Nuclear matter compressibility from isoscalar giant monopole resonance

S. Shlomo and D. H. Youngblood

Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 8 September 1992)

We examine the status of the nuclear matter compressibility K_{nm} obtained from experimental data of the strength distribution of the giant monopole resonance in nuclei and employing a least-squares fit to a semiempirical expansion of the nucleus compressibility K_A in $A^{-1/3}$. We present arguments indicating that all the coefficients of this expansion must be determined by a fit to the data. In our analysis we have used the entire data set, correcting for systematic energy differences between data sets measured in different laboratories, and applying the same criteria to all sets in extracting the uncertainties. Contrary to recent statements by Sharma and collaborators, we find that the present complete data set is not adequate to limit the range of K_{nm} to better than about a factor of 1.7 (200 to 350 MeV).

PACS number(s): 21.65 + f, 24.30.Cz, 21.60 - n

The nuclear matter $(N=Z \text{ and no Coulomb interac$ $tion) compressibility <math>K_{nm}$ is an important quantity characterizing the nuclear medium since it is directly related to the curvature of the nuclear matter equation of state [1] $E = E(\rho)$, at the saturation point $(E,\rho) = (-16 \text{ MeV}, 0.17 \text{ fm}^3)$. An accurate determination of K_{nm} is very important for the study of properties of nuclei (radii, masses, giant resonances, etc.), supernova collapses, neutron stars, and heavy-ion collisions [2].

The study of the isoscalar giant monopole resonances (GMR) in various nuclei provides an important source of information for K_{nm} . The GMR was first discovered in ²⁰⁸Pb at an excitation energy [3] of 13.7 MeV. Randomphase approximation (RPA) calculations using existing or modified effective interactions having $K_{nm} = 210 \pm 30$ MeV were in agreement with experiment [4]. It is important to note, however, that this commonly accepted value of $K_{nm} = 210 \pm 30$ MeV was deduced using a limited class of effective interactions.

With the increase in GMR data in various nuclei, it became worthwhile to attempt using a semiempirical approach to deduce K_{nm} . In this approach, which is similar to the semiempirical mass formula, one writes [4,5] the compressibility K_A of the nucleus with mass number Aas an expansion in $A^{-1/3}$,

$$K_{A} = K_{\text{vol}} + K_{\text{surf}} A^{-1/3} + K_{\text{curv}} A^{-2/3} + (K_{\text{sym}} + K_{\text{ss}} A^{-1/3}) \left[\frac{N - Z}{A} \right]^{2} + K_{\text{Coul}} \frac{Z^{2}}{A^{4/3}} + \cdots, \qquad (1)$$

where K_A is defined by

$$K_{A} = \frac{m}{\hbar^{2}} E_{\rm GMR}^{2} \langle r^{2} \rangle .$$
 (2)

Here $\langle r^2 \rangle$ is the mean-square radius of the nucleus, and E_{GMR} is taken to be the scaling energy of the GMR, defined by

$$E_{\rm GMR} = \sqrt{m_3/m_1} , \qquad (3)$$

where m_k is the RPA sum rule

$$m_{k} = \sum_{n} (E_{n} - E_{0})^{k} |\langle 0|r^{2}|n \rangle|^{2} .$$
(4)

Note that with the definition (3) for E_{GMR} , K_{vol} in (1) is equal [5] to K_{nm} .

There have been several attempts in the past [5-12] to determine K_{nm} using the procedure described by (1)-(4) by a least-squares (LS) fit to the GMR data of various sets of nuclei. In these attempts, only a very limited number of parameters (1-3), mainly K_{vol} , K_{surf} , and K_{sym} , were included in the LS fit. Fixed values (deduced from theory) were used for the other parameters, such as K_{Coul} and K_{curv} , in Eq. (1). Recently, Sharma and collaborators in a series of papers [10-12] claimed that a value of $K_{\rm nm} = 300 \pm 20$ MeV is obtained using the recent GMR data of Groningen for the nuclei ^{112,114,116,120,124}Sn and ^{144, 148}Sm, and including those of ²⁰⁸Pb, ⁹⁰Zr, and ²⁴Mg. It should be pointed out that this result is quite different from the commonly accepted value of $K_{nm} = 210 \pm 30$ MeV. Very recently, Pearson [13] has pointed out that $K_{\rm nm}$ is strongly dependent on the value assumed for K_{Coul} and that the relation between K_{Coul} and K_{nm} is model dependent.

In the present study, we take a closer look at the semiempirical analysis of the GMR data, using the procedures (1)-(4) in an attempt to extract a reliable value for K_{nm} . We find that the claim of Sharma *et al.* [10-12] is not reliable since their analysis is limited in the number of data points and the number of free parameters included in the LS fit. We have attempted to include the entire GMR data set, reconciling differences between different laboratories and taking the parameters in Eq. (1) as free parameters. In the following, we first summarize some theoretical and experimental observations concerning the procedure of Eqs. (1)-(4) and then provide some numerical results and conclusions.

We now discuss the following considerations that must be taken into account when using Eqs. (1)-(4) in a fit to the experimental data for the GMR.

