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We present a largely analytical theory for two-photon correlations G�2� between Stokes �s� and anti-Stokes
�a� photon pairs from an extended medium �amplifier� composed of double-� atoms in counterpropagating
geometry. We generalize the parametric coupled equations with quantum Langevin noise given in a beautiful
experimental paper of Balic et al. �Phys. Rev. Lett. 94, 183601 �2005�� beyond adiabatic approximation and
valid for arbitrary strength and detuning of laser fields. We derive an analytical formula for cross correlation

Gas
�2�= �Ês

†�L�Êa
†�0,��Êa�0,��Ês�L�� and use it to obtain results that are in good quantitative agreement with the

experimental data. Results for Gas
�2� obtained using our coupled equations are in good quantitative agreement

with the results using the equations of Balic et al., while perfect agreement is obtained for sufficiently large
detuning. We also compute the reverse correlation Gsa

�2� which turns out to be negligibly small and remains
classical while the cross correlation violates the Cauchy-Schwartz inequality by a factor of more than a
hundred.
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I. INTRODUCTION

One of the amazing properties of the quantum world is
quantum correlation. The quantum mechanical concept of
photon-photon correlation introduced by Glauber has pro-
vided us with insights into the distinct quantum statistical
nature of photons from various light sources such as lasers,
the Sun, and resonance fluorescence. Spontaneous emission,
being a quantum mechanical process, has an important role
in establishing quantum correlation. Recently, various ver-
sions of double-� schemes have been explored �1� in regards
to entanglement, but not so much in the interest of quantum
correlation. Entanglement, the heart of quantum informatics,
is related to quantum correlation, a concept which extends
beyond the pure state.

Furthermore, quantum correlation in the sense of Glaub-
er’s two-photon correlation G�2� in an extended medium with
propagation deserves proper theoretical studies, especially
for the double-� scheme. The scheme has remarkable fea-
tures and has been widely studied in the context of quantum
erasers �2�, quantum information �3–5�, nonlinear optics
�6,7�, and subwavelength resolution microscopy �8�. A
Stokes photon is generated via a spontaneous Raman pro-
cess. It is possible to generate another photon, the anti-
Stokes photon, which is strongly correlated to the Stokes
photon by applying a strong resonant control field �c �Fig.
1�a��. The laser field creates a dressed state 1

�2
��a ,nc−1�

+ �b ,nc�� �with nc the photon number of the control field�: a
coherent superposition of state �b ,nc� following the emission
of a Stokes photon and state �a ,nc−1� from which an anti-
Stokes photon would be emitted. We refer to the correlated
photon pairs produced by this “spontaneous Raman-EIT
�electromagnetically induced transparancy�” scheme as the

Raman emission doublet �RED�. The scheme exhibits non-
classical properties such as squeezing �6�, violation of the
Cauchy-Schwartz inequality �3,9�, and antibunching with
Rabi oscillations in G�2� for the single-atom case �10�. The
RED scheme also enables efficient mapping of the quantum
information of the input Stokes photon into the atomic en-
sembles and reading off the information as an anti-Stokes
photon after a controllable time delay up to 2 �s �5�, much
longer than those produced in cascade scheme and in para-
metric down-conversion �11�.

In an extended medium where a large number of corre-
lated photon pairs can be generated, application of the
scheme in quantum lithography �12� becomes more feasible.
The correlation time can be increased via a slow light effect
through the control field. Recently, nonclassical macroscopic
photon correlation of the RED scheme has been demon-
strated for many �cold 87Rb� atoms in backward propagating
geometry �13� in a beautiful experiment by Balic et al. �9�.
They obtained coupled parametric oscillator equations based
on the adiabatic approximation which assumes that the entire
population is in the ground level. Their experimental data
were fitted remarkably well with the numerical solutions of
the coupled equations.

