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Cross sections of inelastic a-particle scattering to isovector giant dipole resonances are calculat-
ed including both nuclear and Coulomb excitation. It is shown that the calculated cross sections
are rather small and can be safely neglected for bombarding energies less than 200 MeV in deter-
mining the strength of the giant monopole resonance. This conclusion contradicts that of a recent
report made by Peterson.

I. INTRODUCTION

As is well known, inelastic alpha scattering has been
used successfully in identifying isoscalar giant monopole
resonances (GMR). ' Important nuclear structure in-
formation like the monopole strength and the nuclear
compressibility were then extracted.

In order to extract this nuclear structure information
from the experimental (a,a') data, however, theoretical
calculations of these cross sections have to be done. In
achieving these fits, it has been customary to consider
only GMR contributions and to ignore the contributions
from the excitation of the isovector giant dipole reso-
nance (GDR). It has been previously argued' that the
GDR contribution to the (a, a') cross section is rather
small.

The calculation of the GDR cross section in Ref. 1

was done, however, by considering only the nuclear part
of the excitation, while the calculation in Ref. 5 con-
sidered both nuclear and Coulomb parts of the excita-
tion. Unfortunately, however, the relative sign of these
two parts was taken erroneously in Ref. 5, and it is one
of the major purposes of this paper to present new re-
sults, after this error is corrected. (The two parts should
interfere constructively. In Ref. 5, they interfered des-
tructively. ) It will be seen below, nevertheless, that the
major conclusions of Ref. 5 remain largely unchanged.
In fact, except for the highest bombarding energies stud-
ied (E =218 MeV), the GDR cross section remains
small compared to the GMR cross section even when
the nuclear and Coulomb parts interfere constructively.
The GDR cross section with constructive interference
does become important for higher energy a particles.

Recently Peterson reported distorted-wave Born ap-
proximation (DWBA) calculations that gave a GDR
cross section sufficiently large to reproduce the experi-
mental (a,a') cross section attributed to the GMR in

Ref. 1. In light of the results reported in this paper, we
believe that Peterson's conclusion is not valid. A short
paper discussing Peterson's work has been submitted for
publication recently.

Unfortunately, the details of Peterson's calculation are
not available to us. Further, he provided no discussion
comparing his calculations to our previous GDR calcu-
lations of Refs. 1 and 5, so from his report all of the
reasons for the disagreement were not a priori obvious.
We point out later that Peterson's result is mainly due to
a coupling potential (nuclear plus Coulomb) which is too
large. We also note that some other previous calcula-
tions were carried out using a destructive interference
between the nuclear and the Coulomb parts, leading to
lower cross sections for the isovector giant dipole state.
This can be seen from the expression for the coupling
potential and the results shown in the figures of Ref. 4.
We stress that the nuclear and the Coulomb coupling
potentials should interfere constructively for isovector
states and destructively for isoscalar states. Having
these facts in mind and considering the importance of
proper theoretical calculations for extraction of the ex-
perimental parameters, we decided to present in this pa-
per the formulation of the GDR cross section in detail.
In doing this, we also give our formalism an added flexi-
bility so that we can discuss the GDR cross section on a
basis which is much broader than what was presented in
Ref. 5. In other words, what we intend to do in this pa-
per is both to correct the error in Ref. 5 and to go much
beyond what was presented in Ref. 5 to provide a
comprehensive description for future work.

In what follows, we discuss in Sec. II the method of
the calculation, particularly the construction of the cou-
pling potentials that we use in the present calculation.
In Sec. III, we present the results of numerical calcula-
tions. The final remarks of the present work are given in
Sec. IV, where we also discuss the work by Peterson.
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II. METHOD OF CALCULATIONS

A. Cross section formula

In this work, we carried out coupled-channel (CC) cal-
culations of the GDR and GMR cross sections, includ-
ing Coulomb excitation as well as nuclear excitation.
We used for this purpose the computer code JPwKB
developed some time ago by Kim et al. This code al-
lows us to perform fast and accurate calculation of the
Coulomb excitation cross section. Since the details of
the calculation were described in Refs. 5 and 8, we give
here only the basic idea.

do. 1 X
dQ 2I +1

0 n

where

(la)

The CC equations are solved exactly up to a certain
radius r =R„which is somewhat larger than the classi-
cal turning point. For this purpose, we use the program
JUPITER-1. ' The CC equations for r )R, are, however,
solved approximately by using a WKB-type approxima-
tion originally introduced by Alder and Pauli. ' Once
the CC equations are solved in this way, one can obtain
the S matrix. The cross section can then be calculated
as

X = —g e ' ' (ll OM ~JM )(/'I„m M„~JM )5,(kk')'11'

(lb)

In (1), IOMO and I„M„are the spin and its projection of
the initial and final states, k is the wave number, and o.

