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Fast noise in the Landau-Zener theory
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We study the influence of a fast noise on Landau-Zener transitions. We demonstrate that a fast colored noise
much weaker than the conventional white noise can produce transitions itself or can change substantially the
Landau-Zener transition probabilities. In the limit of fast colored or strong white noise we derive asymptoti-
cally exact formulas for transition probabilities and study the time evolution of a spin coupled to the noise and
a sweeping magnetic field.
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[. INTRODUCTION correlation times but at finite amplitude of a sweeping field
the transition probability is vanishingly small. The influence
Landau-ZenefLZ) formula for transition probabilities at of the noise onto the multilevel crossing was studied so far in
avoided crossing of two levels is one of a few fundamentabnly one work by Saito and Kayanurwho considered the
results of nonstationary quantum mechanics. Its rather gerthree-level crossing at a special relations between parameters
eral character and simplicity makes it extremely suitable foiin the limit of strong decoherence.
versatile applications. Traditionally it was applied in quan- The purpose of this article is to present a systematic study
tum chemistry and in collision theory:® A recent treatment  of the influence of noise, including the colored noise, onto
of the experiments on the quantum molecular hysteresis ithe LZ transitions and to generalize it to multistate LZ prob-
nanomagnets by Wernsdorfer and Seésblwas a real tri-  |ems. We demonstrate that the LZ transitions are sensitive to
umph of the LZ theory. A substantial contributions to thethe colored noise much weaker than uséHike white noise.
theory of spin tunnelling in these molecules was made byrne |atter can be considered as a limit of a noise whose

1 7_9 i i i . - . -
theorists.™ Landau-Zener formula and its generalizations . re|ation time goes to zero and simultaneously its square of

were recently employed also in charge transport in

_ . i amplitude goes to infinity, so that their product remains a
14 ‘L‘E-’SE
nanostructure%‘f(} Bose-Einstein condensa nd quan- constant. We prove that such a white nondiagonal noise al-
tum computing*

Extensions of the LZ theory to the case of multilevel ways leads to equal population of the crossing levels. How-

. ever, the noise, whose correlation time goes to zero, but its
crossing are less general. Nevertheless, some of them were 9

realistic enough to justify remarkable efforts on the side Ofamplitu_d_e_ remai_ns a constant, produces nontrivial transition
theorists for their analysis. Level correlations and Iocalizap_mbabllltles as it was first fou’?d by Ka)_/anu?‘ﬁzﬂor a spe-
tion in energy space were studied in Ref. 17. The pioneerinﬁ'al type _of the noise cor_relg_uon function. Another sub_tle
work by Demkov and Osherd¥treated exactly the crossing Problem is the order of limiting processes. The resulting
of a single level with a band of parallel levels. In the wigrk Probabilities depend crucially on what happens first: time
Hioe and Carrol solved a problem of transitions in a Zeemar@Symptotically goes to infinity or correlation time goes to
multiplet of an arbitrary spin S in a magnetic field with a Zero. Analysis of these problems allowed us to reconcile
constant perpendicu|ar component and with one timeWOka 36 and 37. In our work we first find simple analytical
dependent component passing through zero value. Numerotgsult for a transition produced by a most general short-time
generalizations of these results were fodd’ A general  correlated noise in two-level systems and the change of the
point of view on all these exactly solvable models proposed-Z probabilities produced by such a noise. We check these
by one of authord allowed us to construct an algorithm for analytical results by numerical calculations. We also study
series of new solvable models. Another extensions includéhe influence of the noise on transitions at multilevel cross-
nonlinear LZ modeéP~3! and LZ problem with nonlinear ing.

sweep®? To apply the LZ formula and its multistate exten-  The plan of the article is as follows. In Sec. Il we gener-
sions to real systems it is often necessary to take into accountize the result of Kayanuma for transverse ndige the

the interaction with environment. Such attempts were madease of the arbitrary Gaussian noise in all three directions.
in a series of work&33-%°however, the problem was not Next we demonstrate its generalization to a three level sys-
solved completely. Kayanumat al®*~3° have obtained an tem. In the Sec. IV we study the time dependence of the
elegant analytic result for the diagonal white noise. The nonédensity matrix with LZ transitions stimulated by fast noise.
diagonal colored noise was considered by Kayanrfar In the fifth section we propose a formula that incorporates
the two-level crossing without a constant coupling term. Heconstant transverse magnetic field and compare its predic-
has found the transition probability in the limit of infinitely tions with numerical simulations. In Sec. VI we consider the
short noise correlation time. His result was disputed bymaster equation for an arbitrary spin placed into a regular
Nishino et al” On the basis of their numerical calculations varying field and noisy magnetic field along thelirection
these authors discovered that in the limit of infinitely shortand a constant field along thedirection and find simple
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expressions for transition probabilities in the limit of a strong  The solution of this equation can be formally found as an
decoherence. In Sec. VII we perform similar calculations forinfinite series in powers ofy; that must be averaged over
a charged particle on a periodic chain driven by a time-noise realizations. A typical term contains the product
dependent electric field and compare our results with those;il(tl) 77i2(t2)' . nin(tn). Its average is equal to the sum of