Motivated by their work, here we extend their coupled
equations beyond the RED scheme. Without the adiabatic
approximation, we derive the coupled parametric equations
that are valid for any detuning and strength of the pump and
control laser fields and arbitrary populations. We have ob-
tained analytical expressions for the two-photon correlation
in an extended medium with noise operators �more specifi-
cally the cross correlation Gas

�2�, reverse correlation Gsa
�2�, and

self-correlations Gf f
�2�, with f =s ,a� which seems to be a for-

midable task so far. The results for Gas
�2� �Eq. �28�� are in

PHYSICAL REVIEW A 75, 013820 �2007�

1050-2947/2007/75�1�/013820�13� ©2007 The American Physical Society013820-1

http://dx.doi.org/10.1103/PhysRevA.75.013820


good agreement with the experiment �9�. On the other hand,
we find that the Gsa

�2� is negligibly small for the RED scheme,
as expected �15�.

Even though we focus on the small signal regime and
disregard laser field depletion, our theory yields a lot of new
results for laser parameters in different limiting cases. Fur-
ther results and analysis will be reported in a series of forth-
coming papers. They include �a� forward �copropagating� ge-
ometry, �b� the role of noise operators and the connection
with group delay in signal propagation �16�, and �c� depen-
dence of nonclassicalness on laser parameters.

In Sec. II, we present the coupled oscillator equations for
counterpropagating �backward geometry� laser fields with ar-
bitrary strength and detuning. The solutions of the coupled
equations in the frequency domain for the boundary parts
and the noise parts are given in Sec. III. We show that they
reduce to the known solutions in Ref. �6� in the case of the
RED scheme. In Sec. IV, we derive analytical expressions for
Gas

�2�, Gsa
�2�, and Gf f

�2�. Normalized correlations such as Cauchy-
Schwartz correlation are defined in Sec. V to quantify the
degree of nonclassicalness. We also compute the quantitative
detection rate of the experiment �9� from Gas

�2�. Finally, in
Sec. VI we compare the computed detection rates �based on
our coupled equations and analytical correlation� and the hy-
brid results �the coupled equations of Balic et al. and our
analytical correlation� with the experimental data �9�.

II. GENERALIZED COUPLED EQUATIONS
FOR EXTENDED MEDIUM

We proceed to the main focus of this paper: to study the
two-photon correlation between the Stokes and anti-Stokes
fields of an extended medium or amplifier composed of a
macroscopic number of atoms with the double Raman
scheme �Fig. 1�a��. Despite the appreciable propagation ef-
fect in the extended sample, the off-resonant and weak pump
field in the RED scheme lead to a negligible depletion of the
laser fields even for the scheme in Fig. 1�b�. It is possible to
minimize the depletion of laser fields via the configuration
where the lasers are orthogonal to the Stokes and anti-Stokes
fields �Fig. 1�c��. This enables us to neglect Maxwell’s equa-
tions for the laser fields which describe the depletion. The

resulting Maxwell’s equations for the macroscopic �17�
Stokes Êa= Â /ga and anti-Stokes Ês= Ŝ /gs fields �gs=�db /�
and ga=�ac /� as the coupling strengths� together with lin-
earized atomic equations �Appendix A� lead to �21� the
coupled equations

	 �

�z
+ Gs
Ŝ + 	Ks − �s

�

�z

Â† = F̂s, �1�

	−
�

�z
+ Ga
Â† + 	Ka + �a

�

�z

Ŝ = F̂a

†, �2�

with the effective noise operators

F̂s = XadĜad + XbcĜbc + XbdĜbd, �3�

F̂a
† = YadĜad + YbcĜbc + YacĜac, �4�

where the coefficients Gf, Kf, � f, Xx, and Yx �x=ac ,ad ,bc ,
bd� are given by Eqs. �B1�–�B4� and �B7�–�B10� in Appen-

dix B, respectively, and Ĝx=�−�
� ei�xF̂x�z , t�ei	tdt is the Fou-

rier transform of the noise operators in Eqs. �A6�–�A9� in-
cluding the rapidly varying phases �x�z , t�=kxz−	xt.
Equations �1� and �2� describe the dynamical evolutions of
the macroscopic quantum fields for the Stokes and anti-
Stokes photons in the spectral domain.

