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We investigate the time evolution of entanglement of various entangled states of a two-qubit system exposed
to either thermal or squeezed reservoirs. We show that, except for the vacuum reservoir, the sudden-death of
entanglement always exists in the thermal and squeezed reservoirs. We present explicit expression for the
sudden-death time of entanglement for various entangled states. We find that the sudden-death of entanglement
results from the portion of the double excitation component in the initial entangled state. In this sense, the
maximally entangled states of a two-qubit system that do not have the double excitation component is more
robust against the quantum fluctuations of the vacuum reservoir.
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I. INTRODUCTION

The state superposition principle of quantum theory al-
lows a quantum system to be in a linear and coherent super-
position of all possible states. This results in the coherent
correlations of different states in a superposition leading to
quantum states that are fundamentally different from classi-
cal correlations. In a one-party quantum system, quantum
coherence leads to many novel phenomena such as lasing
without inversion �1�, enhancement of refractive index �2�,
electromagnetically induced transparency �3�, correlated
emission laser �4�. A multiparty quantum system, in addition
to local quantum coherence that exists within each of sub-
systems, may have nonlocal or distributed quantum coher-
ence that exists among several distinct subsystems. This non-
local quantum correlation or quantum entanglement plays a
crucial role in quantum information processing such as quan-
tum teleportation �5�, quantum dense coding �6�, quantum
cryptography �7�, and quantum computing �8�.

Quantum entanglement is, however, too fragile to play a
real role in the real world because the inevitable interaction
of the quantum systems with their surrounding environments
leads to decoherence effects. On the other hand, it is essential
to maintain quantum entanglement for a longer time for
many applications of interest. In order to achieve this objec-
tive, a deep understanding of the decoherence mechanism is
desirable. In recent years, several investigations have fo-
cused on this subject �9–14�. In particular, Yu and Eberly
�11,12� showed that the dynamics of the quantum entangle-
ment between two qubits interacting independently with ei-
ther quantum noise or classical noise displays a completely
different behavior from the dynamics of the local coherence.
Instead of the exponential decay in time of the local coher-
ence, quantum entanglement may disappear within a finite
time in the dynamical evolution. This phenomenon is called
“entanglement sudden death” �11�. The sudden death of en-
tanglement of a two-qubit system under the influence of in-
dependent environments has been experimentally demon-
strated in an all-optical setup �14�.

In this paper, we consider a two-qubit system interacting
with two independent thermal or squeezed environments. For

a general class of two-qubit entangled states, we obtain an
explicit expression of the sudden death time. We find that the
appearance of entanglement sudden death strongly depends
on the initial entangled state and the environment.

II. MODEL

We consider two two-level atoms 1 and 2 that present a
two-qubit system and interact independently with their local
environments, as schematically shown in Fig. 1. There is no
direct interaction between the atoms. The correlation be-
tween the atoms results only from an initial quantum en-
tanglement between them.

In the interaction picture, the Hamiltonian of the atom-
field coupled system has the form ��=1�

H = �
k

�gk
�1�ei��−�k�t�a1��b1�ak + H.c.�

+ �
k

�gk
�2�ei��−�k�t�a2��b2�bk + H.c.� , �1�

where �bi� and �ai� are the ground and excited states of the
atom i, � is the frequency separation between the atomic
states, ak�bk� is the annihilation operator for the photons of
the reservoir surrounding atom 1�2� in mode k, �k is the
frequency of the mode k, and gk

�i� is the coupling constant of
the interaction between atom i and the local reservoir. When
writing the Hamiltonian �1�, we assume that the rotating-
wave approximation is valid. The same model has been em-
ployed by Yu and Eberly �11,12�. In their investigation, the
local reservoirs are in the vacuum state. In the present inves-

FIG. 1. �Color online� Two two-level atoms, initially prepared in
an entangled state, have no directional interaction with each other
but independently interact with their local reservoirs.
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tigation, we consider two cases where the local reservoirs are
in thermal and squeezed vacuum states. We find that the
thermal and the squeezed reservoir always lead to the
sudden-death of entanglement irrespective of the initial en-
tangled state of the atoms.

