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Comparative tests of isospin-symmetry-breaking corrections to superallowed 0+ → 0+

nuclear β decay
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We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed
0+ → 0+ nuclear β decay. The test is based on the corrected experimental F t values being required to satisfy
conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates
quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions,
provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction
terms that are produced in future.
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I. INTRODUCTION

Superallowed 0+ → 0+ β decay between T = 1 nuclear
analog states has been a subject of continuous and often
intense study for six decades. The ft values for such transitions
are nearly independent of nuclear-structure ambiguities and
depend uniquely on the vector part of the weak interaction.
Their measurement gives us access to clean tests of some of
the fundamental precepts of weak-interaction theory, and, over
the years, this strong motivation has led to very high precision
being achieved both in the experiments and in the theory used
to interpret them.

The most recent survey of world data [1] finds ten of these
superallowed transitions with measured ft values known to
0.1% precision or better and three more that have a precision
between 0.1% and 0.3%. An analysis of the ft values [1]
demonstrated that the vector coupling constant GV has the
same value for all 13 transitions to within ±0.013%, thus
confirming a key part of the conserved vector current (CVC)
hypothesis, and it set an upper limit on a possible scalar
current at 0.2% of the vector current. With both these outcomes
established, the results could then be used to extract a value for
Vud, the up-down element of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, with which the top-row unitarity test of the
CKM matrix yielded the result [2] 0.9999(6). This is in
remarkable agreement with the standard model, and the tight
uncertainty significantly limits the scope for any new physics
beyond the model. Further tightening of the uncertainty would
increase the impact of this result even more.

Although the role played by nuclear structure is relatively
small, the precision currently reached by experiment is such
that the theoretical uncertainties introduced by correction
terms required in the analysis of the ft-value data now
predominate over the experimental uncertainties. Two of these
correction terms depend on nuclear structure, and together they
are the second largest contributor to the overall uncertainty
in Vud. The largest contributor is the nucleus-independent
component of the radiative correction but, at present, there
seems little opportunity for further improvement there.
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Thus, it is the nuclear-structure-dependent terms that have
attracted the greatest attention, particularly recently. The most
widely used of these latter correction terms are those calculated
by the present authors, which have been tabulated for all the
superallowed transitions of interest in Ref. [3]. However, there
are a growing number of alternative choices [4–9] available
for one of the two correction terms—the one that accounts
for isospin symmetry breaking—including a set we offer
ourselves [1]. There has also been a claim, albeit unsupported
by any detailed computations, that our calculations neglect
a radial excitation term, which is purported to be important
[10]. To counterbalance that, however, there are two recent
papers that confirm our result: one [11] does so based on
a semiempirical analysis of the data, while the other [12]
quotes the average results from a Skyrme-density-functional-
theory calculation in which simultaneous isospin and angular-
momentum projections have been incorporated.

Clearly, it would be valuable if the various sets of cal-
culated isospin-symmetry-breaking correction terms could be
tested against the data and their relative merits quantitatively
evaluated, since this must surely be a first step in any attempt
to reduce the uncertainty attributed to these corrections. In this
paper, we address ourselves to devising and then applying such
a test.

We begin by describing how information on the funda-
mental weak-interaction parameters is extracted from the
experimental ft-value data. We will overview the role played
by all the theoretical corrections but will focus, in particular, on
the isospin-symmetry-breaking term. This will lead naturally
to the test we propose as a means of evaluating the efficacy of
any calculated set of these terms available now or in the future.
We will then outline the methods currently used to calculate
the isospin-symmetry-breaking term and proceed to apply our
test to each of them. Finally, we will evaluate the results of the
test and present our conclusions.

II. THE ANALYSIS OF SUPERALLOWED
BETA TRANSITIONS

Superallowed Fermi beta decay between 0+ states depends
uniquely on the vector part of the hadronic weak interaction.
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According to CVC, when the decay occurs between isospin
T = 1 analog states, the measured ft values should be the same
irrespective of the nucleus, viz.,

ft = K

G2
V |MF |2 = const, (1)

where K/(h̄c)6= 2π3h̄ ln 2/(mec
2)5 = (8120.2787 ± 0.0011)×

10−10 GeV−4 s, GV is the vector coupling constant for
semileptonic weak interactions, and MF is the Fermi matrix
element. The CVC hypothesis asserts that the vector coupling
constant GV is a true constant and not renormalized to another
value in the nuclear medium.

