semiconductor surfaces. At zero applied bias
there will, in general, be a space charge induced in the
semiconductor by the difference between tip and sample
work functions, hC&=N —(y+P„), as shown in Fig. 1(a)
for n-type material in depletion. This space charge may
be eliminated only by applying an appropriate bias volt-
age, VFz = —AN, to recover the Aat-band condition illus-

trated in Fig. 1(b). Tip-induced band bending of the kind
indicated in Fig. 1(a) will dramatically affect STM mea-
surements of N z, for reasons which are easy to appreci-
ate. The surface potential Vd is a monotonically de-
creasing function of s, with a maximum at s =0. Since
the depletion width 8' is typically much longer than s,
only those carriers with a thermally activated kinetic en-
ergy greater than Vd will surmount the diffusion barrier
to arrive at the semiconductor-vacuum interface. In-

(a)

where g=z/s and U, is a dimensionless function indepen-
dent of s. In an MVS junction, V, (z) changes sign at a
position zo =st(P) because the contribution from polar-
ization charge at the metal-vacuum interface eventually
dominates that of the semiconductor-vacuum interface
deep in the semiconductor interior. Thus, a conduction-
band electron approaching the surface will experience an
image interaction which is at first attractive, and then
repulsive, with

Ec

SEMICONDUCTOR VACUUM METAL

The image-induced tunneling barrier in the semiconduc-
tor is then strongly dependent on electrode separation. It
is appealing, therefore, to examine the possibility of
detecting this additional barrier using the scanning tun-
neling microscope.

The classical expression for the image potential is in-
convenient to use in tunneling calculations implementing
transfer matrix methods, since it diverges at the inter-
faces, where unphysical bound states may be introduced.
A semiclassical theory for the MVS junction which re-
moves these divergences, but nevertheless requires a
smooth interpolation for the total effective potential in
the near interfacial region, has recently been discussed. '

Initial calculations based on this theory showed that, for
the special case of vanishing electric field between tip and
sample, the contribution to +z from the image-induced
barrier in the semiconductor is small. The insensitivity of
@~ to this additional correction, it was argued, could be

E
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SEMICONDUCTOR VACUUM METAL

FIG. 1. (a) Schematic energy diagram for an ideal
semiconductor-vacuum-metal junction at zero applied bias V,

neglecting image effects. + is the metal work function, EF the
metal Fermi energy, y the semiconductor electron afBnity, and

P„ the offset from the Fermi level to the bottom of the semicon-
ductor conduction band. The drawing is not to scale since the
depletion width 8'is typically much greater than the gap spac-
ing s, and y exceeds the band gap, E, —E„. (b) Flatband situa-
tion when the applied bias V» has been chosen to eliminate the
electric field arising from a difference in metal and semiconduc-
tor work functions, +—(g+P„).
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creasing the separation between tip and sample exponen-
tially suppresses tunneling through the vacuum barrier as
before, but now also exponentially enhances the number
of electrons reaching the semiconductor surface. Because
of these two competing factors, the observed variation in
current density is less than expected; this is then inter-
preted as a smaller barrier height in Eq. (2). If the
image-induced potential (5) is superimposed on the
space-charge potential of Fig. 1(a), it too will change with
gap spacing. Since the energy scale characterizing the
carrier distribution is kT, we may now ask whether in-
clusion of the semiconductor image potential further per-
turbs the carrier distribution, and thus the logarithmic
derivative of the tunneling current, in any measurable
way.

In what follows, we first present key elements of the
semiclassical image potential theory, and describe our
method of calculation, in Sec. II. Predictions for the ap-
parent barrier height and tunneling current-voltage
characteristics, including image effects, are presented in
Sec. III for the particular case of a planar, n-type
hydrogen-passivated Si(111)/Au junction. We devote
Sec. IV to a qualitative discussion of these results within
the framework of a WKB analysis, which permits us to
generalize our findings beyond the specific materials we
have chosen to study in detail. Section V summarizes our
conclusions.