&

is the Coulomb phase shift for the partial wave J'. The
unprimed and primed quantities are for the incident and
exit channels, respectively.

The most critical quantities that enter into the calcu-
lation are the coupling potentials. In the rest of this sec-
tion, we shall thus concentrate on them. We derive
them for both GDR and GMR excitations.

B. Coupling potential for GDR excitation

Z +a(N —Z)/2
N —a(N —Z) /2

(2)

The parameter a, deduced from experiment, plays an
important role in the work of this paper. p;(r) with
i =p (i =n) is the proton (neutron) density, and Z and N
are the proton and neutron numbers of the target. A
new parameter 5 which is related to the radii, R;, of the
proton and neutron density distributions, is then intro-
duced by

6=(R„—Rp)/2 .

By imposing the condition that the integral of p„and pp
over the nuclear volume is equal to N and Z, respective-
ly, we obtained, to first order in a(N —Z)/A, that 6 is
given by

1 N —Z6=a— Ro,
3

(4)

In deriving the coupling potential, we adopt the
Goldhaber-Teller model for the GDR and follow (as is
also done in Ref. 5) basically the prescription of
Satchler. " In Ref. 11, however, it was assumed that the
central densities of the proton and neutron distributions
were the same. In the present study, we remove this re-
striction and treat the densities in a somewhat more gen-
eral way. More precisely, we introduce the parameter a
which is related to the ratio of the central densities of
the proton and neutron distributions by

with

Ro ——(R„+Rp)/2 .

It is seen from (4) that the parameter 5 can be used in-
terchangeably with a.

We point out that in the extreme cases of a =0 and 1,
we have

a=O, R„=Rp, Npp(0) =Zp„(0) (6a)

R„—Rp ——— Ro, pp(0)=p„(0) . (6b)
2 N —Z

p;(r)~p;(
~
r+g;d

~

)

1/2

XMdM Y]M
Br

4~=p;(r)+

where gz N/A and g„=———Z/A, and d~ (and dM)
stands for the spherical components (and its conjugate)
of the displacement vector d. Y&M are the spherical har-
monics. We remark here that the dipole oscillations de-
scribed by the above displacements of the centers of
mass of the proton and neutron density distributions
satisfy the requirement that the center of mass position
of the whole nucleus is kept fixed.

The coupling potential hU can be deduced from (7) by
invoking the assumption that the deformation of the op-
tical potential follows that of the density. However, to
make our discussion more transparent, we adopt the
folding model for constructing hU. The coupling poten-
tial is then obtained by folding the transition density,

Equation (6b) describes the assumption made in Ref. 11
of equal central densities.

In order to derive the coupling potential, we again fol-
low Ref. 11. Let us assume that the center of mass of
the neutrons and protons are displaced, respectively, by
(Z/A)d and ( N/A)d from—the center of mass of the
nucleus. Clearly, d is a coordinate vector that describes
the dipole oscillations. The proton and neutron densities
p;(r) (i =p and n) are then varied as
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p„(r)=
1/2

4a ~Pi

3 Brgi XM dM Y1M (8)

taken from (7), with the two-body interaction v(r, r').
We thus have

b, U=Tr f p„(r')u(r, r')dr'+(exchange) . (9)

u (r, r') =vo(r, r')+ v &(r, r')r r'
e2

+ —,'(1 —r, )(1—r', )
/r —r'/

(10)

For completeness of the formulation, we first con-
struct AU for a nucleon probe. The required AU for the
a-particle probe is then obtained by adding the contribu-
tions of the neutrons and protons in the a particle. The
nucleon-nucleon two-body interaction is given as

the center of mass, the term with Uo; in (12) vanishes
when R „=R&, i.e., in the case of (6a).

We now expand p; as a Tayler series of 6. Retaining
only the lowest order term, they can be obtained as

N —Z
p; = —,'+~;(1—a)

R p + Z BPp
pp

where ~„=1 and ~„=—1, and

po ——p„(a=O)+p~(a=O) .

