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Fast noise in the Landau-Zener theory
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We study the influence of a fast noise on Landau-Zener transitions. We demonstrate that a fast colored noise
much weaker than the conventional white noise can produce transitions itself or can change substantially the
Landau-Zener transition probabilities. In the limit of fast colored or strong white noise we derive asymptoti-
cally exact formulas for transition probabilities and study the time evolution of a spin coupled to the noise and
a sweeping magnetic field.
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I. INTRODUCTION

Landau-Zener~LZ! formula for transition probabilities a
avoided crossing of two levels is one of a few fundamen
results of nonstationary quantum mechanics. Its rather g
eral character and simplicity makes it extremely suitable
versatile applications. Traditionally it was applied in qua
tum chemistry1 and in collision theory.2,3 A recent treatment
of the experiments on the quantum molecular hysteresi
nanomagnets by Wernsdorfer and Sessoli4–6 was a real tri-
umph of the LZ theory. A substantial contributions to t
theory of spin tunnelling in these molecules was made
theorists.7–9 Landau-Zener formula and its generalizatio
were recently employed also in charge transport
nanostructures,10–14 Bose-Einstein condensates,15 and quan-
tum computing.16

Extensions of the LZ theory to the case of multilev
crossing are less general. Nevertheless, some of them
realistic enough to justify remarkable efforts on the side
theorists for their analysis. Level correlations and locali
tion in energy space were studied in Ref. 17. The pionee
work by Demkov and Osherov18 treated exactly the crossin
of a single level with a band of parallel levels. In the work19

Hioe and Carrol solved a problem of transitions in a Zeem
multiplet of an arbitrary spin S in a magnetic field with
constant perpendicular component and with one tim
dependent component passing through zero value. Nume
generalizations of these results were found.20–27 A general
point of view on all these exactly solvable models propos
by one of authors28 allowed us to construct an algorithm fo
series of new solvable models. Another extensions incl
nonlinear LZ model29–31 and LZ problem with nonlinear
sweep.32 To apply the LZ formula and its multistate exte
sions to real systems it is often necessary to take into acc
the interaction with environment. Such attempts were m
in a series of works,8,33–45 however, the problem was no
solved completely. Kayanumaet al.33–35 have obtained an
elegant analytic result for the diagonal white noise. The n
diagonal colored noise was considered by Kayanuma36 for
the two-level crossing without a constant coupling term.
has found the transition probability in the limit of infinitel
short noise correlation time. His result was disputed
Nishino et al.37 On the basis of their numerical calculation
these authors discovered that in the limit of infinitely sh
0163-1829/2003/67~14!/144303~11!/$20.00 67 1443
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correlation times but at finite amplitude of a sweeping fie
the transition probability is vanishingly small. The influen
of the noise onto the multilevel crossing was studied so fa
only one work by Saito and Kayanuma,38 who considered the
three-level crossing at a special relations between param
in the limit of strong decoherence.

The purpose of this article is to present a systematic st
of the influence of noise, including the colored noise, on
the LZ transitions and to generalize it to multistate LZ pro
lems. We demonstrate that the LZ transitions are sensitiv
the colored noise much weaker than usuald-like white noise.
The latter can be considered as a limit of a noise wh
correlation time goes to zero and simultaneously its squar
amplitude goes to infinity, so that their product remains
constant. We prove that such a white nondiagonal noise
ways leads to equal population of the crossing levels. Ho
ever, the noise, whose correlation time goes to zero, bu
amplitude remains a constant, produces nontrivial transi
probabilities as it was first found by Kayanuma36 for a spe-
cial type of the noise correlation function. Another sub
problem is the order of limiting processes. The resulti
probabilities depend crucially on what happens first: tim
asymptotically goes to infinity or correlation time goes
zero. Analysis of these problems allowed us to reconc
works 36 and 37. In our work we first find simple analytic
result for a transition produced by a most general short-t
correlated noise in two-level systems and the change of
LZ probabilities produced by such a noise. We check th
analytical results by numerical calculations. We also stu
the influence of the noise on transitions at multilevel cro
ing.

The plan of the article is as follows. In Sec. II we gene
alize the result of Kayanuma for transverse noise36 to the
case of the arbitrary Gaussian noise in all three directio
Next we demonstrate its generalization to a three level s
tem. In the Sec. IV we study the time dependence of
density matrix with LZ transitions stimulated by fast nois
In the fifth section we propose a formula that incorpora
constant transverse magnetic field and compare its pre
tions with numerical simulations. In Sec. VI we consider t
master equation for an arbitrary spin placed into a regu
varying field and noisy magnetic field along thez direction
and a constant field along thex direction and find simple
©2003 The American Physical Society03-1
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expressions for transition probabilities in the limit of a stro
decoherence. In Sec. VII we perform similar calculations
a charged particle on a periodic chain driven by a tim
dependent electric field and compare our results with th
for a completely coherent evolution.

