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Simulations of atomic processes at semiconductor surfaces: General method
and chemisorption on GaAs(110)
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Recently we introduced a technique for realistic simulations of atomic motion in systems with co-
valent or metallic bonding. The technique involves the Hellmann-Feynman theorem, novel
Green s-function methods, and integration in the complex energy plane. In principle, it is exact, so
that one can use a self-consistent Hamiltonian and even include many-body effects. Here we pro-
vide some re6nements of this general technique which simplify its use in practical calculations. We
also describe an approximate version that employs a tight-binding Hamiltonian and repulsive poten-
tial. Representative simulations are shown for atoms of groups I-VII chemisorbing on the (110)
surface of GaAs.

I. INTRODUCTION

Recently we introduced a technique for realistic simu-
lations of atomic motion in systems with covalent or me-
tallic bonding. ' The essential idea is to compute the
atomic forces directly from the electronic structure, via
the Hellmann-Feynman theorem. This problem is re-
duced to manageable proportions with the use of novel
Green's-function methods and integration in the complex
energy plane.

In the present paper, we (1) provide some refinements
of the general technique, (2) describe an approximate ver-
sion that employs a tight-binding Hamiltonian ' and
repulsive potential, ' and (3) demonstrate that the
method works by showing results for time-dependent
chemisorption on GaAs(110).

following the nuclei. There are three contributions to the
total energy U:

U=U„—U„+U;.„,. (2.3)

Our approximate treatment of (2.3) will be essentially the
same as that of Chadi. ' In representing the last two
terms ( U;,„,—U„)we will use a repulsive potential P(r),
rather than Chadi's quadratic expansion (U, a+ Uzs ) in
the bond-length change c.. There is no difference, howev-
er, in the basic philosophy.

Since the present technique employs Green's functions,
one could include many-body effects in the treatment of
U. In this paper, however, we will assume a one-electron
picture throughout. Then U, &

is the sum of the energies
c.k of the occupied one-electron states:

occupied

II. METHOD Ue] = (2.4)

A. General ideas

The force F„associated with some atomic coordinate x
is given by

(2.1)

where U is the total energy of the system. If F„canbe
calculated, numerical solution of the equation of motion

d x
m =F„

dt2
(2.2)

is straightforward, and one can perform molecular dy-
namics computer simulations. '

In the present approach, F„is calculated from the elec-
tronic structure, ' ' * ' rather than classical n-body po-
tentials. Let the electrons be divided into valence
electrons, whose states will be regarded as adiabatically
changing in response to the motion of the nuclei, and
core electrons, whose states will be regarded as rigidly

U= U,|+U„
with U„given by a repulsive pair potential P(r):

(2.5)

(2.6)

Here r,. is the separation of atoms i and j. We will also
calculate the electronic energies ck using a semi empirical
tight-binding Hamiltonian, ' with the intra-atomic ma-
trix elements 0;; regarded as atomic energies, and the in-

Also, U„ is the energy associated with the electron-
electron Coulomb repulsion, which is doubly counted in
(2.4), and U;,„,is the ion-ion Coulomb repulsion, with an
ion defined to be the atomic nucleus plus core electrons.

One can regard the interaction between two atoms as
consisting of (1) an attractive bonding interaction involv-
ing the one-electron energies e,k and (2) a repulsive in-
teraction representing a combination of effects, including
the Pauli exclusion principle and the direct ion-ion repul-
sion. In the calculations of the present paper, we will
therefore model (2.3) by
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teratomic elements H;J representing an overlap of the
electronic wave functions. The H, , are taken to be con-
stant, and the H,J are taken to decrease exponentially
with the interatomic separation r. To be precise, let