By multiplying Eq. �1� by �a and then subtracting it from
Eq. �2� and similarly multiplying Eq. �2� by �s and subtract-
ing it from Eq. �1� we obtain the familiar parametric oscil-
lator coupled equations �9,22�

	 �

�z
+ Gs
Ŝ + KsÂ

† = F̄s, �5�

	−
�

�z
+ Ga
Â† + KaŜ = F̄a

†, �6�

FIG. 1. �Color online� �a� The double Raman scheme produces correlated pairs of Stokes and anti-Stokes photons. The present four-level
scheme �instead of three levels� describes the experimental situation in �9�. The coupling of the pump and Stokes fields to level �a� is
negligible since the fields are far detuned from it. The Raman emission doublet �RED� scheme corresponds to 
p,s��ac, �p, 
c,a=0, and
�c
�p where the Stokes photon is generated by the spontaneous Raman process and the anti-Stokes is by the resonant Raman process.

Counterpropagating Stokes and anti-Stokes photons amplified into correlated macroscopic quantum fields Ês and Êa are generated by lasers
propagating �b� along the extended medium �laser depletion may be significant� and �c� perpendicular to the extended medium �negligible
laser depletion�. Also shown are phase-matched diagrams of the four fields.
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since the coefficients in Eqs. �1� and �2� are related to that of
Eqs. �5� and �6� by

Gs =
�Gs − �sKa�

Isa
, Ga =

�Ga − �aKs�
Isa

, �7�

Ks =
�Ks − �sGa�

Isa
, Ka =

�Ka − �aGs�
Isa

, �8�

F̄s =
F̂s − �sF̂a

†

Isa
, F̄a

+ =
F̂a

† − �aF̂s

Isa
, �9�

with Isa=1−�s�a. The two sets of coefficients are approxi-
mately equal when �s��a�0. Here, the Gs is the spontane-
ous Raman gain coefficient, Ga gives the EIT dispersion and
absorption profiles modified in the presence of the pump
laser, and Ks and Ka are the cross couplings. The coefficients
G f and K f generalize those obtained by Refs. �9,22� beyond
the adiabatic approximation.

The effective Fourier transforms of the noise operators F̄s

and F̄a
† serve as the driving “forces” or seeds to both fields

and their physical origin is the quantum vacuum fluctuations.
Note that Eqs. �5� and �6� are equivalent to a driven os-

cillator equation with effective gain or damping �Gs+Ga� and
oscillation angular frequency �GaGs−KsKa. These coupled
equations are also obtained for the case of the resonance
fluorescence of two-level atoms in an extended medium,
which will be a subject of future publications.

III. SOLUTIONS FOR COUNTERPROPAGATING
(BACKWARD) GEOMETRY

The solutions of the generalized coupled equations for the
Stokes field at z=L and the anti-Stokes field at z=0 are com-

posed of the boundary operators B̂f �specifically the Stokes
operator at z=0 and the anti-Stokes operator at z=L� and