In practice, Eq. (1) has to be amended slightly. First,
there are radiative corrections because, for example, the
emitted electron may emit a bremsstrahlung photon that goes
undetected in the experiment. Second, isospin is not an exact
symmetry in nuclei, so the nuclear matrix element MF is not
the same for all superallowed transitions but is slightly reduced
from its ideal value by a different amount in each case. This
leads us to write

|MF |2 = |M0|2(1 − δC), (2)

where M0 is the exact-symmetry value, which for T = 1
states is M0 = √

2, and δC is the isospin-symmetry-breaking
correction, which takes on a different (small) value for each
transition. Thus, we define a “corrected” F t value as

F t ≡ f t(1 + δ′
R) (1 + δNS − δC) = K

2G2
V

(
1 + �V

R

) , (3)

where, in addition to the terms already defined, �V
R is the

transition-independent part of the radiative correction and
the terms δ′

R and δNS comprise the transition-dependent part
of the radiative correction, the former being a function only of
the electron’s energy and the Z of the daughter nucleus, while
the latter, like δC , depends in its evaluation on the details of
nuclear structure.

From Eq. (3), it can be seen that a single measured transition
establishes a value for F t and, hence, GV . This result could,
in principle, then be used to determine Vud via the relationship
Vud = GV /GF , where GF is the well-known weak-interaction
constant for muon decay [13]. However, a value for Vud derived
from a single superallowed transition would be reliant upon
a single pair of structure-dependent correction terms, δNS and
δC , without there being any independent verification of those
terms’ validity; so, in practice, as many transitions as possible
are measured and their resultant F t values compared. If they
satisfy CVC by being statistically consistent with each another,
then one is justified in taking an average value of F t , from
which GV and Vud can then be derived.

If they are not consistent with each other, then one can
proceed no further since inconsistency must signal a failure
either of the calculated structure-dependent corrections or
else of the CVC hypothesis itself. In either case, an average
value of F t has no defined significance and certainly cannot
be used to obtain a value for Vud.

Here we find the basis for a test of the calculated structure-
dependent correction terms: How well do they do in producing
a consistent set of F t values from the experimental ft values?

The latter show very pronounced differences from one transi-
tion to another, and the extent to which those differences are
successfully removed by a given set of calculated correction
terms would be a sensitive measure of the efficacy of the
calculations involved. Naturally, such a test is only as good
as the CVC hypothesis. However, we believe that most would
agree that a persistent scatter in the derived F t values is more
likely to be due to a deficiency in the calculated corrections
rather than to a failure of CVC.

III. THE TEST

Our test is based upon the premise that CVC is valid at least
to ±0.03%, which is the level of precision currently attained by
the best ft-value measurements. Under that condition, a valid
set of structure-dependent correction terms should produce a
statistically consistent set of F t values, the average of which
we can write as F t . It then follows from Eq. (3) that, for each
individual transition in the set, we can write

δC − δNS = 1 − F t

f t(1 + δ′
R)

. (4)

For any set of corrections to be acceptable, the calculated value
of δC − δNS for each superallowed transition must satisfy this
equation, where ft is the measured result for that transition
and F t has the same value for all of them. Thus, to test a
set of correction terms for n superallowed transitions, one can
treat F t as a single adjustable parameter and use it to bring
the n results from the right side of Eq. (4), which are based
predominantly on experiment, into the best possible agreement
with the corresponding n calculated values for δC − δNS. The
normalized χ2, minimized by this process, then provides a
figure of merit for that set of calculations.

As it happens, there is only one set of calculations available
for δNS [3,14] but many for the isospin-symmetry-breaking
term δC . It therefore becomes more useful to rearrange Eq. (4)
to read

δC = 1 + δNS − F t

f t(1 + δ′
R)

. (5)

The same least-squares minimization process can, of course,
be used in the application of this equation.

IV. AVAILABLE CALCULATIONS FOR δC

There have been a number of methods used over the
years to calculate the isospin-symmetry-breaking correction
to superallowed β decay. We describe some of them here, in
chronological order.

A. Damgaard model

The first model was proposed in 1969 by Damgaard [4]
and was improved eight years later by Towner et al. [15]. The
idea is that the proton involved in beta decay has a different
radial wave function than the neutron into which it transforms
because it is influenced by the Coulomb interaction with all
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the other protons in the nucleus. If the other protons present
a uniform charge distribution of radius R, then the Coulomb
interaction for a proton at r < R is

Vc(r) = −Ze2

R3

A∑
i=1

(
1

2
r2
i − 3

2
R2

)[
1

2
− tz(i)

]
δ(r − ri),

(6)

where tz(i) = − 1
2 if nucleon i is a proton and + 1

2 if it is a
neutron.