II. DKSCRIPTIQN QF THE CALCULATION

Our calculations are carried out under the assumption
that the system consists of independent electrons moving
in an effective one-dimensional potential. The bulk metal
is treated as a free-electron Fermi gas characterized by
Fermi energy EF and work function N. The semiconduc-
tor is modeled in a one-band effective-mass approxima-
tion including anisotropy. When assembled into an MVS
junction, the semiconductor-vacuum and vacuum-metal

interfaces perturb these bulk effective potentials; the
corrections we specifically consider here are introduced
by the multiple-image interaction and tip-induced space
charges. Modifications due to surface states or collective
surface excitations are ignored.

The expressions for the classical image potential in an
ideal metal-insulator-semiconductor (MIS) junction simi-
lar to that shown in Fig. 1 diverge at the semiconductor-
vacuum and vacuum-metal interfaces. ' ' These unphysi-
cal divergences may be circumvented by employing an
efFective Thomas-Fermi theory of dielectric screening
to derive a semiclassical expression for the image poten-
tial experienced by a tunneling electron. Specifically, the
Thomas-Fermi dielectric function in a bulk metal is given
by e (k)/eo= 1+y /k, where y is the corresponding
Thomas-Fermi wave vector. Within the same approxi-
mation, the screening response of an intrinsic bulk semi-
conductor may be modeled by the dielectric function

where

F'=—
k

—2ks p
p

—2ks

coincides with the classical solution' ' and

where (e, /eo) is the long-wavelength static dielectric con-
stant and y, an effective Thomas-Fermi wave vector
which depends on the total valence charge density. It
can then be shown ' that the resulting semiclassical ex-
pression for the image potential experienced by a point
charge q located at position z & 0 in the semiconductor is

2

V, (z)= J {Fk'e"'+Ak exp[(k +y, )' z]]dk,
8~@, o

k

2CXs

]+a, (
—k(2s —z)+Fs ) + ((2) e "'—

2), )exp[(k +y, )'/ z]

'Qs'9m e

represents an additional response arising from short-
range screening in the semiconductor. Here, we define, in
addition to P in (4) above,

ka (k)=
(k2+ 2 )1/2

When q is located in the vacuum region 0 &z & s, the cor-
responding expression for the semiclassical image poten-
tial becomes

2

V, (z) = J (B„e"'+C„'e "')dk
8&6'o 0

ka, (k)=
(k2+ 2)1/2 (12) where

1 —a (k)
1+a (k)

1 —a, (k)
1+a,(k)21, (k) =

(13)

(14)

v
+ e

—ks

1 —P ~v k(s —z)+ k(s+z)
1+p s k s
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Ck=g e '
k(Fk e—"' '+g e

aI1d

with

m 1m 'use
—2ks

zk exp[(k +y )'~z(s —z)]

I'k =(1+p
p

—2ks

Finally, for q in the metal (z )s ) one finds

2
q ca

V z = exp[(k +y )' (s z)]Dk —dk,

(20)
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sidered, we see roughly an order of magnitude increase in
the overall current density at any reasonable gap separa-
tion due to the inclusion of image forces. The shape of
the j-s curves on a semilogarithmic plot deviates at small
s from the straight line predicted for vacuum tunneling
because of the influence of tip-induced space charge on
current transport through the junction, as explained pre-
viously. What we wish to call attention to here is that
the j-s characteristics for a given doping display a similar
shape whether or not image effects are included.

This observation is more quantitatively expressed in
Fig. 4, where an apparent barrier height as a function of
gap spacing is obtained via Eq. (2) from the curves in Fig.
3. We see that the barrier height displays nearly the
same behavior as a function of s (for a given doping) with
or without image forces, but that including image effects
results in an overall lowering of the apparent barrier by a
few tenths of an eV. Also presented in Fig. 4 are the
doping-independent results for @z when the applied bias
has been chosen to eliminate any tip-induced band bend-
ing, ' as shown in Fig. 1(b). It is clear from the figure
that the principal inAuence on N z arises from tip-
induced space charge, and that the image potential con-
stitutes a relatively small perturbation.