II. COLORED NOISE IN TWO LEVEL LZ TRANSITIONS

LZ transitions in a two-level system with a nondiagon
noise were studied by Kayanuma in Ref. 36. The Ham
tonian of the problem was chosen to be

H5btsz1hxsx , ~1!

where hx is the noise field with the correlation functio
^hx(t1)hx(t2)&5Jx

2e2lxut12t2u and s i are Pauli matrices. In
the limit of infinitely short correlation timel→` Kayanuma
has found a simple analytical result for the transition pro
ability.

The choice of Kayanuma corresponds to the spin
problem with noisy magnetic field along thex axes only. We
generalize the Kayanuma model introducing a more gen
Hamiltonian with all three components of random magne
field being nonzero and with a most general form of t
short-time correlation tensor

H5btsz1(
i

h i~ t !s i , i 5x,y,z ~2!

^h i~ t1!h j~ t2!&5gi j ~lut12t2u!. ~3!

We assume that thoughgi j can be different for differenti , j ,
they are of the same order of magnitude. We consider
limit of fast noise withl→`, wherel is the inverse char-
acteristic decay time of the correlatorgi j .

The density matrix elements for the system with t
Hamiltonian~1! obey the following system of ordinary dif
ferential equations:

i ṙ52@2r21~hx2 ihy!1r12~hx1 ihy!#,

i ṙ2152~bt1hz!r212r~hx1 ihy!, ~4!

i ṙ12522~bt1hz!r121r~hx2 ihy!,

where r5r112r22. By elimination of nondiagonal matrix
elements equations~4! are transformed into one integra
differential equation for the occupation differencer:

dr~ t !

dt
522e2 ibt2@hx~ t !2 ihy~ t !#E

2`

t

dt1eibt1
2
2 i

3E
t1

t

hz(t2)dt2@hx~ t1!1 ihy~ t1!#r~ t1!22eibt2

3@hx~ t !1 ihy~ t !#E
2`

t

dt1e2 ibt1
2
1 i

3E
t1

t

hz(t2)dt2@hx~ t1!2 ihy~ t1!#r~ t1!. ~5!
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The solution of this equation can be formally found as
infinite series in powers ofh i that must be averaged ove
noise realizations. A typical term contains the produ
h i 1

(t1)h i 2
(t2)•••h i n

(tn). Its average is equal to the sum o
all possible products of pair correlators since we assume
noise to be Gaussian. Kayanuma36 has shown that in the
limit of very fast noise only the term in which the pairing
ideally ordered in time, i.e., the pairs are (12)(34)•••(2n
21,2n), contributes a finite value into the integral. Oth
pairings contribute terms, which are by a power of infinite
small parameter 1/l smaller and can be neglected. This Ka
anuma’s observation is completely analogues to the theo
proven by Abrikosov and Gor’kov in their theory of impur
ties in a metal.46 Note that the diagonal component of noi
is inessential in this approximation and can be omitt
These facts allow us to write down the integral-different
equation for the average value ofr as follows:

d^r&~ t !

dt
524E

2`

t

cos@b~ t22t1
2!#F~lut2t1u!^r&~ t1!dt1 ,

~6!

whereF5gxx1gyy . Now we can employ the approximatio
of the fast noise assuming that the average^r&(t) almost
does not change in the interval of time 1/l and that integral
of correlation function is convergent. In this approximatio
we can extract̂r&(t) from the integral in the right-hand sid
of Eq. ~6! and expand the argument of the cosine near
end point t15t of the integral. The resulting differentia
equation reads

d^r&
dt

524F̂~2bt !^r&, ~7!

whereF̂(q) is the cosine Fourier transform of the functionF:

F̂~q!5E
0

`

cos~qt!F~lutu!dt. ~8!

Note that the characteristic value ofq are of the orderl and,
respectively, essential values oft in Eq. ~7! are t;l/b. We
see that essential values of time go to infinity together w
l. It shows that the order of limiting processes is indeed v
important. Here we first calculate the transition probabili
i.e. the diagonal elements of the density matrix att5` and
very large, but still finitel and put it infinity in the end.
Solving Eq.~7!, we find

^r&~ t !5^r&~2`!expS 24E
2`

t

F̂~2bt8!dt8D . ~9!

Together with the standard equationr111r2251 Eq. ~9! de-
termines average occupation number of each level at
time. The most interesting are the transition probabilities
t51`, which can be obtained from the same equation~9!.
Note that the integral in the exponent att51` becomes
equal to

E
2`

`

F̂~2bt8!dt85
p

2b
F~0!. ~10!
3-2
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Thus, from Eqs.~9! and ~10! we find

r11~1`!5
1

2 F11@2r11~2`!21#expS 2
2pF~0!

b D G ,
~11!

r22~1`!5
1

2 F12@2r11~2`!21#expS 2
2pF~0!

b D G .
~12!

Puttingr11(2`)51, we find the transition probability

P1→25r22~1`!ur11(2`)515
1

2 F12expS 2
2pF~0!

b D G .
~13!