(16)

(17)

[Note that p; defined by (16) satisfies the condition that
pz+p„=po for any value of a.] Inserting (16) into (8),
and substituting in (9), one finds using (10) that the cou-
pling potential for a proton projectile is given by

' 1/2
Note that the real part of the isoscalar uo (isovector u&)

interaction is negative (positive). Substituting (10) in (9)
one finds for a proton projectile that

4m.

3 ,' [Fz(r)+Ft—v(r)]+ Fc(") XM—dM Y&M,

(18)
AU~=AU~+AUc,

where the nuclear part of the coupling potential is given
by

where Fc(r) is given by (14) and

Z BU, R, O'U,
F~(r) =a +

Br 3 gr2
(19)

AU~— N QUOI

Br
Z aU0

ar F~(r) = 1— x —z»
A Br

~ BU1 Z BU1„+
A ar +

A ar
4m

3

1/2

XMdM Y1M ~ Z BU R, BU
(20)

4m.

3

with

and the Coulomb part has the form
1/2

b Uc=
A

Fc(r)XMdM—Y~M,

(12)

(13)

Here, Uo&0 (U, ~0) is the isoscalar (isovector) part of
the proton's optical potential, obtained by folding the
mass density po with the isoscalar (isovector) interaction
uo(v, ) of (10). The radii Ro and R o are now those of the
potentials Up and U1, respectively.

We now write dM as

zZe rFc(r) = — B(r —R, )+8(Rc r)2 R c
(14)

In (12) Uo (U& ) and Uo„(U&„) are the isoscalar (isovec-
tor) optical potentials due to the target protons and neu-
trons, respectively. They are obtained from

Up = p; r' Up r, r' dr'
(15)

U&;
——f p;(r')u&(r, r')dr' .

The step function 8(x) in (14) is defined by 8(x)=1 for
x &0 and 8(x)=0 for x &1, Rc is the Coulomb radius,
and z is the projectile charge (z =1 for a proton and
z =0 for a neutron).

For a neutron projectile, the coupling potential is ob-
tained from (12) with opposite sign for the second term
in (12) (with U„). Therefore, for an isospin t =0 projec-
tile, such as a deuteron or a particle, only the term with
Up; contributes to AU. For the Coulomb part we have
z =1 and 2 for a deuteron and a particle, respectively.
It should be pointed out that, due to the conservation of

dM=dp[clM+( 1) c& M] (21)

do ——(A /2pE„)' =(AA /2NZmE„)'

Inserting (21) with (22) into (18) we get that

(22)

AU"= [ptvROF&(r)+p&R OF~(r)+pcRcFc(r)](1/3)'

XXM[c~M+( —1)'+ c, M]Y,M,

for the proton projectile. Here we have

A
P~R o P&R o = PcRc-—

2N

4m%
AZ 2m, R cd

(23)

(24)

(25)

As indicated earlier, the corresponding coupling po-

where c &M (c &M ) is the creation (annihilation) operator of
the GDR phonon, while dp is the amplitude of the zero
point oscillation. This dp can be related to the energy of
the GDR phonon, E„, and the mass parameter
p=(NZ/A)m (m is the nucleon mass) as
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tential for a neutron projectile is given by (23) with
Fc —=0 and the second term (with Fz) is of the opposite
sign. Therefore, by adding the contributions of the neu-
trons and protons in the a particle we get the final form
for the coupling potential for the a-particle projectile.
This coupling potential which is used in our calculations
has the form

6U" "'=[p&RoFv(r)+ pcRcFc(r)](1/3)'~

X&~[ciM+( —)'+ c, M]YiM . (26)

TABLE I. Values of a for Zr, " Sn, and Pb. These
values were taken from Table VII of Ref. 14.

Target

116S

208Pb

0.12

0.23

0.17

+expt

0.24
0.05

0.02 0.01
0.05

~HF

0.13

0.14

0.13

The first and second terms in (26) are, respectively, the
nuclear and the Coulomb coupling terms. The nuclear
form factor, F&, is obtained from (19) with Uo being the
optical potential for the a particle, and the Coulomb
form factor Fc is obtained from (14) with z=2. The
values of Pz and Pc are given in (24) and (25).