noise operators N̂f �specifically F̂f�z ,	� at all points in the
medium�—i.e.,

�10�

�11�

where coefficients for the boundary operators are

�̄s
s�L,	� = �̄q̄�L,	� + �̄�L,	�
Ga + Z�L,	�Ka� , �12�

�̄a
s�L,	� = Z�L,	� , �13�

�̄a
a�L,	� =

1

�̄q̄�L,	� − �̄�L,	�Gs

, �14�

�̄s
a�L,	� =

Ka

Ks
Z�L,	� , �15�

with

Isa = 1 − �s�a, �16�

Z�L,	� =
�̄�L�Ks

�̄q̄�L� − �̄�L�Gs

, �17�

the oscillatory functions

�̄q̄�x,	� =
q̄+e−q̄+x − q̄−e−q̄−x

q̄+ − q̄−

, �18�

�̄�x,	� =
e−q̄+x − e−q̄−x

q̄+ − q̄−

, �19�

and effective wave vectors

q̄± = − �̄ ± �̄ , �20�

�̄ =
1

2
�Ga − Gs� , �21�

�̄ = ��̄2 − �KsKa − GsGa� . �22�

The kernels for the noise operators are

Ūs
s��,	� =

1

Isa
��̄q̄����1 − Z�a� + �̄����Ga + ZKa�� , �23�

Ūa
s��,	� =

1

Isa
��̄q̄����Z − �s� − �̄����Ks + ZGs�� , �24�

Ūa
a��,	� =

�̄q̄��� − �̄���Gs

D�L�
, �25�

Ūs
a��,	� = −

�a�̄q̄��� − Ka�̄���

D�L�
, �26�

where D�L�= Isa
�̄q̄�L�−�̄�L�Gs�. Equations �10� and �11�
are general solutions for backward geometry with arbitrary
detuning and laser fields.
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The limit �s��a�1 corresponds to the RED scheme

where we find Ūs
s�� ,	�→ �̄s

s�� ,	� and Ūs
a�� ,	�→ �̄s

a�� ,	� but

Ūa
a�� ,	�y �̄a

a�� ,	� and Ūa
s�� ,	�y �̄a

s�� ,	� in contrast with
the case of forward geometry. However, in the limit of short

samples, q̄+x�1, we have �̄q̄�1, �̄�0 and hence

Ūa
a�� ,	�→ �̄a

a�� ,	� and Ūa
s�� ,	�→ �̄a

s�� ,	�; i.e., the coeffi-
cients of the noise part are identical to that of the boundary
part. This explains the correspondence of the results with
boundary operators and that with noise operators.

We have verified that by neglecting � f our Eqs. �10� and
�11� reproduce the solutions of Ref. �6� �with the additional
boundary operators� for the RED scheme.

IV. ANALYTICAL TWO-PHOTON CORRELATION

We now use the solutions for the field operators and the
Glauber’s two-photon correlation G�2� to compute the cross
correlations between the Stokes and anti-Stokes fields, Gas

�2�

and Gsa
�2�, and the self-correlations Gss

�2� and Gaa
�2�. One way to

derive the two-photon correlation is to note that it can be
expressed as decorrelated �24� paired products

Gas
�2��L,�� = ��Êa�t + ��Ês�t���2

+ �Ês
†�t�Ês�t���Êa

†�t + ��Êa�t + ��� , �27�

where the terms �Ês
†�t�Êa�t+��� and �Êa

†�t+��Ês�t�� vanish

since �N̂s
†�t�N̂a�t+���� �F̂x

†�	�F̂x�
† �	���=0 and �N̂a

†�t+��N̂s�t��
� �F̂x�	�F̂x��	���=0.

Thus, the correlation for backward geometry can be com-
puted as

Gas
�2���� = ��B̂a�L,t + ��B̂s�L,t�� + �N̂a�L,t + ��N̂s�L,t���2

+ 
Is
b�L� + Is

n�L��
Ia
b�L� + Ia

n�L�� , �28�

where �B̂a�L , t+��B̂s�L , t��, �N̂a�L ,��N̂s�L��, I f
b�L ,��, and

I f
n�L ,�� are given below and are evaluated in a similar fash-

ion in Appendix C for Eq. �C4�. The superscripts “b” and “n”
indicate that the terms are evaluated with boundary operators
and noise operators, respectively.

For an inseparable two-photon pure state ���, the

correlation can be described by Gas
�2��L ,��= ��0�Êa�L , t

+��Ês�L , t�����2. Thus, the first term in Eq. �28� describes the
correlation of the two-photon state while the second term
describes the stimulated quantum fields corresponding to the
uncorrelated states of two photons. For long time delay, the
two photons become uncorrelated and Gas

�2� would take a con-
stant value given by the second term of Eq. �28� which is
simply a direct product of the intensities of the Stokes and
anti-Stokes photons.

