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Reversing entanglement change by a weak measurement
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Entanglement of a system changes due to interactions with the environment. A typical type of interaction is
amplitude damping. If we add a detector to monitor the environment and only select the no-damping outcome, this
amplitude damping is modified into a weak measurement. Here we show that the entanglement change of a two-
qubit state due to amplitude damping or weak measurement can be probabilistically reversed. For the amplitude-
damping case, the entanglement partially recovers under most conditions. For the weak-measurement case, the
recovery of the initial entangled state is exact. The reversal procedure involves another weak measurement,
preceded and followed by bit flips applied to both qubits. We propose a linear optics scheme for the experimental

demonstration of these procedures.
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I. INTRODUCTION

Quantum entanglement is the key resource for quantum
information processing. However, entanglement is usually
affected by the interaction with the environment, so it is very
important to preserve the entanglement against environmental
noise. Several methods have been suggested for quantum state
protection. For example, quantum error correcting codes use
auxiliary qubits to store information, assuming each qubit
interacts with its environment independently [1]. After interac-
tion a multiqubit measurement shows which error occurred and
a reversal procedure can be applied correspondingly. Another
strategy is to have qubits symmetrically coupled with the same
environment [2]. There is then a linear subspace decoupled
from the environment and any state in that subspace is deco-
herence free. The third method is to use a controlled series of
pulses with a repetition interval comparable to the environment
memory time, which washes out the decoherence effect [3].

Recently, it was pointed out that a weak measurement,
together with bit flips, protects quantum states of a single-
partite system [4]. For weak measurements [5], the outcome
cannot determine the state of the measured system precisely
and therefore does not totally collapse the state of the system.
If the full information of the initial state has been passed over to
the final state, then it should be possible in principle to recover
the initial state by implementing a sequence of operations.
For deterministic reversible measurements, the initial state
lies in a certain subspace and the measurement provides no
information about it [6,7]. In this case, it is always possible to
reverse the dynamics and recover the initial state. On the other
hand, for probabilistically reversible measurements [8—15],
only certain outcomes of the measurement keep the full
information of the initial state and are possible to reverse.
Probabilistic reversal with a weak measurement has already
been demonstrated on a superconducting phase qubit [14], as
well as on a photonic qubit [16].

In this paper, we propose using a weak measurement to
reverse the entanglement change of two qubits. The initially
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entangled qubits go through separate paths and interact with
their own individual and independent environments, gradually
changing their entanglement. When we decide to recover
the entanglement, we apply first a bit-flipping operation to
both qubits, then perform a null-result weak measurement,
and finally flip the qubits back. We specifically consider the
entanglement change due to two types of system-environment
interactions. One is amplitude damping, which always lowers
the entanglement. In this case the reversal procedure partially
recovers the entanglement under most conditions. The other
is amplitude damping with monitoring of the environment,
which is essentially a weak measurement. The entanglement
can be either increased or decreased, but the reversal procedure
restores the initial entangled state and the entanglement
exactly. This is allowed, even though all these operations are
local operations, due to the probabilistic nature of the method.

This paper is organized as follows: First we show the state
maps of a single qubit for the two interaction types. Then
in each case we discuss the entanglement dynamics of two
qubits, followed by the reversal analysis and the conditions
for successful recovery. Finally, we propose a linear optical
scheme for the implementation of our procedure.

II. THEORY

A. State map for a single qubit

The two main operations in our scheme are amplitude
damping and weak measurement. Here we discuss their state
maps in the single-qubit case for better understanding. Taking
atwo-level atom as an example, if the environment is a vacuum
with zero temperature, amplitude damping corresponds to the
following map [17]:

10)510)g — 10)510) £,

11)s10)e — V1 = pll)sl0)e + /Pl0)sIL)E.

where p €[0,1] is the probability of losing the system
excitation into the environment. Within the Weisskopf-Wigner
approximation, the probability 1 — p of finding the atom in
the excited state decreases exponentially with time. We do not

(1)
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display the time dependence explicitly both for simplicity and
generality. Of course, if there is no initial excitation in both the
system and the environment, the combined state of the system
will not evolve.

