

EXPLOITING LEVEL SENSITIVE LATCHES FOR WIRE PIPELINING

A Thesis

by

VIKRAM SETH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2004

Major Subject: Computer Engineering

EXPLOITING LEVEL SENSITIVE LATCHES FOR WIRE PIPELINING

A Thesis

by

VIKRAM SETH

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Jiang Hu

(Chair of Committee)

Weiping Shi
(Member)

Duncan M. Walker

(Member)

Chanan Singh

(Head of Department)

December 2004

Major Subject: Computer Engineering

iii

ABSTRACT

Exploiting Level Sensitive Latches for Wire Pipelining.

(December 2004)

Vikram Seth, B.Tech., Indian Institute of Technology Kanpur India

Chair of Advisory Committee: Dr. Jiang Hu

The present research presents procedures for exploitation of level sensitive

latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of

destination or sinks, and the location in rectangular plane, capacitive load and required

arrival time at each of the destinations. The user also defines a library of non-clocked

(buffer) elements and clocked elements (flip-flop and latch), also known as synchronous

elements. The first procedure performs concurrent repeater and synchronous element

insertion in a bottom-up manner to find the minimum latency that may be achieved

between the source and the destinations. The second procedure takes additional input

(required latency) for each destination, derived from previous procedure, and finds the

repeater and synchronous element assignments for all internal nodes of the Steiner tree,

which minimize overall area used. These procedures utilize the latency and area

advantages of latch based pipelining over flip-flop based pipelining. The second

procedure suggests two methods to tackle the challenges that exist in a latch based

design. The deferred delay padding technique is introduced, which removes the short

path violations for latches with minimal extra cost.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Jiang Hu for his continued support

and guidance. I would also like to acknowledge the assistance of Dr. Min Zhao

(Freescale Semiconductor Inc., Austin, TX) for her valuable suggestions. I would like to

express my gratitude to Dr. Pasquale Cocchini for giving clarifications on his original

work.

I would like to take this opportunity to thank Dr. Hank Walker and Dr. Weiping

Shi, for enhancing my knowledge on VLSI Computer Aided Design (CAD) algorithms,

through their academic courses. I also thank the Electrical Engineering Department for

providing the technical facilities for conducting this work.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ..iv

TABLE OF CONTENTS ...v

LIST OF FIGURES...vi

LIST OF TABLES ...vii

1 INTRODUCTION..1

2 USING LATCHES IN INTERCONNECT DESIGN ..6

2.1 Advantages ..6
2.2 Challenges ...10

3 CONCURRENT REPEATER AND FLIP-FLOP INSERTION12

4 WIRE PIPELINING USING LATCHES ..18

4.1 Overview ...18
4.2 Handling of long path constraints ...19
4.3 Handling of short path constraints ..20

4.3.1 Post Processing...21
4.3.2 Uniform Delay Padding ...22
4.3.3 Deferred Delay Padding ...22

4.4 Algorithm complexity ...29

5 EXPERIMENTAL RESULTS...31

6 CONCLUSIONS..36

REFERENCES...37

VITA ..39

vi

LIST OF FIGURES

FIGURE Page

1. Frequency scaling trend. ..1

2. Die size scaling trend. ..2

3. Timing diagram for positive level sensitive latch ..7

4. Latency advantage of latch-based over flip-flop based wire pipelining8

5. Area advantage of latch-based over flip-flop based wire pipelining............................9

6. Short path problem of latch based design ..11

7. Cover inferiority...13

8. Merge operation [2]..14

9. MiLa algorithm [2]...15

10. GiLa algorithm [2] ...16

11. ReFlop operation [2] ..17

12. Example of long path constraint for postive level sensitive latch based pipelining ..19

13. Dependency of short path violation on the previous stage delay...............................20

14. Wire operation..23

15. Repeat operation...24

16. Join operation ...25

17. Deferred delay padding operation ..26

18. Example of deferred delay padding along a path...27

19. Example of deferred delay padding for nets with branches29

vii

LIST OF TABLES

TABLE Page

I TEST CASES USED FOR THE EXPERIMENTS ...32

II MiLa RESULTS WITHOUT OBSTACLES ...32

III MiLa RESULTS WITH OBSTACLES ...33

IV GiLa RESULTS WITHOUT OBSTACLES..34

V GiLa RESULTS WITH OBSTACLES ..34

1

1 INTRODUCTION

The sustained progress of VLSI technology leads to increasing wire delay,

shrinking clock period and growing chip size. Industry data [2] shows that the operating

frequency of high-performance Integrated Circuits (ICs) approximately doubles every

process generation, and the die-size increases by about 25% per generation. Figure 1 and

Figure 2 below [15] depict the scaling trends in current and future process generations.

Fig. 1. Frequency scaling trend.

Ideal scaling implies that all dimensions of the wires are shrunk per generation.

Therefore, as mentioned in [14], although the wire capacitance per micron doesn’t

change, the wire resistance per micron doubles every process generation, which results

This thesis follows the style and format of IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems.

2

in wire delay degradation per scaled micron of every generation. The RC-delay of an

unbuffered interconnect increases quadratically with wire length. Thus, repeaters have

traditionally been used to make the dependence of delay as a linear function of the

interconnect length. In an optimally buffered interconnect, the delay of any given stage

is approximately equally divided between the repeater and the wire. However, the wire

delay degradation in a buffered interconnect, whose dimensions are shrunk every next

technology node, during process scaling has led to shrinking of the optimal interval

between buffers. Thus, additional repeaters need to be added to optimize the

interconnect.

Fig. 2. Die size scaling trend.

The critical sequential length [14] is the maximum distance that a signal can

travel in an interconnect that has been optimally sized and optimally buffered uniformly,

within a single clock period. The work of [14] shows that the critical sequential lengths

3

shrink at the rate of 0.43x per generation. This makes the shrinking not only much faster

than normal scaling, it also makes it faster than the rate of decrease (0.57x) in critical

repeater lengths [14], which is the minimum distance beyond which inserting an

optimal-sized repeater makes the interconnect delay smaller than that of the

corresponding unrepeated wire. This implies that ideally shrunk interconnects will not

only require new repeaters, but also that many of these new repeaters will need to be

clocked.

From the above discussion two things become very obvious. Firstly, due to

increasing frequency (or decreasing clock period) and die size, the chances of global

signals reaching their destination within single clock cycle also reduces. It often takes

multiple clock cycles for signals to reach their destinations along global wires. Secondly,

the ratio between clocked and unclocked repeaters on a buffered interconnect will

continue to grow, as it is scaled across technology nodes. This indirectly points out the

fact that the area of these clocked repeaters will become paramount in future technology

generations. There have been several works to find solution for routing such multi-cycle

global signals across a chip with minimum repeater area.