for a completely coherent evolution. all possible products of pair correlators since we assume the
noise to be Gaussian. Kayanuth&as shown that in the
[l. COLORED NOISE IN TWO LEVEL LZ TRANSITIONS limit of very fast noise only the term in which the pairing is

ideally ordered in time, i.e., the pairs are (12)(34)(2n

—1,2n), contributes a finite value into the integral. Other

pairings contribute terms, which are by a power of infinitely

small parameter 4/ smaller and can be neglected. This Kay-
H=Bto,+ 7,0y, (1) anuma’s obse_rvation is completely_ analpgues to the_: theo_rem

proven by Abrikosov and Gor’kov in their theory of impuri-

where 7, is the noise field with the correlation function ties in a metaf® Note that the diagonal component of noise

(m(ty) nx(t2)>=J§e‘”xh1“2‘ and g; are Pauli matrices. In is inessential in this approximation and can be omitted.

the limit of infinitely short correlation tima —c Kayanuma These facts allow us to write down the integral-differential

has found a simple analytical result for the transition prob-equation for the average value pfas follows:

ability.

The choice of Kayanuma corresponds to the spin 1/2 dp)(t) Jt 2.2 _
problem with noisy magnetic field along tixeaxes only. We gt - 4 cosB IR t=t){p)(t)dt,
generalize the Kayanuma model introducing a more general (6)

Hamiltonian with all three components of random magnetic S
whereF =g,,+g,,. Now we can employ the approximation

gﬁlc()jrt-tt)i?rl]neg Cg?rgaetrignatr;isvglrth a most general form of theof the fast noise assuming that the averdge(t) almost
does not change in the interval of time\14nd that integral
of correlation function is convergent. In this approximation
H =Btaz+z ni(t)oi, 1=XY,z (2)  we can extractp)(t) from the integral in the right-hand side
! of Eq. (6) and expand the argument of the cosine near the

LZ transitions in a two-level system with a nondiagonal
noise were studied by Kayanuma in Ref. 36. The Hamil-
tonian of the problem was chosen to be

end pointt;=t of the integral. The resulting differential

We assume that thoughy; can be different for different,j, q

they are of the same order of magnitude. We consider the ﬂ: —4F (28t 7
he ° sar tude. | | (281)(p), @
limit of fast noise withA —oo, where\ is the inverse char- t

acteristic decay time of the correlatgy; .

The density matrix elements for the system with theWhereF(q) is the cosine Fourier transform of the functibn

Hamiltonian (1) obey the following system of ordinary dif- R o
ferential equations: F(g)= JO cogqr)F(\|7])dT. (8)
ip=2[—pa(nx—iny)+piA nxtiny)l, Note that the characteristic value @fre of the ordek and,
_ respectively, essential values toin Eq. (7) aret~\/8. We
ip21=2(Bt+ 1) par—p(nxtiny), (4) see that essential values of time go to infinity together with
\. It shows that the order of limiting processes is indeed very
ip1o=—2(Bt+0,)piot p(my—i ), important. Here we first calculate the transition probability,

i.e. the diagonal elements of the density matrixate and

where p=py;—p2,. By elimination of nondiagonal matrix very large, but still finitex and put it infinity in the end.
elements equation$4) are transformed into one integral- Solving Eq.(7), we find

differential equation for the occupation differenee

t ~
O g e o0=(o)—enf 4" Fepriar | o
=2 =iy 0] [ atei -
Together with the standard equatippy+ p,,=1 Eq.(9) de-
Xf‘ (t)dt ) 2 termines average occupation number of each level at any
A () F iy () ]p(ty) —2€ time. The most interesting are the transition probabilities at
t=+o, which can be obtained from the same equatién
: ! —igt2+i Note that the integral in the exponent tat + becomes
ity +i
X[0) +imy(D)] f ~dye 4 equal to
a

. ﬁlvz<‘2>dt2[ n(t) =i my(t)]p(ta). (5) | Epar=g5ro. 10
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Thus, from Eqgs(9) and (10) we find H=pBtS,+gS,, (15)

; whereB andg are constants. This exactly solvable model for
(1) a spin higher than 1/2 was employed in the theory of Stark
effect?” some recent applications can be found in Refs.
277.':(0) 1 48,49. ) ) ) .
) . In this section we generalize the resil3) to a spin 1
system. We consider a following Hamiltonian for the spin 1
system in a random magnetic field:

1] 27F(0))\]
P11(+°°)=§ 1+[2P11(_°°)_1]3XF{_ )

i
paA +)= 5 1-[2pyy(—)— 1]EXF< -
' (12

Putting p;1(—) =1, we find the transition probability

L p( 277F(0)”
ex 3 .
(13
For the standard white noise the correlat¢rs(t) »;(t')) ~ WhereS; are the spin projection operators f&=1. The
turn into delta functions in the limit = . It means that their ~density matrixp depends on eight independent parameters.
values at=t’ become infinitely large. In particular it means We denotep, =p; 1—pggandp_=p_; _1—poo. The deri-
that F(0) is infinitely large for the standard white noise. In vation of equations fop, andp_ can be done in the same
this case, as it is seen from E@$1), (12) the occupancies of spirit as it was done for the spin 1/2 case. Looking for a
both levels are equal to 1/2. Thus, the standard white noiseolution of the evolution equation for density matrix in the
leads to complete loss of initial state memory and equipartiform of perturbation series and retaining after the averaging
tion of the levels. On the other hand, if the noise remaingver the noise only the leading terms ir\ 1ive arrive at an
finite-time correlated, the occupation numbers conservéntegral-differential equation. Additional care must be paid to
memory on the initial state. the integrals of the form f' _dt, /" dt,exdiB(t?

In the limit of the fast noise the transition probabilities are +13)]g;(\t;—t,]) that did not appear in the two level system,
determined only l_)y the average square pf nond!agonal NOigsy,t appeared in the series for the s@in 1. One can check
and are not sensitive to the d_|agonal noise. To |I!ustrate th'_‘fhat this integral is of the orderX/and hence we disregard it
statement we consider a special case when the diagonal noiggq a|| terms that contain it. After lengthy but straightfor-

does not correlate with the.nondiagonal one. Then, as it i§,ard calculations we find that in the leading order ik tHe
seen from Eq(S), the averaging over thecomponent of the  glementsp, (t) and p_(t) satisfy the following integral-
noise leads to multiplication of the coefficients in this yiferential equation

integral-differential equation by the Debye-Waller factor

1
P1~>2:p22(+oo)|p11(*30)=1:§

H=w0%+23m3,i=&%2 (16)

t 1 o d
_ p+(1) t
<e><p( ftlnz(r)dr)>—exn(—g(t—tl)fxgzz(ﬂ)d0>- ﬁ( *(t)>=—2j dt;co§ B(t>—t3)/2]F (At —ty))
p, — o0
An essential interval of integration over neart; =t is 1/\. 1 12\ pi(ty)
In this interval the Debye-Waller factor changes by the value ><< ) ( ) : a7
~1/(\)? and with this precision is equal to 1. V2 1]\p-(ty)

For a special casgy(7) =J%exp(—\|1);g,,(1)=0 we re-
produce the Kayanuma'’s resditt. The approximation of the fast noise allows to transform this

equation into the following differential one:
I1l. NONDIAGONAL NOISE IN SPIN-1 LZ THEORY

The HamiltonianH of a general multistate LZ problem d (p+(t)

i _ 1 172\ [ py(ty)
(see, for example, Ref. 2Mas the following matrix form: at (t)
p—

12 1 p<uJ' (18

)=—2ﬁﬂw(

H=Bt+A, (14
Thus, the problem is reduced to a linear differential equation

whereB is a diagonal matrix and matricédsandB are inde- . . o .
-with a constant matrix coefficient. The formal answer is
a symmetry is systematically realized in the model of an

arbitrary spinS# 1/2 placed into an external magnetic field

pendent on time. However, in a situation of a general posi-
tion only two levels cross. Several levels can intersect at the
same moment of time only due to a special symmetry. Such . (1) th . ) 1 12
=expg —

p_(1) I Y
that has a time-dependemtcomponent vanishing at some
moment of timet=0 and a constant transverse comportént. y p+(—) 9
The corresponding Hamiltonian is p_(—x)/
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This formal solution can be transformed to a more explicitThe modulus of the vectgs®) is conserved.
form with the help of the matrix identity Dynamic equation for the second order symmetric tensor

1 12 _ pik reads
PR N2 1|7

The transition probabilities are defined by this matrix acting! Ne extension for the rest of irreducible components is ob-
on vectors §) if initially the projection+ 1 was occupied or vious. In Eq.(24) for the vectorlatpart It Is usefuLto apply
(9) if the projection—1 was occupied. The transition prob- the interaction representationp™(t)=Uo(t,t) p*)(1),

) coshy/2  —sinhy/2
—sinhy/2 —coshy/2)’
(20)

bikz — €imnNmPnk— EkmmPin - (25

abilities are where Uy(t,tp) is the evolution matrix for the fieldhy(t)
3 . _ayi2 =2zpt+xI". The reduced vectgs'!)(t) obeys the following
P+~>0_P*~>O_§(1_e )1 equatlon
P+~>+:Pf~>f:%+%e_37/2+%e_7/21 d
—TMW(ty= —Hx D)

p (1) =—nXp(1). (26)

P+*},:P,*}+:%+%e_37/2—%e_7/2, (21) dt
Po .o=1(1+e 372, Here 7=U, (#XU,). In terms of the Cartesian coordi-

nates this equation reads
POH‘F: PO*)—: %(1_8_37/2),

where y=7F(0)/B. We see that in the case of three levels pi= TPk (27)
the main results obtained in the previous section for a WOy, 1 ere the matrisT . is
level system persist: the standard white=(>°) noise leads ikl

to equal population of all three levels, whereas the fast noise

with a finite amplitude results in nontrivial transition prob- Tiki(t.to) = (Uo)mi(Uo) nk€min-
abilities.