Using an oscillator model as a basis, Damgaard expanded
the proton radial function in terms of a complete set of neutron
oscillator functions. The set comprised states of the same
orbital angular momentum � but differing numbers of radial
nodes n. Most of the mixing turned out to be with the state
with one more radial node, so

u
proton
� (r) ≈ (1 − α2)1/2un,�(r) + αun+1,�(r.) (7)

The mixing amplitude comes from first-order perturbation
theory,

α = 〈un+1,�|Vc|un,�〉(�E)−1,
(8)

�E = En+1,� − En,� = 2h̄ω,

and the Fermi matrix element between T = 1 states is given
by

|MF |2 = 2(1 − α2). (9)

Upon evaluating the Coulomb matrix element using oscil-
lator functions with Vc taken from Eq. (6), Damgaard obtained

δC = α2 = Z2

(h̄ω)4R6

e4h̄4

16m2
(n + 1)

(
n + � + 3

2

)
. (10)

If we adopt the relationships h̄ω = 41A−1/3 MeV and R =
1.2A1/3 fm, this expression becomes

δC = 0.2645Z2A−2/3(n + 1)
(
n + � + 3

2

)
, (11)

which, for the light nuclei we are interested in, exhibits the
general behavior δC ∝ A4/3 with some shell structure super-
imposed through the choice of oscillator quantum numbers n

and �. In particular, a proton radial function with one radial
node gets a factor of 2 enhancement in its δC value over one
that has no radial nodes simply from the factor (n + 1) in
Eq. (11).

We have used Eq. (11) to derive δC values for the 13 best
known superallowed transitions. These transitions are listed
by parent nucleus in the first column of Table I, and the δC

results for this model appear in the fifth column. We will use
these results in our comparative tests of all models.

B. Shell model with Saxon-Woods radial wave
functions (SM-SW)

The shell model with Saxon-Woods radial wave functions
(SM-SW) approach was introduced by Towner et al. in 1977
[15] and improved upon several times since then [3,16]. In

their approach, the Fermi matrix element is defined by

MF =
∑

α

〈f |a†
αbα|i〉 =

∑
α,π

〈f |a†
α|π〉〈π |bα|i〉, (12)

where a†
α creates a neutron and bα annihilates a proton in state

α. Here |i〉 and |f 〉 are the exact A-body state vectors for the
full Hamiltonian, and |π〉 represents a complete set of (A − 1)-
body parent states. If this Hamiltonian commutes with the
isospin operators, then |i〉 and |f 〉 are exact isospin analogues
of each other, and the symmetry-limit matrix element is

M0 =
∑
α,π

|〈f |a†
α|π〉|2, (13)

which for T = 1 states corresponds to M0 = √
2. However,

with isospin not being an exact symmetry, |i〉 and |f 〉 are
not exact isospin analogues; nevertheless, the resulting matrix
element MF is not very different from M0, the relationship
between them being given by Eq. (2): viz., M2

F = M2
0 (1 − δC),

where δC is small.
Ideally, to obtain δC one would compute Eq. (12) using

the shell model, and introduce Coulomb and other charge-
dependent terms into the shell-model Hamiltonian. However,
the shell-model space would have to be huge to include all
the potential states with which the Coulomb interaction might
potentially connect. Since this is not a practical proposition,
a model approach was developed in which δC is divided into
two parts:

δC = δC1 + δC2. (14)

For δC1, one computes∑
α,π

〈f |a†
α|π〉〈π |bα|ı〉 = M0(1 − δC1)1/2, (15)

where |ı〉 and |f 〉 are not the exact eigenstates that appear in
Eq. (12) but are the shell-model eigenstates of an effective
Hamiltonian (including charge-dependent terms) evaluated in
a tractable shell-model space. However, this space is not large
enough to allow for mixing with functions having a different
number of radial nodes, so the term δC2 is introduced to
compensate for that limitation. This second term is derived
from ∑

α,π

|〈f |a†
α|π〉|2rπ

α = M0(1 − δC2)1/2, (16)

where rπ
α is a radial overlap integral of proton and neutron

radial functions. If the proton and neutron radial functions were
identical, then it would follow that rπ

α = 1 and δC2 = 0. But
since they are not identical, a finite correction δC2 is obtained.
The idea is that nodal mixing mainly impacts on the radial
functions, as demonstrated by the Damgaard model, and so its
impact is best modeled by Eq. (16).