A null-result weak measurement is different from amplitude
damping, in the sense that we add an ideal detector to monitor
the environment. Whenever there is an excitation in the
environment we discard the result. This postselection removes
the ,/p10)s|1) g term from the state map. The resulting map is

10)s10) e — 10)510) £,

IDs0)e — 1= pl)slO)E,

where in the second line the state after mapping has a norm
less than 1, corresponding to the finite success probability for
the weak measurement. When we trace out the environment,
the system maps as

2

liys — (1 — p)/?i)s,

Using these relations we now consider two-qubit states.

@ =0,1). 3)

B. Weak measurement and its reversal

In this subsection we analyze the entanglement change due
to a weak measurement and its reversal. For two entangled
qubits having independent weak measurements as in Eq. (3),
the density matrix evolves as

> pijulifystkils = Y (1= )01k,
ijkl ijkl

“)

where i, j, k, [ =0,1. The entanglement can increase or
decrease during this process. This is illustrated by Salles
et al. [18] with an example of an initial pure state «|00) +
8|11). After weak measurements, the normalized state is
[|00) + (1 — p)8[11)1/y/|ee|? + (1 — p)|8]2, with a raised
|00) weight and a lowered |11) weight. If initially || > |§],
after weak measurements the two weights are more uneven,
which decreases the entanglement. But if initially |o| < |§],
after weak measurements the two weights get closer and the
entanglement increases with p. At p =1 — |«|/|§]|, the two
components have equal weights, which leads to a maximally
entangled state. For larger p, the |00) component weighs more

>+ plBI* + ply > + p*18]?
(1=p)'2Ba* + p(1 — p)'/28y*
(1= p)' Py + p(1 - p)'/25p*

(1—p)éa*

Calculating the eigenvalues of pq(0y, ® 0y)p) (0, ® 0,) and
putting them in a decreasing order, we obtain the concurrence

(1=p)'Pap*+ p(1 = p)'Pys* (1= p)'?ay*+ p(1 - p)'/*ps*
(1= p)IBI*+ p(1 = p)ls|*
(I=p)yB*
(1— p)¥25p*
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than the |11) component, so the entanglement starts decreasing
with p.

To recover the entanglement change, we apply the following
procedure [4]: for each qubit, first a bit flip to swap the states
|0)s — |1)s, then another null-result weak measurement with
the same p, and finally another bit flip back. The density matrix
evolves as

D (= p) DR i) (Kl s
ijkl
— > (= p) IR o1 — i1 = j)s(1— k1 =g
ijkl
= Y A= pPpijull =il — j)s{l —k,1 =15
ijkl
— > (1= pYpijulif)stkl]s. 5)
ijki
where the three arrows correspond to bit flip, weak mea-
surement, and bit flip. Due to the two bit flips, the reversal
procedure increases the weight of high-excitation components.
After normalization we recover the exact initial state, and
the common factor of all elements (1 — p)2 is the success

probability for the whole process. Naturally the entanglement
is also recovered to the initial value.

C. Amplitude damping and its reversal

Here we analyze the alternative situation. For two entangled
qubits having independent amplitude damping, each qubit
undergoes the dynamics defined by Eq. (1). If initially the
system is in a general pure state «|00)s + 8|01)s + y|10)s +
8]/11)g, and both environments are in the ground state, the
combined state evolves as

(@[00)s + BlO1)s + ¥ [10)s + 8]11)5)[00) £
— ]00)5]00) g + By/1 — pl01)5]00) £ + B/Pl00)5]01) £
+yy/1 = pl10)5100) £ + ¥./P00)s]10) ¢
+5(1 — p)I11)5]00) g + 8/(1 — p)p|10)5/01)
+8v/(1 = p)pl01)s|10) £ + 8p|00)s|11) . 6)

In general, from a system-environment combined state |{) s,
we can obtain the density matrix of the system by tracing
out the environment, ps = Trg(|¥)se(¥|se). Therefore the
system after damping is described by

(1 — p)ad*
(1—p)yr2ps
(1= p)*2ys*
(1 p)2I8P2

(7

(I-pBy*
(1=plyl*+pd = p)s?
(1= p)¥25y*

C = max{0,A}, where A = /A| — /A2 — /A3 — /24 [19].