H; (a, .P) be the Hamiltonian matrix element coupling or-
bital a on atom i to orbital P on atom j. This element is
given by the direction cosines l =Ex/r, etc., and by
primitive tight-binding matrix elements V„,etc. (See p.
481 of Ref. 10, or the original paper of Slater and Kost-
er. s) For example, the matrix element H;J(p„,p~) cou-

pling a p„orbital to a p orbital is given by V~~ (r) and

V~r (r). We take each primitive element V (r) to decrease
exponentially with r:

V(r) = V(ro)exp[ a(r ——ro)] . (2.7a)

For the parameters employed in the present work —V„,
Vr, Vzr, and V~~

—we choose a=2/ro. As men-
tioned above (2.18},one can fit a to the bond-stretching
force constant of the solid; however, the argument given
there indicates that the present simple choice is not a bad
approximation.

We fit each V(ro) (V etc.) to its value in Ref. 10 at
some fixed distance ro which represents a typical bond
length. To be specific, we take ro to be the bondlength
of the solid (2.45 A for GaAs and 2.54 A for InP). Since
the present work involves only s and p electrons, for
which the scaling of Ref. 10 is VH(r) = V(ro)(ro/r), we
have [dV(r)/dr), „=—aV(ro) and [dVH(r)/dr],
=(—2/ro)Vz(ro). Our choice a=2/ro thus matches
the present logarithmic derivatives at r =ro to those of
Ref. 10.

The repulsive potential is also assumed to decrease ex-
ponentially with r,

E=(s, +3e )/4 . (2.8)

All electronic states below the Fermi energy cF of the
solid are assumed to be occupied, and all states above ez
to be empty. Our use of a cutofF R, makes this assump-
tion physically reasonable: If an atom impinging on the
surface is outside the range of interaction, there are no
forces and its occupancy is irrelevant. As soon as it is
within the interaction range, it is interacting rather
strongly, forming bonding and antibonding states with
the solid, and its occupancy should be approximately
correct.

Calculation of the repulsive forces associated with U„,
is straightforward, so the remainder of this section will be
dedicated to a discussion of the electronic forces associat-
ed with U,&.

B. Simple examples

Before turning to a detailed description of the present
technique, let us consider two simple examples —a pair of
atoms with one orbital per atom, and a cluster of n, i

atoms with a general tight-binding Hamiltonian.
In each of these examples, the Schrodinger equation is

H ycl &ciycl (2.9)

Notice that only three parameters distinguish a chemi-
cal species —the s and p atomic energies, c, and c-
which determine the atom's electronegativity —and the
covalent radius r, —which determines its size. We can
represent c., and c approximately by an average or "hy-
brid" energy

0(")=ooexp[ P("—d }]— (2.7b)
with H an n)(n matrix if there are n orbitals. For the
pair of atoms, we have n =2 and

but in this case we take d to equal the sum of the covalent
radii of the two interacting atoms. I.e., we take the range
of the repulsive interaction to scale with the size of the
atom. If the attractive (electronic) interaction is to dom-
inate at large distances, and the repulsive interaction at
small distances, P should be larger than a. One could try
to optimize P, but we simply choose P=2a.

This leaves the parameter $0, which is determined by
the requirement that the total energy of (2.4)-(2.6} for
the bulk solid be a minimum at r =ra, where ro is the ex-
perimental bondlength. Specifically, we fit P(r) to the
repulsive potential of Harrison and co-workers' and
Sankey, PH(r) =C/r, at r = ro No.tice
that [dP(r)/dr]„„= PP(ro) and —[dPH(r)/dr],
=( 4/ro)PH(ro), so—our choice P=4/ro matches
the present logarithmic derivative of P at r =ra to that of
Ref. 15.

Finally, since nearest-neighbor interactions are more
chemically meaningful than distant interactions, we trun-
cate both V(r) and P(r}; specifically, we take V(r)=0
and P(r)=0 for r &R, =l 25ro One coul.d sm.ooth out
the delta-function singularity in the radial force at R„
but this would make only a small difFerence in the present
simulations. One could also, of course, choose a less con-
servative value for R, .