The corresponding self-correlations are

Gss
�2���� = �Ês

†�L,t�Ês
†�L,t + ��Ês�L,t + ��Ês�L,t��

= �Is
b�L,�� + Is

n�L,���2 + 
Is
b�L� + Is

n�L��2, �29�

Gaa
�2���� = �Êa

†�0,t�Êa
†�0,t + ��Êa�0,t + ��Êa�0,t��

= �Ia
b�L,�� + Ia

n�L,���2 + 
Ia
b�L� + Ia

n�L��2. �30�

Similarly, the reverse correlation for backward geometry is

Gsa
�2���� = �Êa

†�0,t�Ês
†�L,t + ��Ês�L,t + ��Êa�0,t��

= ��B̂s�L,t + ��B̂a�L,t�� + �N̂s�L,t + ��N̂a�L,t���2

+ 
Is
b�L� + Is

n�L��
Ia
b�L� + Ia

n�L�� . �31�

A. Noise products

The cross-correlation amplitude in Eq. �28� due to noise is
derived in Appendix C as

�N̂a�L,��N̂s�L�� = ei
kL 2�

AN
�

−�

�

ei	���L,	�d	 , �32�

and similarly the reverse-correlation amplitude is

�N̂s�L,��N̂a�L�� = ei
kL 2�

AN
�

−�

�

e−i	���L,	�d	 , �33�

with the phase mismatch 
k. The self-correlation amplitudes
due to the noise terms are

Is
n�L,�� = �N̂s

†�L,��N̂s�L�� =
2�

AN
�

−�

�

ei	�S�L,	�d	 , �34�

Ia
n�L,�� = �N̂a

†�L,��N̂a�L�� =
2�

AN
�

−�

�

e−i	�A�L,	�d	 ,

�35�

with the spectral functions of the noise products in above
equations defined as

��L,	� = �
x,x�
�

0

L

2D̃x,x�
n �z�Cx

a*��,	�Cx�
s ��,	�dz , �36�

��L,	� = �
x,x�
�

0

L

2D̃x,x�
an �z�Cx

s��,	�Cx�
a*��,	�dz , �37�

S�L,	� = �
x,x�
�

0

L

2D̃x,x�
n �z�Cx

s*��,	�Cx�
s ��,	�dz , �38�

A�L,	� = �
x,x�
�

0

L

2D̃x,x�
an �z�Cx

a��,	�Cx�
a*��,	�dz , �39�

where x ,x�=ac ,ad ,bc ,bd and D̃
x,x�
n�an��z� are the normal �an-

tinormal� ordered diffusion coefficients defined in Appendix
E and the coefficients are defined as

Cx
s��,	� =

1

gs
�Ūs

s��,	�Xx�	� + Ūa
s��,	�Yx�	�� , �40�
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Cx
a��,	� =

1

ga
* �Ūa

a��,	�Yx�	� + Ūs
a��,	�Xx�	�� , �41�

with Xx and Yx given by Eqs. �B9� and �B10�.
The adjoint of Eq. �32� can also be expressed in an alter-

native form 2�ei
kL

AN �x,x��0
L2D̃x,x�

n �z��−�
� C̃x

a*�� , t��C̃x�
s �� ,�

− t��dt�dz using the convolution theorem. If the spatial varia-
tions of the populations and the coherences are much slower

than G f and K f, the diffusion coefficients D̃
x,x�
n�an� can be sepa-

rated from the functions Cx
s and Cx

a and Eqs. �36�–�39� can be
integrated analytically.

B. Boundary products

Analytical expressions for the products of boundary op-
erators can be obtained by using the commutation relation

derived in Appendix D �Êf�0,	� , Êf
†�0,	����Cf��	−	��

with Cf =
�	 f�

�0Ac ,

�B̂a�L,t + ��B̂s�L,t�� =� �Ca�n̄a + 1�
ga

*

gs
�a

a*�L,	��a
s�L,	� + Csn̄s

gs
*

ga
�s

a*�L,	��s
s�L,	��ei	� d	

2�
, �42�

�B̂s�L,t + ��B̂a�L,t�� =� �Can̄a

ga
*

gs
�a

a*�L,	��a
s�L,	� + Cs�n̄s + 1�

gs
*

ga
�s

a*�L,	��s
s�L,	��e−i	� d	

2�
, �43�

Is
b�L,�� = �B̂s

†�L,t + ��B̂s�L,t�� = �
−�

� �Ca�n̄a + 1��ga
*

gs
�a

s�L,	��2

+ Csn̄s��s
s�L,	��2�ei	� d	

2�
, �44�

Ia
b�L,�� = �B̂a

†�L,t + ��B̂a�L,t�� = �
−�

� �Cs�n̄s + 1�� gs

ga
*�s

a�L,	��2

+ Can̄a��a
a�L,	��2�e−i	� d	

2�
, �45�

where n̄f = �e��	f −1�−1 are the mean photon numbers for f
=s ,a.