(28)

Initial values ofp andp coincide sincely(to,to)=1. Equa-

IV. TRANSITION TIME EOR COLORED NOISE tion (27) can be solved by power expansion over the noise
In Sec. Il we have shown that the typical time for estab-  ~ t , ,

lishing the asymptotic of the transition probabilities is Pi(t):Pi(to)’LJt T (t',to) m(t")dtpy(to) + - - -.

N BF(0). It is useful to look at the same problem from a ° (29)

different point of view. Namely, we will analyze the behavior

of transitions driven by the standa&diike white noise, their  When averaging the expansion over the noise, all odd terms

typical rates and times. If the action of the standard whitevanish. To understand what happens with even terms con-

noise is limited by some finite time interval, it becomessider first the quadratic term

physically equivalent to the fast noise with a finite ampli-

tude. Simultaneously we will study directly the influence of t ty
the white noise onto the LZ transitions. Jt dtlft dtaTik,, (t1,t0) Tie, k1,(t2:t0)
Let us consider the problem with the very beginning. The 0 0
Hamiltonian is the generator of a random rotation X, (t2) m,(12)) il to).-
H=h(t)S (22

o For the isotropic noise the contribution to the veq?i@t)
whereh(t) =hg(t) + (t) andhg(t) = Btz+TI'x. up to the second order ip can be represented as follows
Here we consider the isotropic white noise (we write equations for averages omitting the angular brack-
(i) p(t"))=ySyS(t—1"). The density matrix as any ets:
Hermitian SX S matrix can be represented as a sum:

- t
2 p2i(t)= 5’k+j dth'k(tl))Pk(to), (30
p=p 1+ p{VS + o S«sk+sks—§S<S+1>}+---, | T
(23 where

where the last term in E29) containsS operator factors.
All irreducible tensorg; j=0- - - S evolve separately. The Mik(t) = (¥2) Timi(t,to) Tmii(t,to) = — ¥ .~ (31)
scalarp(®=(1/N)trp is a constant. The vectg") obeys
the obvious equation Here we have used properties of the orthogonal mattiges

_ (Uo)mi(Yo) mk= Sik -

pH=—hxp®), (24) Next we proceed to the quartic term
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. t ty ty ts ; T y y g T T
P4,i:J dtlf dtzf dtsj dtsTip(ty,to) ol ]
to to to to

08}f 4
XquI(tzrtO)Tqrm(tsytO)Trsn(t4at0)<77k(t1) 7(t2) o7l |
X m(ts) 77n(t4)>ps(t0)- (32 P(t) 06 g
Quartic average of Gaussian field decays into quadratic av-  os} -
erages 04} a
(m(t) i (t2) mm(ta) 7n(ta)) o3y I
02F 4
= (m(t2) m(t2) ) 7m(tz) 7n(ta)) ol |

+((t2) 7mlta) ) i (t2) 7n(ta)) e

0
=500 =400 <300 =200 -100 0 100 200 300 400 500

+{(7(ty) 7a(ta)) (7 (12) 7m(t3)). (33 t
Only the first term contributes to the integkdR). Two oth- FIG. 1. Typical evolution of the transition probabiliti(t)
ers are zero at correct time ordering=t,=t;=t,. In both  =|a;(t)|>, wherea,(t) is the amplitude of the first diabatic state.
cases considered earlier we obtain The choice of parameters @; = ;3% '"!'l, =1, \=80, J2
=0.18,I'=0.7.

~ t ty
P4,i:ft dtlft dtaMij (1) M (t2) pi(to). (34)
0 0 _ . ~ fast noise proceed during the large time interval of the order
The same result could be obtained from an effective equatiosf \/B. That is the reason why its total effect remains finite,
of motion forp: though it is very small on a typical time scale of the usual
LZ-transitions mediated by constant field~T'/3).%°

pi=Mipi. (35
V. LANDAU-ZENER TRANSITIONS IN A CONSTANT

Thus,_ _the ope_rato_ﬂ\/l plays the role of effective non- TRANSVERSE FIELD AND IN THE COLORED NOISE
Hermitian Hamiltonian.

