First observation of the (⁶Li, ⁸He) reaction C. A. Gagliardi, D. R. Semon, E. Takada,* D. M. Tanner,† and R. E. Tribble Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 18 February 1988) We have measured the cross section of the 27 Al(6 Li, 8 He) 25 Si reaction. At a scattering angle of 5.5° and a beam energy of 92.5 MeV, we find the laboratory cross section to populate the 25 Si ground state doublet to be 3.6±1.0 nb/sr and the cross section to populate the 0.82 MeV second excited state to be ≈ 200 pb/sr. We also measured the (6 Li, 8 He) reaction for 64 Zn and 24 Mg targets. We find yields of ≈ 250 pb/sr and < 300 pb/sr, respectively. This experiment represents the first observation of the (6 Li, 8 He) exotic nuclear reaction. Various exotic nuclear reactions have proven to be valuable tools to precisely determine the masses of very proton-rich nuclei. Q-value measurements with the (${}^4\text{He}, {}^8\text{He}$) reaction 1,2 have played a fundamental role in extending our knowledge of $T_z = -2$ nuclei and heavier $T_z = -1$ nuclei. More recently, the (${}^7\text{Li}, {}^8\text{He}$) reaction has been utilized 3,4 to determine the mass of ${}^{57}\text{Cu}$. The ${}^{64}\text{Ni}({}^3\text{He}, {}^8\text{He}){}^{59}\text{Ni}$ reaction has also been reported, 5 but the extremely small cross section for this reaction, only $\approx 1\%$ of the cross section for the ${}^{64}\text{Ni}({}^4\text{He}, {}^8\text{He}){}^{60}\text{Ni}$ reaction at a comparable energy, makes it unlikely that this reaction will be useful as a spectroscopic tool. There are still many proton-rich nuclei of great interest which cannot be produced in reactions that have been observed to date. Two examples are ²²Al and ⁶²Ga. The A=22 system is the only A=4N+2 case in which three members of the lowest T=2 quintet have been identified. Thus, a determination of the mass of ²²Al would provide us with the first A = 4N + 2 test of the isobaric multiplet mass equation. By contrast, β -decay measurements⁸ have already determined the mass of ⁶²Ga to ± 26 keV. ⁶²Ga is a member of the series of N=Z, oddodd nuclei that β decay via $0^+ \rightarrow 0^+$ superallowed Fermi transitions. At present, the heaviest member of this series whose ft value has been determined to better than 1% is ⁵⁴Co. If the uncertainty in the ⁶²Ga mass could be reduced to < 17 keV, we could extend this series, testing our understanding of the Coulomb corrections that must be applied in a higher-Z system. Using ²⁴Mg and ⁶⁴Zn targets, ²²Al and ⁶²Ga may be produced via the (⁶Li, ⁸He) reaction, a reaction that has not been reported previously. In this work, we report the first observation of this exotic nuclear reaction and discuss its viability as a means to determine the masses of proton-rich nuclei. The experiment was carried out by observing ⁸He particles from the (⁶Li, ⁸He) reaction on targets of ²⁷Al, ²⁴Mg, and ⁶⁴Zn. All three targets were studied with a 92.5 MeV ⁶Li²⁺ beam supplied by the Texas A&M 224-cm cyclotron. Additional ²⁴Mg data were taken with a 98.9 MeV ⁶Li²⁺ beam, the highest energy ⁶Li²⁺ beam that this cyclotron can produce. Beam currents on target were between 500 and 1000 nA. Reaction products were detected in the focal plane of an Enge split-pole magnetic spectrograph by a 10-cm long resistive-wire gas propor- tional counter, which provided both position and ΔE information, backed by a 600- μ m thick Si solid-state detector, which measured E and time of flight (TOF) through the spectrograph relative to the cyclotron rf. A 150- μ m thick Kapton absorber foil was inserted between the gas proportional counter and the solid-state detector during the 27 Al and 64 Zn measurements. A 75- μ m thick absorber was used during the 24 Mg runs. The measurements were carried out at a laboratory scattering angle of 5.5° with a spectrograph solid angle of 2.5 msr. The 27 Al(6 Li, 6 Li) 27 Al and 27 Al(6 Li, 4 He) 29 Si reactions were used to calibrate the spectrograph focal plane. Particle identification was based upon the ΔE , E, and TOF