The wave function for the decaying A-body state |ı〉
is expanded in a set of parent states of (A − 1) nucleons
|π〉 plus a proton, while that of the daughter A-body state
|f 〉 is expanded in terms of the same set of parent states
plus a neutron. The expansion coefficients are obtained
from a shell-model calculation. Isospin-symmetry breaking
is introduced by allowing the radial function for the proton
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TABLE I. Input data for the tests of the isospin-symmetry-breaking corrections δC obtained from the various models described in Sec. IV.
The experimental ft values come from Table IX in the most recent survey of world data [1]; however, in order to ensure undiluted normal
statistics, we have set all the “scale factors” used in that reference equal to 1, with the consequence that the uncertainties quoted for most cases
are smaller than those listed in Ref. [1]. The calculated values of δ′

R and δNS come from Table VII of Ref. [3]. The δC values tabulated in the
last six columns were obtained as follows: The Damgaard values were derived from our Eq. (11); those labeled SM-SW came from Table VII
of Ref. [3]; the SM-HF values were obtained by adding the “adopted” δC1 numbers from Table III of Ref. [3] and the “HF” δC2 numbers from
Table XI of Ref. [1]; the RHF-RPA values were taken for the PKO1 effective interaction given in Table I of Ref. [8]; the RH-RPA numbers,
which correspond to the density-dependent DD-ME2 effective interaction, were taken from the same table and reference; the IVMR values
were calculated from our Eq. (22), which is the same as Eq. (32) in Ref. [9].

Parent Experimental δC (%)
nucleus

ft value (s) δ′
R (%) δNS (%) Damgaard SM-SW SM-HF RHF-RPA RH-RPA IVMR

Tz = −1
10C 3041.7(43) 1.679(4) −0.345(35) 0.046 0.175 0.225 0.082 0.150 0.008
14O 3042.3(11) 1.543(8) −0.245(50) 0.111 0.330 0.310 0.114 0.197 0.015
22Mg 3052.0(70) 1.466(17) −0.225(20) 0.153 0.380 0.260 0.031
34Ar 3052.7(82) 1.412(35) −0.180(15) 0.285 0.665 0.540 0.268 0.376 0.064

Tz = 0
26Al 3036.9(9) 1.478(20) 0.005(20) 0.182 0.310 0.440 0.139 0.198 0.041
34Cl 3049.4(11) 1.443(32) −0.085(15) 0.326 0.650 0.695 0.234 0.307 0.064
38K 3051.9(5) 1.440(39) −0.100(15) 0.370 0.655 0.745 0.278 0.371 0.077
42Sc 3047.6(12) 1.453(47) 0.035(20) 0.414 0.665 0.640 0.333 0.448 0.091
46V 3049.5(8) 1.445(54) −0.035(10) 0.524 0.620 0.600 0.106
50Mn 3048.4(7) 1.444(62) −0.040(10) 0.550 0.655 0.620 0.122
54Co 3050.8(10) 1.443(71) −0.035(10) 0.613 0.770 0.685 0.319 0.393 0.139
62Ga 3074.1(11) 1.459(87) −0.045(20) 1.339 1.48 1.21 0.175
74Rb 3084.9(77) 1.50(12) −0.075(30) 1.422 1.63 1.42 1.088 1.258 0.235

χ 2/nd (statistical experimental uncertainties only) 8.3 1.2 8.3 7.2 6.0 48
Confidence level (%) 0 26 0 0 0 0
χ 2/nd (uncertainties on experiment, δ′

R and δNS) 1.7 0.4 2.2 2.7 2.1 11
χ 2/nd (uncertainties on experiment, δ′

R , δNS, and δC) 0.9 0.3 1.1 1.6 1.3 4.5

in these expansions to differ from that of the neutron. In this
model, these radial functions are taken to be eigenfunctions
of a Saxon-Woods potential. The well depths of the proton
and neutron potentials are adjusted so that the asymptotic
forms of the radial function go as e−αr , where α2 = 2mS/h̄2,
with m being the nucleon mass and S being the experimental
separation energy for the proton (or neutron) in the A-body
state. Further details can be found in [3].

It is important to realize that this model is really semi-
phenomenological in its application. In addition to the match
with experimental separation energies in the calculation of δC2,
the radius of the Saxon-Woods potential in each case was set
to the value determined experimentally for the charge radius
by electron scattering [16], and the shell-model parentage
was linked to measured single-nucleon transfer reactions
[3]. The value of δC1 was also constrained by comparison
with experiment. First, for each superallowed transition the
single-particle energies of the proton orbits were shifted
relative to the neutrons, the exact amount being determined
from the spectrum of single-particle states in the closed-
shell-plus-proton nucleus versus the closed-shell-plus-neutron
nucleus. Second, the two-body Coulomb interaction among
the valence protons was adjusted in strength for each decay so
that the measured b coefficient in the isobaric multiplet mass

equation (IMME) was exactly reproduced for the multiplet
involved in that decay. Third, the charge-dependent nuclear
interaction, which had been incorporated by a ∼2% increase
in all the T = 1 proton-neutron matrix elements relative to the
neutron-neutron ones, was tuned to give agreement with the
measured c coefficient of the IMME.