Traditional interconnect optimization techniques such as repeater insertion [1]

deal with single cycle paths only, and are thus inadequate in handling the scenario of

synchronous elements insertion (or wire pipelining). The above multi-cycle path routing

problem can be solved in two possible ways. The first way, referred to as wire-

pipelining, is to pipeline the multi-cycle path using synchronous elements, while using

buffers to further optimize the interconnect routing. The clock signal is routed to these

synchronous elements. In [2], two algorithms are proposed on concurrent repeater and

flip-flop insertion for a given Steiner tree. For the case of 2-pin nets, a simultaneous

routing, repeater and flip-flop insertion algorithm is suggested in the context of single

and multiple clock domains [3]. Given a wire pipelining result, using flip-flops, the work

of [4] attempts to improve clock speed through retiming. The second solution is referred

to as wave-pipelining. In the work of [5], wave pipelining technique, which allows

signals to propagate for multiple clock cycles without synchronous elements, is applied

4

for global wires. It eliminates the use of synchronous element along the signal route and

allows it to propagate to the destination. This allows the simultaneous existence of

several signal wavefronts along a wire path between two synchronous elements. The

most important aspect in making this method a success is ensuring that successive

waveforms do not interfere. The advantage of using wave-pipelining is that it reduces

the clock load and eases clock distribution by reducing the number of synchronous

elements in the design. However, wave pipelining is very sensitive to delay, process, and

temperature variations – effects that are even more pronounced for long routes. Also, it

demands complicated data recovery circuits at the receivers. Thus the latter case of wave

pipelining can avoid setup time overhead and intrinsic delay of synchronous elements,

but it has its own disadvantages.

The above two methods either adopt edge triggered flip-flops as synchronous

elements [2–4] or do not use any synchronizing elements at all [5]. If we look at the

spectrum for the degree of synchronization effort during signal propagation, flip-flop

insertion is at one extreme of the strongest effort while wave pipelining is at the other

extreme of no synchronization effort at all. This work proposes an intermediate level

synchronization approach - level sensitive latch based wire pipelining which has no

setup time overhead and does not need data recovery circuits. Furthermore, the

flexibility in timing constraints of latches allows cycle stealing which may help to reduce

both latency [2] and the number of synchronous elements needed, which is the objective

in wire pipelining [2]. At the same time, as discussed before, area is a crucial concern

because the number of synchronous elements increases by 7× for every process

generation and will become a remarkable portion of the total cell count in a chip in near

future [2,14]. Since a latch usually is smaller than a flip-flop, it can save both area and

power consumption. Therefore, the advantages of using latches in wire pipelining are

very important for chip designs in current and next generation technologies.

In circuit designs (vs. interconnect designs), people tend to shun away from using

latches because it is more complicated than using flip-flops. One major difficulty is from

the cyclic timing constraints caused by feedback loops [6]. However, this difficulty does

5

not exist for wire pipelining due to the absence of feedback loops in interconnect.

Moreover, we follow the single phase clock scheme as in many flip-flop based designs

so that the multi-phase clock overhead in traditional latch based circuit designs is

avoided. Nevertheless, there are two difficulties that need to be overcome for using

latches in wire pipelining: (1) input-output timing coupling and (2) the strict short path

constraint. This work includes new techniques to solve these difficulties such that the

advantages of latches can be fully utilized. In particular, a deferred delay padding

technique is developed to correct short path violations with the minimal extra cost.

These techniques are integrated with the dynamic programming based framework of [2].

The short path violations are fixed constructively in the dynamic programming

procedure instead of as a post processing. Experimental results demonstrate both the

advantages of using latches and the effectiveness of our algorithms.

There are two observations that are important for a latch based design. Firstly,

the input signal is allowed to arrive/depart anytime within the active clock interval. This

puts a restriction on the clock gating technique, which is commonly used in integrated

circuits to reduce dynamic power consumption. The clock must not be gated within the

active interval, since the propagating signal may be lost. Secondly, since the delay

between two latches can be greater than clock period, it is possible that two signal pulses

may exist between them. If care is not taken to keep the delay between two buffers less

than a clock period, then one pulse may override the other, and result in signal loss.

The text is organized in different sections. Section 2 discusses the advantages and

challenges of latch-based designs. Section 3 introduces the ‘Concurrent Repeater and

Flip-flop Insertion’ algorithm [2], which introduces the dynamic programming based

framework that is used in this work. Section 4 gives the details of the procedures to use

latch insertion to improve latency and area cost. Section 5 gives the experimental results

of the algorithms described in previous section. Finally Section 6 discusses the

conclusions that can be drawn from this work.

6

2 USING LATCHES IN INTERCONNECT DESIGN

2.1 ADVANTAGES

The two major objectives of wire pipelining are to reduce latency and area cost.

The flexible setup time constraints and smaller size of latches, as compared to flip-flops,

can help in achieving the above goals. The area advantage of latches due to smaller size

is very evident, as most D-flip-flops are composed of two D-latches. The latency and

area advantages of latches due to relieved setup time overhead are described as follows.

The more flexible setup time overhead associated with latches as compared to

flip-flops can achieve better latency. This advantage can be illustrated by a first order

analysis on a simple case. Consider a two-pin wire with its source at node u and its sink

at node v. If this wire is optimally buffered, the source-sink delay tu,v is asymptotically

proportional to its wire length [7]. In flip-flop based approaches, signals depart from one

flip-flop at a switching edge of the clock signal and have to arrive at next flip-flop before

T - Tsetup -Tskew, where T is clock cycle time, Tsetup is the setup time and Tskew is clock

skew between the two flip-flops. If Tprop is the propagation delay of a flip-flop, the

maximal interconnect delay allowed between two flip-flops is T -Tsetup - Tprop -Tskew.

Hence, the minimal latency �uv for flip-flop based pipelined wire (u,v) is give by:

1−
�
�
�

�

�
�
�

�

−−−
=

skewpropsetup

uv
uv TTTT

t
λ (1)

When latches are employed instead, signals can depart from a latch at any time in

the active interval rather than a single moment. The latches can be properly inserted in a

way such that signals always arrive at a latch at its active interval with sufficient safety

margin for setup time and clock skew, i.e. in the interval of [T -Tp,T -Tsetup-Tskew], as

shown by the yellow shaded interval in Figure 3 for positive level sensitive latches. Here

Tp is the duration of positive clock signal level in one cycle. Then the only delay

overhead in addition to the interconnect delay will be the propagation delay T’
prop of a

latch. Therefore, the minimal feasible latency �’
uv for latched based pipelined wire (u,v)

is:

7

1
'

' −
�
�
�

�

�
�
�

�

−
=

prop

uv
uv TT

tλ (2)

Please note that T’
prop is usually smaller than the flip-flop propagation delay Tprop.

Comparing Equation (2) with Equation (1), we can see that a latch based wire pipelining

can achieve smaller latency than flip-flop based approaches.

Fig. 3. Timing diagram for positive level sensitive latch.