For the standard white noise the correlators^h i(t)h j (t8)&
turn into delta functions in the limitl5`. It means that their
values att5t8 become infinitely large. In particular it mean
that F(0) is infinitely large for the standard white noise.
this case, as it is seen from Eqs.~11!, ~12! the occupancies o
both levels are equal to 1/2. Thus, the standard white n
leads to complete loss of initial state memory and equipa
tion of the levels. On the other hand, if the noise rema
finite-time correlated, the occupation numbers conse
memory on the initial state.

In the limit of the fast noise the transition probabilities a
determined only by the average square of nondiagonal n
and are not sensitive to the diagonal noise. To illustrate
statement we consider a special case when the diagonal
does not correlate with the nondiagonal one. Then, as
seen from Eq.~5!, the averaging over thez component of the
noise leads to multiplication of the coefficients in th
integral-differential equation by the Debye-Waller factor

K expS E
t1

t

hz~t!dt D L 5expS 2
1

2l
~ t2t1!E

2`

`

gzz~u!du D .

An essential interval of integration overt1 neart15t is 1/l.
In this interval the Debye-Waller factor changes by the va
;1/(l)2 and with this precision is equal to 1.

For a special casegxx(t)5J2exp(2lutu);gyy(t)50 we re-
produce the Kayanuma’s result.36

III. NONDIAGONAL NOISE IN SPIN-1 LZ THEORY

The HamiltonianH of a general multistate LZ problem
~see, for example, Ref. 20! has the following matrix form:

H5Bt1A, ~14!

whereB is a diagonal matrix and matricesA andB are inde-
pendent on time. However, in a situation of a general po
tion only two levels cross. Several levels can intersect at
same moment of time only due to a special symmetry. S
a symmetry is systematically realized in the model of
arbitrary spinSÞ1/2 placed into an external magnetic fie
that has a time-dependentz component vanishing at som
moment of timet50 and a constant transverse componen19

The corresponding Hamiltonian is
14430
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H5btSz1gSx , ~15!

whereb andg are constants. This exactly solvable model f
a spin higher than 1/2 was employed in the theory of St
effect;47 some recent applications can be found in Re
48,49.

In this section we generalize the result~13! to a spin 1
system. We consider a following Hamiltonian for the spin
system in a random magnetic field:

H5~bt !Sz1(
i

h iSi , i 5x,y,z ~16!

where Si are the spin projection operators forS51. The
density matrixr depends on eight independent paramete
We denoter15r1,12r0,0 andr25r21,212r0,0. The deri-
vation of equations forr1 andr2 can be done in the sam
spirit as it was done for the spin 1/2 case. Looking for
solution of the evolution equation for density matrix in th
form of perturbation series and retaining after the averag
over the noise only the leading terms in 1/l, we arrive at an
integral-differential equation. Additional care must be paid
the integrals of the form *2`

t dt1*
2`
t1 dt2exp@ib(t1

2

1t2
2)#gij(lut12t2u) that did not appear in the two level system

but appeared in the series for the spinS51. One can check
that this integral is of the order 1/l and hence we disregard
and all terms that contain it. After lengthy but straightfo
ward calculations we find that in the leading order in 1/l the
elementsr1(t) and r2(t) satisfy the following integral-
differential equation

d

dt S r1~ t !

r2~ t !
D 522E

2`

t

dt1cos@b~ t22t1
2!/2#F~lut2t1u!

3S 1 1/2

1/2 1 D S r1~ t1!

r2~ t1!
D . ~17!

The approximation of the fast noise allows to transform t
equation into the following differential one:

d

dt S r1~ t !

r2~ t !
D 522F̂~bt !S 1 1/2

1/2 1 D S r1~ t1!

r2~ t1!
D . ~18!

Thus, the problem is reduced to a linear differential equat
with a constant matrix coefficient. The formal answer is

S r1~ t !

r2~ t !
D 5expF22E

2`

t

F̂~butu!dtS 1 1/2

1/2 1 D G
3S r1~2`!

r2~2`!
D . ~19!
3-3
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This formal solution can be transformed to a more expl
form with the help of the matrix identity

expF2gS 1 1/2

1/2 1 D G5e2gS coshg/2 2sinhg/2

2sinhg/2 2coshg/2D .

~20!

The transition probabilities are defined by this matrix act
on vectors (0

1) if initially the projection11 was occupied or
(1

0) if the projection21 was occupied. The transition prob
abilities are

P1→05P2→05 1
3 ~12e23g/2!,

P1→15P2→25 1
3 1 1

6 e23g/21 1
2 e2g/2,

P1→25P2→15 1
3 1 1

6 e23g/22 1
2 e2g/2, ~21!

P0→05 1
3 ~11e23g/2!,

P0→15P0→25 1
3 ~12e23g/2!,

whereg5pF(0)/b. We see that in the case of three leve
the main results obtained in the previous section for a tw
level system persist: the standard white (g5`) noise leads
to equal population of all three levels, whereas the fast no
with a finite amplitude results in nontrivial transition pro
abilities.