The current best values for δC as calculated with this model
are listed in the fifth column of Table VI in Ref. [3] and are
reproduced here in the sixth column of Table I.

C. Shell model with Hartree-Fock radial wave
functions (SM-HF)

Beginning in 1985, Ormand and Brown [5,6] adopted the
same general procedure as the one just described, splitting
δC into two components, the first of which, δC1, incorporated
configuration mixing within a restricted shell-model space,
and the second, δC2, accounted for mixing with all other
states by evaluating the mismatch in the parent and daughter
radial wave functions. The shell-model aspects of their model
were the same as the shell model with Saxon-Woods radial
wave functions, but their radial functions were taken to be
eigenfunctions of a mean-field Hartree-Fock potential rather
than of a Saxon-Woods potential (SM-HF). As in the SM-SW
model, the strength of this mean field was readjusted so that the
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asymptotic forms of the proton and neutron radial functions
were matched to their respective separation energies.

Ormand and Brown’s [5,6] protocol was to perform two
Hartree-Fock calculations with a Skyrme interaction: one for
the decaying A-body state, whose mean field provided the
proton function, and the other for the daughter A-body state,
whose mean field provided the neutron function. However,
it was noted more recently by Hardy and Towner [1] that
there is a problem with this protocol: the Coulomb part of
the proton mean field has asymptotically the wrong form,
falling off as (Z + 1)e2/r rather than Ze2/r . They therefore
modified the protocol to just a single Skyrme-Hartree-Fock
calculation performed in the (A − 1)-body state, whose mean
field provided for both the proton and neutron radial functions.
In this procedure, the Coulomb interaction automatically has
the right asymptotic form. Further details can be found in [1].

We have obtained the δC values for this model by adding
the “adopted” δC1 numbers from Table III of Ref. [3] (the same
as we used for the SM-SW model) and the “HF” δC2 numbers
from Table XI of Ref. [1]. The results appear in column seven
of our Table I.

D. Hartree-Fock with random phase approximation
(RHF-RPA and RH-RPA)

In 1996, Sagawa et al. [7] introduced a new model, in
which a Skyrme-Hartree-Fock calculation was performed for
each even-even A-body system: the parent for the cases in
which the superallowed decay proceeds from a Tz = −1 parent
nucleus and the daughter for cases of decay from a Tz = 0
parent nucleus. The odd-odd nucleus was then treated as a
particle-hole excitation built on the even-even Hartree-Fock
state. The particle-hole calculation was carried out in the
charge-exchange random-phase approximation (RPA) in a
model space extending up to 10h̄ω excitation, with radial
functions up to five nodes. The lowest state in the RPA
spectrum was identified as the isobaric analog state, the
state actually involved in the superallowed Fermi beta decay.
Unlike the previous two methods, there was no adjustment
to reproduce exactly the energy of the analog state, but the
authors did check that their results were typically within
500 keV of the experimental value. Isospin-symmetry breaking
was introduced by the presence of a Coulomb interaction,
augmented by explicit charge-symmetry-breaking and charge-
independence-breaking interactions included in the two-body
force used in the Hartree-Fock calculation.

Since first results from this model appeared [7], significant
progress has been made in self-consistent RPA calculations
in charge-exchange channels. Skyrme zero-range interactions
have been replaced by finite-range meson-exchange potentials
involving σ , ω, ρ, and π mesons, and a relativistic rather than a
nonrelativistic treatment can be used. In 2009, Liang et al. [8]
published improved results from relativistic Hartree-Fock with
random phase approximation (RHF-RPA) calculations with
three different effective interactions as well as from relativistic
Hartree (only) (RH-RPA) calculations with density-dependent
meson-nucleon couplings and nonlocal interactions. The re-
sults were not particularly sensitive to the interaction used, so

in performing our tests, we just use one interaction for each
type of calculation: PKO1 for RHF-RPA and DD-ME2 for
RH-RPA [8]. The corresponding values for δC were taken from
Table I in Ref. [8] and are reproduced here in columns eight and
nine of Table I. Note that the authors of Ref. [8] only calculated
δC values for 8 of the 13 well-known superallowed transitions.