The inAuence of image forces on the tunneling
current-voltage characteristics at constant separation
may be calculated in a manner similar to the j-s charac-
teristics presented above, and the results are shown in

q Vd (s, V) =b @[ [ 1+(s /so ) +q V/b&b ] ' —s /so I

(21)

The resulting electrostatic potential in the semiconductor
interior, itj(z), has finite range, vanishing at z = —W, and
follows the well-known form

Q(z) = Vd(1+z/W) (22)

for —8'&z &0. The depletion width 8'is a function of
both the bulk donor density Xd and the semiconductor
surface potential q Vd through

W( q Vd ) = ( 2e, Vd /qNd )
' (23)

while the length scale sp is obtained from the zero-bias,
zero-separation depletion width according to

so =(eo/~, ) W(b, C&) . (24)

The total one-electron potential now includes a contribu-
tion from g(z) as well as that from V, (z) for z (0. As
above, we interpolate within the near-interfacial region to
obtain a continuous result as a function of position, and
an example calculated for the same hydrogen-terminated
Si(111)/Au junction, at a sample bias of —100 mV with
Nd=5X10' cm, is illustrated in Fig. 2(b), where the
additional long-range effect of Debye screening due to
free carriers has been ignored.

To compute a tunneling current density, the appropri-
ate potential is substituted into a one-dimensional
effective-mass Schrodinger equation for electrons origi-
nating from the conduction band of the semiconductor.
This equation is then solved numerically to evaluate a
transmission probability D(E„s ), where E, is the energy
component normal to the barrier. The net tunneling
current density is given by the expression

10 I

(V= —100rnV)10
O~

'~
4

4

'~

4

'~
4

10

10
m ~ o

0 ~

4

10 g

(25)

j (s)=, f dE,D(E„s ) [No(E, ) No(E, qV)—], —
@ mp

where mo is the free-electron mass, No(E, ) and
No(E, —qV) are one-dimensional finite-temperature sup-

ply functions for electrons in the semiconductor and
metal, respectively, and y represents an anisotropy factor
for the constant-energy surfaces of the equivalent
Si(100) ellipsoidal pockets at the indirect conduction-
band mimmum projected along the (111)direction. The
resulting effective mass for tunneling in the (111)direc-
tion is m,*=ymI =0.26mp. Further details concerning
the calculation of D(E„s) may be found in Ref. 22.

III. RESULTS

The tunneling current density as a function of gap
spacing calculated on the basis of Eq. (25), using the one-
electron effective potential of Fig. 2(b), is presented in
Fig. 3 for a representative bias voltage which produces
substantial majority carrier depletion in the near surface
region of the semiconductor. For comparison, the results
obtained using the potential of Fig. 1(a), neglecting image
effects, are also shown. At each of the doping levels con-
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4 4~ ~4 ~4 ~~ 4
~ ~4

18 21

FIG. 3. Tunneling current density j versus electrode separa-
tion s as a function of doping for fixed bias and T=300 K.
Solid line: including the semiclassical image potential as in Fig.
2(b). Dashed line: neglecting image effects.
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unchanged. This shape is, again, dominated by the tip-
induced space charge. A discussion of the somewhat
unusual properties of the reverse-bias characteristics may
be found in the literature.

IV. DISCUSSION

12 21

FIG. 4. Apparent barrier height @& versus electrode separa-
tion s as a function of doping. Solid line: including the semi-
classical image potential. Dashed line: neglecting image effects.
The flatband results are essentially independent of doping in the
nondegenerate regime.

1.0

0.6-

0
Fig. 5, as a function of doping, for s =5 A. To facilitate a
comparison between j-V curves calculated with and
without image corrections at fixed doping, and between
j-V curves obtained for different doping levels, both the
current density and applied bias have been scaled to their
respective hatband values. As already noted, the image
potential increases the current density for a given applied
bias and electrode separation, but we see here that the
overall shape of the j-V characteristic remains essentially

Our results for the specific case of a planar, passivated
n-type Si(111)/Au junction indicate that the influence of
image effects on the apparent barrier height is small, and
may not be experimentally detectable in practice. The
role of tip-induced space charge in determining the ap-
parent barrier decreases with increasing bias as hatband
conditions are approached, so that image effects, if
detectable, will be most prominent at bias voltages very
near V„B. The shape of the tunneling current-voltage
characteristics also appears to be insensitive to image
forces.

In what follows, we examine these conclusions from
the perspective of a WKB analysis of tunneling through
the compound barrier created either by the space charge
in the semiconductor neglecting image effects, followed
by the vacuum gap, or the image potential in the semi-
conductor neglecting space charge, again followed by the
vacuum gap. In this way we can identify important qual-
itative features of the realistic junction problem contain-
ing both elements which will give us some insight into the
relevance of specific material parameters to our results,
and the circumstances under which image effects might
play a more significant role.