(1) In using (3) to determine E_{GMR} , the entire GMR

<u>47</u> 529

© 1993 The American Physical Society

energy-weighted sum rule (EWSR) must be known experimentally. This appears to be the case for heavy nuclei where the GMR strength is fitted by a Gaussian with centroid E_0 and width Γ . In this case one has

$$E_{\rm GMR}^2 = E_0^2 + 3(\Gamma/2.35)^2 .$$
 (5)

(2) In deformed nuclei, a splitting of the GMR strength into clearly identifiable components occurs [14-17]. In this case, Eq. (3) cannot be used to obtain $E_{\rm GMR}$, which corresponds to the spherical configuration. Theoretical considerations indicate [17] that to a good approximation the higher component is shifted upward by an amount proportional to the deformation parameter β . We have therefore included in our analysis the GMR data for deformed nuclei by adopting the centroid E_0 with width Γ of the higher component and adding to Eq. (1) the term

$$\beta K_{\rm def}$$
 . (6)

(3) At present, any attempt to include GMR data for light nuclei should be considered with extreme care due to the following reasons: (i) RPA calculations of the GMR predict that the strength is fragmented [18,19] over quite a large range (over 10 MeV). Therefore, GMR strength must be carefully searched for over a wide range of energy. (ii) The particle decay width [18,20] of the GMR is quite large (5-10 MeV), particularly for highenergy components. This makes the experimental task of determining the GMR strength distribution rather difficult. (iii) For light nuclei, the scaling approximation may not be as good an approximation as in the case of heavy nuclei, introducing [19] errors of about 5% in the determination of E_{GMR} from Eq. (3). In this work we also discuss the implication of the present data on GMR in light nuclei.

(4) In determining K_A from Eq. (2), one usually adopts a certain expression for $\langle r^2 \rangle$ with a specific $A^{1/3}$ dependence. The $A^{1/3}$ dependence of $\langle r^2 \rangle$ affects the $A^{1/3}$ expansion of K_A . Since different expressions for $\langle r^2 \rangle$ will lead to different values for the coefficients in the expansion (1) for K_A , adopting theoretical values for some of the coefficients will be inconsistent.

(5) In previous analyses of the GMR data, such as in Refs. [5, 10-12], the number of free parameters in (1) was reduced by adopting relations between the parameters, such as $K_{\text{surf}} = -K_{\text{vol}}$ and

$$K_{\text{Coul}} = \frac{3e^2}{5r_0} \left[\frac{1215}{K_{\text{nm}}} - 12.5 \right] \text{MeV} ,$$
 (7)

obtained from theory [5]. It should be pointed out that these relations were derived using a limited class of effective interactions, and they are not unique [13]. Therefore, from points (4) and (5) we conclude that all parameters of Eq. (1) should be determined by a leastsquares fit to the experimental GMR data.

Extensive investigations of the giant monopole resonance have occurred at three laboratories: Texas A&M, Grenoble, and Groningen. Each has taken spectra into the very small angles necessary to separate monopole from quadrupole strength, a technique pioneered at Texas A&M (TAMU) [3]. At Texas A&M, substantial monopole strength was identified in 17 nuclei using inelastic α scattering between 96 and 130 MeV [3,8,21–24]. At Grenoble, monopole strength was observed in 42 nuclei with 100-MeV ³He scattering [7] and in three nuclei with α scattering [25]. At Groningen 13 nuclei were investigated with 120 MeV α scattering [10,26–29]. The nuclei investigated and the resulting monopole parameters are summarized in Table I.

It is immediately apparent that the ³He data yields a much lower monopole strength and somewhat smaller widths than the α data for $A \leq 154$. The Grenoble group later investigated three nuclei with α scattering and obtained results in good agreement with the other α experiments. They conclude [25] that the GMR structure "seems to extend further up the high excitation-energy side" in α scattering and provide the possibility that this difference "can be due in part to the choice of subtracted background." In any case, only a portion of the GMR strength is seen in the ³He scattering.

Of these 75 potential data points, only 27 (9 TAMU, 11 Groningen, 2 Grenoble α , 5 Grenoble ³He) have EWSR fractions consistent with 100% of the monopole strength. These 27 data points represent 16 different nuclei with $24 \le A \le 232$.

At Groningen, a special effort was made to measure GMR parameters in the Sn and Sm isotopes precisely [10]. Spectra were taken over the range $0-3^{\circ}$, and ray tracing was used to divide the results into two spectra: one $0-1.5^{\circ}$ where the monopole is strong, and one $1.5-3^{\circ}$ where the monopole is weak. The larger-angle spectrum was then subtracted from the first to enhance the monopole, and the resulting spectrum was fit to determine monopole parameters. They reported substantially smaller errors in position of the monopole than other works, though their errors in width are comparable to others.

Errors in GMR parameters from each of these works have three components: (1) Uncertainties in the fitting process due to statistical errors and the appropriateness of the model, usually obtained from the error matrix. (2) Uncertainties in subtraction of the continuum and background, which are subjective and probably arrived at differently by the different groups. (3) Systematic uncertainties such as energy calibration, absolute yield calibration, etc.

If all of the available data are to be used, it is important to attempt to put the data from different laboratories on a similar footing. Both the actual value of the energy and width and their uncertainties are important. Systematic differences between different data sets will distort the fits, and data with lower stated uncertainties will dominate the fits. Thus we have explored both the parameters and the uncertainties reported by the different laboratories.

We looked for energy-calibration systematic differences by comparing energies obtained for both the GMR and the nearby giant quadrupole resonance (GQR) by the three laboratories. There are eight nuclei measured by both TAMU and Groningen, and comparisons of GQR and GMR energies are shown in Table II. Of the 16 comparisons, in 13 cases Groningen's energies are higher than those obtained at TAMU. The 16-point average shows Groningen energies 290 keV higher than the TAMU energies. Two of the three nuclei measured with α scattering at Grenoble were also measured at TAMU. For all four data points, the Grenoble energies were higher, the average being 220 keV. Only the GQR energies were used in the ³He comparison.