Another great advantage of latch is its flexibility on timing constraint. As a latch

allows signals to pass through in an interval, the path delay between two latches can be

greater than one clock cycle provided that it is compensated by smaller path delays in its

previous or next stage. This phenomenon is known as cycle stealing or time borrowing.

In contrast, the path delay between two flip-flops cannot be greater than one clock cycle.

The timing flexibility of latches is particularly appealing when obstacles exist for

repeaters and synchronous elements. The obstacles can be hard macro, IP core or

memory blocks which occupy certain region and disallow repeater or synchronous

element insertions. In this scenario, the timing flexibility of latches can facilitate further

TCLK TP Tn

Tsetup

8

improvement on latency compared with flip-flop based wire pipelining. Consider a two-

pin net between two flip-flops F1 and F2 in Figure 4(a). Throughout this paper, we

assume flip-flops are falling edge triggered and latches are positive level sensitive. There

is an obstacle between spot a and b. The delays of the wire segments are t1, t2 and t3,

respectively, as indicated in Figure 4 and they satisfy t1+t2 � (T, T +Tp), t2+t3 � (T, T

+Tp) and t1 +t2 +t3 � (T, 2T). Such an additive approximation can be used assuming that

the interconnect is optimally buffered [7]. If only flip-flops are allowed in the pipelining,

at least two flip-flops are needed as shown in Figure 4(b) to satisfy the constraint that a

path delay is no greater than a clock cycle. If latch can be employed, one latch insertion,

L, as in Figure 4(c) is sufficient for its timing constraint. Obviously, using latch results in

less latency in this scenario.

Fig. 4. Latency advantage of latch-based over flip-flop based wire pipelining. (a) Wire path with
obstacles between a and b. (b) Flip-flop based wire pipelining. (c) Positive level sensitive latch
based wire pipelining.

F1 F2 t1 t2 t3

a b

F1 F2 t1 t2 t3

a b

(a)

(b)

F3 F4

F1 F2 t1 t2 t3

a b
(c)

L

Blockage

9

The timing flexibility of latches can also be utilized to reduce the number of

synchronous elements inserted in wire pipelining. This is illustrated by the example in

Figure 5, which is a multi-fanout net. In order to maintain functional correctness, the

latency along each path is often required to meet certain constraint. In this example, the

constraint is simply that the latency from the source to each sink has to be the same.

Fig. 5. Area advantage of latch-based over flip-flop based wire pipelining. (a) Flip-flop based
wire pipelining. (b) Positive level sensitive latch based wire pipelining.

If t2, which is the delay from the branch point to flip-flop F2, is in the range of

(T, T +Tp), two flip-flops need to be inserted to satisfy the equal latency constraint as

shown in Figure 5(a). However, only one latch is necessary to meet the same constraint

through cycle stealing as in Figure 5(b). Since a flip-flop is often as twice large as a

latch, using latch in this scenario results in about 75% area savings.

F1 F2 F5

F3

F4

a

(a)

F1 F2 L

F3

a

(b)

t1 t2

t1’ t2’

10

2.2 CHALLENGES

Unfortunately, the timing flexibility of latches also brings extra design

complexities. For a flip-flop, its output signal departure time is aligned to a clock signal

switching edge and is independent of its input signal arrival time in general. For a latch,

since there is a significant range of time for a signal to pass through, its output signal

departure time directly depends on its input signal arrival time. This input-output timing

coupling makes its timing constraints more complicated than those of flip-flops [6].

Moreover, the significantly long active interval increases the chance of short path

constraint violation compared with flip-flops. Figure 6(a) shows a latch based pipelining

for a multi-fanout net. The time diagram for the scenario is depicted in 6(b). Since the

delay from L2 to L3 is small, the same signal indicated by the dashed lines is caught at

both L2 and L3 in the same active interval as shown in Figure 6(b). This is a

phenomenon of double clocking or short path violation [8]. In contrast, the short path

violation is less likely to occur in a flip-flop based design, since the capture time interval

for an edge-triggered flip-flop is very small, as depicted in Figure 6(c) and Figure 6(d).

Therefore, sometimes delay padding [8] is necessary for latch based designs to correct

short path violations. How to satisfy short path constraints with the minimum delay

padding is a problem that needs crafted solutions.

11

Fig. 6. Short path problem of latch based design. (a) Wire pipelining based on positive level
sensitive latches. (b) Timing diagram for the pipelining without delay padding. (c) Wire
pipelining based on falling edge-triggered flip-flops. (d) Timing diagram for the flip-flop based
pipelining.

L1 L3 L2

L4

padding

(a)

TCLK TP Tn

Tsetup

(b)

L3in
L2in

L2out

F1 F3 F2

F4

(c)

TCLK TP Tn

Tsetup

(d)

F3in
F2in F2out

12

3 CONCURRENT REPEATER AND FLIP-FLOP INSERTION

The techniques of exploiting latches are integrated with the dynamic

programming framework of [2], so this section gives an introduction of concurrent flip-

flop and repeater insertion algorithms in [2]. Given a Steiner tree T with candidate

insertion points and a repeater library G, including at least one flip-flop, the work of [2]

proposes two variants of wire pipelining algorithm: (1) MiLa which searches for the

minimum latency achievable for the Steiner tree; (2) GiLa which aims to minimize area

cost while given latency constraints are satisfied. Both algorithms perform concurrent

flip-flop and repeater insertion on the Steiner tree in a dynamic programming based

framework like in [1, 9]. A flip-flop is also called clocked repeater in this work.

Wire is modeled as distributed RC, with resistance across the length of the wire

and capacitance divided between the two ends of the wire. Wire delay is estimated with

the Elmore delay model. The delay of a clocked or a non-clocked repeater, gk, is

expressed as delay(gk,cout) where cout is the capacitive load.

The algorithms proceed from the sinks toward the source and candidate

solutions, which are called covers, are generated and propagated in the bottom-up

procedure. Each cover is associated with a node ni in the tree and is expressed as a 4-

tuple:

�i = (ci, ri,�i,ai) (3)

In the above 4-tuple, ci is the downstream capacitance seen at ni, ri is the required

arrival time, �i is the latency and ai is the downstream repeater assignment. The covers at

sinks are given and they are propagated to their parent nodes by the operation of wire. At

a node for candidate repeater insertion, new covers are generated by the operation of

repeat. Two sets of covers at a double branch node are merged with the operation of

merge, in which two covers are joined through the operation of join. In the process of

cover propagation, inferior covers are pruned out, using Property 1, to save runtime.

13

The pruning of the inferior covers, without compromising optimality, is based on

an extension of the pruning introduced in [1]. Figure 7 shows Property 1 that is used to

determine the inferiority of one cover against the other.

Fig. 7. Cover inferiority.