E. Isovector monopole resonance (IVMR)

In 2009, Auerbach [9] introduced a model in which he
assumed that isospin-symmetry breaking in superallowed β

decay is due entirely to mixing with the giant monopole state.
The isovector part of the Coulomb interaction, which

appears in Eq. (6), is defined to be the isovector monopole
operator M

(1)
0 ; thus, we have

M
(1)
0 =

∑
i

r2
i tz(i), (17)

where M
(1)
0 is a spherical tensor in isospin space of rank 1,

with its z component equal to 0. We write |M〉 to be the giant
monopole state, which is created by the application of operator
M

(1)
0 to the ground state. If the ground state has N = Z with

isospin quantum numbers T = 0 and Tz = 0, then the giant
monopole state is a unique state with quantum numbers T = 1
and Tz = 0. But if the ground state has a neutron excess,
with T = Tz = 1

2 (N − Z), then the monopole state is split
into two components, one with isospin T and the other with
isospin T + 1. In this case the ground-state wave function is
designated by |T , T 〉, and the two components of the monopole
state are designated by |MT,T 〉 and |MT +1,T 〉. Furthermore,
the isobaric analog of this ground state, |T , T −1〉, has its
giant monopole state split into three isospin components,
|MT −1,T −1〉, |MT,T −1〉, and |MT +1,T −1〉.

By assuming that the giant monopole state is the sole
source of isospin-symmetry breaking in superallowed decays,
Auerbach [9] could write the wave functions for the two states
involved in the β decay as

|�1〉 = (|T , T 〉 + ε0|MT,T 〉 + ε1|MT +1,T 〉)N−1
1 ,

|�2〉 = (|T , T − 1〉 + η−1|MT −1,T −1〉
+ η0|MT,T −1〉 + η1|MT +1,T −1〉)N−1

2 , (18)

where

N1 = (
1 + ε2

0 + ε2
1

)1/2
,

(19)
N2 = (

1 + η2
−1 + η2

0 + η2
1

)1/2
,

and amplitudes εi and ηi can be expressed via perturbation
theory in terms of Coulomb matrix elements between the
ground state and the respective components of the isovec-
tor monopole state. Based on this result, he then derived
the corresponding isospin-symmetry-breaking correction to
superallowed β decay, which he wrote to order O(ε2, η2) as

δC = η2
−1 + (ε0 − η0)2 + ε2

1 + η2
1 − 2ε1η1

(
2T + 1

T

)1/2

.

(20)

Auerbach next argued that the Coulomb matrix elements
of differing isospins are all related to each other via isospin
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Clebsch-Gordan coefficients. He thus found that the coeffi-
cients ε0, η−1, η0, and η1 could all be expressed in terms of the
one isospin-mixing amplitude ε1. In this way, the expression
for δC , Eq. (20), reduces to

δC = 8(T + 1)
V1

ξh̄ωA
ε2

1 , (21)

where ξ is related to the particle-hole interaction energy
required to place the centroid of the giant monopole resonance
at the appropriate energy and V1 is related to the strength
of the symmetry potential that sets the energy splitting
between the components of the monopole state. Auerbach
chose V1 = 100 MeV, ξ = 3, and h̄ω = 41A−1/3 MeV and
estimated ε2

1 by appealing to a number of “gross” models
discussed in Ref. [17]: a hydrodynamical model, models based
on non-energy-weighted and energy-weighted sum rules, and
a microscopic model. Each enabled him to obtain a simple
expression for δC as a function of the mass number A. As an
example, his expression in the microscopic model was

δC = 18.0 × 10−7A5/3. (22)

We calculated the values of δC for the isovector monopole
resonance model (IVMR) from this equation for the 13 best
known superallowed transitions. The results, which are listed
in column ten of Table I, were used as part of our comparative
tests of all models.

V. TEST RESULTS

We have now set the stage for applying the test described
in Sec. III. As explained there, our procedure for each of the
six models is to compare that model’s set of calculated δC

values (listed in Table I) with the set of values obtained from
Eq. (5) and, using the method of least squares with F t as
the adjustable parameter, to optimize the agreement between
them. In effect, the δC values from Eq. (5) can be thought of as
the “experimental” values: they incorporate the experimental ft
values from Ref. [1] as well as the small calculated correction
terms, δ′

R and δNS, from Ref. [3] (also listed in Table I). The
parameter F t is a normalizer that allows each model to be
tested for its success in obtaining a constant F t value (i.e., in
agreement with CVC), without regard for whether or not that
F t value ultimately satisfies CKM unitarity. The normalized
χ2 for each least-squares fit, expressed as χ2/nd , where nd

is the number of degrees of freedom, thus yields a figure of
merit for the model used, with smaller χ2/nd values indicating
better agreement.