III. SUDDEN-DEATH OF ENTANGLEMENT
IN THERMAL RESERVOIR

In this section, we consider the dynamics of entanglement
of the atoms in a thermal reservoir. According to the general
quantum reservoir theory �15�, with the Hamiltonian �1�, we
can derive the following equation of motion for the reduced
density matrix of the atoms interacting with their local ther-
mal reservoirs of mean thermal photon numbers m and n:

d�

dt
= −

1

2
�1�m + 1���+

1�−
1� − 2�−

1��+
1 + ��+

1�−
1�

−
1

2
�1m��−

1�+
1� − 2�+

1��−
1 + ��−

1�+
1�

−
1

2
�2�n + 1���+

2�−
2� − 2�−

2��+
2 + ��+

2�−
2�

−
1

2
�2n��−

2�+
2� − 2�+

2��−
2 + ��−

2�+
2� , �2�

where �i is the spontaneous emission rate of atom i, and �±
i

are the raising ��� and lowering ��� operators of atom i,
defined as �+

i = �ai��bi� and �−
i = �bi��ai�. When deriving Eq.

�2�, we assume that the interaction between the atoms and
the reservoirs is weak and there is no back reaction effect of
the atoms on the reservoirs. It means that the reservoirs are at

all times in the initial uncorrelated thermal equilibrium mix-
ture of photon number states. Here, we also assume that the
correlation time between the atoms and the reservoirs is
much shorter than the characteristic time of the dynamic evo-
lution of the atoms such as spontaneous emission life and
entanglement sudden-death time so that the Markov approxi-
mation is valid.

The solution of Eq. �2� depends on the initial state of the
atoms. We note that, for a class of the initial states that will
be considered below, the solution of Eq. �2� has the matrix
form in the representation spanned by two-qubit product
states �1�= �a1 ,a2� , �2�= �a1 ,b2� , �3�= �b1 ,a2� , �4�= �b1 ,b2�

� =	
�11 0 0 �14

0 �22 �23 0

0 �32 �33 0

�41 0 0 �44


 . �3�

A measure of entanglement shared by both the atoms is
given by concurrence �16�. In order to calculate the concur-
rence, we first consider the matrix

M = ���Y
1

� �Y
2��*��Y

1
� �Y

2� , �4�

where

�Y
1

� �Y
2 =	

0 0 0 − 1

0 0 1 0

0 1 0 0

− 1 0 0 0

 . �5�

In the representation under consideration �Eq. �3��, the ma-
trix M has the explicit form

M =	
�14�41 + �11�44 0 0 2�11�14

0 �23�32 + �22�33 2�22�23 0

0 2�32�33 �23�32 + �22�33 0

2�44�41 0 0 �14�41 + �11�44


 . �6�

Eigenvalues of the matrix �6� are easily found to be

	1 = ���22�33 + ��23�32�2,

	2 = ���22�33 − ��23�32�2,

	3 = ���11�44 + ��14�41�2,

	4 = ���11�44 − ��14�41�2. �7�

In terms of these eigenvalues, the concurrence can be ex-
pressed as

C = Max�0,2���23�32 − ��11�44�,2���14�41 − ��22�33� .

�8�

In the following, we use this formalism to investigate the
dynamics of entanglement for several different initial cases.

�1� Consider the initial state ��0�= �1−a���a1 ,b2�
+ �b1 ,a2����a1 ,b2�+ �b1 ,a2�� /2+a�a1 ,a2��a1 ,a2� �0
a�1�.
In this state, the maximally entangled state ��a1 ,b2�
+ �b1 ,a2�� /�2 is mixed with the excited state �a1 ,a2�. For this
initial state, the solution of Eq. �2� is given by Eq. �A2�.

First let us consider the simple case of the standard
vacuum reservoir, i.e., n=m=0. For simplicity sake, we as-
sume �1=�2=�. From Eq. �A2�, we obtain the eigenvalues
of the resulting matrix M

IKRAM, LI, AND ZUBAIRY PHYSICAL REVIEW A 75, 062336 �2007�

062336-2



	1 = ��1 − ae−�t�e−�t�2,

	2 = �a�1 − e−�t�e−�t�2,

	3 = 	4 = a�1 − �a + 1�e−�t + ae−2�t�e−2�t. �9�

According to the concurrence formulation

C = Max�0,�	1 − �	2 − 2�	3 , �10�

we find that the disentanglement process lasts for an infinite
time period when 0
a
3−2�2. However, there exists the
sudden-death phenomenon when 3−2�2�a
1. The
sudden-death time is given by

td =
1

�
ln

2a

�1 + a� − �2�1 − a�
. �11�

In Fig. 2, the time evolution of the concurrence for various
values of the parameter a is shown.