In properties 1a and 1b (referred to as nonmonotonic inferiority rule) in Figure 7,

it is obvious that � is the inferior cover because with same latency it doesn’t give a better

required arrival time, and since its capacitance is also higher, its chances of giving a

better solution later on during the bottom-up process is less. The property 1c (referred as

cover tie inferiority rule) gives another dimension to the pruning, indicating that based

on the user defined cost function, a solution is inferior if it gives higher cost, while all

other attributes remain same. The property 1d (referred to as extra latency rule) follows

from the same reasoning as for the properties 1a and 1b.

The pseudo-codes for the merge operation, the MiLa algorithm and the GiLa

algorithm are given below in Figure [8-10], respectively. In the Mila algorithm, all the

possible latency combinations are considered, at a double branch node, while merging

the solutions of the left and right children, to get the set of solutions at the parent. This

takes care that the covers that are propagated to the root are optimal. It implies that one

Property 1 (Cover Inferirority): γγ ,Γ∈∀ is inferior in � if Γ∈∃ 'γ , such that at
least one of the following is true:

a. � = �’, c � c’, r < r’;
b. � = �’, c > c’, r = r’;
c. � = �’, c = c’, r = r’, cost(�) > cost(�’);
d. � > �’, c � c’, r � r’;

14

of the children has to shift the latency of its solutions in all possible ways so that the

solutions can be merged with all the solutions of its sibling.

In the GiLa algorithm, however, only those solutions, belonging to the left and

right children, which have same latency, are merged. This implies that sometimes a

procedure ReFlop may be performed to insert additional flip-flops to a branch, when

covers from two branches are merged and their latency needs to be matched according to

the latency constraints. The pseudo-code for the ReFlop operation is shown in Figure 11.

Fig. 8. Merge operation [2].

// Join covers with same latency from �u and �v in �.
merge(�u, �v)
1. // �j

i � i-th element of �j , �j
i = latency of �j

i
2. � = �, x = y = 1
3. while x � | �u| and y � | �v|
3.1 if �u

x > �v
y then y = y + 1, goto 3.

3.2 if �u
x < �v

y then x = x + 1, goto 3.
3.3 � = � U join(�u

x, �v
y)

3.4 if ru
x � rv

y then x = x + 1
3.5 if rv

x � ru
y then y = y + 1

4. return �

15

Fig. 9. MiLa algorithm [2].

// Compute optimal covers �u of sub-tree Tu rooted at
// node u, find minimum latency at each
// source-sink pair given repeater library G
MiLa(Tu)
1. if Tu is a leaf, �u = (cu, ru,0,0)
2. else if node u has one child node v via edge eu,v
2.1 �v = MiLa(Tv)
2.2 �u = U� � �v (wire(eu,v,�)) // Insert |�v| covers
2.3 �g = �
2.4 for each g in G // Insert |G| covers
2.4.1 � = U� � �u (repeat(�u,v,g))
2.4.2 prune � // Property 1
2.4.3 �g = �g U �
2.5 �u = �u U �g
3. else if u has two child edges eu,v and eu,z
3.1 �u,v = MiLa(Tu,v), �u,z =MiLa(Tu,z)
3.2 // �u,v � {�x, ..., �y}, �u,z �{�m, ..., �n}
3.3 if y < n then swap(�u,v, �u,z)
3.4 for k = x – n to y – m //latency shift operation
3.4.1 �u = �u U merge(�m+k,…, �n+k)
4. prune �u // Property 1
5. if u is source then Traverse the tree from root up and compute latency at

 each sink
6. return �u

16

Fig. 10. GiLa algorithm [2].

// Compute optimal covers �u of sub-tree Tu rooted at
// node u, given latency constraints �u at each
// source-sink pair and repeater library G
GiLa(Tu)
1. if Tu is a leaf, �u = (cu, ru,�u,0)
2. else if node u has one child node v via edge eu,v
2.1 �v = GiLa(Tv)
2.2 �u = U� � �v (wire(eu,v,�)) // Insert |�v| covers
2.3 �g = �
2.4 for each g in G // Insert |G| covers
2.4.1 � = U� � �u (repeat(�u,v,g))
2.4.2 prune � // Property 1
2.4.3 �g = �g U �
2.5 �u = �u U �g // �u � {�x, ...,�y}, x,y indicate latency
2.6 if u is source
2.6.1 if x > 0, exit: the net is not feasible
2.6.2 if y < 0, // insert -y more flops in �u
2.6.2.1 �u = ReFlop(Tu,-y)
3. else if u has two child edges eu,v and eu,z
3.1 �u,v = GiLa(Tu,v), �u,z = GiLa(Tu,z)
3.2 // �u,v � {�x, ..., �y}, �u,z �{�m, ..., �n}
3.3 if y < m // insert m-y more flops in �u,v
3.3.1 �u,v = ReFlop(Tu,v,m-y)
3.4 if n < x // insert x-n more flops in �u,z
3.4.1 �u,z = ReFlop(Tu,z,x-n)
3.5 �u = �u U merge(�u,v, �u,z)
4. prune �u // Property 1
5. return �u

17

Fig. 11. ReFlop operation [2].

The wire, repeat and join operations are described in the following section, in

context to the use of level sensitive latches along with flip-flops and buffers in the MiLa

and GiLa algorithms.

// Insert n extra flops in branch rooted by sub-tree Tu
ReFlop(Tu, n)
1. Traverse the tree from Tu up removing sets � along the way and computing

the number crossed_flops of the flops crossed until either leaf or branch of
degree 2 is reached.

2. Traverse the tree down back to Tu generating new sets � using the wire and
repeat functions but this time forcing the insertion in the branch an exact
number of flops equal to crossed_flops + n. In particular, flip-flops are
equally spaced along the branch so as to equally distribute the extra
positive slack introduced. If there are more flip-flops to be inserted than
available locations, extra flip-flops are inserted in already occupied
locations.

3. return �u

18

4 WIRE PIPELINING USING LATCHES

4.1 OVERVIEW

The problem formulations of this work and top level algorithm framework are

the same as those of [2]. One major difference is that latches are included in the repeater

library. Because of this change, the basic algorithms of wire, repeat and join are

modified to satisfy the long path and the short path constraints for latches. In particular,

short path violations need to be fixed by delay padding. This work proposes delay

padding techniques that correct short path violations in a constructive manner rather than

in post processing. Flip-flops are not excluded from the repeater library, even though the

usage of latches is advocated. As shown in Figure 6 of Section 2, flip-flops have higher

immunity to short path violations. In Figure 6(a), if the delay between L2 and L4 is less

than T -Tsetup -Tskew - Tprop so that cycle stealing is unnecessary for the path from L2 to

L4, the short path violation between L2 and L3 can be avoided by replacing L2 with a

flip-flop. By keeping both flip-flops and latches in the repeater library, we let the

dynamic programming decide the best way to fix short path violation at a node: delay

padding or using a flip-flop. The assumptions of this work include:

� The wire pipelining is in a context of ordinary flip-flop based circuit designs.

Therefore, either flip-flops or primary I/O will be met if we trace the fanin or

the fanout of a net.