Since 5 is normally positive, a(X —Z)/A is also posi-
tive. From (25), it is seen that /3c is also positive. We
now note that the nuclear form factor F~ given by (19)
consists of two terms, i.e., of the first and second deriva-
tives of the optical potential Uo. Since Uo is negative
with the decreasing magnitude as r increases, the first
derivative is positive definite. On the other hand, the
second derivative is positive for r &Ro, and is negative
for r & R o. Since the second derivative dominates (in
magnitude) the first derivative at large r, Fv is positive
up to a certain radius, say, r =R„and becomes negative
for r &R, . This R, may be slightly larger than Ro.
Since Fc ~0, as seen in (14), it is concluded that the sign
of F& is the same as that of Fc, once r exceeds R, . In
other words, the nuclear and Coulomb excitations inter-
fere constructively at larger r. Since the a particle is

strongly absorptive, the scattering takes place dominant-

ly at large r, and the net interference is expected to be
constructive. This is indeed the case, as will be shown in
Sec. III.

As seen in (19), F~ is proportional to a. In Ref. 5, the
value of a was taken to be —1. This choice of the sign
of Fz was incorrect. Also, various information now
available indicates that the (absolute) magnitude of a is
much smaller than 1. In Table I, we have summarized
recent information about the a value available at
present. [These values were determined from the analy-
ses of high energy proton' and pion' scattering and
from Hartree-Pock (HF) calculations. '

) The a values

given in Table I are for the targets ( Zr, " Sn, and

Pb) of the (a, a') scattering, which we are to analyze
in Sec. III. The value of a is somewhat scattered, but is

consistently smaller than 0.5. Note that the average
value of a deduced from ground state densities is as
small as 0.13. Continuum effects, related to single parti-
cle decay, may affect the transition density in a way to
slightly increase the value of o.. However, taking into
account the long range random phase approximation
(RPA) correlations, one finds only a small change in the
value of a. ' ' (See, for example, Fig. 1 of Ref. 17.)
Taking these small effects into consideration, a value for
a of 0.5 may be taken as the upper limit of a. The cal-
culations described in Sec. III were done with several
values of e. We stress that our conclusion does not
change if we adopt the value of o.'= 1.

C. Coupling potential for GMR excitation

For the GMR cross section calculation, we used the

coupling potential given in Ref. 15. We quote here only

the final expression, which is

&U=[P~FJv (r)+PcFc(r)](co+co ) Yoo, (27)

where

aU,
F~(r) =3UO+r

Br
(28)

2

Fc(")=— —(Rc —r )0(Rc —r),zZe

R C

(29)

and
i /2

20m A 1

2IRO2A E
(30)

In the above, we included the Coulomb coupling term
which interferes destructively with the nuclear coupling
term. It is, however, unimportant for strongly absorp-
tive projectiles since it is nonvanishing only for r & Rc.

III. NUMERICAL CALCULATIONS

The numerical calculations were performed by using
the coupled-channel code JPWKB. In the present calcu-
lations, we took into account radial distance up to 600
fm, and also partial waves up to 250. Our calculations
are therefore very accurate down to a scattering angle of
1, which is of particular importance for the GMR. In
comparison, according to Peterson, his DWBA calcula-
tion could be in error by as much as 50/o at 5. The
coupling potentials of (26) and (27), with 100% of the
corresponding energy weighted sum rule, were used in
our calculations for the GDR and the GMR, respective-
ly. The optical model potentials used in the calculations
are summarized in Table II.

The calculated GDR cross sections (o D ") with
+=1.0, 0.0, and —1.0 are presented in Figs. 1 —3 by
solid, dashed-dotted, and dashed lines, respectively. The
dashed-dotted lines with a=0.0 are for pure Coulomb
excitation as there is no nuclear contribution. The con-
tribution due to the pure nuclear excitation, with +=1,
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TABLE II. Optical potential parameters used in the calculation. These parameters were taken
from Refs. 1 —4.

Target El,b (MeV) V (MeV) r (fm) a (fm) W (MeV) ri (fm) ai (fm) r~ (fm)

90Zr
116S

208Pb

96
129
96

129
172
218

45.7
60.8
89.3
89.3

155.0
119.9

1.50
1.40
1.35
1.35
1.282
1.26

0.70
0.73
0.71
0.71
0.677
0.74

27.7
40.9
52.7
52.7
23.26
21.3

1.50
1.40
1 ~ 35
1.35
1.478
1.45

0.70
0.73
0.71
0.71
0.733
0.80

1.30
1.35
1.30
1.30
1.30
1.30

are presented by the dotted lines in Figs. 1 and 2. It is
seen that, as expected, the nuclear and Coulomb excita-
tions interfere constructively for the case of o;=1.0, but
destructively for the case of a= —1.0. The destructive
interference (a= —1.0) is incorrect, but we present the
results for the purpose of comparison with previous cal-
culations.