V
H

4

(2.10}

where c& and c.2 are the atomic energies of the two atoms
and V is the interatomic matrix element. The bonding
and antibonding states have energies

s~ 2(s——, +e, )+ ,'[(s, —e2)—+4V(r) ]' (2.1 1)

U(r) 2e =+/(r) . (2.12)

As r decreases,
~

V(r)
~

increases, so e decreases and
the electronic force is attractive. The total force F is
given by the scaling rules (2.7):

dU(r)
dr

Ki —E2

2V(r}

' 2 —1/2

(2.13)

~

V(r)
( +PP(r) .

(2.14)

For identical atoms this becomes

Since the bonding state is doubly occupied and the anti-
bonding state unoccupied, the total energy of (2.5) is
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F(r)= —2a
~

V(r)
( +py(r), (2.15) BU,)F"=— (2.22)

so the strength of the electronic force is determined by
the interatomic matrix element V(r) and its dependence
on the separation of the atoms r.

The equilibrium separation is given by 2a
~

V(r)
~

=pp(r}, or

r = Iln[2a
~

V(ro)
~
/Pgoj+(aro Pd—)I/(a —P) . (2.16)

If we choose P=2a and Po=
~

V(ro ) ~, (2.16) becomes

r =2d —ro (2.17)

We are still free to choose ro ——10, where 10/2 is the co-
valent radius for some particular species of atom. Then
the equilibrium separation of (2.17) will be exactly equal
to the correct value do for this one species. This choice
of ro, and thus $0, is analogous to our choice in the real
problem, namely, we define ro to be the experimental
bond length within the solid, and we choose $0 such that
the model correctly reproduces this bond length.

Although we have simply taken a=2/ro in the present
paper, one could determine a by fitting the bond-
stretching force constant EC in the solid. This idea is
again illustrated by the above pair of atoms with covalent
radius do/2: Eq. (2.15) gives

=2a
~

V(r)
~

—p p(r)
r

(2.18)

so

dF(r)
r f =fp

= —2a
~

V(ro)
~

(2.19)

or

EC =2a
~

V(ro)
~

(2.20)

for the above choice of P, $0, and ro If
~

V(ro. )
~

is
determined by fitting the gap between bonding and anti-
bonding states,

&(7'p ) =s+ —E =2
~

V(1'p ) (2.21)

then a is determined by (2.20). For a typical semiconduc-
tor, the most important matrix element V (determined
by fitting the bulk band structure) is =4 eV, and the
force constant K is =40 eV/r 0,

' so (2.20) gives
a=v 5/ro This ind.icates that our choice a=2/ro is not
a bad approximation. We also note that the choice
$0——

~
V(ro)

~

for the pair of atoms is in approximate
agreement with the values of $0 obtained for the real
solids, i.e., Po= V

Now let us consider a general cluster of atoms with s, p
and d electrons. The tight-binding Hamiltonian matrix
for the cluster is easily constructed, using the atomic po-
sitions and the primitive tight-binding matrix elements
V„,V, , V,V, etc. ' Numerical solution of (2.9)
gives the n eigenvalues e,"and eigenvectors g;.'. The elec-
tronic force associated with a given atomic coordinate x
can then be computed from the Hellmann-Feynman
theorem:

cl
1 e(.,—",'},

Bx
(2.23)

cl

pelt ~~ ycl
Bx Bx

(2.24)

C. Subspace Hamiltonian

Let H be the Hamiltonian matrix of a system
represented by N electronic orbitals (with N~ ao in the
problems of interest here). We suppose that H differs

We remark that the term "Hellmann-Feynman
theorem" as used here has a meaning somewhat different
from the conventional meaning, involving wave func-
tions %(r, , rz, . . . , rz) in real space. In that context, the
wave functions must be calculated with considerable ac-
curacy if one is to obtain reliable atomic forces. Our
Hellmann-Feynman theorem (2.24) or (2.31), on the other
hand, gives the atomic forces exactly within the present
model of the electronic structure. Since this model has
been demonstrated to give reliable total energies and
forces in, e.g., calculations of surface relaxation, '
the forces calculated here should also be reliable. This is
borne out by the results presented in the next section.

