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Abstract: We present an in situ beam characterization technique to analyze 
femtosecond optical beams in a folded version of a 2f-2f setup. This 
technique makes use of a two-dimensional spatial light modulator (SLM) to 
holographically redirect radiation between different diffraction orders. This 
manipulation of light between diffraction orders is carried out locally within 

the beam. Because SLMs can withstand intensities of up to 11 210 W/cmI  , 

this makes them suitable for amplified femtosecond radiation. The 
flexibility of the SLM was demonstrated by producing a diverse assortment 
of ―soft apertures‖ that are mechanically difficult or impossible to 
reproduce. We test our method by holographically knife-edging and 
tomographically reconstructing both continuous wave and broadband 
radiation in transverse optical modes. 

©2011 Optical Society of America 

OCIS codes: (090.1760) Computer holography; (050.1590) Chirping; (050.1950) Diffraction 
gratings; (140.3300) Laser beam shaping; (320.7090) Ultrafast lasers; (050.4865) Optical 
vortices. 
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1. Introduction 

Optical beam modes have drawn considerable interest in the scientific community over the 
past few decades. These transverse optical modes, which are eigensolutions of the paraxial 
wave equation in different coordinate geometries, consist of the Hermite-Gaussian, Laguerre-
Gaussian and more recently the Ince-Gaussian beams. Radiation in these transverse modes 
have been used in a broad range of disciplines having applications in the optical manipulation 
of atomic and molecular systems [1–3], optical vortex coronagraph for the direct imaging of 
exoplanets, thermal noise in gravitation wave interferometric antennas [4–6], ultrashort 
intense-field filamentation experiments [7], and optical trapping [8]. The Laguerre-Gaussian 
beams are of considerable interest because radiation in these transverse modes carries, in 
addition to intrinsic angular momentum, a sharp quantized amount of optical orbital angular 

momentum equal to  per photon. Recent theoretical work has suggested that this additional 
angular momentum can couple to the internal degrees of freedom of a molecular system in 
addition to external degrees of freedoms as in [3]. Our plans are to produce intense 
femtosecond optical vortices in a ―pure‖ transversal mode such that the angular momentum 
per photon is sharp i.e., beams which are not in a superposition of eigenmodes having 
different angular momentum quantum numbers. 

When producing optical beam modes, a common approach is to use gratings, where phase 
and amplitude information about the mode is encoded within the grating structure [9,10]. This 
approach works well when the light used is monochromatic [11], however, when 
polychromatic light such as femtosecond radiation is used a compensation technique is 
needed in order to correct for angular dispersion. This need for compensation has been met 
with a variety of successful experimental techniques [12–15]. In most of these experimental 
setups, a second dispersive optical element was used as the compensator. In this paper, we 
introduce a method for the in situ analysis of optical beams by using the needed second pass 
of the folded version of a 2f-2f setup (folded-2f) to ―holographically knife-edge‖ optical 
beams, which were produced in the first pass of the setup [15]. As a note, in principle our 
technique can be used in a folded version of the 4f-setup [14]. The focusing element in the 2f-
2f or folded-2f setup reverses the sign of the angular dispersion causing the dispersed 
broadband beam to exhibit a zero amount of spatial dispersion at the position of the second 
grating [13]. At all other positions within the setup, except at the position of the first grating, 
the beam will exhibit some degree of ―blurriness‖ in the dispersion plane. Because of this—
while the beam still exhibits angular dispersion—it is possible to knife-edge and 
tomographically reconstruct the beam it situ at the position of the second grating pass. In this 
paper, we will show how this can be carried out using holographic techniques 

There are several attractive aspects of this it situ beam characterization. Compared to CCD 

beam profilers and cameras, SLM’s can withstand intensities of up to 11 2~10 W/cmI   

because laser radiation is transmitted instead of absorbed by them, and the active area of a 
SLM’s LCD is typically larger than that found for the CCD chips in beam profilers and 
cameras. Compared to mechanical knife-edge methods such as razor blades and irises (hard 
apertures), SLMs are highly flexible having no moving parts; multiple knife-edge directions 
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can be performed without the need of a spinning drum perforated with holes. SLMs can be 
used to generate complex two-dimensional shapes, and because their pixels are fixed there is a 
high degree of reproducibility. We will show that SLM’s can produce virtually any desired 
geometric aperture using its LCD (soft aperture). Furthermore, The SLM has a refresh rate of 
60 Hz allowing for measurements to be taken in real time. In addition to tomographic 
reconstruction, a few beam characteristics such as the beam waist and the relative power 
between modal lobes can be determined by using only a few knife-edge measurements—as 
long as the beam is nearly ideal. 