IV. TRANSITION TIME FOR COLORED NOISE

In Sec. II we have shown that the typical time for esta
lishing the asymptotic of the transition probabilities
l/bF(0). It is useful to look at the same problem from
different point of view. Namely, we will analyze the behavi
of transitions driven by the standardd-like white noise, their
typical rates and times. If the action of the standard wh
noise is limited by some finite time interval, it becom
physically equivalent to the fast noise with a finite amp
tude. Simultaneously we will study directly the influence
the white noise onto the LZ transitions.

Let us consider the problem with the very beginning. T
Hamiltonian is the generator of a random rotation

H5h~ t!S ~22!

whereh(t)5h0(t)1h(t) andh0(t)5bt ẑ1G x̂.
Here we consider the isotropic white nois

^h i(t)hk(t8)&5gd ikd(t2t8). The density matrix as any
HermitianS3S matrix can be represented as a sum:

r5r (0)I 1r i
(1)Si1r ik

(2)FSiSk1SkSi2
2

3
S~S11!G1•••,

~23!

where the last term in Eq.~29! containsS operator factors.
All irreducible tensorsr ( j ); j 50•••S evolve separately. The
scalarr (0)5(1/N)tr r is a constant. The vectorr(1) obeys
the obvious equation

ṙ(1)52h3r(1). ~24!
14430
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The modulus of the vectorrW (1) is conserved.
Dynamic equation for the second order symmetric ten

r ik reads

ṙ ik52e imnhmrnk2ekmnhmr in . ~25!

The extension for the rest of irreducible components is
vious. In Eq.~24! for the vectorial part it is useful to apply

the interaction representationrW (1)(t)5U0(t,t0)rW̃ (1)(t),
where U0(t,t0) is the evolution matrix for the fieldh0(t)

5 ẑbt1 x̂G. The reduced vectorrW̃ (1)(t) obeys the following
equation:

d

dt
r̃ (1)~ t !52h̃3 r̃ (1)~ t !. ~26!

Here h̃5U0
21(h3U0). In terms of the Cartesian coord

nates this equation reads

ṙ̃ i5Tikl r̃kh l , ~27!

where the matrixTikl is

Tikl~ t,t0!5~U0!mi~U0!nkemln . ~28!

Initial values ofr and r̃ coincide sinceU0(t0 ,t0)5I . Equa-
tion ~27! can be solved by power expansion over the noi

r̃ i~ t !5r i~ t0!1E
t0

t

Tikl~ t8,t0!h l~ t8!dtrk~ t0!1•••.

~29!

When averaging the expansion over the noise, all odd te
vanish. To understand what happens with even terms c
sider first the quadratic term

E
t0

t

dt1E
t0

t1
dt2Tik1l 1

~ t1 ,t0!Tk1 ,k,l 2
~ t2 ,t0!

3^h l 1
~ t1!h l 2

~ t2!&rk~ t0!.

For the isotropic noise the contribution to the vectorr̃(t)
up to the second order inh can be represented as follow
~we write equations for averages omitting the angular bra
ets!:

r̃2,i~ t !5S d ik1E
t0

t

dt1Mik~ t1! D rk~ t0!, ~30!

where

Mik~ t !5~g/2!Timl~ t,t0!Tmkl~ t,t0!52gd ik . ~31!

Here we have used properties of the orthogonal matricesU0 :
(U0)mi(U0)mk5d ik .

Next we proceed to the quartic term
3-4
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r̃4,i5E
t0

t

dt1E
t0

t1
dt2E

t0

t2
dt3E

t0

t3
dt4Tipk~ t1 ,t0!

3Tpql~ t2 ,t0!Tqrm~ t3 ,t0!Trsn~ t4 ,t0!^hk~ t1!h l~ t2!

3hm~ t3!hn~ t4!&rs~ t0!. ~32!

Quartic average of Gaussian field decays into quadratic
erages

^hk~ t1!h l~ t2!hm~ t3!hn~ t4!&

5^hk~ t1!h l~ t2!&^hm~ t3!hn~ t4!&

1^hk~ t1!hm~ t3!&^h l~ t2!hn~ t4!&

1^hk~ t1!hn~ t4!&^h l~ t2!hm~ t3!&. ~33!

Only the first term contributes to the integral~32!. Two oth-
ers are zero at correct time orderingt1>t2>t3>t4. In both
cases considered earlier we obtain

r̃4,i5E
t0

t

dt1E
t0

t1
dt2Mi j ~ t1!M jk~ t2!rk~ t0!. ~34!

The same result could be obtained from an effective equa
of motion for r̃:

ṙ̃ i5Mikr̃k . ~35!

Thus, the operatorM plays the role of effective non
Hermitian Hamiltonian.

For the white isotropic noise the solution of Eq.~35! is

r̃ i~ t !5 r̃ i~ t0!exp~2gt !. ~36!