measurements. The particle identification spectra obtained with the ²⁷Al target are shown in Fig. 1. The TOF spectrum [Fig. 1(a)] includes all events with signals above the ΔE and E discriminator thresholds, which were set just above the triton group for this target. The particle groups associated with the various peaks in the spectrum are listed on the figure. The particle assignments for the α^+ and $^7Li^{2+}$ groups were confirmed by taking a short run with a 25-µm thick Kapton stripper foil inserted between the two poles of the spectrograph. Both groups disappeared during this short run. The α^+ -⁸He TOF window used for the subsequent analysis is indicated. The ΔE and E spectra in Figs. 1(b) and (c) include all events that fell within this α^{+} -8He TOF window. Both the α^+ and the ⁸He groups are well defined in the E spectrum. They deposit nearly the same energy in the ΔE detector. The primary source of the events above channel 500 in the ΔE spectrum and between the two groups in the E spectrum is ${}^8Li^{2+}$. Unlike the α^+ and 8 He groups, the 8 Li²⁺ group is very spread out in the E spectrum. At the nominal 45° entrance angle, the ⁸Li²⁺ nuclei lose over 21 MeV in the 150 µm Kapton absorber. The actual angle of incidence at the split-pole focal plane varied from 41°-49° for our setup, producing a substantial straggling effect. These background events were eliminated by the ΔE and E cuts. Figure 2 shows the 8 He spectrum from a 1.5 mg/cm² 27 Al target along with the position spectrum for all events which passed the E and ΔE discriminator thresholds. The active region of the detector is clearly defined by the total position spectrum. The peak in the 8 He spectrum corresponds to the expected location of the ground state doublet in 25 Si. The laboratory cross section for the combined yield to the doublet is 3.6 ± 1.0 nb/sr. The single count in channel 500 of the position spectrum is close to the expected location of the second excited state in 25 Si at 0.82 MeV. This represents a laboratory cross section of \approx 200 pb/sr. The 25 Si ground state doublet includes $\frac{5}{2}^+$ and $\frac{3}{2}^+$ states. If we assume that the 0.82 MeV state is the analog of the 1.07 MeV state of 25 Na, then it has $J^{\pi} = \frac{1}{2}^+$. Since the 27 Al+ 6 Li channel spin is $(\frac{3}{2}^+, \frac{5}{2}^+, \text{ and } \frac{7}{2}^+)$, production of this state may be slightly FIG. 1. The particle identification spectra associated with the 27 Al(6 Li, 8 He) 25 Si reaction. Panel (a) shows the TOF spectrum for all events that passed the hardware ΔE and E cuts. The various particle groups are labeled. Panels (b) and (c) show the ΔE and E spectra, respectively, for all particles that fell within the α^{+} - 8 He TOF window shown in panel (a). FIG. 2. The position spectra obtained with the 27 Al target. The upper curve shows all events that passed the hardware ΔE and E cuts. The counter edges are clearly apparent. The lower curve shows the 8 He events. The group near channel 550 is at the expected location of the 25 Si ground state doublet, while the single count in channel 500 is near the expected location of the 25 Si second excited state. suppressed by angular momentum matching, which would favor $\Delta L \approx 4$ at our energy and scattering angle, but it is more likely that the yield to this state is reduced by its $2s_{1/2}$ character. The ⁸He yield from the ²⁴Mg and ⁶⁴Zn targets was much lower than that obtained from the ²⁷Al target. Figure 3 shows the ⁸He spectrum obtained with a 3.5 mg/cm² ⁶⁴Zn target. The arrow in the figure indicates the expected location of the 62Ga ground state. The single event in this region corresponds to a yield of about 250 pb/sr, which is too small to improve upon the existing mass determination without several weeks of running time. In addition to its 0^+ T=1 ground state, 62 Ga should have low-lying 1^+ and 3^+ T=0 states. It is doubtful that the six 8He events seen in channels 447-470 of Fig. 3 populate these states since they represent excitation energies