2. Spatial Light Modulator (SLM) 

The SLM (Hamamatsu LCOS-SLM X10468-02) used in this work was designed to function 
optimally for wavelengths within the range of 750 nm to 850 nm meaning that the 
antireflective coating and dielectric retroreflecting mirror (R>95%) are optimized for 
operation in this wavelength range. Some of our future goals involve the use of continuous 
wave radiation from a He-Ne source in addition to 800-nm femtosecond from a broadband 
radiation source. The difference in wavelength is expected to affect the reflectivity due to the 
spectral response of the SLM’s optics. In contrast to the programmable phase modulator 
(PPM) used in [13], the LCOS-SLM is a pixelated device, which consequently results in a 
loss of power due to parasitic diffraction effects. In all experiments carried out in this work, 
noticeable amount of light was observed in higher diffraction orders. For the above mentioned 
reasons, the reflectivity of the SLM for the He-Ne wavelength was determined by taking the 
ratio of the spectrally reflected (zero order) and incident laser powers when a constant phase 
modulation was displayed on the SLM’s LCD (encoded in the grayscale value of a picture). 

The reflectivity was found to be 76%R  . 

 

Fig. 1. (a) Measured output power of a Michelson interferometer versus modulation depth 
(blue squares). The SLM was positioned in one arm of the interferometer and introduced a 
phase-modulation encoded as a grayscale value. The solid curve is the theoretically expected 
result. (b) Phase modulation retrieved from the data and theoretical curve shown in panel (a). 

Besides the spectral response of the optical coatings, another consideration is the induced 
phase modulation as a function of the applied voltage or programmed grayscale value when 
using 633 nm radiation instead of 800 nm. The phase modulation of the SLM was factory-

calibrated using 800 nm and was shown to produce over 2  radians of phase modulation. A 

quick calculation shows that for the 633 nm He-Ne wavelength a larger phase modulation is 

expected 633 3.2   . To experimentally determine the phase modulation as a function of 

displayed grayscale value, the SLM was incorporated into one arm of a Michelson 
interferometer. This interferometer was constructed with fixed arms, so that phase changes are 
introduced only by the SLM. A uniform grayscale image (600   792 pixels) was computer 
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generated having a specific grayscale value between 0 and 255. This image was subsequently 
displayed on the SLM through a digital visual interface (DVI) connection and the output 
power of the interferometer was measured (Ophir PD300-UV) as a function of grayscale 
value. Recorded data (blue squares) are shown in Fig. 1(a) and have been fitted to the 

theoretically expected result 2

0 cos ( / 2)P P   (solid black curve). From this fit, the phase 

modulation as a function of grayscale value was determined from  02arccos /P P  . 

From this fit, the phase modulation as a function of grayscale value was determined from iCe . 

Figure 1(b) shows the phase modulation given as a function of grayscale value. The phase 
modulation   as a function of grayscale value   was found to be described by a linear 

function (1.8 /100)m      with a maximum phase modulation of ~ 4  radians for a 

grayscale value of 200  , which is in rough agreement with our estimate. For grayscale 

values greater than ~200, the phase modulation introduced by the SLM exhibited a nearly 
constant behavior. This can be seen by the blue squares in Fig. 1(a) where the data points 
deviate from the theoretical curve. Consequently, as seen by the blue circles in Fig. 1(b), a 
gap appears in the data for phase modulation versus grayscale value. The reason for this is not 

known, but for experiments reported here, phase modulations of less than 2  radian, 

corresponding to grayscale values less than ~100, were used. 

 

Fig. 2. (a) Illustration of a blazed phase grating having modulation depth m and spatial period 

  displayed on the SLM. (b) Blazing efficiency as a function of modulation depth measured 
as the ratio of the power in the first diffraction order to that in the zero order. Nine sets of data 
were obtained each having a different grating period and denoted by the number of pixels (np) 
used for the grating period. Each pixel is assumed to be equal to the pitch, which is 20 µm. All 
data sets show a peak at a grayscale value of ~100, which corresponds to a phase shift of 2π 
radian. The inset in panel (b) shows the efficiencies for the peak values (grayscale value of 
100) demonstrating the best achieved diffraction efficiency for a grating period of 8 pixels. 