AN	Nucleus	E_x	Г 9	6 EWSR	Ref. ^a	A	Nucleus	E_x	Г	% EWSR	Ref. ^a
28	Sib	19.00±0.50	6.30±0.50	66±12	TAMU1			Grenob	le ³ He, ³ He		
58	Ni	$17.00 {\pm} 0.40$	$4.00{\pm}0.40$	19±10	TAMU2						
64	Zn	$18.20 {\pm} 0.50$	4.30±0.90	29±16	TAMU3	27	Al	$17.10 {\pm} 0.20$	$2.50{\pm}0.40$	6	Gren2
66	Zn	$18.40{\pm}0.70$	4.10±1.10	30±16	TAMU3	45	Sc	$16.10 {\pm} 0.50$	$3.20{\pm}0.70$	10	Gren2
90	Zr	$16.20 {\pm} 0.50$	$3.50{\pm}0.30$	90±20	TAMU3	55	Mn	$17.70 {\pm} 0.50$	4.00 ± 0.50	10	Gren2
12	Sn	$15.70 {\pm} 0.30$	$4.20{\pm}0.30$	79±25	TAMU4	56	Fe	$17.00 {\pm} 0.30$	3.60 ± 0.30	10	Gren2
16	Sn	$15.60 {\pm} 0.30$	4.10±0.30	$180{\pm}60$	TAMU3	58	Ni	$17.10 {\pm} 0.30$	$2.50{\pm}0.30$	10	Gren2
18	Sn	$15.50 {\pm} 0.60$	$4.10{\pm}0.70$	150	TAMU3	60	Ni	$17.00 {\pm} 0.30$	2.70 ± 0.30	8	Gren2
20	Sn	$15.20{\pm}0.50$	$4.10 {\pm} 0.60$	180	TAMU3	66	Zn	17.90 ± 0.25	2.40 ± 0.25	16	Gren2
24	Sn	$14.80{\pm}0.40$	$3.80{\pm}0.60$	$186{\pm}60$	TAMU3	68	Zn	$17.80{\pm}0.25$	3.00 ± 0.30		Gren2
42	Nd	$14.80{\pm}0.30$	$3.30{\pm}0.20$	80±20	TAMU5	89	Y	$16.30 {\pm} 0.25$	3.10 ± 0.25		Gren2
46	Nd	$15.10 {\pm} 0.30$	$3.50 {\pm} 0.20$		TAMU5	90	Zr	$16.40 {\pm} 0.25$	3.60 ± 0.25		Gren2
50	Nd	$15.40 {\pm} 0.30$	$3.40{\pm}0.20$	50 ± 15	TAMU5	96	Zr	$15.80{\pm}0.30$	$3.20{\pm}0.30$	28	Gren2
44	Sm	$14.60 {\pm} 0.20$	$3.00{\pm}0.30$	140±40	TAMU3	92	Mo	$16.30{\pm}0.30$	4.00±0.30	24	Gren2
48	Sm	$14.60 {\pm} 0.20$	$2.80{\pm}0.30$	95±25	TAMU6	96	Mo	$16.40 {\pm} 0.30$	3.50 ± 0.30	19	Gren2
54	Sm	$14.90 {\pm} 0.30$	$2.60{\pm}0.40$	55 ± 15	TAMU3	100	Mo	$16.00 {\pm} 0.45$	3.70±0.45	17	Gren2
08	Pb	$13.70 {\pm} 0.40$	$3.00{\pm}0.50$	90±20	TAMU3	107	Ag	$15.90 {\pm} 0.30$	3.70±0.35	26	Gren2
						108	Pd	$16.20{\pm}0.30$	4.00±0.30	29	Gren2
		Groni	ngen α , α			110	Pd	$15.70 {\pm} 0.30$	3.70±0.35	42	Gren2
~ 4		17.00		00 1 00	a 1	110	Cd	$15.90 {\pm} 0.25$	4.10±0.25	36	Gren2
24	Mg	17.20		90±20	Gron1	112	Cd	$15.70 {\pm} 0.25$	3.60±0.35	43	Gren2
40	Ca	14.40		30±6	Gron2	114	Cd	$15.40 {\pm} 0.25$	4.00 ± 0.40	53	Gren2
90	Zr	16.10±0.28	3.10±0.28	104101	Gron3	116	Cd	$15.70 {\pm} 0.25$	3.40±0.30	53	Gren2
12	Sn	15.80±0.14	3.30±0.25	106±24	Gron4	115	In	$15.90 {\pm} 0.30$	2.70 ± 0.30	27	Gren2
14	Sn	15.80±0.14	3.50±0.29	107±23	Gron4	112	Sn	$16.10 {\pm} 0.25$	3.00 ± 0.25	42	Gren2
16	Sn	15.60±0.16	3.70±0.39	101±22	Gron4	116	Sn	$15.50 {\pm} 0.25$	3.20 ± 0.30	45	Gren2
20	Sn	15.50±0.15	3.90±0.35	94±20	Gron4	120	Sn	$15.40 {\pm} 0.25$	3.20 ± 0.30	50	Gren2
24	Sn	15.30±0.16	3.40±0.35	108±22	Gron4	124	Sn	$14.80 {\pm} 0.25$	3.20±0.30	58	Gren2
44	Sm	15.10±0.14	3.30±0.21	125±26	Gron4	139	La	$15.00 {\pm} 0.25$	2.70 ± 0.25	59	Gren2
48	Sm	14.90±0.14	3.20±0.29	117±27	Gron4	140	Ce	$14.80{\pm}0.20$	3.00 ± 0.20	57	Gren3
50	Sm	14.90±0.18	2.80±0.50	99±35	Gron4	141	Pr	$14.90 {\pm} 0.25$	2.60 ± 0.25	63	Gren2
52	Sm	15.50±0.18	3.10±0.52	86±25	Gron4	144	Sm	$14.70 {\pm} 0.20$	$2.90{\pm}0.20$	64	Gren3
08	РЬ	13.90±0.30	2.40 ± 0.30		Gron5	150	Sm	$15.10{\pm}0.25$	3.00±0.25	49	Gren3
		Inli	ch α, α			152	Sm	$14.80 {\pm} 0.25$	3.10±0.25	42	Gren3
		5 011	ch u, u			154	Sm	$15.00 {\pm} 0.30$	3.30 ± 0.30	44	Gren2
08	Pb	13.80±0.30	2.60±0.30	85	Juli	159	ТЬ	$14.80 {\pm} 0.25$	3.40±0.25	42	Gren3
32	Th	13.80 ± 0.40	3.00 ± 0.50	66±13	Juli	165	Ho	$15.00 {\pm} 0.25$	2.70 ± 0.30	41	Gren3
38	U	13.70 ± 0.40	3.00 ± 0.50 3.00 ± 0.50	65 ± 13	Juli	169	Tm	$14.70 {\pm} 0.30$	2.50 ± 0.30	40	Gren3
00	Ũ,	15.76±0.10	5.00±0.50	05±15	Jun	175	Lu	$14.40 {\pm} 0.30$	3.00 ± 0.30	55	Gren3
		Gren	oble α , α			181	Та	$14.20{\pm}0.25$	2.50 ± 0.25	59	Gren3
						197	Au	$13.40{\pm}0.20$	$2.40{\pm}0.20$	99	Gren3
58	Ni	$17.30{\pm}0.20$	$3.10{\pm}0.20$	23 ± 5	Gren1	208	Pb	$13.20{\pm}0.30$	$2.80{\pm}0.25$	92	Gren3
92	Mo	$16.20{\pm}0.20$	4.80±0.30	$85{\pm}17$	Gren1	209	Bi	$13.30{\pm}0.30$	2.30 ± 0.30	108	Gren2
20	Sn	15.40±0.40	4.00±0.30	110±22	Gren1	232	Th	13.30±0.40	2.30±0.40	84	Gren3
		Ref.	Ref.		Ref.						
Gron	L [[26] TAMU	[1 [8]	Gren1	[25]						