At t→` the formula ~36! always leads to the occupatio
numbersp51/2. As we know, this does not happen for t
colored noise with a finite amplitude. The reason is that
the genuine LZ problem the solution strongly oscillates w
the frequency roughlyv(t);bt long before and after the
level crossing point. This introduces a new energy scale
must be compared withl. For time in the rangeubtu,l, the
approximation of white noise is roughly valid even for fini
amplitude noise, but beyond this interval of time the oscil
tions of the LZ solution become faster than the correlat
time of the noise, and the action of the noise is suppresse
the oscillations.

In Fig. 1 we demonstrate a typical evolution of th
squared value of the amplitude for the system to stay in
same state as function of time. The evolution reminds di
sive motion that slowly stops at large absolute values
time. The sharp change of the absolute value of the am
tude neart50 is due to the constant transverse field.

To estimate roughly the transition probability one can a
ply the standard white noise approximation in the time int
val utu,Cl/b and accept that atutu.Cl/b no transitions
due to the noise happen. The parameterC is a constant of the
order of unity. Then we automatically get the resultr(`)
5exp(22Clg/b)r(2`). According to the definition,g
'F(0)/(2l) in agreement with the calculations of the pr
vious sections. Summarizing, the transitions mediated by
14430
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fast noise proceed during the large time interval of the or
of l/b. That is the reason why its total effect remains fini
though it is very small on a typical time scale of the usu
LZ-transitions mediated by constant field (t;G/b).50

V. LANDAU-ZENER TRANSITIONS IN A CONSTANT
TRANSVERSE FIELD AND IN THE COLORED NOISE

In previous sections we assumed that only the noise
responsible for transitions, whereas the regular part of
Hamiltonian operator was diagonal. In this section we inc
porate a regular nondiagonal operator~the transverse field!
into the Hamiltonian together with a noise. The most gene
Hamiltonian for such a two-level system reads

H5btsz1gsx1(
i

h i~ t !s i , i 5x,y,z, ~37!

whereh i are given by Eq.~3!.
The second term in the Hamiltonian~37! can be consid-

ered as a constant transverse magnetic field acting on a
S51/2. The Hamiltonian~37! describes a spin (q-bit!
weakly interacting with the environment, for example wi
the nuclear spin bath.26 If this interaction is so small that the
bath relaxation is much faster than the inverse interac
energy, the bath can be treated as a fast noisy magnetic
The measurements of the LZ transition probabilities can p
vide an information about the strength of the coupling to
bath. Another possible example is a molecular nanomag
in fluctuating dipole field. The Hamiltonian~37! may be rel-
evant to the quantum shuttle problem where avoided le
crossings occurred to be important.51 The fast noise in this
example corresponds to thermal fluctuations.

As was discussed in the previous section, in the inter
of time ubtu!l the spin experiences an equivalent wh
noise with the amplitudeg5F(0)/(2l) vanishing at l
→`. The noise causes a slow decay of the population
ferencer5r112r22. The action of the noise becomes n

FIG. 1. Typical evolution of the transition probabilityP(t)
5ua1(t)u2, wherea1(t) is the amplitude of the first diabatic state

The choice of parameters isgi j 5d i j J
2e2lut2t8u, b51, l580, J2

50.18, G50.7.
3-5
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FIG. 2. The probability to stay on the sam
diabatic state in a two level system at consta
coupling to the noise as function of transver
magnetic field. The choice of parameters isgi j

5d ixd jxJx
2e2lut2t8u, Jx50.28, l5125, b51.
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ticeable only after long evolution time of the orderul/bu. On
the contrary, the transitions due to the constant transv
field proceed predominantly during the interval of timeutu
,ug/bu. During this interval of time the role of noise i
negligible comparing with the role of the constant transve
field. Let us chooset0 much less thanul/bu, but much larger
than g/b to make sure that the role of the transverse m
netic field becomes negligible beyond the interval of tim
(2t0 ,t0). The evolution from2` to 2t0 is influenced
mainly by the noise. The result of such an evolution is alm
the same as that in the absence of the constant trans
field with t050. Since the effective attenuation coefficie
for r is an even function of time@see Eq.~7!#, the resulting
exponent forr(t0) is twice less than that for the problem o
Sec. II att51` @Eqs.~9!,~10!#:

r~2t0!5e2pF(0)/b. ~38!

In the interval of timeutu,t0 the noise is negligible and
transitions are completely due to the genuine Landau-Ze
mechanism, i.e., due to the constant transverse fieldg. Since
t0@g/b, we can use the LZ formula to determiner(t0). Let
a1(t) anda2(t) be the amplitudes to find the system at t
first and the second diabatic states, respectively~to find the
spin projection equals 1/2 or21/2) at the moment of timet.
Their values att52t0 can be expressed in terms of th
population differencer* and two phase factors as follows

a1~2t0!5eif1A~11r* !/2,

a2~2t0!5eif2A~12r* !/2. ~39!