At the lower incident energy, E =96 MeV, o.D" is
dominated by nuclear excitation. As E increases, both
contributions increase. Coulomb excitation, however,
increases faster than does nuclear excitation, and at the
highest energy considered (E =218 MeV), the Coulomb
excitation is larger (see Fig. 3).

Because of the constructive interference, o.D" with
a=1 is larger than is o.a" with a=0, and era" with
1 ~a &0 should lie between the two curves with +=0
and 1. It should then be noted that o.D", even with
a= 1 (which is twice the upper limit of 0.5 for a reason-
able a value), is much smaller (for E =96 MeV) than is
o'" '. Therefore, at this lower E, we may safely ignore
the contribution from GDR in extracting the strength of
GMR. However, o.D" increases with increased E, and
at the higher energies of E =178 and 218 MeV, the
o.D"' with a= I exceeds o'""' at some angles where o'""'
is small. Except at these angles, however, o.a" is still
much smaller than o'"p'. In any case, for a more reason-
able (smaller) a, crD" will be consistently smaller than
o'" '. It should also be noted that for o.=1, the angular
distribution of o.z" is consistently out of phase with

expt
lO'

lO

10

l l

Zr (a, a')
E~= 96 Mev

Gale =I

a=oCole
0
Calc------- CT a= —

l
D

~C a Ic
D

I I

116sn { I)
Ea=I29 MeV

Calc a=l

a=oC ale
D

~Calc
0

IO-' =
loo

b

lo 2
0

I l

IO

8, ~ {deg)
l5

IO-'

FIG. 1. Calculated GDR cross section for the Zr(a, a')
with E =96 MeV, exhausting 100% of the energy weighted
sum rule (solid curve). The dashed-dotted line is for pure
Coulomb excitation and the dotted line is for pure nuclear ex-
citation. Also shown, for comparison, the result for a destruc-
tive interference (dashed curve). The data are for the GMR
with E„=16.2 MeV, taken from Ref. 2.

Io 0
t l

lo
8c~ (deg)

l

l5

FIG. 2. Same as Fig. 1 for " Sn(a, a') with E =129 MeV.
The data are for the GMR with E„=15.6 MeV, taken from
Ref. 2.
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IO2

IOI =

I
I

I
I

~o~ Pb (~, (y')

Cole
D

(7 ''Q=-I
D

(/)

E

IO

Ioi =

I I

Zr (a, a'}
Ea=96 MeV

Ca ic
M D

IOO

Io ';
IO2

IOi

ir
/

I
I

L

LI

E l27 M

IO-i =

IO 0 IO
8 (deg)

l5

IOO

E

b

lo~ =

FIG-. 4. Calculated, with 100% of the corresponding energy
weighted sum rule, and experimental GMR cross section for
the Zr(a, e') with E =96 MeV. The dashed-dotted curve is

for the GMR with E =16.2 MeV, and the dashed curve is for
the GDR with constructive Coulomb interference and u =0.5.
Their sum, the solid curve, agrees nicely with the data, taken

from Ref. 2.

IOi '"Sn(a, a')
Ea=l29 MeV

IOO

Io

IOi

IO~

E

Ioo

IO-' =

IO ~
0

I

5 lo
8, ~ (deg}

I

l5 IO 0
I

IO

8, (deg)

FIG. 3. Same as Fig. 1 for Pb(o. ,a') for various projectile
energies. The corresponding data are for the GMR with
E = 13.7 MeV, taken from Refs. 1, 3, and 4.

FIG. 5. Same as Fig. 4 for " Sn(a, a') with E =129 MeV.
The data are for the GMR with E =15.6 MeV, taken from
Ref. 2.
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IO 2

IOI =

IOO =

IO

IOI

208Pb(a u')
Cole

M+0

Cole—-—-- 0
M

C ale

r' V

J

In Figs. 4—6, we present o.D"' with a=0. 5. There, we
also presented crM~', the GMR cross section (assuming
100%%uo of the energy weighted sum rule strength). In
these figures, we further present the sum
o.M'+D ——o.M" +O.D'. As seen, oD" with a=0. 5 is gen-
erally much smaller than is o'""', and thus we have
o.M+D-o~. Noting that o.D' given in Figs. 4—6 uses
the highest plausible e value and, hence, is an upper lim-
it, we may conclude that the contributions from the
GDR are indeed small and thus can be neglected, at
least for the energies in the present study below 218
MeV. We note, however, that the contributions are not
completely negligible for higher E . The effects may be-
come more marked if a higher E is used.