� Flip-flops are falling edge triggered and latches are positive level sensitive.

� All flip-flops and latches for a net are controlled by the same clock signal.

� The reference point for time is aligned with each falling edge of the clock

signal.

� Even though the clock skew can be handled by our algorithm, it is neglected

in this work for simplicity of description.

19

4.2 HANDLING OF LONG PATH CONSTRAINTS

For flip-flops, the long path constraint requires that the maximum path delay

between two flip-flops should be no greater than T - Tsetup. If there is a path between a

driving flip-flop and a receiving flip-flop, the required arrival time at the input of the

receiving flip-flop is normally set to T -Tsetup and the required arrival time at the output

of the driving flip-flop is required to be non-negative.

For latches, the maximum path delay allowable depends on if there is cycle

stealing at its next stage. If there is no cycle stealing at its next stage, the maximum path

delay can be greater than T - Tsetup as long as it is no greater than T +Tp. However, a path

delay greater than T -Tsetup implies cycle stealing at current stage. If the amount of cycle

stealing is tsteal , i.e., path delay of current stage is t = T -Tsetup+tsteal , then the maximum

path delay of its previous stage is bounded by T -Tsetup-tsteal . In Figure 12, the long path

constraint is illustrated in term of required arrival time. If we consider to insert a latch at

node u, the required arrival time at the output of the latch is ru which can be negative. A

negative value of ru implies cycle stealing at the stage and -ru = tsteal +Tsetup. Because of

the cycle stealing, the required arrival time at the input of the latch is ru,in = T +ru.

Fig. 12. Example of long path constraint for postive level sensitive latch based pipelining.

ru,in tuv

L Source u v

tsteal

Sink

rv ru

20

4.3 HANDLING OF SHORT PATH CONSTRAINTS

Unlike in flip-flop based designs in which the chance of short path violation is

often negligible, the significantly long active interval for latches allows greater chance of

short path violations. The short path constraint for latch based designs is presented in

[11]. Consider the case that signals propagate from latch Li to another latch Lj, as shown

in Figure 13. The signal arrival time at latch Lj is required to be aj � Thold, j. By

expressing aj in term of departure time di, propagation delay Tprop,i and ti, j, we can obtain

the short path constraint for ti, j as follows.

iipropjholdji dTTt −−≥ ,,, (4)

()Pii TTad −= ,max (5)

Fig. 13. Dependency of short path violation on the previous stage delay. (a) Wire pipelining
based on positive level sensitive latches. (b) Signal arrival at Li is close to –TP. (c) Signal arrival
at Li is close to 0.

Lj,in

Li Lj

Lj,in

Li,out

Li,out

(b)

(a)

Thold

Thold
(c)

21

The troublesome part of this constraint is its dependence on the signal departure

time di which in turn depends on the signal arrival time at latch Li. In other words, a

same path delay may or may not cause short path violation depending on its signal

arrival time. This can be illustrated through the example in Figure 13. In Figure 13, the

path delay between latch Li and Lj is ti,j < Tp. Whether or not this delay may cause short

path violation depends on the signal arrival time at latch Li. If that delay between Li and

its previous stage is small and di is close to -Tp as shown in Figure 13(b), a short path

violation occurs. However, if the path delay between Li and its previous stage is large

such that the signal departure time di at Li is close to 0 as indicated in Figure 13(c), the

small ti,j causes no short path violation. This dependence is particularly troublesome for

the bottom-up dynamic programming based approach [2], as the signal departure time of

previous stage is not known in the repeat operation at a node.

4.3.1 Post Processing

In traditional latch based circuit designs, the short path problem is usually solved

by delay padding in a post processing procedure [8]. For each path with delay less than

Tp, signal arrival time of its previous stage is known in a post processing and short path

violations can be identified easily. However, the early work of [8] considered only gate

delay and neglected wire delay which is dominating gate delay in modern technology.

 When wire delay is also included, it is hard for the post processing technique

like [8] to handle the case of multi-fanout trees. If a delay element is padded in any child

branch, through either wire snaking or capacitance padding, the delay in the sibling may

be increased due to the additional capacitive load, leading to a long path violation in that

sibling. For example, in Figure 6(a), delay t2,3 between L2 and L3 is less than Tp and

causes short path violation, while delay t2,4 between L2 and L4 is nearly T +Tp. If a delay

element is padded between L2 and L3 through either wire snaking or capacitance

padding, the delay to L4 may be increased due to the additional capacitive load.

Consequently, a long path violation may be induced between L2 and L4. Therefore, the

22

short path constraint needs to be considered together with the long path constraint in a

constructive manner.

4.3.2 Uniform Delay Padding

One observation is that if the path delay between two latches is greater than Tp,

then the short path constraint is guaranteed to be satisfied. Therefore, a simple method

for short path violation corrections is to increase a path delay to Tp whenever it is less

than Tp. Note that the path has to start with a latch, but can end with either a latch or a

flip-flop. This method is called uniform delay padding. Even though short path

violations can be eliminated completely through this method, it is conservative in a sense

that some delay padding may be unnecessary. As explained before, short path violation

will not happen if the signal arrival time of previous stage is large, even when the path

delay is less than Tp. Hence, the uniform delay padding may cause extra cost

unnecessarily. Moreover, unnecessary delay padding may increase delay of critical path

as described in previous section and thereby degrade the latency along the critical path.

4.3.3 Deferred Delay Padding

To avoid the pessimism in the uniform delay padding, this work proposes a new

delay padding heuristic that defers the actual padding until it is clearly necessary.

Considering signals propagating from latch Li to latch Lj, if the propagation delay is less

than Tp by �, there is potential short path violation depending on the signal arrival time at

Li. Instead of padding delay of � 	immediately, we just record it as Potential Delay

Padding (PDP) without doing actual padding. Only when the algorithm proceeds to a

moment that the arrival time at Li is known, part of or the entire amount of the PDP � 	is

indeed padded. The real delay padding procedure is called Instantiate-Padding in which

the padding cost is increased. Traditionally, the required arrival time (RAT) means the

latest or the upper bound of the arrival time. To facilitate the deferred delay padding, the

earliest required arrival time also needs to be considered. Thus, we specify RAT with

23

both an upper bound r and a lower bound r, i.e., r � RAT � r. The traditional RAT

actually refers to r. Hence, two more factors r and � 	are kept for a cover, i.e.

()iiiiiii rarc τλγ ,,,,,≡ (6)

 For a sink node j, its RAT must satisfy rj = rj -T � RAT � rj and its PDP �j = 0. If

the parent node of j is node i and the delay between them is ti,j, then the RAT at i is

updated to ri = rj -ti, j � RAT � ri = rj -ti, j .

The pseudocodes for the cover operations of wire, repeat and join are given

below in Figure [14-16]. These operations handle the long path constraints for latches

and flip-flops, and short path constraints for latches. The terms Ru,v and Cu,v represent

the resistance and capacitance, respectively, of edge bu,v.