For the white isotropic noise the solution of H85) is In previous sections we assumed that only the noise was
responsible for transitions, whereas the regular part of the
i) =pi(tg)exp(— yt). (36) Hamiltonian operator was diagonal. In this section we incor-

~ porate a regular nondiagonal operattite transverse fie)d

At t—oo the formula(36) always leads to the occupation jntg the Hamiltonian together with a noise. The most general
numbersp=1/2. As we know, this does not happen for the yamjltonian for such a two-level system reads
colored noise with a finite amplitude. The reason is that in
the genuine LZ problem the solution strongly oscillates with )
the frequency roughlyw(t)~ Bt long before and after the H:5t02+9‘7x+2i ni(Doi, 1=XY,z, (37)
level crossing point. This introduces a new energy scale that
must be compared with. For time in the rangg8t|<\, the ~ where#; are given by Eq(3).
approximation of white noise is roughly valid even for finite  The second term in the HamiltonidB7) can be consid-
amplitude noise, but beyond this interval of time the oscilla-ered as a constant transverse magnetic field acting on a spin
tions of the LZ solution become faster than the correlationS=1/2. The Hamiltonian(37) describes a spin g¢bit)
time of the noise, and the action of the noise is suppressed hyeakly interacting with the environment, for example with
the oscillations. the nuclear spin batf?. If this interaction is so small that the

In Fig. 1 we demonstrate a typical evolution of the bath relaxation is much faster than the inverse interaction
squared value of the amplitude for the system to stay in thenergy, the bath can be treated as a fast noisy magnetic field.
same state as function of time. The evolution reminds diffu-The measurements of the LZ transition probabilities can pro-
sive motion that slowly stops at large absolute values ofide an information about the strength of the coupling to the
time. The sharp change of the absolute value of the amplibath. Another possible example is a molecular nanomagnet
tude neait=0 is due to the constant transverse field. in fluctuating dipole field. The Hamiltonia37) may be rel-

To estimate roughly the transition probability one can ap-evant to the quantum shuttle problem where avoided level
ply the standard white noise approximation in the time inter-crossings occurred to be importahtThe fast noise in this
val |[t|<CMN/B and accept that dt|>C\/B no transitions example corresponds to thermal fluctuations.
due to the noise happen. The paramélés a constant of the As was discussed in the previous section, in the interval
order of unity. Then we automatically get the respite) of time | Bt|<\ the spin experiences an equivalent white
=exp(—2C\y/B)p(—=). According to the definition,y  noise with the amplitudey=F(0)/(2\) vanishing at\
~F(0)/(2\) in agreement with the calculations of the pre- —%. The noise causes a slow decay of the population dif-
vious sections. Summarizing, the transitions mediated by théerencep=p,,— p,,. The action of the noise becomes no-
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1

FIG. 2. The probability to stay on the same
diabatic state in a two level system at constant
coupling to the noise as function of transverse
magnetic field. The choice of parametersgis

= 6iX5jx~]>2(e_}‘h_t,‘, Jx: 0.28,\ =125, B: 1.

ticeable only after long _e_volutlon time of the ordav8|. On p(to) ={|as(to)|>—|as(to)|2) = e "F(OVB(2e~ wlgl2p_ 1).
the contrary, the transitions due to the constant transverse (40)
field proceed predominantly during the interval of tirte
<|g/B|. During this interval of time the role of noise is The evolution fromt, to t=+co brings an additional expo-
negligible comparing with the role of the constant transversdential factor equal to that in E¢38):
field. Let us choos&, much less that\/g|, but much larger X
thang/B to make sure that the role of the transverse mag- p(t—oo)=e 27F(OVh(2e= oA 1), (41)
netic field becomes negligible beyond the interval of time
(—tg,tp). The evolution from—o to —t, is influenced
mainly by the noise. The result of such an evolution is almos
the same as that in the absence of the constant transverse 1 o —lol2
field with t;=0. Since the effective attenuation coefficient Pi1=3[1+e 2mF O e malli—1)]. (42)
for p is an even function of timgsee Eq.(7)], the resulting | the limit of the noise only §=0) and of zero noise
exponent forp(to) is twice less than that for the problem of [F(0)=0] the result(42) transits into formulg13) or to the
Sec. Il att=+= [Egs.(9),(10)]: LZ formula, respectively.
)= TFO)B 38 The matching procedure used in this section is asymptoti-

p(—to)=e ' (38) cally exact at\—o. To check how it works at large but

In the interval of time|t|<t, the noise is negligible and finite A we studied the LZ transitions subject to a fast noise

transitions are completely due to the genuine Landau-ZendtUmerically. We simulated the evolution generated by the
mechanism, i.e., due to the constant transverse gieince ~ amiltonian(37). For simplification we puty, = 7,=0 and
t,>g/B, we can use the LZ formula to determipé,). Let accept the following )‘orm 2for the corr,elator of_the noise
a,(t) anda,(t) be the amplitudes to find the system at the COMPONENt 77,(t) 7,(t )=Jsexp(—\|t—t]). The time inter-
first and the second diabatic states, respectiviglyfind the V@l of the evolution was chosen to be much larger tha.
spin projection equals 1/2 ot 1/2) at the moment of time In Fig. 2 we depict _the probability to stay in the same state
Their values att=—t, can be expressed in terms of the after the level crossing vs the constant transverse fjeltia

population differencg* and two phase factors as follows; fix€d coupling to the noisd,=0.28. Each discrete point
represents the averaging over 100 simulations with the same