Since we use our SLM in a folded version of a 2 2f f  setup to compensate for angular 

dispersion [15], we find it convenient to use the second half of the SLM’s LCD to 
characterize the amplitude-phase-modulated optical beams produced on the first pass of the 
setup. This was accomplished using an amplitude-phase encoding method on a phase-only 
device, which makes use of blazing techniques [10,16,17]. For these reasons, two parameters 
were explored in this experiment: the grating period   measured in pixels ( 20 m  pitch) and 

the modulation depth m  given in grayscale value. The purpose of this measurement was to 

experimentally determine the optimal blazing conditions. Nine sets of data were recorded; one 
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for each value of the grating period  3,4,6,7,8,10,13,15,20  . For each data set, the first 

order diffraction efficiency was measured as a function of modulation depth. For all data sets, 
each having a different grating constant, the maximum efficiency was found to correspond to 
a modulation depth having a grayscale value of roughly 105, which from the calibration data 

is a phase modulation of ~ 2  radians. The peak in the diffraction efficiency curves at this 

value of the phase is in agreement with that expected from diffraction theory when using 
blazed grating [18,19]. The diffraction efficiency is expected to increase with increasing 
number of steps [18]. This increase is experimentally observed; however, the data in the inset 
shows that in the first diffraction order, the efficiency was found to be optimal for a grating 

period of 8 pixels or 160 m   and then decreased. Based on the results shown in Fig. 2 all 

gratings used in this work were designed to have a grating period of 160 m  , which 

corresponded to a diffraction angle of 4mrad    for 633 nm, and a phase modulation depth 

of 2  or less. 

3. Equivalence between Holographic and Mechanical Knife-Edge Methods 

In this work, we employ a technique that uses a phase hologram encoded with phase and 
amplitude information to knife edge eigenmodes of the paraxial wave equation. The 
commonly-known knife-edge measurements use hard apertures and are amplitude modulators. 
It will be shown that by using off-axis holography from a phase-only modulator, the first 
order diffracted beam from a knife-edge hologram is proportional to an amplitude knife-edge. 

Immediately preceding a mechanical knife edge or holographic grating, the electric field is 

assumed to have a constant phase iCe  and an arbitrary amplitude profile ( )x , i.e., Gaussian. 

For the mechanical knife edge, the radiation is modified such that only the spatial amplitude 
has changed and immediately following the knife-edge the electric field is 

mech ( ) ( )E H x x   , where ( )H x   is the Heaviside function, and   is the position of 

the knife-edge. For the holographic knife-edge, as shown in Fig. 3(a), the electric field 
immediately following the grating is phase modulated only, but due to the choice in phase 
modulation the electric field amplitude in different diffraction orders can be modified locally. 
In this work, blazed gratings are used to control local diffraction efficiencies; however, to 
keep the present analysis tractable sinusoidal gratings are used [18]. The field directly 
following the grating can be written as the sum of a constant phase (left half of grating in Fig. 
3(a)) and a sinusoidal phase modulation (right half of grating in Fig. 1(b)), 

 holo ( ) ( ) ( ).
2

iqKx

q

q

m
E H x H x J e x  





  
     

  
  (1) 

Here the Jacobi-Anger expansion has been used in the second term to expand the 

sinusoidal phase grating exp[ ( / 2)sin( )]i m Kx  in terms of plane waves with coefficients given 

by Bessel functions of the first kind ( )qJ x . The modulation depth of the sinusoidal phase 

grating is giving by m  and 2 /K    is the grating constant having a spatial period of  . 

The first term in Eq. (1) is the electric field amplitude ( )x  that has been ―cut‖ by the 

holographic knife-edge function ( )H x  . This first term and the 0q   term direct light into 

the zero order. All terms in the sum with 0q   are responsible for redirecting radiation into 

higher diffraction orders. This can be seen from the argument of the exponential qK . If the 

diffraction orders are allowed to separate, then to a good approximation the electric field in 
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Fig. 3. (a) Illustration of a hologram used to create a holographic knife-edge. The solid black 
color on the left side of hologram denotes a constant phase modulation and the right side of the 
hologram is that of a blazed grating. (b) Measured power as a function of knife-edge position. 
The black crosses represent the measured power from a mechanical knife-edge position at the 
location of the SLM, and the red circles are that obtained from the holographic knife-edge. 
Both mechanical and holographic knife-edge measurements are in good agreement. The insets 
are fits of the data to theoretical curves. 