Using the above ideas, one can perform simulations of
atomic motion in small clusters of atoms. At an early
stage in the present program, we in fact carried out such
simulations for one atom chemisorbing on a group of four
additional atoms. These simulations were found to be
very helpful as initial tests, since the mathematics is sim-
ple and the results relatively easy to interpret.

An isolated cluster of atoms, however, is only a crude
approximation to a real solid surface. In the next subsec-
tion, therefore, we describe a method for treating a semi-
infinite material. The central idea is to replace the Ham-
iltonian H, for an isolated cluster of n, ~

atoms, by a "sub-
space Hamiltonian" H,„b(e}, for a subspace of n„at oms

within a semi-infinite (or infinite) system.
In the present approach, we allow a set of n atoms to

move. The remaining atoms are taken to be motionless,
but their effect on the electronic structure is included ex-
actly, using Green's-function methods. Since the motion
of an atom alters its interaction with neighboring atoms,
these neighbors must also be included in the perturbation
subspace represented by H,„b. I.e., we have n,&&n
where n, &

is the number of atoms in the perturbation sub-

space and n is the number in the movement subspace. "
We mention that one can include the motion of the atoms
outside the movement subspace approximately —e.g. , in
the harmonic approximation (using the phonon Green's
function ' ' } or in some stochastic approximation. ' In
the present paper, however, we treat these atoms as fixed
at their equilibrium positions —with the surface relaxa-
tion ' included —so that they influence the simulation
only through their repulsive potentials and their effect on
the electronic structure.
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from an unperturbed Hamiltonian Ho only in some n )& n
block:

u (x;k,s},are determined by the standard bulk eigenvalue
equation

K=Ho+ V, (2.25) H&(k)u(k, s) =e(k, s)u(k, s }, (2.34)

V11 P
V= (2.26)

H and the Green's function 6 are partitioned in the same
wayas V,

(2.27)

G ll G12

621 6226= (2.28)

and for notational convenience one defines V= V",
H =H", and 6 = 6".

Let Go be the unperturbed Green's function corre-
sponding to Ho, and GO=GO". We define the subspace
Hamiltonian by

s —H,„b(s)=Go ' —V . (2.29)

In general H,„b is non-Hermitian, with right and left
eigenvectors g; and g;:

(2.30a)

(2.30b)

The derivatives of the eigenvalues c; with respect to the
atomic coordinates x are given by the Hellmann-
Feynman theorem:3

(2.31}

Notice that the calculation of

V=H —Ho, (2.32)

where x represents an atomic position. The electronic en-
ergies s(k, s) and the periodic part of the Bloch function,

with Ho ——Ho', is just as straightforward as calculation of
the cluster Hamiltonian H of the preceding subsection.
In fact, H is the Hamiltonian of the isolated cluster of n„
atoms, and Ho is the special case of H when the atoms
are at their initial, unperturbed positions. Notice also
that BV/Bx =BH/Bx involves only the interatomic ma-
trix elements, and is calculated from the scaling rule
(2.7a).

The unperturbed Green's function Go(s) is relatively
easy to calculate with the present technique because it is
needed only at complex energies c. One can therefore use
the "naive" spectral representation of the Green's func-
tion, with no +i5 in the denominator.