For the initial state, C = 2|aé — By|. After damping it
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drops to
Cy(p) = max[0,2(1 — p)(lad — By| — plsI)].  (8)

which is less than the initial value and decreases with p, so
the system entanglement gets smaller due to the amplitude
damping. This result was obtained earlier in [20] by explicitly
solving the density matrix equations. For |a8 — By| < |8|%,

la|? + plBI* + ply|* + p*I8I?
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the entanglement vanishes at p = |(@8 — By)/8%|, before the
excitation in the qubit system damps out. This is the so-called
entanglement sudden death (ESD) [21].

To recover the entanglement, we again apply the re-
versal procedure as in Eq. (5). The final density matrix
reads:

aff* + pyd* ay*+ pBs*t  ad*

- Bo* + pdy” B> + pléI? By* ps*

pr = [+ p(BI° + Iy > +2181%) + p*181°17! * " * * ®)
ya* + psp vB ly >+ plol®> ys
Sa* 36" sy* 1817

The success probability for the reversal is

P(p) = [1+ p(BI* + Iy > + 2181*) + p*18111 — p)*.
(10)

Itisclearthat P.(p) > (1 — p)2 for an arbitrary initial state.
Therefore the success probability is always higher than the
previous case in Sec. II B, but the reversal is not exact.

The concurrence after reversal is

2(|las — By | — plsI®)
, .an
14+ p(1 + [8> — |a|?) + p?|8]?

A careful comparison with the damped concurrence shows
several interesting points:

C,(p) = max |:0

0.3

Concurrence

Concurrence

00 L L L L

FIG. 1. (Color online) Concurrence as a function of p.
(a) « =0.70, B = 0.40, y = 0.40, § = 0.44. For || > |§]|, the re-
versed concurrence C, is always higher than the damped concurrence
C,. This figure also serves as an example of ESD. Both concurrences
go to 0 beyond the ESD point. (b) & = 0.05, 8 = —0.60, y = 0.60,
8 = 0.53. For || < |4], the reversed concurrence is higher than the
damped concurrence only for large p. This figure also serves as
an example without ESD. When p — 1, C; goes to 0 while C, is
finite.

(i) C, also bears the same factor (Jad — By| — pl8|?),
which means that at or beyond the ESD point, the resulting
state is also separable and no entanglement is recovered. This
is reasonable because all operations are local, and therefore
they cannot create entanglement for two distant qubits in a
separable state.

(ii) If there is no ESD, the damped concurrence vanishes in
the limit p — 1, while the reversed concurrence approaches
a finite value. The price we pay is that the probability for
successful recovery is vanishingly small in this limit.

(iii) For an initial state with |«| > |§], the reversed con-
currence is always higher than the damped one, as shown in
Fig. 1(a). Initially, the lower levels weigh more and damping
further increases them; after the reversal the upper levels and
the lower levels become more even and the entanglement
partially recovers.

(iv) For an initial state with || < |§], the reversed concur-
rence is higher than the damped concurrence only for

p > VB + Iy 2+ 315122 — 4]82
—(BP + lyI* + 1819)1/2181*. (12)

An example is shown in Fig. 1(b).

With this general formalism at hand, we discuss two
special cases. If the initial state is «|00) + §|11), the damped
concurrence is 2(1 — p)|8|(Ja| — p|d8]) and the reversed con-
currence is 2|8|(Ja| — pl8])/(1 +2p|8|> + p?|8]?). For pa-
rameters || > |§|, the entanglement always improves after
the previous procedure. If the initial state is $|01) 4 y|10),
the damped concurrence is 2(1 — p)|By| and the reversed
concurrence is 2|8y |/(1 + p). Therefore, the entanglement
is always partially recovered in this case. In both cases,
entanglement recovers as long as the initial state does not
allow entanglement sudden death.

If the initial state is a mixed state, all the density matrix
elements are variables. There is no explicit expression for the
concurrence in this case and we cannot, in general, tell whether
the entanglement is recovered.