[7]

[14]

[30]

TABLE I. Giant monopole resonance parameters.

^b Actual centroid of strength reported in Ref. [8] (see text).

TAMU2

TAMU3

TAMU4

TAMU5

TAMU6

[23]

[6]

[22]

[21]

[24]

Gren2 Gren3

Juli

[27]

[28]

[10]

[29]

Gron2

Gron3

Gron4

Gron5

In comparing the uncertainties, we note that the Groningen group reports [10] statistical uncertainties in peak position of typically 70–90 keV. In the TAMU work, these were in the same range, suggesting that the statistical accuracy of the data from the two laboratories is comparable. The statistical contribution to the uncertainties was not reported for the Grenoble work. Systematic differences can be reduced by shifting one of the data sets by the average difference in Table II.

This leaves the subjective uncertainties due to subtraction of the continuum and background as the difference between the results from TAMU and Groningen. The primary advantage of the Groningen measurement is that spectra with strong and weak monopole contributions

TABLE II. Comparison of GQR and GMR energies obtained. All units are in MeV.

	(a) Groningen vs TAMU α GQR GMR TAMU-GRON									
	G(<u>үк</u>		MK	IAMU	GRON				
A	TAMU	GRON	TAMU	GRON	GQR	GMR				
90	14.0	14.00	16.2	16.10	0	0.10				
112	13.3	13.51	15.7	15.88	-0.21	-0.18				
116	13.2	13.39	15.6	15.69	-0.17	-0.09				
120	12.7	13.24	15.2	15.52	-0.54	-0.32				
124	12.3	13.02	14.8	15.35	-0.68	-0.55				
144	12.2	12.70	14.6	15.13	-0.50	-0.53				
148	12.1	12.66	14.6	14.85	-0.56	-0.25				
208	11.0	10.90	13.7	13.90	0.10	-0.2				
			Average	difference	-0.32	-0.25				
			Standard	d deviation	0.27	0.20				
	(b) Grenoble ³ He vs TAMU ($A < 140$)									
40	17.70	18.20			-0.50					
48	16.20	17.10			-0.90					
58	16.07	16.20	17.01	17.1	-0.13	-0.09				
60	16.31	15.90			.41					
66	14.90	14.80	18.4	17.9	.10	0.50				
90	14.00	14.05	16.2	16.4	-0.05	-0.20				
112	13.30	13.65	15.7	16.1	-0.35	-0.40				
116	13.2	13.15	15.6	15.55	0.05	0.05				
120	12.7	12.75	15.2	15.45	-0.05	-0.25				
124	12.3	12.35	14.8	14.85	-0.05	-0.05				
			Average	difference	-0.15					
			-	d deviation	0.34					
	(4	c) Greno	ble ³ He v	s TAMU (2	4 > 140)					
144	12.2	12.25	14.6	14.7	-0.05	-0.10				
154	11.8	11.70	14.9	15.0	0.10	-0.10				
208	11.0	10.60	13.7	13.2	0.40	0.50				
			Average	difference	0.15					
			Standar	d deviation	0.19					
		(d)	Grenoble	α vs TAM	U					
58	16.07	16.39	17.01	17.31	-0.32	-0.30				
120	12.70	12.75	15.20	15.42	-0.05	-0.22				
			Average	difference	-0.18	-0.26				
			Standar	d deviation	0.11	0.11				

were taken simultaneously, so the experimental conditions do not change between the sets of data. This does lead to excellent subtraction of the quadrupole resonance for which the yield over this angular range is almost constant. For the continuum and background, however, the situation is not as good. The continuum and any background (slit scattering, etc.) are often angle dependent and, for this reason, the subtraction technique may not help. As the Groningen data is limited to the excitation range $10 \le E_x \le 20$ MeV, the spectra give few clues as to the shape of the background above or below the giant resonances. In fact the continuum is not apparent in the spectra shown [10], and there is little basis for determining a continuum shape. Thus, uncertainties due to continuum subtraction could be quite large. The TAMU data extend over a much wider range of energy $(5 \le E_x \le 80 \text{ MeV})$, allowing a better determination of the continuum shape, and for most nuclei several runs were taken at each angle in differing sequences to reduce errors due to changing experimental conditions. The uncertainties added for continuum subtraction were conservative. Typically, they were chosen as the most a peak energy could be changed by differing continuum assumptions that could not be totally ruled out, ranging from one that changed slowly under the peaks (similar to the background chosen in the Groningen work [10]) to one that began near the peaks and increased rapidly, joining to a smooth extrapolation of the continuum above the resonance but excluding ⁵He and ⁵Li breakup. The Groningen data cannot distinguish these different background possibilities. Thus it is not clear that the overall uncertainties in peak position in the Groningen work are smaller than in the TAMU work.