the first diffraction order can be taken as  holo 1( ) / 2 ( )iKxE H x J m e x   . Because this 

separation is possible and because the exact intensity profile is unimportant since it is 
integrated over by a power meter, it is not necessary to propagate this field using the 
Huygens-Fresnel-Kirchhoff integral. As can be seen, this field consists of the field from the 

mechanical knife edge 
mech ( ) ( )E H x x   , therefore we can combined both equations and 

take the modulus squared to determine the intensity going into the first diffraction order 

 2

holo 1 mech( ; ) / 2 ( ; )I x J m I x  . Since  1 / 2J m  is a constant, this last result states that the 

intensity of the holographic knife-edge is proportional to that of the mechanical knife-edge. 

The power is then found by integrating over all space  2

holo 1 mech( ) / 2 ( )P J m P  . As a note, 

the proportionality factor will be different for different types of gratings such as a blazed 
grating. The zero and higher orders also contain knife-edge information, but these orders 
contain residual angular dispersion and for this reason may not be the best choice to measure 
the power. Additionally, the corrected first order can be imaged with a CCD camera for 
further analysis. 

To experimentally investigate the equivalence between the holographic knife-edge and the 
more traditional mechanical knife-edge, the fundamental Gaussian laser beam from a He-Ne 
laser was used for comparison of the two methods. Figure 3 shows the results of both 
measurements. The mechanical knife-edge was performed at the position of the SLM. The 
holographic knife-edge was performed using a grating similar to that shown in Fig. 3(a) with 

160 m    and 2  . The discontinuity at x  was scanned, and the knife-edge data was 

recorded by a photodiode. The waist of the Gaussian beam was found to be roughly ~2 mm, 

which was obtained by fitting the data with 0erfc( 2 / ) / 2P P x w . This is in agreement with 

the size of the output of the He-Ne laser (~0.5 mm) after passing through a beam expander, 
which had a magnification of four times (~2 mm). More precisely these values were found to 
be 1.87 mm and 1.72 mm for the holographic and mechanical knife edge measurements 
respectively, inset in Fig. 3(b). The two sets of data are in good agreement, demonstrating that 
the holographic knife-edge can be effectively used to characterize laser beams. To further 
demonstrate the utility of this method, a number of different optical modes were created and 
analyzed using this knife-edge method. To the best of our knowledge, knife-edge equations 
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for the Hermite and Laguerre Gaussian modes have not been shown in the literature. The 
derivation of these equations is the topic of the subsequent sections. There exists another 
family of solutions to the paraxial wave equation known as the Ince-Gaussian modes. These 
solutions are mathematically somewhat more difficult to deal with than the HG and LG 
modes and for this reason will not be considered here. However, it is noted that the IG modes 
are an excellent example where a ―soft aperture‖ is easier to make than a ―hard aperture‖. This 
is because the natural choice for knife-edging these beams consists of confocal ellipses and 
hyperbolas. 

4. Experimental Setup 

Figure 4 shows an illustration of the experimental setup used to generate and analyze the 
paraxial beams used in this work. Since only a single SLM was used in this experiment, the 
SLM’s display was divided into halves, each half having a different hologram: the first 
hologram was encoded with phase-amplitude information to produce a desired optical beam, 
and the second was encoded with the holographic knife-edge. An example hologram is shown 
in the inset of Fig. 4. 

 

Fig. 4. Experimental setup. Laser radiation from either a He-Ne or Ti:sapphire laser enters the 
setup from the right. DL = 50 cm diverging lens, CL = 200 cm converging lens, SLM = spatial 

light modulator, FM = folding mirror placed a distance of 100f   cm away from the SLM, 

PD = photodiode power meter head, PM = power meter. The upper left inset is an example-

hologram to create a 
2,2

o
LG  beam followed by an angular knife-edge. 