Correspondingly the probability to stay on the same diabatic
{evel is

ai(—tg)=e"%1\(1+p*)/2, coupling constants. The solid line is the graph of the theo-
retical formula(42). The deviations of the simulation results
ay(—ty) =€ %2\(1—p*)/2. (39)  from the analytical predictions do not exceed the accuracy of

our calculations. We conclude that E@2) describes well

The phasesgp, and ¢, are essentially random and indepen- the transition probability for the LZ system subject to a fast
dent on each other and @i since, at< —t, the solution of  poise.

the Shralinger equation strongly oscillates and transitions
are mainly due to the nondiagonal noise. The amplitudes at
time ty are related to those at= —t,y by a linear relation
ai(to) = S;jaj(—to), whereSis the transition matrix in the
noiseless LZ Hamiltonian frorh= —c0 to t=c0 . Using this We have demonstrated that the nondiagafiiike white
property and averaging over the random phagesnd ¢, noise leads to the equilibration of population between all
and p* with (p*)=p(—1tp), we arrive at the following re- states. It is not correct for the white noise directed along the
sult: sweeping field. Such a noise does not couple different states

VI. ARBITRARY SPIN IN A STRONG DIAGONAL
RANDOM FIELD
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and its action leads to the loss of coherence only. As wa3he problem is reduced to determining of th8+221 diago-
shown earlier, in the case of a two-level system it results in g3 elements. Let us introduce a veatawith the coordinates
Debye-Waller factor fop. We consider the case of a general ¢, =, . They are probabilities to find the spin in a particular
spin S placed into a regular fieltp=zBt+xI" and the ran- eigenstate of the operat®,. Substitution of Eq(47) into
dom field directed along the axis. Its Hamiltonian reads Eq. (45) gives a differential equation for the vectoft)

Hiot=H+ Hpgise= BtS, + 'S+ 7(1)S, . (43) -

. r?
We assumé 5(t) n(t'))=2y5(t—t"). c(t)= By, iBi—y
Following Ref. 38, we expand the solution of Eg3) in
the power series over the noise amplitude and average eagfyre the constant matril has following matrix elements:
term. The resulting series over powersyofs a formal solu-
tion of a differential equation known as master equafion

Mc(t) (48)

Mii=— (i +1|Si)?+(i|S]i — 1)) = — 3(S*+S=i?),

dp(t)
——=—1[H®),p()]=AS,.[S;.p(1)]] . . . .
at Miit1=Miy=(i+1[Si)>=2(S+i+1)(S—i).
. 49
= —i[tS,+ TS p(1)] 49
All other elements are zeros. Equatiohd) can be easily
— SO+ =25pS,). (49 jniearated
Itis convenient to introduce notatioliy; =I'(i|S,|j). Below
we write down Eq.(44) for diagonal and nondiagonal ele- t 242 A
ments of the density matrix separately: E(t)—exp( f ﬁdt’M ) 5(t0). (50
_ to (Bt")“+y
pi =~ i—a(pi-gi=pii-) F T jwalpivai=piic )], To find transition probabilities we take limits of integral in
Eq. =- =+ o0:
i=—S-St1,...S (45 4 (80 asto=—c andt=rre
S _Ti _ 2 i - 2ml2 .\ .
Pmn=—[iBt(M—n)+ y(n—m)]ppy, I(Fm,mflpmfl,n c(+x)=ex M |c(—x). (51

_Pm,n+1Fn+1,n+rm,m+lpm+1,n ) .
This result demonstrates that, for a general spas well as

—Pmn-1ln-10), m#n. (46)  for a spin 1/2, the transition probabilities do not depend on
It is possible to find an asymptotically exact solution of Eqs.the specific yglue ofy provped thaty IS _Iarge. Below we
(45), (46) in the limit of strong noisey>T, 3. In this limit- present explicitly the transition probabilities for some values
I} M . _ 27T _ 27‘.
ing case, nondiagonal elements of the density matrix arf spln.ZWe denoteE; =e "™, E,=e *""A and E;
~T'/y times smaller than diagonal ones. Indeed, let us dis=e ™"/ Then forS=1/2 the formula(51) reads

regard the dynamical termj in equations for the nondiago-

nal elements. We will justify this approximation later. Then
Eq. (46) at j=i=1 implies that the nondiagonal elements
pii=1 are suppressed comparing with diagonal matrix ele-
ment by the factor~I'/y. The matrix element; ;., are Pio—12=P_12.12=3(1—Ey). (52)
suppressed by the same factor with respegt to ,, etc. The