Instead of mixing the excited state �e1 ,e2�, we may mix
the ground state �g1 ,g2� with the maximally entangled state.
In that case, we find that the sudden-death of entanglement
never happens. Thus the spontaneous emission of the initial
portion of the double excitation is responsible for the
sudden-death entanglement. From Eq. �11�, we also see that
the larger the portion of the double excitation in the initial
state, the shorter the death time is.

�2� Consider the initial state ��0�=a��a1 ,a2�
+ �b1 ,b2����a1 ,a2�+ �b1 ,b2�� /4+ �2−a��a1 ,a2��a1 ,a2� /2 �0�a

2�. In this state, the maximally entangled state ��a1 ,a2�
+ �b1 ,b2�� /�2 is mixed with the double excited state �a1 ,a2�.
Here, unlike the state considered in the previous example,
the maximally entangled state itself contains the double ex-
citation component. For this initial state, the solution of Eq.
�2� is given by Eq. �A3�.

For the case n=m=0 and �1=�2=�, we obtain the eigen-
values of the matrix M

	1 = 	2 = ��1 −
a

4
��1 − e−�t�e−�t�2

,

	3 = ���1 −
a

4
��1 − 2�1 −

a

4
�e−�t + �1 −

a

4
�e−2�t�

+
a

4
e−�t�2

,

	4 = ���1 −
a

4
��1 − 2�1 −

a

4
�e−�t + �1 −

a

4
�e−2�t�

−
a

4
e−�t�2

, �12�

and the concurrence

C = �a − 2 + �2 −
a

2
�e−�t�e−�t. �13�

From Eq. �13�, we see that the entanglement can survive for
an infinite time period only when a=2. The sudden-death
always happens when 0
a�2. The sudden death time is
given by

td =
1

�
ln

a − 4

2�a − 2�
. �14�

The time evolution of the concurrence is shown in Fig. 3.
This example has two interesting features. One is that

when a=2 the entanglement can last for an infinite period in
spite of the existence of the double excitation component in
the ideal entangled state. Another is that the asymptotical
behavior of entanglement in time is immediately destroyed
no matter how small amount of additional double excitation
component is mixed in the ideal entangled state. In this
sense, the entangled state ��a1 ,a2�+ �b1 ,b2�� /�2 is more frag-

FIG. 2. �Color online� The time evolution of the concurrence in
the vacuum reservoir when the atom initially in the state
�1−a���a1 ,b2�+ �b1 ,a2����a1 ,b2�+ �b1 ,a2�� /2+a�a1 ,a2��a1 ,a2�.

FIG. 3. �Color online� The time evolution of the concurrence
for various values of the parameter a when the atoms
initially in the state a��a1 ,a2�+ �b1 ,b2����a1 ,a2�+ �b1 ,b2�� /4
+ �2−a��a1 ,a2��a1 ,a2� /2.
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ile than the entangled state ��a1 ,b2�+ �b1 ,a2�� /�2 against the
quantum fluctuation of the vacuum.

�3� Consider the Werner state �17�

��0� =
a

2
��a1,b2� − �b1,a2����a1,b2� − �b1,a2��

+
1 − a

4
��a1,a2��a1,a2� + �b1,b2��b1,b2� + �a1,b2��a1,b2�

+ �b1,a2��b1,a2�� . �15�

In this state, the maximally entangled state ��a1 ,b2�
− �b1 ,a2�� /�2 is mixed with the equally-weighted four pos-
sible states. For this initial state, the solution of Eq. �2� is
given by Eq. �A4�. Under the conditions n=m=0 and �1
=�2=�, we find the eigenvalues of the matrix M

	1 = �1

4
�2�1 + a� − �1 − a�e−�t�e−�t�2

,

	2 = �1 − a

4
�2 − e−�t�e−�t�2

,

	3 = 	4 =
1 − a

16
�4 − 4e−�t + �1 − a�e−2�t�e−2�t, �16�

and the concurrence

C = Max�0,�a −��1 − a��1 − e−�t +
1 − a

4
e−2�t��e−�t� .