First consider the bulk Green's function Gb, which has
the spectral representation

I

+ u (x;k, s)u (x', k, s)e'"'"
s —e(k, s)

where k is the wave vector and s the band index.
The unperturbed surface Green's function at a fixed

planar wave vector k=(k, , k2) can be obtained from a
one-electron Dyson equation having the form

Go(k, e)=Gb(k, s)+Gb(k, s)V, (k)GO(k, s) . (2.35)

We have used bars to indicate that these matrices are as-
sociated with atoms near the surface plane. It is just as
straightforward to construct the surface perturbation ma-

trix V, (in a tight-binding model} as it is to construct the
V of (2.32) or the cluster Hamiltonian H of the preceding
subsection. It is also straightforward to construct Gb us-

ing (2.33).
After (2.35) has been solved numerically, one obtains

Go

G 0(x, x', s)= f dkG 0(x, x', k, s)e'"'" (2.36)

y y ik .hgik .bZ

A —,
' b,x —,

' hy

(2.38)

For small b,x and hy, the factor multiplying exp(ik hOx )

is dk„hk„,but as hx and hy increase, this factor de-
creases because of the destructive interference within A.

D. Electronic force

In Ref. 3 it was proved that

where x =(x, ,x2) is the planar coordinate, so that
x=(x,x3). The integral of (2.36) is approximated by a
summation over special points. As

~

x —x'
~

in-
creases in (2.36), we find that larger sets of special points
are required for an accurate calculation of Go. For exam-
ple, 16 special points are required in the (110) surface
Brillouin zone for a subspace with 4 surface and subsur-
face atoms, but 36 are required with 8 atoms. This trend
is reasonable because there are more rapid oscillations
with respect to k in the integrand of (2.36) as

~
x —x'

~

increases, requiring a denser set of sample wave vectors.
It is these oscillations, and the resulting destructive in-
terference within the integral of (2.36}, that cause
Go(x, x') to decrease to zero as

~

x —x'
~

~ ao.
Even for very large M—:x —x', however, one can ac-

curately evaluate (2.36) with only a few special points, if
the rapidly varying function exp(ik b,x } is isolated from
the slowly varying function Go(k ): Let A be the area of
the surface Brillouin zone represented by the special
point ko. The contribution of ko to (2.36) is then

f dk G (k)e'"' "-G (k )f dk e'" " (2.37)
A A

In the present calculations, A is rectangular, with width
b,k„andheight hk, so
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so

H,„b(E)~H as 1E1~co,

E;(E)~E' and g;(E)~g

(2.39a)

(2.39b)

find that an optimum choice of five sample energies co
gives -S%%uo accuracy in the calculated electronic force.

Let Ac =cF—c'. Since

F„"=Fl +F2+F2, ,

where

(2.40)

It is also shown that the segment along the real axis be-
tween c, and cF, with c.,—+ —00, can be deformed into
the contour C, plus Cz of Fig. 1. Here c.F is the Fermi
energy, which lies within the band gap of the semicon-
ductor. (To be specific, we choose it to lie at midgap, as
for an intrinsic semiconductor. ) We can make the re-
placement indicated by (2.39) along C„and also along
the upper part of C2 from elF+i 00 down to cF+ic,„,
where e,

„

is some energy that is large in comparison to
REF

—E'
1

for all of the E'. Then (7.4) of Ref. 3 implies
that

ic. ,„+hc
Im ln

iR +hp
Em,„(1 i—EE/E,„)

R (1 i—b,E/R )

= Im ln(1 i E—E/E,„)
(2.44)

(2.45)

as R ~ cc, (2.43) gives

BE",

F~=X
Bx

1 F cl

max
(2.46)

(2.47}

(2.48)

for E,„»1 EF —E' 1. Also, one can see in Fig. 1 that

cl
a i

1Im ln
cl

~——m'
2

6 —EC !
BE",

F, =—Im g lnTT; BX

Fq ——g FJ,

cl
E —E.a i

E —E,
cl

C

(2.41)

(2.42a)

as R —+00, so

1F 2; Bx
(2.49}

The expression for the electronic force thus simplifies to

BE;(E(I) E', —E;(E(I)
FJ =—Im g ln7r, BX E~ —E, (E))

(2.42b)
BEcl

Fcl g +F
l

(2.50a)