1
Pio1o=P 1o —1p=3(1+Ey),

characteristic time interval following from Ed45) is At Fors=1
~|pii /(I‘pi’iil)~'y/I‘2. From this estimate we find that the
time derivative of the largest nondiagonal matrix element P, 1=P_; . _1=%(2+E,+3E,),
|pii=1|~(T%%)|pii=1|<7¥pii=1 can be neglected. Retain-
ing only main diagonal and two adjacent nondiagonals in the P. =P —p. =P —1(1-E 53
matrix equationg45),(46), we express the nondiagonal ele- 1-0=P-1-0=Po-1=Po_ 1= 3( 2, (59
ments in terms of the diagonal:
) Pi._1=P_;_1=5(2+E,—3E),
Pi+1i= LESE (pii—p )
i+1i = " T or A \PiiT Pi+li+1)
fl t_l_ ) f
Py Po o= (1+2E,).
iFiica The resultg52) and(53) coincide with already known solu-
Pi,i+1=ﬁ(m+1,i+1_,ﬂi,i), (47 52) (539 y

tions for two- and three-level LZ models with strong
decoherenc A new result for a spirS=3/2 that follows
pij=0, |i—j[>1. from Eq.(51) reads

144303-7



V. L. POKROVSKY AND N. A. SINITSYN

0.8

0.6

0.4

0.2

0.0

PHYSICAL REVIEW B67, 144303 (2003

0.0 0.2

_ 1 1 1 9
Pap3p=P 3. 3p=7+20BE3+ B2+ 55E;,

Paom12= Pz~ 1= P13

_ _ 1 3 1 3
=P _1p., 3p=7— 2Bz~ 1B+ 5E,

Pap 1= P 30127 P 10312

_ 1 3 1 3

=Py, ap=7+T2E3— 7B~ %E1,

— 1 1 1 9
Psjo—30=P_g2.30= 7 25E3+ 1E2— 25E1,
P =P =1+ Es+3E,+%E
12-1/2= P 1o —1p= 1T 20E3T 7Ex+ 35E1,

_ 1 9 1 1
Pio—10=P_1p10= 7 25E3+ 1E2— 3E1.

(54

FIG. 3. Transition probabilities from the state
with s,=3/2 to any other state as functions of
transverse magnetic field.

VIlI. ELECTRON MOTION DRIVEN BY ELECTRIC FIELD

Now we consider another multistate Landau-Zener model
that, in the absence of the noise, was solved exat®ysi-
cally the model describes the transport of a charged particle
in a regular linear chain driven by a time-dependent homo-
geneous external field. Such a model is an idealization of
atomic scale molecular wires or linear arrays of quantum
dots. An important assumption in the model that makes it
exactly solvable is that all sites of the chain are identical and
equidistant. External electric field splits the energy levels at
different sites of the chain and suppresses the tunnelling be-
tween them. Hence the transitions proceed in a narrow time
intervals close to moments at which the electric field be-
comes zero. The noise in such a system arises due to thermal

In Figs. 3 and 4 we show the dependences of transitiofluctuations chaotically changing the energy of the electron.
probabilities forS=3/2 onT". In adiabatic limit['?/g>1 all
states are equally populated after the evolution.

08

0.6

0.4

We suppose that there are no correlations of noise at different
sites.

FIG. 4. Transition probabilities from the state
with s,=1/2 to any other state as functions of
transverse magnetic field.
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P{M = | Jo(V8g)[?

et coherent

FIG. 5. Comparison of transition probabilities
....... areeen incoherent in coherent(without noisg¢ and incoherentwith
strong noisg LZ models on the chain.

Let us denotdn) a state located at theth site of the  Without loss of generality we can assume that initiallyt at
chain. We assume that these states form a complete orthonee—, the particle was located at the site number zero. It
mal set(Wannier basis In terms of this set the electron can be treated as initial conditions for the master equation
Hamiltonian with linear dependence of an external field onp, o(t=—o)=1 and all other elements of the density matrix

time reads are zeros at=—. Then diagonal matrix elemengs, , ac-
quire the meaning of transition probabilities from zeroth to
N thenth site at a current time As in the previous example we
H= n)(n+1|+c.c)+novtin)(n|+ n,(t)[n)(n|, . . . . .
; (glnX | ) )l 700 )| can find the solution for a chain of arbitrary number of sites

(55) in the matrix form.
wherev andg are constants and we assume that the noise In the limit of infinite number of sites a compact solution
power is the same for all Sites i.€.4m7n)=273mn. The can be fognd_ t()ﬁy employing the Fourier transformatig,