The simplest case arises when the only barrier that
need be considered is due to the vacuum gap. If we
denote by D""(E„s) the energy-dependent transmission
coei.cient, then in the WKB approximation one obtains

lnD""(E„s)=—2(2m /fi )' (y —E )'~ s, (26)

which is rigorously correct only for a square barrier. If
we define the cumulative current density as a function of
energy according to

E
j (E„s) =e J dE,'D(E,', s )[Xo(E,') Ko(E,' q—V)], —

0

(27)
0.2-

—0.2

—0.6

5x10 cm

(s=5k)

the diff'erential current density per unit energy (at energy
E, ) is then

'dj (E„s)/dE, =eD""(E„s)[&o(E,) —No(E, qV)] .—

(28)

Assuming Boltzmann statistics, the condition for an ex-
tremum in this quantity is simply

—1.0—1.0 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0 4
—(I/kT)+&lnD"-(E„s)/~E, I~ =E (29)

FIG% 5. Tunneling current density j versus applied bias V as
a function of doping for fixed separation and T=300 K. Solid
line: including the semiclassical image potential. Dashed line:
neglecting image efFects. The current density and applied bias
are scaled to their respective flatband values to facilitate a com-
parison of the shape of the j-V characteristics.

When appropriately generalized, this condition gives Eq.
(30) and is relevant to the discussion following (32). In
the present case, however, the extremum in (29) turns out
to be a local minimum, and a maximum is instead found
at the end point E =0. If the differential current densi-
ty at this maximum is used to characterize the integrated
tunneling current, Eq. (2) yields Nz =y for the apparent
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E /Vd = [cosh[q(fi Nd /4m, e, )'~ /kT]] (30)

In the limit of low doping and long depletion widths, this
ratio approaches unity, so that the differential current—

Vd /kT
density is proportional to e " and one recovers the
thermionic emission picture of current transport across a
Schottky barrier.

The combined effect of the semiconductor space charge
and a vacuum barrier is more diKcult to follow through
completely, but the qualitative features are apparent in at
least one important limit. As noted in connection with
Eq. (21), the semiconductor surface potential is a function
of the vacuum gap width s. If one considers the physical-
ly realistic circumstance of s/sp «1, which corresponds
to electrode separations that are small compared to the
sample depletion width, the energy distribution will be al-
most completely determined by the semiconductor space
charge. A specific example, based on the more accurate
calculations described in Sec. II, is presented in Fig. 6,
where we see that E /Vd is nearly one, independent of s.
Thus, for low doping, current transport is once again well
described by a thermionic emission picture, and one finds
from Eq. (2) that

4'„i =y'i +(1/A )(q/kT)[BV„/Bs] . (31)

Since the surface potential decreases with increasing sep-

barrier height.
The next situation that is straightforward to analyze

arises when we consider the effect of semiconductor space
charge and ignore the vacuum barrier. This corresponds
to the problem of tunneling through an ideal Schottky
barrier structure. In this case, a WKB analysis reveals
that the peak of the difFerential current distribution
occurs at an energy

+g 1~semicond(E )IgE —0
z m

(32)

which includes a contribution from the image-induced
barrier in the semiconductor. A useful estimate of the
last term in (32) is provided by considering the limit of
infinite separation between tip and sample. The semicon-
ductor barrier is then a screened Coulomb potential due
to a single image charge, as appropriate for the free
semiconductor-vacuum interface. Since the proximity of
the metal counterelectrode creates multiple image
charges whose net effect limits the range of the semicon-
ductor barrier, we may reasonably expect this approxi-
mation to provide an upper bound to the image-induced
perturbation of the tunneling energy distribution. Em-
ploying the well-known expression for the energy-
dependent WKB transmission coefticient through a
Coulomb barrier, the relative significance of semicon-
ductor and vacuum terms may be assessed via the dimen-
sionless ratio

aration, s, the second term in (31) is opposite in sign to
the vacuum barrier contribution. The distance depen-
dence of Vd then has a profound inAuence on the ap-
parent barrier height through its effect on the tunneling
energy distribution.