We have not considered data taken only at larger angles where the GMR cannot be unambiguously identified except in the case of Th and U, where essentially no other data exists. Morsch *et al.* [30] measured ²⁰⁸Pb, ²³²Th, and ²³⁸U using 172-MeV α particles, and we have included this data because these are the heaviest nuclei in which the GMR has been seen. As the ²⁰⁸Pb GMR position agrees with the TAMU value, no correction was made to the Julich work for systematic differences.

The silicon data point requires a special comment. The GMR centroid given [8], as 17.9 MeV for ²⁸Si is incorrect. The actual centroid and width for the strength reported in the paper are 19.0 MeV and 6.3 MeV. The correct values are listed in the tables.

All of the points available for fitting are shown in Table III, where both the original measured parameters and those corrected for systematic differences with the TAMU work are shown. We chose to accept the TAMU energies and modify the other works by the average difference to correct for systematic errors. At present there is little experimental reason to pick one of the data sets as more accurate on an absolute basis. Where multiple measurements of the same parameter are available, weighted averages (done after correction for systematic errors) are also given.

In Table IV we present results of a least-squares fit of selected data sets of GMR to the semiempirical procedure described by Eqs. (1)-(6). Using the seven data

		Corrected ^a for systematic difference			Values adopted for calculations				
A	Nucleus	$\frac{E_x}{(\text{MeV})}$	$\sigma(E_x)$ (MeV)	$\frac{E_x}{(\text{MeV})}$	$\sigma(E_x)$ (MeV)	Γ (MeV)	$\sigma(\Gamma)$ (MeV)	Ref. ^c	
24	Mg	16.71	0.23	16.71		4.73		Gron1	
28	Sib	19.06	0.50	19.06	0.50	6.30	0.50	TAMU	
40	Ca	14.11	0.23	14.11	0.23			Gron2	
58	Ni	17.00	0.40					TAMU	
58	Ni	17.08	0.23	17.06	0.20	3.28	0.18	Gren1	
64	Zn	18.20	0.50	18.20	0.50	4.30	0.90	TAMU	
66	Zn	18.40	0.70	18.40	0.70	4.10	1.10	TAMU	
90	Zr	16.20	0.50					TAMU	
90	Zr	15.81	0.36	15.95	0.29	3.29	0.20	Gron3	
92	Mo	15.98	0.23	15.98	0.23	4.80	0.30	Gren1	
112	Sn	15.70	0.30					TAMU	
112	Sn	15.59	0.27	15.64	0.20	3.67	0.19	Gron4	
114	Sn	15.51	0.27	15.51	0.27	3.52	0.29	Gron4	
116	Sn	15.60	0.30					TAMU	
116	Sn	15.40	0.28	15.50	0.20	3.96	0.24	Gron4	
118	Sn	15.50	0.60	15.50	0.60	4.10	0.70	TAMU	
120	Sn	15.20	0.50					TAMU	
120	Sn	15.23	0.27					Gron4	
120	Sn	15.18	0.41	15.21	0.21	3.98	0.21	Gren1	
124	Sn	14.80	0.40					TAMU	
124	Sn	15.06	0.28	14.98	0.23	3.50	0.30	Gron4	
142	Nd	14.80	0.30	14.80	0.30	3.30	0.20	TAMU	
144	Sm	14.60	0.20					TAMU	
144	Sm	14.84	0.27	14.69	0.16	3.23	0.17	Gron4	
146	Nd	15.10	0.20	15.10	0.30	3.30	0.30	TAMU	
148	Sm	14.60	0.20					TAMU	
148	Sm	14.66	0.27	14.62	0.16	3.08	0.23	Gron4	
150	Nd	15.40	0.30	15.40	0.30	3.40	0.20	TAMU	
150	Sm	14.68	0.29	14.68	0.29	2.86	0.50	Gron4	
152	Sm	15.27	0.29	15.27	0.29	3.13	0.52	Gron4	
154	Sm	14.90	0.30	14.90	0.30	2.60	0.40	TAMU	
208	Pb	13.70	0.40	1.1.20	0.00			TAMU	
208	Pb	13.63	0.38					Gron5	
208	Pb	13.80	0.30	13.73	0.20	2.58	0.20	Juli	
232	Th	13.80	0.40	13.80	0.40	3.00	0.50	Juli	
238	U	13.70	0.40	13.70	0.40	3.00	0.50	Juli	
27	Al	17.00	0.39	17.00	0.39	2.50	0.40	Gren2	
45	Sc	15.95	0.60	15.95	0.60	3.25	0.70	Gren2	
55	Mn	17.55	0.60	17.55	0.60	4.00	0.50	Gren2	
56	Fe	16.85	0.45	16.85	0.45	3.60	0.30	Gren2	
58	Ni	16.95	0.45	16.95	0.45	2.50	0.30	Gren2	
60	Ni	16.85	0.45	16.85	0.45	2.70	0.30	Gren2	
66	Zn	17.75	0.42	17.75	0.42	2.40	0.25	Gren2	
68	Zn	17.65	0.42	17.65	0.42	3.00	0.30	Gren2	
89	Y	16.20	0.42	16.20	0.42	3.10	0.25	Gren2	
90	Zr	16.25	0.42	16.25	0.42	3.60	0.25	Gren2	
96	Zr	15.65	0.45	15.65	0.45	3.20	0.30	Gren2	
92	Мо	16.20	0.45	16.20	0.45	4.00	0.30	Gren2	
96	Мо	16.25	0.45	16.25	0.45	3.50	0.30	Gren2	
100	Мо	15.85	0.56	15.85	0.56	3.75	0.45	Gren2	
107	Ag	15.75	0.45	15.75	0.45	3.70	0.35	Gren2	
108	Pd	16.10	0.45	16.10	0.45	4.00	0.30	Gren2	
110	Pd	15.55	0.45	15.55	0.45	3.75	0.35	Gren2	
110	Cd	15.80	0.42	15.80	0.42	4.15	0.25	Gren2	
112	Cd	15.60	0.42	15.60	0.42	3.60	0.35	Gren2	
114	Cd	15 30	0.42	15 30	0.42	4 00	0.40	Gren2	