BEcl
F2=—Im g lnTT; BX

(EF+i E „)—E';

cl
a

(2.43)

However, V has no diagonal elements, so g; E'
=TrH =TrHO ——const, and we have the further
simplification Fl ——0. This gives

In (2.41) and (2.43), E, =EF—R and E, =EF+iR are the
lower and upper endpoints of Cl, as depicted in Fig. 1.
In (2.42b), Eo is a sample energy representing the segment
of C2 between the upper point ej and the lower point c, .
In order for (2.42b) to be a good approximation, the E(I
should be more densely spaced as the real axis is ap-
proached, since E;(E) and p;(E} begin to deviate
significantly from E' and 1t as ImE~O along Cz. We

—F (2.50b)

where Fz is given by (2.42}. Recall that the sample ener-
gies E(l of (2.42b) are distributed along Cz between EF and
EF+i E,„,with nearly all the E( near the real axis.

It is easy to see that (2.50) reduces to the result (2.23)
for an isolated cluster if we neglect the energy depen-
denCe Of H,„b,taking E;(E)=E' and tp;(E)=g;(E)=pc.
In this "cluster approximation, " (2.42) becomes

BE;cl
&F—&i

cl

F2=—g Imln
1T; Bx &a

(2.51)

(E,O)

Re&

First consider the occupied states with c' &cF. Since

c, =cF +iR, the quantity in parentheses equals

( i /R)
1

EF —E'
1

—in the limit R ~ cct. For the unoccu-

pied states with c.' )cF, on the other hand, it is equal to
(+i/R) REF —E',.'1. Choosing the branch of the loga-
rithm such that lni =i n/2 and ln( . i) = i n—./2, we then—
obtain

FIG. 1. Complex energy plane. Integration over the rapidly
varying structure between c, (an energy below the relevant elec-
tronic energy bands) and cz (the Fermi energy of the solid)
would require a very large number of sample energies for an ac-
curate calculation. %e replace this interval by a finite segment
of C2 between ez+ic,„and cz. Since the eigenvalues of the
subspace Hamiltonian are slowly varying functions of c. for c
complex, only a few sample energies are required.

g~cl

F2 ————g sgn(EF —E' )2; a

and (2.50) becomes

el clF„'= —g e(EF —E'; ) .
Bx

(2.52}

(2.53)
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We mention that the summation over i in (2.53} and
the previous equations includes a summation over spins,
with spin degeneracy, g; ~2 g„,where r labels a spatial
state. %e also mention two points in regard to the nu-

merical calculations: First, one can minimize difficulties
with the multivalued complex logarithm, lnz, by using

Inz =Inr +i tan '(y/x), (2.54}

where r =(x~+y )'~ and z =x+iy One still has to
stay on the proper branch of the multivalued inverse

tangent function, of course, but this is not difficult: For c
in the upper half plane, Ime;(e) is always negative, so

y =1m[a, —(e;e~o)] or Im[ej —e, (sjo)] is always positive in

(2.42b). Also, we find in our calculations that
x =Re[eF—e, (e)] ordinarily remains either positive or
negative for a particular i as c decreases from cF+ic,

„

to cz along Cz. One is then always on the same branch,
and the multivalued inverse tangent function can be re-

placed by its principal value. Even if x changes sign

along Cz, one can choose the proper branch by monitor-

ing the value of x as a function of Ime, .
Since H,„&is non-Hermitian, one must calculate the

eigenvectors of both H,„sand H,„~—i.e., f; and p;—
and then require the normalization

(2.55)

As a check, we calculate g;g;g t and find that it is very

nearly equal to the identity matrix, so that completeness
is satisfied.