Finally, we turn to the question of image forces and
consider the case where we can neglect tip-induced band
bending. A key issue is the extent to which image efFects
in the semiconductor interior perturb the energy distribu-
tion of tunneling electrons relative to that characteristic
of the vacuum barrier alone. Ignoring image corrections
in the vacuum region for simplicity, the extremum condi-
tion of Eq. (29) now becomes

—(1/kT)+8 1nD""(E„s) IdE,
~
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FICx. 6. Differential tunneling current density distribution
versus normal energy E, (scaled to the semiconductor surface
potential) as a function of electrode separation, neglecting im-
age effects, for V= —100 mV and Xd=5X10' cm . Inset:
tip-induced semiconductor surface potential versus separation
at the same fixed bias.
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For Si(111) at room temperature, (E /kT) =0.76,

For typical values of the electron amenity in semiconduc-
0

tors, the last term in parenthesis is of order (1 A/s), while
the maximum possible value for the remaining parame-
ters is 0.26. Evaluation for the specific case of Si(111)
gives 0.05 (1 A/s) for this ratio. Thus, at gap separations
of order 10 A or more, the corrections to the maximum
of the energy distribution are expected to be small for any
material, and certainly negligible for silicon. We can in-
quire further, under the presumption that the semicon-
ductor barrier will not be negligible under all cir-
cumstances, what may at most be expected for the shift
in the location of the energy maximum. As an extreme
circumstance, we retain the screened Coulomb potential
in the semiconductor, while completely ignoring the vac-
uum barrier, and find

3/2
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It follows that the contribution of the semiconductor to
the apparent barrier height at E, =0 is given by

g lnD semicond( E 0 & )

Bs
1/2

2mp
=I(p)

mp

I /2

(36)
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whereas for optimum parameters it will be no more than
a factor of 3 greater.

The above considerations suggest therefore, that, rela-
tive to y, a zero-energy WKB analysis is an appropriate
starting point for discussing how image forces infiuence
the apparent barrier height in this system. That supposi-
tion is supported by numerical results obtained from the
detailed formalism presented in Sec. II. In particular,
Fig. 7 displays the differential current density per unit en-
ergy, as a function of gap spacing, calculated for the
semiclassical multiple-image interaction using the one
electron potential of Fig. 2(a). As one would expect,
these distributions show resonant transmission for elec-
tron energies very near the conduction-band minimum,
due to the shallow, long-range attractive portion of the
image potential in the semiconductor interior, and, fur-
thermore, they peak just below (F., /kT)=1, as inferred
above. Of particular note in Fig. 7 is that, in marked
contrast to the situation for tip induced band bending
(Fig. 6), the energy distribution for tunneling electrons
appears to be only weakly dependent on s (at least when
the semiconductor barrier is of finite range), a relevant
point outside the scope of our arguments thus far.

As a consequence of the scaling property (5) for the
classical image potential in a semiconductor, the zero-
energy WKB transition coefficient through this barrier
may be parametrized in terms of the dimensionless in-
tegral

(35)

' 1/2,
=I(p)

mp

1/2

(37)
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Using our estimate above, the last term in parentheses is
roughly (1 A/2s)'~ . Now I(P) has a maximum value of
0.51 at p= 1 (an MVM junction), and decreases smoothly
toward zero in the limit that p vanishes. For any reason-
able choice of the semiconductor dielectric constant,
however, I(P) exceeds 0.4. Thus, in general, our correc-
tion term can at most be of order 0.3(1 A/s)'~, and for
Si(111) is only a factor of 2 smaller. Over a physically
reasonab1e range of gap spacings from 10 to 1 A, for ex-
ample, the effect of the semiconductor image potential, in
this approximation, will be to increase the apparent bar-
rier height between 5% and 15%.

Because of our reliance on a zero-energy analysis, the
above estimate presents an upper limit to the magnitude
of the effect one may reasonably expect. Indeed, our nu-
merical calculations for Si(111)show that the inclusion of
image forces produces a small net decrease in the ap-
parent barrier height due to a reduction of the vacuum
barrier, which is fully consistent with the results for
MVM tunneling.