15.30

0.42

4.00

0.40

Gren2

Cd

15.30

0.42

114

TABLE III. GMR parameters used for compressibility fits.

			ected ^a for tic difference		Values adopted for calculations				
A	Nucleus	E_x (MeV)	$\sigma(E_x)$ (MeV)	E_x (MeV)	$\sigma(E_x)$ (MeV)	Γ (MeV)	$\sigma(\Gamma)$ (MeV)	Ref. ^c	
116	Cd	15.60	0.42	15.60	0.42	3.40	0.30	Gren2	
115	In	15.75	0.45	15.75	0.45	2.70	0.30	Gren2	
112	Sn	15.95	0.42	15.95	0.42	3.00	0.25	Gren2	
116	Sn	15.40	0.42	15.40	0.42	3.20	0.30	Gren2	
120	Sn	15.30	0.42	15.30	0.42	3.25	0.30	Gren2	
124	Sn	14.70	0.42	14.70	0.42	3.20	0.30	Gren2	
139	La	14.85	0.42	14.85	0.42	2.70	0.25	Gren2	
140	Ce	14.95	0.28	14.95	0.28	3.00	0.20	Gren3	
141	Pr	15.05	0.31	15.05	0.31	2.60	0.25	Gren2	
144	Sm	14.85	0.28	14.85	0.28	2.90	0.20	Gren3	
150	Sm	15.25	0.31	15.25	0.31	3.00	0.25	Gren3	
152	Sm	14.95	0.31	14.95	0.31	3.10	0.25	Gren3	
154	Sm	15.15	0.36	15.15	0.36	3.30	0.30	Gren2	
159	Тb	15.00	0.31	15.00	0.31	3.40	0.25	Gren3	
165	Ho	15.15	0.31	15.15	0.31	2.70	0.30	Gren3	
169	Tm	14.85	0.36	14.85	0.36	2.50	0.30	Gren3	
175	Lu	14.55	0.36	14.55	0.36	3.00	0.30	Gren3	
181	Ta	14.35	0.31	14.35	0.31	2.50	0.25	Gren3	
197	Au	13.60	0.28	13.60	0.28	2.40	0.20	Gren3	
208	Pb	13.35	0.36	13.35	0.36	2.80	0.25	Gren3	
209	Bi	13.45	0.36	13.45	0.36	2.30	0.30	Gren2	
232	Th	13.50	0.44	13.50	0.44	2.30	0.40	Gren3	

TABLE III. (Continued).

^aExcitation energies are shifted by Δ for the data by the amount indicated below (from Table II). Standard deviations are $[\sigma(E_x)^2 + \sigma(\Delta)^2]^{1/2}$.

	Δ	$\sigma(\Delta)$
	(MeV)	(MeV)
Groningen α	0.29	0.23
Julich α	0	0
Grenoble α	0.22	0.11
Grenoble ³ He $A < 140$	0.15	0.34
Grenoble ³ He $A > 139$	-0.15	0.19

^bActual centroid of strength reported in Ref. [8] (see text). ^cSee Table I.

points of Sn and Sm isotopes considered by Sharma et al. [10-12], we obtained similar results when we took only $K_{\rm vol}$, $K_{\rm surf}$, and $K_{\rm sym}$ as free parameters with $K_{\text{Coul}} = -6.20$ MeV, deduced from (7) using $K_{\text{nm}} = 300$ MeV. There is a strong correlation between the values of K_{Coul} and K_{nm} as demonstrated by Fig. 1. It is seen from Table IV that the uncertainties in the parameters increase dramatically when K_{Coul} is added as a free parameter. This is easily understood by noticing that for the nuclei considered, the coefficient of K_{Coul} in (1) increases approximately as $A^{2/3}$. Therefore, varying K_{Coul} , by changing its sign, for example, has a large effect on the value extracted for K_{vol} . This result is in agreement with the observation by Pearson [13]. The sensitivity of the value of K_{nm} to the number of parameters included in the fit is easily understood if one takes into consideration that the variation in $A^{1/3}$ is only $\pm 8\%$ and the uncertainty in K_A is about 2% (the accuracy adopted by Sharma et al. for the $E_{\rm GMR}$ is about 1%). Including the data points of ²⁰⁸Pb, ⁹⁰Zr, and ²⁴Mg adopted by Sharma et al. helps to

reduce the uncertainties in the parameters, but with the inclusion of the parameter K_{curv} in the fit it is seen that the claim of Sharma *et al.* that $K_{nm} = 300 \pm 30$ MeV is unjustifiable (see also Ref. [31]).