At each time t during a simulation, one calculates the
n X n matrices H (Hamiltonian of isolated cluster),
V =H Ho (pertu—rbation matrix}, H,„„(}a= —s (Go '

—V) (subspace Hamiltonian for sample energies e=ejo
along Cz), and BV/Bx (variation of interatomic matrix
elements with atomic positions x}. Then the eigenvalue
problem (2.30} is solved, and the electronic forces com-

puted from (2.31), (2.42), and (2.50). The computational
bottle neck is solution of the two n X n eigenvalue prob-
lems (2.30) for the non-Hermitian matrix H,„~,at each of
the sample energies co, after each time step ht of about
10 ' sec. However, this calculation is rather fast with
the computational resources now available; for example,
with n =36, a simulation of about 1000 time steps re-
quires roughly an hour on a standard array processor.

III. RESULTS

2.5

2.0
CI

1.C'

1.5

1 0-

0.5

A. Preliminary discussion

The simulations of the present paper are for various
chemical species impinging on the (110) surface of GaAs.
Figure 2 shows a top view of this surface, with the choice
of coordinates indicated. Our unit of length is half the
GaAs bond length, or 1.225 A. Then the As atoms at the
lour and upper right corners, respectively, have coordi-
nates (1.63,—1.15,0) and (1.63,3.45,0) before they are al-
lowed to relax. Figure 2 also schematically shows a top
view of six possible chemisorption sites on the surface,

0.0.

GaAs(110)
—0.5.

—1.0
1.0

0.5

0.0.

—0 5.

—1.0.

—1.5
0 100 200 300 400 500 600 700 800

t GaAs

FIG. 2. Top view of {110)surface of GaAs, showing positions
of Ga and As surface atoms and approximate positions of 6 ini-
tial chemisorption sites which have been observed in the present
simulations.

FIG. 3. Simulation of Cl chemisorbing on GaAs{110). The
coordinate system is defined in Fig. 2. Distances are scaled by
half the Ga—As bond length, 1.225 A. The dimensionless time
t isdefinedby t =t/ht, ht =1.04&10 ' sec.
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with bonding to a single As or Ga surface atom (1 or 4),
to a pair of As or Ga atoms (2 or 5), or in a Ga—As
bridge site (3 or 6). These positions, which are observed
as initial chemisorption sites in our simulations of time-
dependent chemisorption, have also been observed as en-
ergy minima along the surface in calculations of energy
surfaces associated with static chemisorption.

Let us begin by considering a test simulation in which
there is no incoming atom, and the surface atom at the
origin is placed at its unrelaxed position —i.e., the posi-
tion it would have in bulk GaAs. We place the other
atoms at fixed positions, so that only the atom at the ori-
gin is allowed to move. In four simulations —two with
the surrounding atoms at their unrelaxed, positions, and
two with them at their relaxed positions —we found that
the atom at the center relaxed in the way experimentaBy
observed for GaAs(110). That is, As relaxes upward and
Ga downward (with both atoms moving in the negative y
direction), and by amounts that are in approximate agree-
ment with the low-energy electron diffraction spectrosco-
py measurements. ' These results —like those of
Chadi, ' ' Duke and co-workers, ' and Sankey-
demonstrate that the present method yields the correct
surface relaxation, an important initial requirement for
any method that is to be applied in further studies of sur-
face properties.

We choose the unit of time to be the same as the time
step, Et=1.04)&10 ' sec, i.e., t'=tlat. In the simula-
tions reported below, only two atoms are allowed to
move —the surface atom at the origin and the incoming
atom. The other atoms in the semi-infinite solid affect
the simulation because they are electronically coupled to
the moving atoms, as described in the preceding section,
and they are also represented by repulsive potentials.
They are, however, motionless in these first simulations
with the present technique. As mentioned in the preced-
ing section, the electronically perturbed subspace is
larger than the movement subspace. With two atoms al-
lowed to move, there are five atoms in the electronic sub-
space, since the surface Ga at the origin of Fig. 2 is bond-
ed to three As neighbors. Since there are one s and three
p orbitals per atom, H,„band the other relevant matrices
are 20X 20 in this case.