One may pause to consider at this point whether the
situation will be fundamentally altered if we replace the
far metal electrode with a second semiconductor whose
polarizability is less than or equal to that of the first. In
this case, the integral (35) diverges (with ~go~ ~ oo), since
there is no longer any change in sign for U, (p, p', g) and
the image-induced barrier is long range. ReAecting on
(34), however, we are reminded that this barrier will be
probed not at E, =0, but rather at E, =kT. The effective
range of the image interaction at this energy is then of or-
der

1 —P
kT P 1+P

2

16~epkT
(3g)

which, at T =300 K, is less than 25 A for optimum P.
Thus, there is nothing in our arguments which leads us to
suspect circumstances will be dramatically different for
semiconductor-vacuum-semiconductor tunneling, unless
one can arrange to conduct the experiments at low tem-
peratures.

V. SUMMARY AND CONCLUSIONS

In relation to the vacuum barrier then, this represents a
correction of order

Q lnD semicond(E

8 lnD""(E, =O, s)/Bs

0.0
0

E, /kT

FIG. 7. Differential tunneling current density distribution
versus normal energy E, (scaled to kT) as a function of elec-
trode separation, including the (doping-independent) semiclassi-
cal image potential, but neglecting tip-induced band bending
«= ~Fs).

We have investigated the influence of the image poten-
tial on tunneling through a planar metal-vacuum-
semiconductor junction. This problem differs qualitative-
ly from the metal-vacuum-metal junction because there is
now an image potential in the semiconductor interior as
well as in the vacuum region. The classical multiple-
image expression for an MVS system has been extended,
using a Thomas-Fermi-like dielectric function in the
semiconductor together with the usual Thomas-Fermi
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theory for the metal, to provide expressions which are
everywhere finite. The resulting semiclassical image po-
tentials in semiconductor, vacuum, and metal must still
be smoothly joined, however, by an interpolation through
the interfaces. Using these potentials, the tunneling
current at finite temperature was calculated as a function
of separation for the particular case of a n-type
hydrogen-passivated Si(111)-Au system, and an apparent
barrier height N~ then extracted to simulate the results
of STM modulation experiments.

To obtain a more general understanding of these de-
tailed calculations, qualitative arguments based on a
WKB picture have also been presented. If the image po-
tential is neglected, @z is well described by terms involv-
ing, first, the

semiconductor�'s

electron affinity, and,
second, the effect of tip induced band bending. %'hen the
contribution of the image potential within the semicon-
ductor is separately considered, a WKB estimate indi-
cates it will perturb the apparent barrier height by at
most 10%%ui at reasonable tip-sample distances. This crude
estimate helps one understand the principal result of the
detailed calculations presented in Figs. 3 and 4: Although
the tunneling barrier for an MVS junction difFers from
that for an MVM junction, the image potential in the
semiconductor makes only a modest contribution to the
apparent barrier height. Furthermore, as our calcula-
tions reveal, the dominant effect is a slight lowering of
Nz, due to the attractive image potential in the vacuum
region in conformity with expectations based on MVM
tunneling, rather than any increase in N z from the repul-
sive image potential within the semiconductor.

One may have thought that the semiconductor's inter-
nal image potential, being long range, would have a sub-
stantial effect on carriers originating from the bulk
conduction-band edge, and thus inAuence not only tun-
neling currents, but the apparent barrier height as well.

Our calculations together with the WKB analysis, indi-
cate otherwise. Three qualitative arguments account for
this observation: First, in the case of Aatbands, the po-
tential due to polarization charge at the vacuum-metal
interface competes with that of the semiconductor-
vacuum interface to produce a barrier in the semiconduc-
tor interior which is short range; second, for the more
general case which includes a semiconductor diffusion
potential in either depletion or weak inversion, the
overwhelming inhuence on the carrier distribution arises
from the diffusion potential, and not the image potential.
In the case this diffusion potential is tip induced, we have
shown explicitly that 4 z is almost completely dominated
by the distance dependence of field penetration in the
semiconductor, and that image effects are of relatively
minor importance; finally, for Hatband conditions, most
of the tunneling current is provided by electrons whose
energy is of order kT above the band edge. For these
electrons, the image-induced barrier is effectively short
range at room temperature, even if one neglects the
infIuence of polarization charge at the metal tip. The
same argument applies, in principle, to the
semiconductor-vacuum-semiconductor junction, but
whether or not the image potential will have a significant
infIuence in this system at low temperatures remains an
open question.
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