The phasesf1 andf2 are essentially random and indepe
dent on each other and onr* since, att,2t0 the solution of
the Shro¨dinger equation strongly oscillates and transitio
are mainly due to the nondiagonal noise. The amplitude
time t0 are related to those att52t0 by a linear relation
ai(t0)5Si j aj (2t0), whereS is the transition matrix in the
noiseless LZ Hamiltonian fromt52` to t5` . Using this
property and averaging over the random phasesf1 and f2
and r* with ^r* &5r(2t0), we arrive at the following re-
sult:
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r~ t0!5^ua1~ t0!u22ua2~ t0!u2&5e2pF(0)/b~2e2pugu2/b21!.
~40!

The evolution fromt0 to t51` brings an additional expo
nential factor equal to that in Eq.~38!:

r~ t→`!5e22pF(0)/b~2e2pugu2/b21!. ~41!

Correspondingly the probability to stay on the same diab
level is

P1→15 1
2 @11e22pF(0)/b~2e2pugu2/b21!#. ~42!

In the limit of the noise only (g50) and of zero noise
@F(0)50# the result~42! transits into formula~13! or to the
LZ formula, respectively.

The matching procedure used in this section is asympt
cally exact atl→`. To check how it works at large bu
finite l we studied the LZ transitions subject to a fast no
numerically. We simulated the evolution generated by
Hamiltonian~37!. For simplification we puthy5hz50 and
accept the following form for the correlator of the noisex
component̂ hx(t)hx(t8)5Jx

2exp(2lut2t8u). The time inter-
val of the evolution was chosen to be much larger thanl/b.
In Fig. 2 we depict the probability to stay in the same st
after the level crossing vs the constant transverse fieldg at a
fixed coupling to the noiseJx50.28. Each discrete poin
represents the averaging over 100 simulations with the s
coupling constants. The solid line is the graph of the th
retical formula~42!. The deviations of the simulation resul
from the analytical predictions do not exceed the accurac
our calculations. We conclude that Eq.~42! describes well
the transition probability for the LZ system subject to a fa
noise.

VI. ARBITRARY SPIN IN A STRONG DIAGONAL
RANDOM FIELD

We have demonstrated that the nondiagonald-like white
noise leads to the equilibration of population between
states. It is not correct for the white noise directed along
sweeping field. Such a noise does not couple different st
3-6
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and its action leads to the loss of coherence only. As w
shown earlier, in the case of a two-level system it results
Debye-Waller factor forr. We consider the case of a gener
spin S placed into a regular fieldh05 ẑbt1 x̂G and the ran-
dom field directed along thez axis. Its Hamiltonian reads

H tot5H1Hnoise5btSz1GSx1h~ t !Sz . ~43!

We assumêh(t)h(t8)&52gd(t2t8).
Following Ref. 38, we expand the solution of Eq.~43! in

the power series over the noise amplitude and average
term. The resulting series over powers ofg is a formal solu-
tion of a differential equation known as master equation38

]r~ t !

]t
52 i @H~ t !,r~ t !#2g@Sz ,@Sz ,r~ t !##

52 i @vtSz1GSx ,r~ t !#

2g@Sz
2r~ t !1r~ t !Sz

222SzrSz#. ~44!

It is convenient to introduce notationsG i j 5G^ i uSxu j &. Below
we write down Eq.~44! for diagonal and nondiagonal ele
ments of the density matrix separately:

ṙ i i 52 i @G i ,i 21~r i 21,i2r i ,i 21!1G i ,i 11~r i 11,i2r i ,i 11!#,

i 52S,2S11, . . . ,S, ~45!

ṙmn52@ ibt~m2n!1g~n2m!2#rmn2 i ~Gm,m21rm21,n

2rm,n11Gn11,n1Gm,m11rm11,n

2rm,n21Gn21,n!, mÞn. ~46!

It is possible to find an asymptotically exact solution of Eq
~45!, ~46! in the limit of strong noiseg@G,b. In this limit-
ing case, nondiagonal elements of the density matrix
;G/g times smaller than diagonal ones. Indeed, let us
regard the dynamical termṙ i j in equations for the nondiago
nal elements. We will justify this approximation later. The
Eq. ~46! at j 5 i 61 implies that the nondiagonal elemen
r i ,i 61 are suppressed comparing with diagonal matrix e
ment by the factor;G/g. The matrix elementsr i ,i 62 are
suppressed by the same factor with respect tor i ,i 61, etc. The
characteristic time interval following from Eq.~45! is Dt
;ur i i /(Gr i ,i 61);g/G2. From this estimate we find that th
time derivative of the largest nondiagonal matrix elem
uṙ i ,i 61u;(G2/g)ur i ,i 61u!gr i ,i 61 can be neglected. Retain
ing only main diagonal and two adjacent nondiagonals in
matrix equations~45!,~46!, we express the nondiagonal el
ments in terms of the diagonal:

r i 11,i52
iG i 11,i

ibt1g
~r i ,i2r i 11,i 11!,

r i ,i 115
iG i ,i 11

ibt2g
~r i 11,i 112r i ,i !, ~47!