This setup is similar in design to the folded-2f setup used in [15]. Laser light from two 
different sources were used in this work. Monochromatic radiation was from a He-Ne laser 
(Melles Griot) having a maximum output power of 2.5 mW, a wavelength of 633 nm and a 

1/2e  beam waist of 0.5 mm. Broadband radiation was produced from a KMLabs femtosecond 

oscillator having a repetition rate of ~80 MHz, ~50 nm of bandwidth with a center wavelength 
of 800 nm and an output power of ~400 mW. This radiation was magnified by a telescoping 
beam expander consisting of a 50 mm diverging lens (DL) and a 200 mm converging lens 
(CL) to give a magnification of 4M   and resulting in a final beam size of ~2 mm. This 
beam waist was verified by mechanical and holographic knife-edge measurements. The 
expanded beam was shone onto a spatial light modulator (Hamamatsu LCOS-SLM X10468). 
The SLM was a parallel aligned liquid crystal on silicon (LCOS) spatial light modulator 
having a resolution of 800x600 pixels (16 mm x 12 mm), and a maximum reflectivity of 
>95% for radiation between 750 nm and 850 nm. The SLM was capable of modulating the 
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local phase within the beam by over 2  radian for radiation within the specified wavelength 

range. Grayscale computer generated holograms CGHs were displayed on the SLM’s LCD 
via a digital visual interface DVI connection. Phase modulated beams from the SLM in the 
first diffraction order were reflected back onto the SLM where they were analyzed by the 
second half of the hologram. Power measurements were obtained using a photodiode power 
meter head (Orphir PD300-UV) having a spectral response of 200 nm to 1100 nm. 

 

Fig. 5. Intensity profiles of a 
2,2

o
LG  beam being azimuthally knife-edged. (a) This sequence of 

frames shows the holograms used to perform an angular knife-edge measurement with an 
angular step size of 90 degrees. (b) CCD images of radiation from a He-Ne source after passing 
through the corresponding grating in sequence (a). Each frame shows both the zero and first 
diffraction orders. As the area of constant phase (denoted by the blackened areas in (a)) 
increases, the corresponding local radiation in the first diffraction order is directed into the zero 
order until the radiation is gone. 

The knife-edge data, shown in this work, is the result of integrating the spatial intensity 
profile by a power meter. To qualitatively illustrate the performance of the holographic knife-

edge, images of the zero and first orders for an odd 2,2LGo
 beam produced with He-Ne 

wavelengths were recorded with a CCD camera. In Fig. 5, the knife-edge measurement was 
performed in an azimuthal direction. For illustration purposes, the angular step size was taken 
to be 90 degrees. The upper sequence Fig. 5(a) is a representation of holograms with angular 
knife-edge angles of 0, 90, 180, 270 and 360 degrees. This grating was blazed according to 
optimal conditions shown in Fig. 2. In the lower sequence, the images were taken with a CCD 
camera and show the intensity profiles in the zero and first orders. In the first frame, the 
grating is that of a regular blazed grating showing only a fraction of the power in the zero 
order compared to that in the first order. When a section of the holographic grating is set to a 
constant phase, this part of the beam will be directed into the zero order. It can be seen that 
the radiation in the first diffraction order, corresponding to this region, has been removed and 
appears in that region of the zero order. In the remaining frames of the sequence, the 
azimuthal knife-edge is increased in steps of 90 degrees, and with each step a portion of the 
optical mode is redirected into the zero order until the beam in the first diffraction order 
vanishes, and the grating becomes that of a constant phase plate. 

5. Knife-Edge Equations for the Hermite-Gaussian Beams 

In contrast to theoretically obtained knife-edge curves, experimental measurements yield data 
that is not always monotonically increasing or decreasing. Due to noise such as laser 
fluctuations, differentiation of experimental data may lead to noisy and/or unphysical results. 
For this reason, it is advantageous to fit experimentally obtained data with theoretical curves 
in which one can extract quantitative beam parameters needed to characterize the beam. This 
is commonly practiced by experimentalists when performing knife-edge measurements for 
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Gaussian beams [20]. For more complex beams such as that shown in Fig. 5, one can readily 
determine the relative power and spatial extent within each modal lobe by observing the 
plateau regions of a knife-edge measurement of the beam. 

The Hermite-Gaussian modes are eigensolutions of the paraxial wave equation in 
Cartesian coordinates. Because of their rectangular geometry, a straight-edge presents a 
natural choice for characterizing such beams. Theoretical knife-edge curves for the Hermite-
Gaussian modes have been presented in the literature [21]. The authors in this work, however, 
stated that they were unable to obtain a general analytical form for the knife-edge equations 
and therefore presented numerical solutions. Using numerical solutions complicates fitting 
routines when obtaining beam parameters from experimental data. For this reason, we present 
the derivation of these analytical solutions. The electric field amplitude of the Hermite-
Gaussian modes is, 

 
 

2

G2 2

,

1
2( / )0

HG . 0

2 2
H H .