Fig. 14. Wire operation.

The wire operation updates the two limits of the required arrival time according

to the delay introduced by the wire insertion. The latency and PDP fields remain

unchanged.

// Wire Operation
wire(bu,v,�u)
1. � = �
2. if slack = rv - Ru,v(Cu,v+cv) �.-Tp
2.1 ru,v = rv -Ru,v(Cu,v +cv)
2.2 �u,v = (2Cu,v +cv, slack,�v,0, ru,v, �v)
3. return �u,v //end wire function

24

Fig. 15. Repeat operation.

The repeat operation updates the initial solution according to the type of repeater

inserted, i.e. buffer, flip-flop or latch. For buffer the latency and PDP remains

unchanged, while for flip-flop the latency increases by 1 and the PDP still remains

unchanged. This is because flip-flops don’t require short path fix. However, for latch, the

latency increases by 1 and the short path constraints are verified by the Deferred-Delay-

Padding function. This function decides if actual padding is to be done or not, and the

amount by which the earliest RAT and PDP need to be modified. In either case of

clocked repeater insertion, flip-flop or latch, the long path constraints are checked before

the repeater insertion.

// Repeat Operation
repeat(�u,v,g)
1. � = �
2. if slack = ru,v-delay(g,cu,v) �. - Tp
2.1 ru = ru,v -delay(g,cu,v)
2.2 if g is not clocked
2.2.1 � 	= (load(g), slack,�u,v,g, ru,
u,v)
2.3 else
2.3.1 (r’

u,slack’,
u) = Deferred-Delay-Padding(ru, slack,
u,v)
2.3.2 if g is flip-flop
2.3.2.1 if slack’ � 0
2.3.2.1.1 � 	= (load(g),T -Tsetup,�u,v+1,g,0,0)
2.3.3 else if g is latch
2.3.3.1 if slack’ � -Tp
2.3.3.1.1 ru = min(T -Tsetup,T +slack’)
2.3.3.1.2 � = (load(g), ru,�u,v+1,g, r’

u,
u)
3. return � //end repeat function

25

Fig. 16. Join operation.

In the join operation, the latest required arrival time ri of a node i is obtained by

taking the maximum among its child branches and the earliest required arrival time ri is

obtained from the minimum among its child branches. If ri > ri, it implies that it is

impossible to implement the join without violating the short path constraints. To correct

the short path violation, ri-ri amount of delay is padded at the short branch.

The pseudocode of Deferred-Delay-Padding function, used in repeat operation is

given below in Figure 17. The procedure updates PDP (
), r and determines if the PDP

should be instantiated and how much of PDP need be instantiated. If a PDP is

instantiated, the latest required arrival time r will also be updated. The main idea is to

remove the short path violations by performing minimum delay padding to reduce the

cost.

// Join Operation
join(�u,v,�u,z)
1. ru = min(ru,v, ru,z)
2. ru = max(ru,v, ru,z)
3.
u = max(
u,v,
u,z)
4. if (ru > ru)
4.1 r’

u = Instantiate-Padding(ru-ru)
4.2 update load capacitance c’

u,v and c’
u,z, r’

u = r’
u

5. au = au,v U au,z // Unite repeater assignment
6. �u = ((c’

u,v+c’
u,z), r’

u,max(�u,v,�u,z),au, r’
u,
u)

7. return �u //end join function

26

Fig. 17. Deferred delay padding operation.

The procedure of Deferred-Delay-Padding and other cover operations is

illustrated through two examples. The first example deals with a single path while the

second example is about multi-fanout branches. In both examples, the clock period is T

= 8, the active interval for latch is Tp = 4 and the RAT of sinks are assumed to be 0 �

RAT � 8. Also the propagation delay through a latch is neglected for the simplicity of the

description.

In Figure 18, if a latch is inserted at node b, rb = -2 which is in the range of (-

Tp,0) and therefore a new PDP
’ = 2 is generated. Since the delay between b and c is tb,c

which is less than Tp by 2, this PDP 2 is an upper bound of delay padding for the path

// Deferred-Delay-Padding operation
// Input: Candidate solution at a node
// Output: Updated solution (r’, r’,
’)
Deferred-Delay-Padding(r, r,
)
1. if r �.-Tp
1.2 r’ = 0;
’ = 0 // clear PDP
2. else if r � 0
2.1 r’ = r+T
2.2 if
 	== 0
2.2.1

’ = r+Tp // a new PDP
2.3 else
2.3.1

’ = min(r+Tp,
) // update PDP
3. else
3.1 if r >

3.1 1 r’ = Instantiate-Padding(
)
 /* d is delay between current node and the downstream latch,
 and rv

’ is r at the downstream latch, after delay padding*/
3.1.2 Deferred-Delay-Padding(rv

’- d, r’,0)
3.2 else
3.2.1 r’ = T
3.2.2

’ =
-r // update PDP
3.2.3 r’ = Instantiate-Padding (r)
4. return (r’, r’,
’)

27

from b to c. When the algorithm proceeds to a moment that node a is considered for

latch insertion, we get r = -4 � -Tp. Therefore, the PDP of 2 is cleared to zero based on

the Deferred-Delay-Padding procedure. The timing diagram of Figure 18(b) also

explains why the PDP of 2 is cleared. The earliest departure time from latch at a is -Tp =

-4, even though the arrival time at a can be significantly earlier than -4. Even for this

earliest departure time, the signal arrival time to latch at b is 6 which will not cause short

path violation without delay padding.

Fig. 18. Example of deferred delay padding along a path. (a) Positive level sensitive latch based
wire pipelining example. (b) Timing diagram for the path. (c) Cover computation for the path.

Source

a b c

ta,b = 10 tb,c = 2

(a)
c b

a

(b)
 8 0 -4 4

r = 8
r = 0

(c)

r = 6
r = -2

r = 8
r = 6

 = 2

r = -2
r = -4

 = 2

r = 8
r = 0

c: bc: b: ab: a: Wire Wire Repeat Repeat

28

In Figure 19, when branches ec,d and ec,e are joined at node c, rc = min(rc,d, rc,e) =

-2 and rc = max(rc,d, rc,e) = -1. Since rc < rc, a short path correction is necessary and rc -rc

= 1 unit of delay is padded in the branch ec,d by the Instantiate-Padding operation. Next,

tb,c is increased to t’
b,c = 1 due to the increase of capacitance on ec,d. After the wire

operation for edge eb,c, the earliest required arrival time r is -3. If a latch is inserted at

node b through the repeat operation, PDP
 = 1 is induced. When we proceed to

considering latch insertion at node a, the earliest required arrival time r is 2 which is

greater than PDP
 	= 1. Therefore, another unit of delay is padded on edge ec,d based on

the Deferred-Delay-Padding procedure. Even though the delay padding at ec,d may

increase the delay from b to e, this increase is less than the amount of PDP being

instantiated in the short path. Thus, the long path constraint will not be violated by the

delay padding.