One could treat the propagation of vibrational energy
into the solid with the time-dependent phonon Green's
function. ' ' In the present work, however, we simply
reduce each velocity by 0.5%%uo at each time step. This es-
timate of the appropriate rate of energy dissipation is
based on our study of vibrational relaxation in a semi-
infinite one-dimensional chain of atoms, with a sudden
impulse applied at the end. '

Let us now turn to some representative simulations of
various chemical species chemisorbing on GaAs(110). In
each case, the surface atoms are initially motionless at
their relaxed positions. ' The initial position and veloc-
ity of the incoming atom can be read off the graphs. Re-
call that the unit of length is ro/2, where ro ——2.45 A is
the bulk GaAs bond length.

Figure 3 shows a simulation for a Cl atom released
with zero velocity and one GaAs bond length above the
surface, at the Ga—As bridge site 3 of Fig. 2. This atom
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moves away from the surface As, and bonds to a single
Ga at site 4 of Fig. 2. Since Cl is electronegative, this is
just the kind of behavior one expects. Notice that the x
vibrations of the Cl have large amplitude and a long
period, because there is only a small, angle-bending re-
storing force for motion in that direction. We thus pre-
dict a low-frequency vibrational mode for this site.
(Bonding to more distant neighbors will increase the fre-

quency of this mode somewhat, but it should still be rela-
tively low. ) Notice that the present technique automati-
cally gives angle-bending as well as bond-stretching
forces, with both resulting from changes in the total elec-
tronic energy as the atomic positions are varied. Also no-
tice that one can study the equilibrium vibrations of sur-
face and adsorbed atoms, even when such vibrations are
highly anharmonic.
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Figure 4 shows a simulation for a 0 atom released with
exactly the same initial conditions as the Cl shown above.
Since 0 is light, it vibrates with high frequency in the y
and z directions. Again, however, it vibrates with a long
period and large amplitude in the x direction, for which
there is only a small angle-bending restoring force (in a
nearest-neighbor approximation). Figure 5 shows a simu-
lation for As, which bonds at the Ga—Ga bridge site 5.

The initial conditions in the present simulations —zero
velocity and the Ga—As bridge site 3—were chosen in
order not to bias the motion of the chemisorbing atom.
I.e., it can choose to bond either to the cation (Ga) or the
anion (As). As one expects, the electronegative group-V,
-VI, and -VII atoms tend to bond to the cation. Further-
more, it will be seen below that the electropositive
group-I, -II, and -III atoms tend to bond to the anion.
For group-IV elements, however, one expects that Ga
and As will be about equally attractive. This is confirmed
by the simulations of Figs. 6 and 7, which show C bond-
ing to Ga, at site 4, but Si bonding at the As—As bridge
site 2. Notice that the x vibrations of Si have higher fre-
quency than those of C, even though Si is a heavier atom.
The reason, of course, is that Si sits between two As
atoms, above the surface, and experiences some bond-
stretching restoring force. On the other hand, C is sub-

jected to only a weak angle-bending restoring force, like
Cl and 0 in the simulations described above. The y and z
motion of C show rapid vibrations, associated with bond
stretching, superimposed on much slower vibrations, as-
sociated with angle bending. It is clear that the equilibri-
um vibrations of adsorbed atoms, like those of Figs. 6 and
7, provide a signature of the adsorption site.

In Fig. 8, an Al atom is released at a point exactly
above a surface As. Initially repelled upward, apparently
because of the outward As relaxation, the Al moves to
site 1 of Fig. 2, where it bonds to the single As atom. Its
high-frequency bond-stretching vibrations are superim-
posed on low-frequency vibrations, perpendicular to the
As—Al bond, for this initial chemisorption site. Figure 9
shows a simulation for Cu. As one might expect, this
electropositive atom is attracted by the anion, bonding at
the As—As bridge site 2 for this set of initial conditions.
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