( ) ( )n m

kr
i n m kz
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n m n m
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E N E e e

w w z w z
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 
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   
       

   

 (2) 

Here 
0w , ( )w z  and 2

0 0 /z w   are the beam waist and size and Rayleigh range 

respectively; 
G 0( ) arctan( / )z z z   is the Gouy phase, 2

0( ) /R z z z z   is the radius of 

curvature, and Hn
 are the Hermite Polynomials in which n  and m  are mode numbers. The 

normalization factor 
, 1/ (2 ! !)n m

n mN n m  is chosen such that the integral of 

0,0 0,0

2

HG HGI E  over all space leads to 2

0 0 0 / 2P I w . The measured position-dependent 

power is found from, 

 
,HG HG( ) ( , , ) .

n n mx
P x I x y z dx dy

 


        (3) 

A similar expression can be written for a knife-edge measurement performed in the y  

direction; however, the functional form of the solution is the same as that found for the x  

direction. To find the power as a function of the knife-edge position, it is advantageous to 

make the following substitutions 2 /x w   and 2 /y w   to Eq. (2) prior to integration, 

    
2 22 2 2 2 2 2

HG . 0 0 . 0 0

1 1
( ) H H ( ).

2 2n n m m n n m
x
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 

 


    (4) 

Here I  is the integral over the y  direction, and its solution is well-known from the 

normalization of Hm
 to be !2mI m  . Because the Hermite polynomials are indexed by a 

single mode number and because the position-dependent power depends on the integral I , 

the knife-edge measurement over a single coordinate direction depends only on the mode 

number in that direction. To solve the I  integral, we use Rodrigues formula 

2 2

( ) ( 1) ( ) /n n

nH e d e d     for the Hermite Polynomials, 
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Integrating by parts one time and using the Appell sequence 
12n nH nH 

  , where 

1,2,3,n  , Eq. (5) becomes, 
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1 1

11 1
1 H 2 H .

n n
n

n nn nx

d d
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 
    

 
  (6) 

Rodrigues formula can be used once again to remove the derivative in the first term, 
showing how the first term in a sequence of terms is found, 
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Continuing in this fashion n  times, the position-dependent power can be obtained. Upon 

restoring the contribution from the y-integral, the measured power from the knife-edge 
experiment reduces to the finite sum, 
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HG 0 1

1

1 1 2
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Here ( ) 2 /x x w  , and the last term is the complimentary error function 

erfc( ) 1 erf ( )   . The total power 
0P  is that from the integration over all space. From Eq. 

(8), it can be seen that the position-dependent power is independent of the mode number 

governing the y -dependent part of the beam profile. When 0n  , the term in Eq. (8) 

containing the sum vanishes, and Eq. (8) reduces to the well-known knife-edge formula for a 

Gaussian beam  HG 0( ) erfc / 2
n

P x P  . 

In Figs. 6(a-b), knife-edge measurements of higher-order Hermite-Gaussian beam are 
shown along with fit-curves based on Eq. (8). The squares (circles) are from knife-edge 

measurements in the ( )x y  direction. In the data, some curves can be seen to have plateaus. 

These plateaus correspond to nodes of the beam, and are equal in number to the mode 

numbers. In the x  knife-edge, the number of plateaus corresponds to mode number n  in Eq. 

(2), and in the y  direction to mode number m . The ratio of the powers between the plateaus 

gives an indication of the symmetry of the modal structure. The red curves were obtained by 
fitting to the data using Eq. (8). In general good agreement is found between experiment and 

theory. Since the beam size ( )w z  is independent of the mode numbers, the 2,2HG  mode has 

the same beam size as that of the 0,0HG  mode. The beam size in the x  and y  directions was 

found to ~52 pixels or ~1 mm. 

 
Fig. 6. Cartesian knife-edge measurements of the Hermite-Gaussian modes. The modality of 
each mode is given as the label of the panel. The black opened squares are data taken from 
knife-edge measurements in the x direction and the black opened circles are that in the y 
direction. The number of plateaus is equal to the mode number. The red curves were obtained 
by fitting the data with theoretical curves presented in the text. From this fit the beam size was 
determined. 
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6. Knife-Edge Equations for the Laguerre-Gaussian Beams 

Similar to the knife-edge measurements for the Hermite-Gaussian modes, there exist 
preferable knife-edge geometries when considering beams in cylindrical polar coordinates: 
azimuthal and radial. The radial knife edge measurement is similar to closing an iris down on 
a beam. Less familiar is the azimuthal knife edge, which mechanically would be similar to the 
opening of a folding fan. The azimuthal knife-edge is a prime example of a knife edge 
geometry which is difficult to mechanically reproduce. An example of a more difficult knife-
edge is that used for the Ince-Guassian beams. The azimuthal and radial knife-edge analogues 
for the Ince-Gaussians beams correspond to the mechanically difficult to reproduce hyperbola 
and ellipses—these geometries; however, are readily produced using computers. 