Y b — AN H H
derivation of the master equation for this case is similar to_(llz_“')f0 N u(¢'t)' T_he systen_1 of coupled c_hfferentlal
that of the previous section. We consider only the limit of €auations59) is diagonalized by this transformation. Corre-
strong noisey>g. Then, as in previous example, the nondi- sponding differential equation of the first order for the func-
agonal elements of the density matgiy; with li—j|>1 can tion u(¢,t) is readily solved. Its solution with the initial

be neglected. Equations for diagonal matrix elements of th§onditionu(¢, —<=1) is
density matrix are - ot
. , u(qb,t):ex;{—z — tarcta (1—cos¢)|. (60
Pnn=— _|g(Pn+l,n+Pnfl,n_Pn,nJrl_Pn,nfl)- (56) 2 nz_')’
Equations for nondiagonal elements after the averaging oven the limit t— +co it approaches its limiting value
the random noise read
U(,t— +00) = (470 T)(1-cose), (61)

: =(—ivt-2 —i - : . . . : :
Pr+1n=( V)Pa+1a~10(Pnn= Prsinsa) By the inverse Fourier-transformation we find the diagonal

: . . elements of the density matrix
Pnfl,n:('Ut_z')’)Pnfl,n_|g(Pn,n_Pnfl,nfl)- (57) y
2

Neglecting again time derivatives in these equations, we find Pt +0)= Pnze*“”gz’vl n<4:g 62)
=i
Pml,ﬁﬁ(ﬁn,n—l)nu,nﬂ), Here P, is the transition probability from the site with the
index 0 to the cite with the inder for infinite time.
ig I_t is_ interesting to compare'resu!ts of this cg_lculation
pn,lynZM(pn'n—pn,lvn,l). (58  which incorporates a strong noise with the transition prob-

abilities without noise. In the absence of the noige=Q)
Substituting Eq.(58) into the equations for diagonal ele- the transition probabilities af®
ments(56) we obtain the evolution equations for diagonal

matrix elements of the density matri, ,: P{N=3,(V8mg) % (63
Figure 5 shows the typical behavior of transition prob-
— 1 1 2P P o 1) abilities for both cases. The difference in the behavior is
nn— n,n n+1n n—1n/-

ivt—27_ ivt+2y clearly pronounced. In the absence of noise the transition

(59 probabilities oscillate as functions afandg (see also Ref.

144303-9
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26). These oscillation arise due to interference of the amplicaused by the fast noise. Our numerical simulations are in a
tudes of different Feynman paths leading from the initial togood agreement with the analytical formulas. We have dis-
the final point. In the case of a strong noise these oscillatiomovered an important property of the nonadiabatic tunnelling
are suppressed by the noise imposed decoherence and fm®cess: its probability depends not on the “power” of the
probability distribution is a smooth bell-like curve. A simple noise [ _.g(t)dt but rather on the coupling to the noise
parameter that is related to the effective diffusion coefficieny(0). Theformer usually is responsible for the decoherence
and can be measured experimentally is the average squatgte in systems without time- dependent fields. Measure-
displacement of the particle during one sweep of the externahents of the LZ transition probability can provide the infor-
field. For a chain with a strong noise it is mation about the value of this coupling. The multilevel sys-
e 5 5 tems placed in regular time-dependent fields feel subtle

(47Tg ) _4mg

(n?)= D n2e— 470y differences of the noise s;atistical prpperties. _
n=o n We assumed that the diagonal noise does not dominate. In

_ ) ) S i this situation it does not play any role. However, if the com-
Despite a strong difference in the distribution functions, theponent of the diagonal noise is much stronger than nondiago-

average square displacemé6d) coincides with that for the 5| ones; the situation may change drastically. This problem
coherent evolution without noise. This indicates that theemains open.

square displacement is not a proper value to detect quantum e have extended the formulas and methods employed
coherence during Landau-Zener transitions at a level intefy, yyo-level systems to a couple of multistate LZ systems:

section. an arbitrary spin experiencing the time-dependent regular
and random magnetic field and a linear chain of sites in the
external time-dependent homogeneous electric field plus

In conclusion. we have derived the formula for the tran_noise. The Landau-Zener transitions for spins higher than 1/2
’ were observed in a number of systeths’® Therefore we

sition probabilities at the nonadiabatic crossing of two IevelsD f that luti be checked i all
coupled by a fast nondiagonal random field in the Landau- elieve that our solutions can be checked experimentaily.

Zener approximation. Depending on the strength of param-
eters it interpolates between the Landau-Zener formula for
noiseless system and the Kayanuma’s result for transitions
mediated by the transverse noise only. We have determined This work was supported by the NSF under Grant Nos.
the time intervals during which transitions are substantiaDMR0072115 and DMR 0103455, by the TITF of Texas
and showed that time of transitions mediated by the constaA&M University, and by the DOE under the Grant No. DE-

field is much shorter than the time necessary for transitiol-G03-96ER45598.

(64)

VIIl. CONCLUSION
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