�17�

From Eq. �17�, we see that the entanglement lasts for an
infinite period when

�5−1
2 �a
1. The sudden death of en-

tanglement happens after a time

td =
1

�
ln

�a − 1�
2��a�a + 1� − 1�

�18�

when 0
a�
�5−1

2 . The time evolution of the concurrence is
shown in Fig. 4.

�4� Finally we consider the initial state
��0�= a

3 �a1a2 � �a1a2 � + 1−a
3 �b1b2 � �b1b2 � + 1

3 � �a1b2 � + �b1a2 � �
� � �a1b2 � + �b1a2 � � . Unlike the initial state in example �1�,
this state contains both the double excitation and the ground
state components at the same time. This state was considered
by Yu and Eberly and obtained the sudden-death time with
a=1 �11�. We reconsider this example for the sake of com-
pleteness and find the sudden-death time for any value of the
parameter a. For this initial state, the solution of Eq. �2� is
given by Eq. �A5�.

For the standard vacuum n=m=0, and assuming �1=�2
=�, we find the eigenvalues of the matrix M

	1 = �1

3
��2 + a� − ae−�t�e−�t�2

,

	2 = �a

3
�1 − e−�t�e−�t�2

,

	3 = 	4 =
a

9
�3 − 2�a + 1�e−�t + ae−2�t�e−2�t, �19�

and the concurrence

C = Max�0,
2

3
�1 − �3a − 2a�a + 1�e−�t + a2e−2�t�e−�t� .

�20�

From Eq. �20�, we find that when 1/3�a
1 the sudden
death of entanglement always happens and the sudden-death
time is given by

FIG. 4. �Color online� The time evolution of the concurrence
when the atoms are initially in the Werner state.

FIG. 5. �Color online� The time evolution of the concurrence
when the atom initially in the state a

3 �a1a2 � �a1a2 �
+ 1−a

3 �b1b2 � �b1b2 � + 1
3 � �a1b2 � + �b1a2 � � � �a1b2 � + �b1a2 � � .
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td =
1

�
ln

a

�a + 1� − �a2 − a + 2
. �21�

The results obtained by Yu and Eberly �11� are recovered for
the case a=1. From Eq. �21�, td becomes infinite when a

1/3, which means there is no sudden-death of entangle-
ment. The time evolution of the concurrence for various val-
ues of the parameter a is shown in Fig. 5.

In the above examples, we see that the quantum fluctua-
tion of the vacuum reservoir is not sufficient to destroy the
entanglement in a finite time in some situations. The sudden-
death of entanglement results from the decay of the mixed
double excitation state component.

When the mean thermal photon number is not zero, we
find that in the thermal reservoir the entanglement sudden-
death always happens no matter which entangled state the
atoms are initially in and no matter how small the nonzero
mean thermal photon number is. In Fig. 6, the time evolution
of the concurrence is plotted for the thermal reservoir with
the nonzero mean photon number when the atoms are ini-
tially in the entangled state ��a1 ,b2�+ �b1 ,a2�� /�2. In the first
example above, we have shown that the entanglement can
last for an infinite period in the vacuum reservoir for this
initial entangled state. However, as shown in Fig. 6, the
sudden-death of entanglement always happens in a thermal
reservoir of nonzero mean photon number. It is also observed
that the death time decreases as the mean thermal photon
number becomes large.

IV. ENTANGLEMENT SUDDEN-DEATH
IN SQUEEZED RESERVOIR

In this section, we consider the case in which atoms 1 and
2 are exposed in broadband squeezed vacuum reservoirs. Ac-

cording to the general quantum reservoir theory �15�, we
derive the equation of motion for the reduced density matrix
of the atoms independently interacting with their local
squeezed reservoirs

�̇ = �
=1,2

�−
�

2
cosh2�r���+

�−
� − 2�−

��+
 + ��+

�−
�

− �e−i� sinh�r�cosh�r��−
��−

 −
�

2
sinh2�r���−

�+
�

− 2�+
��−

 + ��−
�+

� − �ei� sinh�r�cosh�r��+
��+

� ,

�22�

where r1 and r2 are the squeezing parameters of the reser-
voirs, and �1 and �2 are the squeezing angles. When deriving
the master equation �22�, besides using the same assumptions
as when deriving the master equation �2� but assuming the
reservoirs to be in the squeezed vacuum instead of the un-
correlated thermal equilibrium mixture of photon number
states, we also assume that squeezing bandwidths of the
squeezed reservoirs are much larger than the atomic line-
widths.