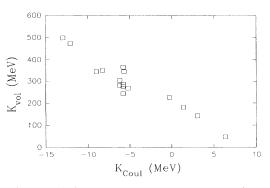


FIG. 1. Correlation between K_{vol} and K_{Coul} . The results shown were obtained using the various GMR data sets and parameter sets given in Table IV.

Data	No. data points	No. of parameters	$K_{\rm vol}$	$K_{ m surf}$	K _{curv}	$K_{\rm sym}$	$K_{\rm Coul}$	$K_{ m def}$	χ^2
Sharma	7	3	304±37	-671 ± 177	0	-367 ± 156	-6.20		0.023
Sn+Sm		4	344±756	-798 ± 2379	0	-464 ± 1835	-9.02 ± 53		0.029
Sharma	10	3	280±9	$-564{\pm}29$	0	-284±136	-6.20		0.28
add Pb,Zr,Mg		4	226±48	-441 ± 110	0	-162 ± 173	-0.26 ± 5.2		0.11
		5	474±823	$-1750{\pm}4331$	1915±6336	-566 ± 1350	-12.11 ± 40		0.11
Table III	19	4	286±29	-627 ± 131	0	-264±179	-5.80	35±13	0.40
α		5	182±177	-296 ± 567	0	-27±434	1.41±12	34±13	0.41
<i>A</i> > 90		5	365±147	$-1431{\pm}1468$	2032±3694	$-274{\pm}180$	-5.80	34±13	0.41
		5	47±1236	$563{\pm}7822$	$-1597{\pm}14446$	139±1617	6.38±47	35	0.41
Table III	41	4	276±22	-577±97	0	-261 ± 147	-5.80	34±9	0.28
$\alpha + {}^{3}\text{He}$		5	268±154	$-549{\pm}493$	0	-242 ± 368	$-5.20{\pm}11$	34±9	0.29
$A \ge 89$		5	286±128	-673 ± 1277	243±3212	-263 ± 149	-5.80	34±9	0.29
		5	$350{\pm}1082$	$-1075{\pm}6823$	971±12552	$-351{\pm}1429$	$-8.28{\pm}41$	35	0.29
Table III	46	4	244±16	-427±65	0	-142 ± 133	-5.80	38±8	0.40
$\alpha + {}^{3}\text{He}$		5	143±53	-145 ± 155	0	34±159	3.04±4	36±8	0.31
$A \ge 89$		5	344±49	-1270 ± 393	1785 ± 821	-280 ± 148	-5.80	37 ± 8	0.29
add Zn, ${}^{40}Ca^a$, and ${}^{28}Si^a$		5	499±404	-2122±2224	3109±3481	-514 ± 642	-12.97 ± 19	35	0.29

TABLE IV. Results from fitting Eq. (1) to various data sets. Fixed parameters are indicated by their values without uncertainties. The reduced χ^2 given was obtained by dividing the sum of the squares by the number of data points minus the number of parameters.

^aSee text for data for ⁴⁰Ca and ²⁸Si.

Using the data of the GMR shown in Table III, we have performed fits for several data sets as shown in Table IV. Using all the α scattering data for $A \ge 90$ (19) points) we obtained similar results to those obtained with the seven data points adopted by Sharma et al. It should be emphasized that we assumed uncertainties in E_{GMR} about twice those adopted by Sharma et al. We then explored including additional data points where the entire sum rule is not seen and cannot be accounted for. First we added all ³He data points with $A \ge 89$. This reduced the uncertainties slightly. Then we added the lighter nuclei (Zn, Ca, Si), where not all the strength was seen, to ascertain the effects on the fits. For Ca we arbitrarily assumed $E_x \approx 18 \pm 1$ MeV, as there is some evidence [7,8] of monopole strength coincident with the GQR. For ²⁸Si we assumed $E_x \approx 20 \pm 1$ MeV because only 65% of the strength was observed with a centroid of 19 MeV. Probably the rest of the strength lies higher. In this fit we left out the ²⁴Mg point, since it is much lower than for ²⁸Si. This resulted in substantially smaller uncertainties for the parameters and illustrates the importance of including lighter nuclei. The parameters themselves observed in the last case are only illustrative, however, due to the speculative nature of the Ca and Si energies.

From the results in Table IV, it is clear that K_{Coul} has a large effect on K_{nm} , and including it as a free parameter leads to uncertainties of approximately 50%, except for the ten-point Groningen data set. For this data set, with K_{Coul} as a free parameter $K_{nm} \approx 226$ MeV, rather than the ≈ 300 MeV found by Sharma. Including both K_{Coul} and K_{curv} as parameters leads to errors exceeding 100% for all coefficients. On the other hand, K_{def} is well defined at about 35 MeV, and fixing it at this value or allowing it to vary has little effect. Adding the ³He data points with $A \ge 89$ reduces the uncertainties in the parameters slightly. Finally, including the data for elements lighter than Zr helps to further reduce the uncertainties in the parameters. However, as seen from Table IV, it is not possible to pin down the value of K_{nm} with an accuracy of better than 50%.

Thus, the present complete data set is clearly not adequate to limit the range of K_{nm} to better than about a factor of 1.7 (200-350 MeV). Several things need to be done to pin down K_{nm} . We need measurements on considerably more than 16 nuclei and with more variation in mass. To the extent possible, spherical nuclei should be chosen to eliminate effects of deformation. These measurements need to provide the centroid and width of the GMR to better than 150 keV, after taking into account possible uncertainties in the continuum. Significant systematic errors between differing measurements must be removed. The strength distribution in light nuclei must be mapped over a wide energy range. It will be worthwhile to carry out RPA calculations of the GMR with effective interactions that reproduce the groundstate properties of nuclei and the strength distribution of the GMR for light as well as heavy nuclei.

This work was supported in part by Department of Energy Grant No. DE-FG05-86ER40256, National Science Foundation Grant No. 9017008, and the Robert A. Welch Foundation.