of > 1 MeV. Angular momentum matching for this reaction favored $\Delta L \approx 2$, so this is not likely the cause of the small yield. Rather, it is probably related to the structure of the 62Ga states and the details of the reaction mechanism. For example, one possible model of the (6Li,8He) reaction would be a twostep process of charge-exchange ⁶Li→⁶He, followed by two-neutron pickup ⁶He→ ⁸He. In a naive shell model, the ⁶⁴Zn(⁶Li, ⁸He) reaction would require these two processes to occur in different subshells in order to populate the low-lying 62Ga states. This may introduce a hin- FIG. 3. The ⁸He position spectrum obtained in the ⁶⁴Zn(⁶Li, ⁸He)⁶²Ga reaction. The arrow shows the expected location of the ground state. drance similar to that noted above for the ²⁵Si 0.82 MeV state. We observed no unambiguous 8He events in the ground state region of ²²Al at either ⁶Li²⁺ beam energy when using 2.0 mg/cm² ²⁴Mg targets. The more negative Q value of this reaction (approximately -49.5 MeV vs -38.54 MeV and -31.52 MeV for ²⁵Si and ⁶²Ga, respectively) made this investigation far more difficult. Whereas the alpha particle background rate was quite small during the ²⁵Si and ⁶²Ga measurements, it was sufficiently high during the ²²Al runs that the gain of the resistive-wire detector was sensitive to space-charge effects. This led to rate-dependent gain shifts in our ΔE determinations and problematic particle identification. To eliminate the possibility of particle misidentification, we inserted a 4- μ m thick Mylar stripper foil between the two poles of the spectrograph. This reduced the intensity of partially stripped particles—most importantly ⁷Li²⁺ and ⁸Li²⁺, which could be misidentified as ⁸He's—substantially. But a small background still remained from ⁴He, and ⁶Li ions, which left the target fully stripped, picked up an electron in the Mylar stripper foil, and then reached our detector at the focal plane. Overall, our measurements establish an upper limit of about 300 pb/sr for the cross section to produce ²²Al in this reaction. A ⁶Li beam energy of at least 115 MeV is needed to eliminate the alpha particle background in this reaction. Although beam energies of up to 180 MeV may be produced with the Texas A&M 224-cm cyclotron by using ⁶Li³⁺ ions, the beam currents available (<30 nA on target) make small cross section measurements impractical. It is clear from these results that the yield for the $(^6\text{Li}, ^8\text{He})$ reaction at our energy and scattering angle is too small to make it of practical use for determining masses of proton-rich nuclei. By both increasing the ^6Li beam energy and reducing the scattering angle, it is possible that the reaction yield to nuclei far from stability may improve enough to make it a useful spectroscopic tool. For example, the cross section of the $^{58}\text{Ni}(^{7}\text{Li}, ^{8}\text{He})^{57}\text{Cu}$ reaction 3,4 increases a factor of ≈ 8 from 76.5 MeV and 7° to 174 MeV and 5°. We plan to investigate this possibility when the new Texas A&M K=500 superconducting cyclotron and its electron cyclotron resonance (ECR) ion source become available for experiments. This work was supported in part by the U.S. Department of Energy and the Robert A. Welch Foundation. ^{*}Present address: Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. [†]Present address: Sandia National Laboratory, Albuquerque, NM 87185. ¹R. E. Tribble, in Atomic Masses and Fundamental Constants 6, edited by J. A. Nolen and W. Benenson (Plenum, New York, 1980), p. 13. ²C. J. Woodward, R. E. Tribble, and D. M. Tanner, Phys. Rev. C 27, 27 (1983). ³B. Sherrill *et al.*, Phys. Rev. C **31**, 875 (1985). ⁴C. A. Gagliardi, D. R. Semon, R. E. Tribble, and L. A. Van Ausdeln, Phys Rev. C 34, 1663 (1986). ⁵R. Kouzes et al., Nucl. Phys. A286, 253 (1977). ⁶R. E. Tribble, J. D. Cossairt, K.-I. Kubo, and D. P. May, Phys. Rev. Lett. 40, 13 (1978). ⁷M. D. Cable et al., Phys. Rev. C 26, 1778 (1982). ⁸C. N. Davids, C. A. Gagliardi, M. J. Murphy, and E. B. Norman, Phys. Rev. C 19, 1463 (1979).