For the initial state

��0� =
1 − a

2
��a1,b2� + �b1,a2����a1,b2� + �b1,a2��

+ a�a1,a2��a1,a2� , �23�

the solution of the master equation �22� is given by Eq. �B2�.
With the solution, we can calculate the concurrence by using
Eqs. �7� and �8�. In the preceding section, we have found that
for the initial state �23� the entanglement lasts for an infinite
time in a vacuum reservoir when a�1. However, in the
squeezed reservoir, we find that the entanglement sudden-
death always happens no matter how small portion of the
double excitation is in the initial state. This is shown explic-
itly in the numerical results plotted in Figs. 7 and 8. In Figs.
9 and 10, the time evolution of the concurrence is shown for
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FIG. 6. �Color online� The time evolution of the concurrence in
a thermal reservior when the atoms are initially in the entangled
state state ��a1 ,b2�+ �b1 ,a2�� /�2. The solid line is for the vacuum
case �n=m=0�, the dashed line for the thermal reservior with n
=m=0.1, and the dotted line for the thermal reservior with n=m
=0.2.
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FIG. 7. �Color online� The time evolution of the concurrence
when the atoms initially in the state 1−a

2 ��a1 ,b2�+ �b1 ,a2����a1 ,b2�
+ �b1 ,a2��+a�a1 ,a2��a1 ,a2� in the squeezed reservior with r=0.3.
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different values of the degree of squeezing. We see that the
sudden-death time of entanglement becomes shorter as r in-
creases, i.e., the entanglement survives for a shorter time
with increasing the degree of squeezing.

V. SUMMARY

We considered a two-qubit system consisting of two two-
level atoms that are spatially separated from each other and
independently coupled to local reservoirs that may be in ei-
ther a thermal state or a vacuum squeezed state. We investi-
gated the dynamical evolution of entanglement between the
atoms coupled to the reservoirs. We show that, for a certain
class of two-qubit entangled states, the entanglement mea-
sured by concurrence can suddenly disappear during the dy-
namic evolution in the vacuum reservoir. We find explicit
expressions for the entanglement sudden death time for vari-

ous entangled states. In contrast with the vacuum reservoir,
we find that sudden death of entanglement always happens in
the thermal reservoir with nonzero mean photon number and
the squeezed reservoir. The exponential decay of entangle-
ment is a very special result to the vacuum reservoir. The
above results are not just for discrete-variable quantum sys-
tems. In fact, for continuous-variable two-party quantum sys-
tems, it has been shown that entanglement initially in a two-
mode squeezed state disappears in a finite time period in the
thermal environment but can last for an infinite time in the
vacuum environment �18,19�.

Note added in proof. Entanglement sudden death has been
observed recently by Almeida et al. �20�. See also the paper
by Eberly and Yu �21�.
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APPENDIX A

In the representation spanned by two-qubit product states
�1�= �a1 ,a2� , �2�= �a1 ,b2� , �3�= �b1 ,a2� , �4�= �b1 ,b2�, Eq. �2�
can be written in the matrix form

�̇11 = − ��m + 1��1 + �n + 1��2��11 + n�2�22 + m�1�33,

�̇22 = − ��m + 1��1 + n�2��22 + �n + 1��2�11 + m�1�44,

FIG. 8. �Color online� The time evolution of the concurrence
when the atoms initially in the state 1−a

2 ��a1 ,b2�+ �b1 ,a2����a1 ,b2�
+ �b1 ,a2��+a�a1 ,a2��a1 ,a2� in the squeezed reservior with r=0.1.
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FIG. 9. �Color online� The time evolution of the concurrence
when the atoms initially in the state 1

2 ��a1 ,b2�+ �b1 ,a2����a1 ,b2�
+ �b1 ,a2�� in the squeezed rerservior.

FIG. 10. �Color online� The time evolution of the concurrence
when the atoms initially in the state 1

2 ��a1 ,b2�+ �b1 ,a2����a1 ,b2�
+ �b1 ,a2�� in the squeezed rerservior with the squeezing parameter
r=0.01,0.1,0.3.
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�̇33 = − ��n + 1��2 + m�1��33 + �m + 1��1�11 + n�2�44,

�̇44 = − �m�1 + n�2��44 + �m + 1��1�22 + �n + 1��2�33,

�̇23 = − ��m +
1

2
��1 + �n +

1

2
��2��23,

�̇32 = − ��m +
1

2
��1 + �n +

1

2
��2��32,

�̇14 = − ��m +
1

2
��1 + �n +

1

2
��2��14,

�̇41 = − ��m +
1

2
��1 + �n +

1

2
��2��41. �A1�

The solution of this equation depends on the initial state. In
the following, we list solutions of Eq. �A1� for various initial
states.