r i , j50, u i 2 j u.1.
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The problem is reduced to determining of the 2S11 diago-
nal elements. Let us introduce a vectorcW with the coordinates
ci5r i i . They are probabilities to find the spin in a particul
eigenstate of the operatorSz . Substitution of Eq.~47! into
Eq. ~45! gives a differential equation for the vectorcW (t)

cẆ~ t !5S G2

ibt1g
2

G2

ibt2g D M̂cW~ t ! ~48!

were the constant matrixM̂ has following matrix elements:

Mii 52~^ i 11uSxu i &21^ i uSxu i 21&2!52 1
2 ~S21S2 i 2!,

Mi ,i 115Mi 11,i5^ i 11uSxu i &25 1
4 ~S1 i 11!~S2 i !.

~49!

All other elements are zeros. Equation~48! can be easily
integrated

cW~ t !5expS E
t0

t 2gG2

~bt8!21g2
dt8M̂ D cW~ t0!. ~50!

To find transition probabilities we take limits of integral i
Eq. ~50! as t052` and t51`:

cW~1`!5expS 2pG2

b
M̂ D cW~2`!. ~51!

This result demonstrates that, for a general spinS as well as
for a spin 1/2, the transition probabilities do not depend
the specific value ofg provided thatg is large. Below we
present explicitly the transition probabilities for some valu
of spin. We denoteE15e2G2p/b, E25e23G2p/b, and E3

5e26pG2/b. Then forS51/2 the formula~51! reads

P1/2→1/25P21/2→21/25
1
2 ~11E1!,

P1/2→21/25P21/2→1/25
1
2 ~12E1!. ~52!

For S51

P1→15P21→215 1
6 ~21E213E1!,

P1→05P21→05P0→15P0→215 1
3 ~12E2!, ~53!

P1→215P21→15 1
6 ~21E223E1!,

P0→05 1
3 ~112E2!.

The results~52! and~53! coincide with already known solu
tions for two- and three-level LZ models with stron
decoherence.38 A new result for a spinS53/2 that follows
from Eq. ~51! reads
3-7
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FIG. 3. Transition probabilities from the stat
with sz53/2 to any other state as functions o
transverse magnetic field.
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P3/2→3/25P23/2→23/25
1
4 1 1

20 E31 1
4 E21 9

20 E1 ,

P3/2→1/25P23/2→21/25P1/2→3/2

5P21/2→23/25
1
4 2 3

20 E32 1
4 E21 3

20 E1 ,

P3/2→21/25P23/2→1/25P21/2→3/2

5P1/2→23/25
1
4 1 3

20 E32 1
4 E22 3

20 E1 ,

P3/2→23/25P23/2→3/25
1
4 2 1

20 E31 1
4 E22 9

20 E1 ,

P1/2→1/25P21/2→21/25
1
4 1 9

20 E31 1
4 E21 1

20 E1 ,

P1/2→21/25P21/2→1/25
1
4 2 9

20 E31 1
4 E22 1

20 E1 . ~54!

In Figs. 3 and 4 we show the dependences of transi
probabilities forS53/2 onG. In adiabatic limitG2/b@1 all
states are equally populated after the evolution.
14430
n

VII. ELECTRON MOTION DRIVEN BY ELECTRIC FIELD

Now we consider another multistate Landau-Zener mo
that, in the absence of the noise, was solved exactly.26 Physi-
cally the model describes the transport of a charged par
in a regular linear chain driven by a time-dependent hom
geneous external field. Such a model is an idealization
atomic scale molecular wires or linear arrays of quant
dots. An important assumption in the model that makes
exactly solvable is that all sites of the chain are identical a
equidistant. External electric field splits the energy levels
different sites of the chain and suppresses the tunnelling
tween them. Hence the transitions proceed in a narrow t
intervals close to moments at which the electric field b
comes zero. The noise in such a system arises due to the
fluctuations chaotically changing the energy of the electr
We suppose that there are no correlations of noise at diffe
sites.
e
f

FIG. 4. Transition probabilities from the stat
with sz51/2 to any other state as functions o
transverse magnetic field.
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FIG. 5. Comparison of transition probabilitie
in coherent~without noise! and incoherent~with
strong noise! LZ models on the chain.
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Let us denoteun& a state located at thenth site of the
chain. We assume that these states form a complete ortho
mal set ~Wannier basis!. In terms of this set the electro
Hamiltonian with linear dependence of an external field
time reads

Ĥ5(
n

~gun&^n11u1c.c.!1nvtun&^nu1hn~ t !un&^nu,

~55!

wherev and g are constants and we assume that the no
power is the same for all sites i.e.,^hmhn&52gdmn . The
derivation of the master equation for this case is similar
that of the previous section. We consider only the limit
strong noiseg@g. Then, as in previous example, the nond
agonal elements of the density matrixr i , j with u i 2 j u.1 can
be neglected. Equations for diagonal matrix elements of
density matrix are

ṙnn52 ig~rn11,n1rn21,n2rn,n112rn,n21!. ~56!