The radial-knife equation is found in a similar form to that carried out for the Hermite-
Gaussian knife-edge equations. The electric field of the Laguerre-Gaussian beam is 
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The normalization factor ,l pN  is chosen such that the integral of 
2

LG LGI E  over all 

space leads to 2

0 0 0 / 2P I w . The measured position-dependent power is found from the 

volume integration of the intensity, 
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To find the power as a function of the knife-edge position, it is advantageous to make the 

following substitution 2 22 /r w   to Eq. (9), 
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The solution to the integral ( )I r  from zero to infinity is well-known from normalization 

of the associated Laguerre polynomials to be ( )!/ !p l p . Unlike the 
.HGn m

 modes, the 

position-dependent power for the radial knife-edge of the LG  modes depends on both the 

radial p  and azimuthal  mode numbers. To solve for the integral, we use Rodrigues 

formula ( ) ( / !) ( ) /l l p p l p

pL e p d e d        for one of the Laguerre Polynomials, 
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Integrating by parts one time and using the differential relation 1

1

l l

p pL L


   , 
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Rodrigues formula can be used once again to remove the derivative in the first term, 
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Continuing in this fashion p  times gives the position-dependent power in terms of a finite 

sum, 
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Here 2 22 /r w   and the last term is the incomplete gamma function. From Eq. (15), it 

can be shown that when , 0p  , Eq. (15) returns the radial knife-edge formula for a 

Gaussian beam  2 2

LG 0( ) 1 exp( 2 / )P r P r w   . In contrast to the knife-edge curves found for 

the Hermite-Gaussian beams, the radial knife-edge curves of the LG  beams depend on both 

the radial and azimuthal mode numbers. 

 

Fig. 7. Radial knife-edge measurements for an assortment of helical Laguerre-Gaussian beams. 
The number of plateaus is equal to the radial mode number p. The waist of the beams can be 
determined by fitting the data to the theoretical equations given in the text. The fits are shown 
by the solid red curves. Unlike the HG beams, the radial knife-edge measurements depend on 
both radial and azimuthal mode numbers p and l. The dependence of the curve on the 
azimuthal mode number can be seen by the size of the initial plateau increasing from the 
leftmost column to the rightmost column 

Figure 7 shows radial knife-edge measurements of nine LG p  beams. Their modalities are 

denoted in the figures. Going from left to right in each column, it can be seen that the initial 
plateau (corresponding to the intensity profile near the vortex core) becomes increasingly 
extended with increasing angular mode number . This is expected since the peak position of 

the doughnut beam increases with angular mode number according to / 2r w . 

Comparatively, the azimuthal knife-edge for the LG  beams requires little calculational 

effort. In addition to the well-known helical LG  beams, there also exist the even and odd 

solutions of the paraxial wave equation denoted by ,LGe

p  and ,LGo

p  respectively. Helical 

LG  beams do not show parity in the azimuthal coordinate as do the even and odd solutions 

[10]. Because of this, all knife-edge curves in the azimuthal direction for the helical LG 
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beams will be identical and equal to  0LG
( ) 1 / 2

p

P P     for all mode numbers p  and . 

For the even and odd LG modes, which are related by a rotation of 90 degrees, the knife-edge 
curves are found from the integrals to be, 
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where ( )   stands for the even (odd) LG  mode. Since ,LGo

p  contains sin( )  Eq. (16) 

does not hold for the odd solutions when 0 . However, the even solutions contain cos( )  

so when 0  Eq. (16) reduces to  LG 0( ) 1 / 2P P    . Figure 8 shows the results for the 

azimuthal knife edge. The odd LG beams have been shown because they are related to the 

even LG beams by a rotation of 90 degrees. Unlike the radial knife-edge equation for the LG  

beams, the azimuthal knife-edge equation depends only on the azimuthal mode number  and 
by itself cannot be used to obtain information about the radial structure of the beam such as 
the waist. However, this measurement can be used as an indication of the azimuthal purity of 
the beam. 