�1� For the initial state

��0� = �1 − a���a1,b2� + �b1,a2����a1,b2� + �b1,a2��/2

+ a�a1,a2��a1,a2��0 
 a � 1� ,

the solution of Eq. �A1� is given by

�11 =
1

2�2m + 1��2n + 1�
�2mn + m�a�2n + 1� + 1�

�e−�2n+1��2t + n�a�2m + 1� + 1�e−�2m+1��1t

+ �4amn + 3am + 3an − 2mn − m − n + 2a�

�e−��2m+1��1+�2n+1��2�t ,

�22 =
1

2�2m + 1��2n + 1�
�2m�n + 1� − m�a�2n + 1� + 1�

�e−�2n+1��2t + �n + 1��a�2m + 1� + 1�e−�2m+1��1t − �4amn

+ 3am + 3an − 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t ,

�33 =
1

2�2m + 1��2n + 1�
�2�m + 1�n + �m + 1��a�2n + 1� + 1�

�e−�2n+1��2t − n�a�2m + 1� + 1�e−�2m+1��1t − �4amn

+ 3am + 3an − 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t ,

�44 =
1

2�2m + 1��2n + 1�
�2�m + 1��n + 1�

− �m + 1��a�2n + 1� + 1�e−�2n+1��2t − �n + 1�

��a�2m + 1� + 1�e−�2m+1��1t + �4amn + 3am + 3an

− 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t ,

�23 = �32 =
1 − a

2
exp�− �m +

1

2
��1t − �n +

1

2
��2t� .

�A2�

�2� For the initial state ��0�=a��a1 ,a2�+ �b1 ,b2����a1 ,a2�
+ �b1 ,b2�� /4+ �2−a��a1 ,a2��a1 ,a2� /2�0�a
2�, the solution
of Eq. �A1� is given by

�11 =
1

4�2m + 1��2n + 1�
�4mn − m�2an − 4n + a − 4�

�e−�2n+1��2t − n�2am − 4m + a − 4�

�e−�2m+1��1t − �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t ,

�22 =
1

4�2m + 1��2n + 1�
�4m�n + 1� + m�2an − 4n + a − 4�

�e−�2n+1��2t − �n + 1��2am − 4m + a − 4�

�e−�2m+1��1t + �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t ,

�33 =
1

4�2m + 1��2n + 1�
�4�m + 1�n − �m + 1�

��2an − 4n + a − 4�e−�2n+1��2t + n�2am − 4m + a − 4�

�e−�2m+1��1t + �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t ,

�44 =
1

4�2m + 1��2n + 1�
�4�m + 1��n + 1� + �m + 1�

��2an − 4n + a − 4�e−�2n+1��2t + �n + 1�

��2am − 4m + a − 4�e−�2m+1��1t − �am + an − 4mn − 4m

− 4n + a − 4�e−��2m+1��1+�2n+1��2�t ,

�14 = �41 =
a

4
exp�− �m +

1

2
��1t − �n +

1

2
��2t� . �A3�

�3� For the Werner state �15�, the solution of Eq. �A1� is
given by

�11 =
1

4�2m + 1��2n + 1�
�4mn + 2me−�2n+1��2t + 2ne−�2m+1��1t

+ �1 − a�2m + 1��2n + 1��e−��2m+1��1+�2n+1��2�t ,

�22 =
1

4�2m + 1��2n + 1�
�4m�n + 1� − 2me−�2n+1��2t

+ 2�n + 1�e−�2m+1��1t − �1 − a�2m + 1��2n + 1��

�e−��2m+1��1+�2n+1��2�t ,

�33 =
1

4�2m + 1��2n + 1�
�4�m + 1�n + 2�m + 1�e−�2n+1��2t

− 2ne−�2m+1��1t − �1 − a�2m + 1��2n + 1��

�e−��2m+1��1+�2n+1��2�t ,
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�44 =
1

4�2m + 1��2n + 1�
�4�m + 1��n + 1� − 2�m + 1�

�e−�2n+1��2t − 2�n + 1�e−�2m+1��1t

+ �1 − a�2m + 1��2n + 1��e−��2m+1��1+�2n+1��2�t ,

�23 = �32 = −
a

2
exp�− �m +

1

2
��1t − �n +

1

2
��2t� .