Equations for nondiagonal elements after the averaging o
the random noise read

ṙn11,n5~2 ivt22g!rn11,n2 ig~rn,n2rn11,n11!,

ṙn21,n5~ ivt22g!rn21,n2 ig~rn,n2rn21,n21!. ~57!

Neglecting again time derivatives in these equations, we

rn11,n5
2 ig

ivt12g
~rn,n2rn11,n11!,

rn21,n5
ig

ivt22g
~rn,n2rn21,n21!. ~58!

Substituting Eq.~58! into the equations for diagonal ele
ments~56! we obtain the evolution equations for diagon
matrix elements of the density matrixrn,n :

ṙn,n5g2S 1

ivt22g
2

1

ivt12g D ~2rn,n2rn11,n2rn21,n!.

~59!
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Without loss of generality we can assume that initially, at
52`, the particle was located at the site number zero
can be treated as initial conditions for the master equa
r0,0(t52`)51 and all other elements of the density matr
are zeros att52`. Then diagonal matrix elementsrn,n ac-
quire the meaning of transition probabilities from zeroth
thenth site at a current timet. As in the previous example we
can find the solution for a chain of arbitrary number of sit
in the matrix form.

In the limit of infinite number of sites a compact solutio
can be found by employing the Fourier transformationrn,n

5(1/2p)*0
2peinfu(f,t). The system of coupled differentia

equations~59! is diagonalized by this transformation. Corr
sponding differential equation of the first order for the fun
tion u(f,t) is readily solved. Its solution with the initia
conditionu(f,2`51) is

u~f,t !5expF22S p

2
1arctan

vt

2g D ~12cosf!G . ~60!

In the limit t→1` it approaches its limiting value

u~f,t→1`!5e(24pg2/v)(12cosf). ~61!

By the inverse Fourier-transformation we find the diago
elements of the density matrix

rn,n~ t→1`!5Pn5e24pg2/vI nS 4pg2

v D . ~62!

Here Pn is the transition probability from the site with th
index 0 to the cite with the indexn for infinite time.

It is interesting to compare results of this calculati
which incorporates a strong noise with the transition pro
abilities without noise. In the absence of the noise (g50)
the transition probabilities are26

Pn
(coh)5uJn~A8pg!u2. ~63!

Figure 5 shows the typical behavior of transition pro
abilities for both cases. The difference in the behavior
clearly pronounced. In the absence of noise the transi
probabilities oscillate as functions ofn andg ~see also Ref.
3-9
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26!. These oscillation arise due to interference of the am
tudes of different Feynman paths leading from the initial
the final point. In the case of a strong noise these oscilla
are suppressed by the noise imposed decoherence an
probability distribution is a smooth bell-like curve. A simp
parameter that is related to the effective diffusion coeffici
and can be measured experimentally is the average sq
displacement of the particle during one sweep of the exte
field. For a chain with a strong noise it is

^n2&5 (
n52`

1`

n2e24pg2/vI nS 4pg2

v D5
4pg2

v
. ~64!

Despite a strong difference in the distribution functions,
average square displacement~64! coincides with that for the
coherent evolution without noise. This indicates that
square displacement is not a proper value to detect quan
coherence during Landau-Zener transitions at a level in
section.

VIII. CONCLUSION

In conclusion, we have derived the formula for the tra
sition probabilities at the nonadiabatic crossing of two lev
coupled by a fast nondiagonal random field in the Land
Zener approximation. Depending on the strength of para
eters it interpolates between the Landau-Zener formula
noiseless system and the Kayanuma’s result for transit
mediated by the transverse noise only. We have determ
the time intervals during which transitions are substan
and showed that time of transitions mediated by the cons
field is much shorter than the time necessary for transi
in

.

,
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caused by the fast noise. Our numerical simulations are
good agreement with the analytical formulas. We have d
covered an important property of the nonadiabatic tunnell
process: its probability depends not on the ‘‘power’’ of th
noise *2`

` g(t)dt but rather on the coupling to the nois
g(0). Theformer usually is responsible for the decoheren
rate in systems without time- dependent fields. Measu
ments of the LZ transition probability can provide the info
mation about the value of this coupling. The multilevel sy
tems placed in regular time-dependent fields feel su
differences of the noise statistical properties.

We assumed that the diagonal noise does not dominat
this situation it does not play any role. However, if the co
ponent of the diagonal noise is much stronger than nondia
nal ones, the situation may change drastically. This prob
remains open.

We have extended the formulas and methods emplo
for two-level systems to a couple of multistate LZ system
an arbitrary spin experiencing the time-dependent reg
and random magnetic field and a linear chain of sites in
external time-dependent homogeneous electric field p
noise. The Landau-Zener transitions for spins higher than
were observed in a number of systems.47–49 Therefore we
believe that our solutions can be checked experimentally
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