III. IMPLEMENTATION WITH LINEAR OPTICS

Both the amplitude damping and the weak measurement can
be implemented in linear optics, using the photon polarization
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FIG. 2. The linear optics scheme. The entangled photon pair is
generated by the crystals. After the interferometer, PBS2 recombines
the two outcome paths incoherently to obtain the damped state, or
one can use only path 0 to achieve a state having weak measurement.
HWP3, BP, and HWP4 compose the reversal process, corresponding
to the flip, weak measurement, flip. Finally, the state is measured by
quantum tomography.

as a qubit. Here we propose an experimental setup as shown
in Fig. 2. The polarization-entangled photon pairs can be
produced by two adjacent type-I crystals [22]. The generated
state is

lv) = la||HH) + °|BlIVV), (13)

where H means horizontal polarization and V means vertical
polarization. Both the coefficients |«|,|8| and the relative
phase § can be controlled by a half-wave plate (HWP) and
a tilted quarter-wave plate (QWP) before the crystals. One can
also produce photons entangled with orthogonal polarizations:

lY) = (IHV) + € |VH))/V2, (14)

by rotating the polarization of one of the photons produced
by this process, or by type-Il phase matching [23], where
the down-converted photons are emitted to two cones with
different polarizations.

The two photonic qubits are then spatially separated and
each goes through a Sagnac-like interferometer that imple-
ments the amplitude damping or the weak measurement [24].
We assign the bit value O to the H polarization and 1 to the
V polarization, and the two outcome paths 0 and 1 represent the
number of excitations in the final environment. The incoming
photon first encounters a polarization beam splitter (PBS).
If the photon has H polarization, it is transmitted through
the PBS. After being reflected by the mirrors and going
through a 0-deg HWP, HWPO, for optical length matching,
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this photon is transmitted through the PBS again and leaves the
interferometer through the outcome path 0. The whole process
corresponds to the state map |0)s|0)g — |0)s|0)g. On the
other hand, if the photon has V polarization, it is reflected by
the PBS and goes along a spatially separated path. On this path
HWP1 rotates the polarization to cos(26)|V) + sin(20)|H).
After hitting the PBS again, only the |V) component is
reflected to the outcome path 0, while the |H) component
is transmitted along another outcome path 1. They corre-
spond to the two result terms of the state map [1)s|0)g —
V1 =pl)s|0)g + /pl0)sI1) g, with p = sin(26)2. We can
use a QWP, a HWP, and a PBS to incoherently recombine
the two outcome paths and thus obtain the amplitude-damped
state. Using the same interferometer setup we can realize weak
measurements as well, with the only difference that now we
just collect photons from the outcome path 0. This is equivalent
to monitoring the absence of environmental excitation in a
weak measurement.

For the reversal procedure we first use a HWP to flip the
polarizations [16]. Then a set of Brewster-angle glass plates
(BPs) reflects the V-polarized photons out with a probability p.
The |H) state passes the BPs without any loss, while the
|V) state becomes /1 — p|V) after passing through. This
corresponds to the state map of weak measurement described
by Eq. (3). Finally, another HWP flips the polarization
back. The resulting concurrence is determined by quantum
tomography (see [24] for details).

We note that previously a BP filter has also been used for
entanglement distillation [25]. Here we are more interested in
recovering the entanglement toward the initial value instead
of just increasing it. In some cases the reversal procedure
decreases the entanglement, as demonstrated by the example
in Sec. II B.

IV. CONCLUSION

In conclusion, we propose a procedure to reverse the
entanglement change due to weak measurement or amplitude
damping of a two-qubit state and propose a linear optics
scheme for implementation. In the weak-measurement case,
the initial entangled state and the entanglement recover ex-
actly. In the amplitude-damping case, the concurrence always
partially recovers if initially the |00) weight is larger than the
|11) weight. Otherwise the damping probability p has to be
sufficiently large to achieve the entanglement recovery. If p
goes beyond the ESD point, there is no recovery at all because
local operations cannot create entanglement. Our procedure
works by changing the weight of different terms in the state
and filtering the entanglement toward the initial value.
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