- A. Bohr and B. M. Mottleson, Nuclear Structure (Benjamin, New York, 1975), Vol. II.
- [2] N. K. Glendenning, Phys. Rev. C 37, 2733 (1988).
- [3] D. H. Youngblood, C. M. Rozsa, J. M. Moss, D. R. Brown, and J. D. Bronson, Phys. Rev. Lett. **39**, 1188 (1977).
- [4] J. P. Blaizot, Phys. Rep. 64, 171 (1980).
- [5] J. Treiner, H. Krivine, and O. Bohigas, Nucl. Phys. A371, 253 (1981).
- [6] D. H. Youngblood, P. Bogucki, J. D. Bronson, U. Garg, Y.-W. Lui, and C. M. Rozsa, Phys. Rev. C 23, 1997 (1981).
- [7] M. Buenerd, in Proceedings of International Symposium on Highly Excited States and Nuclear Structure, Orsay, France, edited by N. Marty and N. Van Giai, J. Phys. (Paris) Colloq. 45, C4-115 (1984), and references therein.
- [8] Y.-W. Lui, J. D. Bronson, D. H. Youngblood, Y. Toba, and U. Garg, Phys. Rev. C 31, 1642 (1985), and references therein.
- [9] A. Van der Woude, W. T. A. Borghols, S. Brandenburg, M. M. Sharma, and M. N. Harakeh, Phys. Rev. Lett. 58, 2383 (1987).
- [10] M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona, A. Van der Woude, and M. H. Harakeh, Phys. Rev. C 38, 2562 (1988); M. M. Sharma, in *Proceedings of the International Winter Meeting on Nuclear Physics*, Bormio, Italy, 1988, edited by I. Iori (University of Milan, Milan, 1988), Vol. 63, p. 510.
- [11] M. M. Sharma, W. Stocker, P. Gleissl, and M. Brack, Nucl. Phys. A504, 337 (1989); M. M. Sharma, in Proceedings of the NATO Advanced Study Institute on the Nuclear Equation of State, Peñsicola, Spain, 1989, edited by W. Greiner and H. Stöcker (Plenum, New York, 1990), Vol. 216A, p. 661.
- [12] M. M. Sharma (unpublished); M. M. Sharma, in Slide Report of the Notre Dame Workshop on Giant Resonances and Related Phenomena, Notre Dame, IN, 1991 (unpublished).
- [13] J. M. Pearson, Phys. Lett. B 271, 12 (1991).
- [14] M. Buenerd, D. Lebrun, Ph. Martin, P. de Santignon, and C. Perrin, Phys. Rev. Lett. 45, 1667 (1980).
- [15] U. Garg, P. Bogucki, J. D. Bronson, Y.-W. Lui, C. M. Rozsa, and D. H. Youngblood, Phys. Rev. Lett. 45, 1670

(1980).

- [16] Y. Abgrall, B. Morand, E. Caurier, and B. Grammaticos, Nucl. Phys. A346, 431 (1980).
- [17] S. Jang, Nucl. Phys. A401, 303 (1983).
- [18] N. Van Giai and H. Sagawa, Nucl. Phys. A371, 1 (1981).
- [19] Ph. Chomaz, T. Suomijärvi, N. Van Giai, and J. Treiner, Phys. Lett. B 281, 6 (1992).
- [20] S. Shlomo and G. Bertsch, Nucl. Phys. A243, 507 (1975).
- [21] U. Garg, P. Bogucki, J. D. Bronson, Y.-W. Lui, and D. H. Youngblood, Phys. Rev. C 29, 93 (1984).
- [22] Y.-W. Lui, P. Bogucki, J. D. Bronson, D. H. Youngblood, and U. Garg, Phys. Rev. C 30, 51 (1984).
- [23] D. H. Youngblood and Y.-W. Lui, Phys. Rev. C 44, 1878 (1991).
- [24] Y.-W. Lui, private communication.
- [25] G. Duhamel, M. Buenerd, P. de Saintignon, J. Chauvin, D. Lebrun, Ph. Martin, and G. Perrin, Phys. Rev. C 38, 2509 (1988).
- [26] H. J. Lu, S. Brandenburg, R. De Leo, M. N. Harakeh, T. D. Poelhekken, and A. van der Woude, Phys. Rev. C 33, 1116 (1986).
- [27] S. Brandenburg, R. De Leo, A. G. Drentje, M. N. Harakeh, H. Sakai, and A. van der Woude, Phys. Lett. 130B, 9 (1983).
- [28] W. T. A. Borghols, S. Brandenburg, J. H. Meier, J. M. Schippers, M. M. Sharma, A. van der Woude, M. N. Harakeh, A. Lindholm, L. Nilsson, S. Crona, A. Håkansson, L. P. Ekström, N. Olsson, and R. De Leo, Nucl. Phys. A504, 231 (1989).
- [29] S. Brandenburg, W. T. A. Borghols, A. G. Drentje, L. P. Ekström, M. N. Harakeh, A. van der Woude, A. Håkansson, L. Nilsson, N. Olsson, M. Pignanelli, and R. De Leo, Nucl. Phys. A466, 29 (1987).
- [30] H. P. Morsch, C. Sükösd, M. Rogge, P. Turek, H. Machner, and C. Mayer-Böricke, Phys. Rev. C 22, 489 (1980); H. P. Morsch, M. Rogge, P. Turek, C. Mayer-Böricke, and P. Decowski, Phys. Rev. C 25, 939 (1982).
- [31] J. P. Blaizot, in Proceedings of the NATO Advanced Study Institute on the Nuclear Equation of State, Peñsicola, Spain, 1989, edited by W. Greiner and H. Stöcker (Plenum, New York, 1990), Vol. 216A, p. 679.