It is apparent in Figs. 4—6 that the data are fit rather
nicely by the o M+D (=o M), both in magnitude and an-
gular distribution. We thus reconfirm our previous con-
clusion that these (a, a') data represent excitation of the
GMR, rather than the GDR. We point out that our cal-
culations do not take into account the finite solid angle
of the detector system. It is clear from Figs. 4—6 that
the fit to the data would be even better if the effect of
angular averaging were included.

IOO
IV. FINAL REMARKS

E
IO

D
b

Io' =

IOO

IO2

IOI

IOO

Io-I =

IO 2
0

I

IO

e, ~ (deg)

I

l5

FIG. 6. Same as Fig. 4 for 'Pb(a, a') for various projectile
energies. The corresponding data are for the CxMR with
E„=13.7 MeV, taken from Refs. 1, 3, and 4.

Coupled-channel calculations of GDR cross sections
were performed including both nuclear and Coulomb ex-
citations. The results showed that in the energy range
considered (E =96—218 MeV), the GDR cross sections
are not very important, even when the upper limit of
a =0.5 was used, and can rather safely be ignored in ex-
tracting the monopole strengths. The calculated GDR
cross sections increase with increasing E, however.
Therefore, at very high energies, its effect may not be
negligible.

The above conclusion, which is consistent with those
of Refs. 1 and 5, contradicts that drawn by Peterson.
To pin down the precise origin of these differences is not
possible because Peterson has not given the detailed
form of the coupling potential he used, such as those we

gave in (26), along with (14), (19), (24), and (25). Never-
theless, from what is included in Ref. 6, we point out the
following features of Peterson's calculation which may
lead to these differences. We first note that his simple
model ansatz of a superposition of two diffractive pat-
terns, associated with the different radii of the proton
and neutron density distributions, is not valid. Due to
the strong absorption of the a-particle (at the surface)
one expects only one (L =1) pattern which is associated
with R„. Therefore, we consider in the following his
DWBA calculation. In doing this, we refer to the re-
vised Figs. 1 and 2 of Peterson s work appearing in his
errata.

(i) The transition density p„(r) should conserve the (a)
particle number, Jp„(r)dr=0, and (b) center of mass,

J p„(r)r dr=0. Due to the angular dependence (Y~M),

the corresponding transition potential fulfills require-
ment (a). By consistency, the corresponding transition
potential should fulfill requirement (b). Peterson's ansatz
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BU Z BU
b.U~ /3————R

p +—R„p Brp 3 " Br„
(31)

for the nuclear coupling potential to the GDR violates,
in general, the condition that the center of mass position
should be preserved. His coupling potential [our Eq.
(31)] satisfies this condition only when

1 N —Z
AR =R —R =— Rn p 2 ~ 0

i.e., when a = —,
' (a value much larger than can be

justified experimentally). For b,R =0, the coupling po-
tential should vanish, but his, in fact, does not.

(ii) The relative sign between the nuclear and the
Coulomb coupling potentials shown in Peterson's Fig. 2
for the GDR produces a destructive interference. (It
should be constructive. ) It is seen from our calculations
with a= —1.0 that in this case the oscillations of the an-
gular distribution are in phase with the data.

(iii) It is possible that the agreement between the data
for " Sn and the solid curve of Fig. 1(a) of Peterson's
work is due to a too large nuclear coupling potential
with a destructive interference. The nuclear form factor
with the value of hR =0.49 fm used in Peterson's calcu-
lation of Fig. 1(a) does not violate the conservation of

the center of mass. It corresponds to the form factor of
Eq. (19) with a= —', . However, the value of P used by
Peterson is much larger than that given by the
Goldhaber-Teller model [see Eqs. (19), (23), and (24)]. It
produces an order of magnitude enhancement in the
cross section in his calculation. With such a strong nu-
clear coupling potential, along with a destructive in-
terference, it is possible to At the data. We also add that
if one adopts the Jensen-Steinwedel model" for the
GDR, one obtains no nuclear coupling potential for the
o,-particle probe.

(iv) Peterson's Fig. 1(b) shows calculation for bR =0
which violates the conservation of the center of mass.
The nuclear excitation (which should, in fact, vanish) in-

terferes constructively with the Coulomb excitation.
This interference and the too large P explain the large
calculated cross section with out of phase oscillations.

In summary we conclude that according to the calcu-
lations presented in this work, the n-particle excitation
of the GDR is rather small compared to the excitation
of the GMR (in the energy region considered) and can
be safely neglected in determining the strength of the gi-
ant monopole resonance.
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