�A4�

�4� For the initial state ��0�= a
3 �a1a2��a1a2�+ 1−a

3 �b1b2�
��b1b2�+ 1

3 ��a1b2�+ �b1a2����a1b2�+ �b1a2 � �, the solution of
Eq. �A1� is given by

�11 =
1

3�2m + 1��2n + 1�
�3mn + m�2an + a − n + 1�e−�2n+1��2t

+ n�2am + a − m + 1�e−�2m+1��1t

+ �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t ,

�22 =
1

3�2m + 1��2n + 1�
�3m�n + 1� − m�2an + a − n + 1�

�e−�2n+1��2t + �n + 1��2am + a − m + 1�e−�2m+1��1t

− �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t ,

�33 =
1

3�2m + 1��2n + 1�
�3�m + 1�n

+ �m + 1��2an + a − n + 1�e−�2n+1��2t

− n�2am + a − m + 1�e−�2m+1��1t

− �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t ,

�44 =
1

3�2m + 1��2n + 1�
�3�m + 1��n + 1�

− �m + 1��2an + a − n + 1�e−�2n+1��2t

− �n + 1��2am + a − m + 1�e−�2m+1��1t

+ �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t ,

�23 = �32 =
1

3
exp�− �m +

1

2
��1t − �n +

1

2
��2t� . �A5�

APPENDIX B

In the representation employed in writing Eq. �A1�, the
master equation �22� yields the following equation for the
various matrix elements:

�11
˙ = − ��1 cosh2�r1� + �2 cosh2�r2���11 + �2 sinh2�r2��22

+ �1 sinh2�r1��33,

�22
˙ = − ��1 cosh2�r1� + �2 sinh2�r2���22 + �2 cosh2�r2��11

+ �1 sinh2�r1��44,

�33
˙ = − ��1 sinh2�r1� + �2 cosh2�r2���33 + �1 cosh2�r1��11

+ �2 sinh2�r2��44,

�44
˙ = − ��1 sinh2�r1� + �2 sinh2�r2���44 + �1 cosh2�r1��22

+ �2 cosh2�r2��33,

�23
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���23

+
1

2
��2ei�2 sinh�2r2��14 + �1ei�1 sinh�2r1��41�� ,

�32
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���32

+
1

2
��1ei�1 sinh�2r1��14 + �2ei�2 sinh�2r2��41�� ,

�14
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���14

+
1

2
��2ei�2 sinh�2r2��23 + �1ei�1 sinh�2r1��32�� ,

�41
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���41

+
1

2
��1ei�1 sinh�2r1��23 + �2ei�2 sinh�2r2��32�� .

�B1�

For the initial state �23�, the solution of Eq. �B1� is given
by

�11 =
1

2�C2 + S2��C1 + S1�
�2S1S2 + S2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t + S1�aS2 + aC2 + C2 − S2�e−�C2+S2�t

+ �aS1C2 + aC1S2 + 2aC2C1 − C2S1 − C1S2�

�e−�C1+S1+C2+S2�t� ,

�22 =
1

2�C2 + S2��C1 + S1�
�2S1C2 + C2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t − S1�aS2 + aC2 + C2 − S2�e−�C2+S2�t − �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,
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�33 =
1

2�C2 + S2��C1 + S1�
�2C1S2 − S2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t + C1�aS2 + aC2 + C2 − S2�e−�C2+S2�t − �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,

�44 =
1

2�C2 + S2��C1 + S1�
�2C1C2 − C2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t − C1�aS2 + aC2 + C2 − S2�e−�C2+S2�t + �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,

�23 = �32 =
1 − a

2
e−1/2�C3+C4�t cosh�1

2
�S3 + S4�t� ,

�14 = �41 = −
1 − a

2
e−1/2�C3+C4�t sinh�1

2
�S3 + S4�t� ,

�B2�

where

C = � cosh2�r�, S = � sinh2�r�, � = 1,2� ,

C� = �� cosh�2r��, S� = �� sinh�2r��, �� = 3,4� .

�B3�

In the above, for simplicity, we assume �1=�2=0.
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