In addition to the techniques developed for exploiting latches, this work suggests

another change to the algorithms in [2]. In [2], when the latency of a cover � is larger

than the latency of another cover �’ and � is inferior in terms of load capacitance and

required arrival time, the cover � will be pruned. This rule is called extra latency

inferiority rule. This rule is modified such that � will be pruned out only when � > �’,c �

c’, r � r’ and � is not the only cover with latency of �. In other words, if there is only one

cover for a specific latency, this cover will not be pruned out. When covers from two

branches are merged, less latency discrepancy will happen between the two branches

with the application of the modified extra latency inferiority rule. Therefore, the number

of calls on the ReFlop procedure is also reduced.

29

Fig. 19. Example of deferred delay padding for nets with branches. . (a) Positive level sensitive
latch based wire pipelining example with branches. (b) Cover computation for the net.

4.4 ALGORITHM COMPLEXITY

To understand the time complexity of the above algorithms, consider the case

where there is one buffer in the repeater library, but there are no clocked repeaters (flip-

flop or latch). In such a scenario, the MiLa reduces to the nonclocked repeater problem

in [1]. As reported in [1], the time complexity of the buffer (nonclocked repeater)

Source

a b

c

tc,e = 10 t’
b,c =1

r = 8
r = 0

(b)

r = -2
r = -2

r = 2
r = 2

 = 1

r = 5
r = 5

 = 1

r = -3
r = -3

e: ce:

ab: b: bc: Repeat

d

e

tc,d = 1

ta,b = 3

r = 8
r = 0

r = 7
r = -1

d: cd:
r = -2
r = -1

r = -2
r = -2

(a)

c: c:

Wire

Wire

Join Pad

Wire

Wire
Pad

30

insertion problem in [1] is O(|B|2), where |B| is the number of candidate locations, or

single/double branch nodes, in the routing tree. Thus, to find the time complexity of

MiLa, we need to find the effect of adding clocked repeaters (flip-flop and latch) to the

repeater library G, on the runtime of problem in [1].

Now consider the case of interconnects, where repeater library G also contains a

single flip-flop. The analysis of the size of the cover sets in [15] shows that under

pruning operation using Property 1 and the assumption, that the sum of the capacitance

of a wire between two contiguous candidate repeater locations and the input capacitance

of any non-clocked repeater in G is greater than the input capacitance of any clocked

repeaters in G, the cover set at a node can have covers with at most three different

latencies, i.e. for cover set �u = { �u
k, �u

k+1,…, �u
k+n-1}, the maximum value of n is 3. In

case of adding a latch to the repeater library G, the size of cover set is not affected

because in a given scenario of clocked repeater insertion, either a latch or a flop is

inserted at a candidate location, and not both of them.

Thus, for the case when repeater library G has non-clocked repeaters, a flip-flop

and a latch, the time complexity does not increase. Particularly, this is due to the fact the

increase in size of every cover set �u after repeater insertion is still O(|G|), where |G| is

the number of repeaters in the repeater library G. This gives the time complexity for

MiLa to be O(|G|2.|B|2).

31

5 EXPERIMENTAL RESULTS

The experiments are carried out on a SUN Sparc Ultra-80 workstation with four

450MHz CPUs and 4Gb RAM. Eleven nets with 1-17 sinks are generated for the testing.

The clock period is 5ns.The wire resistance and capacitance are 0.126� and 0.139fF per

unit length, respectively. Only one non-inverting repeater, one flip-flop and one latch are

included in the repeater library. They all have output resistance of 300� and input

capacitance of 5fF. The intrinsic delay is 10ps for the repeater and latch, and is 20ps for

the flip-flop. The setup time for both the latch and the flip-flop is 10ps.

The experiments are designed to test: (1) if there is latency advantage of using

latches in MiLa; (2) if there is area advantage of using latches in GiLa; (3) if the deferred

delay padding can satisfy the short path constraint with less area cost than the uniform

delay padding. These are tested in two scenarios of with and without obstacles. The

scenario without obstacles is the same as in [2] such that the candidate insertion sites are

evenly distributed. If repeater obstacles are considered, there may be larger gap between

two neighboring candidate insertion sites, or the number of candidate locations may be

different. The description of the test cases is given in Table I below.

The MiLa results without obstacles are shown in Table II. Among the 11 nets, the

latency is reduced by using latches for four times. Due to the discrete nature of latency,

latency reduction of one implies saving of one clock cycle. Reducing the latency for the

nets being processed also decreases the number of synchronous elements needed for

other nets to maintain functional correctness.

In Table III for the MiLa results with obstacles, there are two cases where no

feasible solutions can be found for flip-flop based method. However, feasible solutions

can be obtained by using latches. The CPU time in seconds is also listed in Table II and

Table III. We can see the runtime is very fast for all these cases.

32

TABLE I
TEST CASES USED FOR THE EXPERIMENTS

Without Obstacles With Obstacles Net #

Sinks # Candidates # Sinks # Candidates
1 1 2 11 33
2 2 4 22 55
3 3 5 33 55
4 4 7 44 77
5 5 14 55 1133
6 5 14 55 1133
7 8 17 88 1188
8 9 30 99 2299
9 10 30 1100 2288

10 15 36 1155 3355
11 17 40 1177 4400

TABLE II
MiLa RESULTS WITHOUT OBSTACLES

Only FF FF + Latch Net #

Latency CPU Time Latency CPU Time
1 1 0.00 1 0.01
2 2 0.01 2 0.02
3 2 0.00 1 0.02
4 2 0.01 1 0.03
5 2 0.00 2 0.02
6 2 0.02 2 0.01
7 2 0.03 2 0.04
8 4 0.04 3 0.03
9 3 0.02 3 0.03

10 2 0.05 2 0.07
11 3 0.05 2 0.07

33

TABLE III

MiLa RESULTS WITH OBSTACLES

Only FF FF + Latch Net #
Latency CPU Time Latency CPU Time

1 2 0.00 1 0.01
2 1 0.01 1 0.01
3 2 0.01 1 0.02
4 1 0.00 1 0.02
5 2 0.01 2 0.01
6 3 0.03 2 0.02
7 2 0.02 2 0.04
8 4 0.04 3 0.05
9 X 0.02 3 0.05

10 2 0.04 2 0.05
11 X 0.04 3 0.06

The GiLa results are shown in Table IV and V. The nets and candidate insertion

sites are the same as in Table I. The latency constraints for these nets are from the

previous MiLa results. In several cases, only using flip-flops may not find feasible

solutions satisfying the latency constraints. However, the constraints can be met by using

latches. For those feasible solutions, only the number of elements inserted and the area

cost are reported here. The area value in parenthesis indicates the ratio with respect to

the area from using latches with the deferred delay padding. Using latches can always

yield less area cost except for the case that net 8 is optimized with the uniform delay

padding. This exception is due to the tighter latency constraint for using latches

according to the MiLa result. However, the cost for net 8 is less than the flip-flop based

solution when we apply the deferred delay padding with latches. The results also

indicate that using latches is even more helpful when there are obstacles. For each

feasible flip-flop based solutions, its area cost is 11%-125% greater than that of using

latches with the deferred delay padding.