Although we take the measured ft values from Ref. [1],
strictly speaking the ft-value uncertainties quoted in that
reference do not correspond to normal distributions. Each ft
value has three experimental inputs—energy, half-life, and
branching ratio—and each of these inputs typically includes a
number of measurements of that quantity. The survey authors
adopted the procedures used by the Particle Data Group [13]
and, for any cases in which the measurements when averaged
yielded a normalized χ2 greater than 1, they increased the
uncertainty on the average by a scale factor equal to the
square root of the normalized χ2. This conservative approach

leads to uncertainties on the ft and F t values that are larger
than would be the case for purely statistical results. For our
present purposes we have set all the scale factors in Ref. [1]
equal to 1 and obtained new uncertainties on the ft values,
which are normally distributed (at least to the extent that
the uncertainties assigned by the authors of the original
measurements were predominantly statistical). It is these
redetermined uncertainties that appear in the second column of
Table I.

Obviously, the uncertainties assigned to the theoretical
radiative corrections δ′

R , δNS, and δC (if any) are not normally
distributed statistical quantities. Therefore, in our first least-
squares test, we used only the redetermined uncertainties
for the ft values and no uncertainties at all for any of the
theoretical terms. The results for χ2/nd appear in the first
row below the main body of Table I, labeled “statistical
experimental uncertainties only.” Since this analysis uses only
normally distributed uncertainties, we can proceed to evaluate
a confidence level for each model.

We follow the Particle Data Group [13] in defining the
confidence level (or p value) as being

p =
∫ ∞

χ2
0

Pnd
(χ2) dχ2, (23)

where Pnd
(χ2) is the χ2 probability distribution function for

nd degrees of freedom and χ2
0 is the value of χ2 obtained

for a particular hypothesis: in our case, for a particular
isospin-symmetry-breaking model. With this definition, the
confidence level represents the probability that χ2 for a valid
hypothesis could exceed the value χ2

0 actually obtained for
the specific hypothesis being tested. More loosely, in our
application the confidence level quoted for a particular model
can be interpreted as the probability of that model being a
valid one, i.e., of it being consistent with CVC. We express
each confidence level as a percent in Table I.

We then present the results of a second least-squares
analysis, in which we included uncertainties on the theoretical
radiative corrections, δ′

R and δNS; of course, we retained
the redetermined uncertainties already incorporated for the
ft values. The resulting χ2/nd values appear in the next-
to-last row in Table I. These results are also illustrated in
Fig. 1.

Finally, we list the results from a third least-squares
analysis. Although two of the models, SM-SW and SM-HF,
include theoretical uncertainties on δC values in their original
publications, the other four do not, so to test them all on an
equal footing, we have not used uncertainties on any of the
model calculations in our first two analyses. We consider this
to be the fairest approach. However, we have also examined
what happens to our intercomparison if all the calculated δC

values are assigned the same uncertainties as those originally
quoted for the SM-SW calculations [3]. The values for χ2/nd

resulting from this third analysis appear in the last row of
Table I.

The most obvious outcome of these analyses is that only one
model, SM-SW, produces satisfactory agreement with CVC,
having χ2/nd = 1.2 and a confidence level of 26% in the
properly statistical analysis. All of the other five models have
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FIG. 1. Isospin-symmetry-breaking correction δC , in percent, plotted as a function of atomic number Z of the daughter nucleus. The solid
circular points with error bars are the values of δC obtained from Eq. (5), with the experimental ft values and the values of δ′

R and δNS (and their
uncertainties) all taken from Table I. In effect, we treat these as the “experimental” δC values. The X’s joined by lines represent the δC values
calculated by the various models described in the text and identified in the top left of each graph. The value of F t in Eq. (5) has been adjusted
in each case by least-squares fitting to optimize the agreement between the experimental δC values and the calculated ones. The corresponding
values of χ 2/nd are listed in the next-to-last row of Table I.

confidence levels well below 0.5%. Because the two other
analyses included nonstatistical uncertainties on the theoretical
correction terms in addition to the statistical experimental ones,
their values of χ2/nd are substantially lower, but the relative
ranking of the six models is approximately preserved: in all
cases the SM-SW model is by far the best. It is remarkable that
the model which becomes second best when the theoretical
uncertainties are included is the earliest and arguably the most
primitive one. Its success evidently stems from its treatment
of the radial mismatch between the parent and daughter states,
which accounts rather well for the sharp increase in δC between
Z = 12 and Z = 16 and between Z = 26 and Z = 30. It is
perhaps equally striking that the most recent IVMR model fails
to reproduce the trend of the data or any of its characteristic
features.