 

Fig. 8. Angular knife-edge measurements for an assortment of even LG beams having 
modalities as indicated. The number of plateaus is equal to twice the angular mode number 2l. 
The waist of the beam cannot be determined from an angular knife-edge measurement, but this 
measurement can give an indication of the quality of the modal lobes. 

7. Tomographic Reconstruction 

We conclude this work with experimental results on the tomographic reconstruction of 

femtosecond 
1

1LG p



  optical modes. Even though we have chosen a known optical beam, it is 

important to note that this reconstruction can be applied to optical beams having an 
arbitrarily-shaped intensity profile. There exist techniques to tomographically reconstruct 
optical beam using knife-edge methods [22,23]. We reconstruct beams by using two 
orthogonal knife-edge measurements, i.e., one along the x  direction and the other along the 

y  direction were taken by stepping the first knife-edge by a single step, completely knife-

edging with the second knife-edge and then stepping the first knife another step and so on 
until the process is completed. For convenience, we have chosen Cartesian knife-edging, but 
in principle other geometries are possible i.e., the radial and azimuthal knife-edge 
measurements of polar coordinates. In general, the measured power from a double-knife-edge 

procedure has the form of Eq. (3) with integration limits ( , ]x  and ( , ]y , and arbitrary 

intensity profile ( , )I x y . To reconstruct the intensity profile from the measured data all that is 

needed is the double derivative of the power 2 / ( , )P x y I x y    . 

Figures 9(a,c) shows raw double-knife-edge data for a broadband 
1

1LG p



  beam 

compensated and uncompensated for angular dispersion, which was achieved by using a 
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concave mirror 100f   cm  and a flat mirror as the folding mirror in the folded-2f setup. The 

resolution in the x  and y  directions is ~ 30 m and ~ 40 m , respectively. Figures 9(b,d) 

are the tomographically reconstructed images according to our method. As mentioned 
previously, taking the derivative of experimental data can lead to noise in the resulting data. 

 

Fig. 9. Tomographic reconstruction of a femtosecond 
1

1
LG

p




 beam in a folded-2f setup. All 

images are 200-by-200 pixels and have the same vertical and horizontal scaling. The 
dimension of the images is given by the scale in panel (a). (a, c) Raw double-knife-edge data 
recorded by stepping a knife-edge in one direction (i.e., x) by a single step, completing a full 
knife-edge in the other direction (i.e., y), and repeating this process until finished. The raw data 
shown in panel (a) is that obtained by not correcting for angular dispersion in the folded-2f 
setup, while that in panel (c) has been corrected. Panels (b) and (d) were obtained by taking the 
partial derivatives (see text) of the measured double-knife-edge power. 

This was encountered when we reconstructed the beam images, and as a result, the raw 
data was sent through a mean filter before derivatives of the data were taken. As expected, the 
uncompensated beam exhibits a ―blurring‖ in the dispersion plane similar to that shown in 
[10], while the compensated beam appears more ―crisp‖ [13]. 

8. Conclusions 

In summary we have demonstrated a beam analysis method based on a holographic knife-
edge. Experimental results of the measured power from both holographic and mechanical 
knife-edge methods showed good agreement with each other. By using the same method to 
that used to holographically knife-edge (phase-amplitude encoding), high fidelity HG and LG 
modes were produced. To analyze these modes, we derived theoretical knife-edge equations 
to fit to the measured data. From the derived equations we were able to determine beam 
characteristics such as the waist and the distribution of intensities between the modal lobes. 
All measured data showed good agreement with the theoretically predicted curves. In 
principle, the method outlined here can be used to create virtually any desired shape for the 
characterization of optical beams. Finally, we used this method to tomographically 
reconstruct, in situ, a broadband optical beam in a folded-2f setup. 

Acknowledgments 

This work was partially supported by the Robert A. Welch Foundation (grant No. A1546), the 
National Science Foundation (NSF) (grants Nos. 0722800 and 0555568), the Qatar National 
Research Fund (grant NPRP30-6-7-35), and the United States Air Force Office of Scientific 
Research (USAFOSR) (grant FA9550-07-1-0069). 

#146202 - $15.00 USD Received 19 Apr 2011; revised 2 Jul 2011; accepted 2 Jul 2011; published 12 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19, No. 15 / OPTICS EXPRESS  14334