34

TABLE IV

GiLa RESULTS WITHOUT OBSTACLES

Only FF FF+Latch Uniform Delay FF+Latch Deferred Delay Net
#Buf #FF Area #Buf #FF #Latch Area #Buf #FF #Latch Area
1 0 1 0.6 0 0 1 0.3 0 0 1 0.3
2 0 3 1.8 1 0 3 1.2 1 0 3 1.2
3 1 4 2.7 2 0 2 1.2 2 0 2 1.2
4 2 5 3.6 3 0 3 1.8 3 0 3 1.8
5 8 6 6.0 9 1 3 4.2 9 0 4 3.9
6 10 3 4.8 10 1 2 4.2 10 0 3 3.9
7 X X X 12 0 4 8.4 12 0 4 4.8
8 14 14 12.6 16 1 11 15.9 18 0 10 8.4
9 X X X 18 1 10 9.0 18 0 11 8.7

10 30 5 12.0 31 0 4 10.5 31 0 4 10.5
11 29 8 13.5 35 0 4 11.7 35 0 4 11.7

TABLE V
GiLa RESULTS WITH OBSTACLES

Only FF FF+Latch Uniform Delay FF+Latch Deferred Delay Net

#Buf #FF Area #Buf #FF #Latch Area #Buf #FF #Latch Area
1 0 2 1.2 1 0 1 0.6 1 0 1 0.6
2 2 2 1.8 3 0 1 1.2 3 0 1 1.2
3 1 4 2.7 2 0 2 1.2 2 0 2 1.2
4 X X X 3 0 3 1.8 3 0 3 1.8
5 7 6 5.7 8 1 3 3.9 8 0 4 3.6
6 8 4 4.8 9 2 1 4.2 9 1 2 3.9
7 X X X 14 0 4 5.4 13 0 4 5.1
8 13 14 12.3 15 1 11 15.6 17 0 10 8.1
9 X X X 15 0 12 8.1 15 0 12 8.1

10 29 5 11.7 31 0 4 10.5 31 0 4 10.5
11 X X X 34 1 4 12.0 34 0 5 11.7

35

When a net is small, the advantage of using deferred delay padding vs. the

uniform delay padding is not strong as there is less chance of the short path problem. For

larger nets, the results in Table IV and Table V show that the deferred delay padding can

further reduce area cost. The CPU time for latch based GiLa is about the same as those

in Table II and Table III. Therefore, the extra computation cost of the proposed

techniques is trivial.

36

6 CONCLUSIONS

This work demonstrates the advantages of using level sensitive latches in wire

pipelining, along with flip-flops, with a timing complexity of the algorithm being

quadratic in number of candidate repeater locations and number of repeaters in the

repeater library. These advantages are due to the less setup time overhead and

particularly the timing flexibility that allows cycle stealing. By using latches, both the

latency and the area cost can be improved. New techniques, especially deferred delay

padding, are proposed to overcome the difficulties in latch based approaches.

Experimental results support the advantages of using latches and the effectiveness of the

proposed algorithms in reducing the latency and area of latent interconnects.

37

REFERENCES

[1] L. P. P. P. V. Ginneken, “Buffer placement in distributed RC-tree networks for

minimal elmore delay,” IEEE International Symposium on Circuits and Systems, 1990,

pp. 865–868.

[2] P. Cocchini, “Concurrent flip-flop and repeater insertion for high performance

integrated circuits,” IEEE/ACM International Conference on Computer Aided Design,

2002, pp. 268–273.

[3] S. Hassoun, C. J. Alpert, and M. Thiagarajan, “Optimal buffered routing path

constructions for single and multiple clock domain systems,” IEEE/ACM International

Conference on Computer Aided Design, 2002, pp. 247–252.

[4] C. Lin and H. Zhou, “Retiming for wire pipelining in system-on-chip,” IEEE/ACM

International Conference on Computer Aided Design, 2003, pp. 215–220.

[5] L. Zhang, Y. Hu, and C. C. P. Chen, “Wave-pipelined on-chip global interconnect,”

TAU Workshop, 2003, pp. 46–51.

[6] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and design of latch-

controlled synchronous digital circuits,” IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, vol. 11, no. 3, pp. 322–333, 1992.

[7] R. H. J. M. Otten and R. Brayton, “Planning for performance,” ACM/IEEE Design

Automation Conference, 1998, pp. 122–127.

[8] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Minimum padding

to satisfy short path constraints,” IEEE/ACM International Conference on Computer

Aided Design, 1993, pp. 156–161.

[9] J. Lillis, C. K. Cheng, and T. Y. Lin, “Optimal wire sizing and buffer insertion for

low power and a generalized delay model,” J. Solid State Circuits, vol. 31, pp. 437–447,

Mar. 1996.

38

[10] V. De and S. Borkar, “Low power and high performance design challenges in future

technologies,” in Great Lakes Symposium VLSI, Mar. 2000, pp. 1–6.

 [11] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “checkTc and minTc: Timing

verification and optimal clocking of synchronous digital circuits,” IEEE/ACM

International Conference on Computer Aided Design, 1990, pp. 552–555.

[12] Dennis K. Y. Tong, and Evangeline F. Y. Young, “Performance-driven register

insertion in placement,” ACM/IEEE International Symposium Physical Design, 2004,

pp. 53-60.

[13] Vidyasagar Nookala, and Sachin S. Sapatnekar, “A method for correcting the

functionality of a wire-pipelined circuit,” ACM/IEEE Design Automation Conference,

2004, pp. 570–575.

[14] P. Saxena, N. Menezes, P.Cocchini and D.A. Kirkpatrick, “Repeater scaling and its

impact on CAD,” IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems, vol. 23, no. 4, pp. 451–463, 2004.

[15] P.Cocchini, “A methodology for optimal repeater insertion in pipelined

interconnects,” IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems, vol. 22, no. 12, pp. 1613–1624, 2003.

39

VITA

Vikram Seth was born in Lucknow, India in 1978. He completed his Bachelor of

Technology degree in electrical engineering from the Indian Institute of Technology,

Kanpur, India in May 2000. He subsequently worked for three years as an ASIC Design

Engineer before starting his graduate studies as a computer engineering major at Texas

A&M University in the fall of 2003. His research interests are in ASIC Design and

Computer Aided Design for VLSI physical design. He can be reached at the following

email address: vikram.seth@gmail.com. His permanent address is c/o Mr. Sumitro

Samaddar, 10341 Tonita Way, Cupertino, CA 95014.