VI. CONCLUSIONS

Evidently, the shell model with Saxon-Woods radial wave
functions, SM-SW, is the only model tested that yields isospin-
symmetry-breaking corrections which, when combined with
the experimental ft values, produce F t values that agree with
the CVC hypothesis over the full range of Z values. This, of

course, does not prove that the SM-SW model is correct in
every way; however, it does demonstrate that the other models
in their present form cannot be used to extract a number for
Vud and to test CKM unitarity. As we note in Sec. II, if the F t

values are not consistent with one another, then their average
has no defined significance since either the symmetry-breaking
model is wrong or CVC itself has failed.

There is a second model, SM-HF, which has many promis-
ing features. As can be appreciated from an examination of
Fig. 1, its relatively large χ2 is due to its failure to match
the experimental δC values for the cases with Z � 30. If
we were to restrict ourselves only to the lighter cases, then
the model would agree well with CVC. This difference at
the highest Z values between the SM-SW and SM-HF model
calculations has been known for 15 years, having first been
pointed out by Ormand and Brown [6] even before the decays
of the highest-Z emitters, 62Ga and 74Rb, had yet been
precisely measured. Prompted by the results reported here,
we are currently examining whether this feature of the SM-HF
model (as described in Sec. IV C) is sensitive to the particular
Skyrme interaction used [18]. We have, by now, sampled 12
different interactions and have also added a pairing term to
the interaction, turning the calculation into a Hartree-Fock-
Bogolyubov one. However, under no circumstances have we
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been able to produce agreement with experiment over the full
range of Z values. It is important to realize that both the
SM-SW and SM-HF models use identical spectroscopic input,
so it would appear that the high-Z discrepancy is inherent to
the SM-HF model itself. However, it must be admitted that
too little spectroscopic information is known in this region to
fully characterize the required model space. Calculations with
larger model spaces and improved Hamiltonians are certainly
to be encouraged.

Fortunately, it is the successful SM-SW model that has
principally been employed to calculate the δC values used in
the most recent data survey [1]. As was argued in that survey,
the consistency of the F t values was a powerful validation of
those calculated correction terms and justified the subsequent
derivation of Vud. However, in actually deriving Vud and its
uncertainty, we incorporated the SM-HF calculations as well,
even though we knew that model had a much poorer χ2. Our
rationale was one of conservatism. We enlarged the uncertainty
assigned to the average F t value to cover both sets of δC

calculations in order to be safe by including some provision
for systematic theoretical uncertainties. Whether we continue
this practice in future is not yet decided.

For now, though, we know that there are, as yet, no
comparably successful competitive models. More important,
we also have a protocol for testing future models, which
is evidently very sensitive to the validity of the model.
Furthermore, even though it is only the relative Z-dependent
variations in δC that are being tested, it would surely require
a pathological fault indeed in the theory to allow the observed
nucleus-to-nucleus variations in δC to be reproduced in such
detail while failing to obtain the absolute values to comparable
precision.

With this perspective, it is now informative to consider
the points raised recently by Miller and Schwenk [10], who
claim that the SM-SW model is based on a formally incorrect
interpretation of the isospin ladder operator. They claim that
this “incorrect” usage must have led to incomplete results for
δC , but they do not produce any “exact” calculations with
which to compare. Instead, they identify a term involving
radial excitations, which they consider to be missing from
the SM-SW model, and proceed to evaluate this term under

simplifying assumptions. They assume that the radial excita-
tions are dominated by mixing with states having one more
radial node (cf. the Damgaard model) and, further, that the
relevant excitations are dominated by the isovector monopole
resonance (cf. the IVMR model). Under these conditions they
find that this “missing” term almost completely cancels the
SM-SW-model result, and although they produce no numbers,
they state that this would result in δC values comparable in
magnitude to the IVMR-model results or even smaller. Clearly,
such a result would disagree at least as strongly with CVC
as does the IVMR model. Therefore, if any term is really
missing from the SM-SW-model calculations, the test results
presented here show that it must either be independent of Z or
else very small; otherwise, the data would become inconsistent
with the CVC hypothesis. Considering that the Coulomb force
is the principal source of isospin symmetry breaking, it is
highly unlikely that any large component of δC could be Z

independent.
From an experimental point of view, the results in Fig. 1

clearly demonstrate the importance of precisely measured ft
values. For example, the very precise values for 26Alm (plotted
at Z = 12, the atomic number of its daughter) and 34Cl (see
Z = 16) contribute very significantly to the overall χ2 for
each model fit. Equally important, though, are the ft values for
transitions that exhibit large values for δC . The most obvious
examples are the decays of 62Ga (see Z = 30) and 74Zr (see
Z = 36): Their δC values differ enormously from those for the
transitions with Z � 54, and this difference plays an important
role in differentiating one symmetry-breaking model from
another. More measurements of both types would be much
welcomed in this context.
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