Equations �42�–�45� give the parts of the correlations in

terms of the coefficients of the boundary operators Ês�0,	�
and Êa�0,	�.

The spatially dependent Stokes and anti-Stokes intensities

I f
n�L�= �N̂f

†�L , t�N̂f�L , t�� and I f
b�L�= �B̂f

†�L , t�B̂f�L , t�� are ob-
tained from the correlated intensities, Eqs. �34�, �35�, �44�,
and �45�, by setting �=0 and will be used to compute the
normalized correlations defined in the following section.

Thus, Eqs. �28�–�31� together with the analytical expres-
sions �36�–�39� and �42�–�45� constitute the main results of
this paper. Note that the correlations depend only on the
relative time delay � and are independent of the absolute

time t even though the solutions Êf�L , t� depend on t. Since
Xx and Yx are proportional to N, the correlations are propor-
tional to N2, showing a collective effect.

V. DEGREE OF NONCLASSICALNESS AND
QUANTITATIVE JOINT DETECTION RATE

The finite value of Glauber’s two-photon correlation G�2�

does not necessarily imply that the correlation is quantum
mechanical or nonclassical. Let us recall that g�2��0��g�2�

���� �antibunching� and g�2�����1 �sub-Poissonian� corre-
spond to nonclassical correlation, with g�2�=1 for the coher-
ent state and g�2�=2 for the thermal state. The photon statis-

tics of the Stokes and anti-Stokes photons can be determined
from the normalized self-correlations �23�

gf f
�2��L,�� � Gf f

�2��L,��/I f�L�2. �46�

The existence of a second order of coherence gas
�2�=1 and the

degree of correlation �gas
�2�−1� between the Stokes and anti-

Stokes fields can be seen from the normalized cross �reverse�
correlation

gas�sa�
�2� �L,�� � Gas�sa�

�2� �L,��/Is�L�Ia�L� . �47�

The degree of nonclassical correlation can be quantified
by defining the Cauchy-Schwartz cross �reverse� correlation

gas�sa�
CS �L,�� = Gas�sa�

�2� �L,��/�Gss
�2��L,��Gaa

�2��L,�� , �48�

where the nonclassical regime gas
CS
1 corresponds to viola-

tion of the Cauchy-Schwartz inequality. A larger value of gas
CS

indicates a large degree of nonclassical correlation. This is
justified, for example, in the case of sub-Poissonian correla-
tion �gss

�2��0��1� and large cross correlation gas
�2�
 
1.

We now relate our results for the two-photon correlation
with the experimental detection rate. The detection rate of
Stokes or anti-Stokes photons can be expressed as

Rf =
nf

tdet
=

4I f2�0Vdet

�	 ftdet
= 8�0I fAdetc/�	 f , �49�

where Adet=
1
4�d2 is the area of the detector and we have

used Vdet=Adetzdet and c=zdet / tdet. The Stokes and anti-Stokes
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wavelengths are �s=780 nm and �a=795 nm. According to
�9�, the correlated detection rate �as reproduced in Fig. 2�a��
is related to the normalized correlation as

Rc = Ḡ�2��2
T = gas
�2�RsRa�2
T , �50�

where Ḡ�2� is an integrated correlation and has units of s−2, �
is the detection efficiency, and 
T is the bin width. From

gas
�2�=̇

Gas
�2�

IsIa
we have a useful relation between the correlated

detection rate and Glauber’s absolute correlation Gas
�2�:

Rc =
Gas

�2�

IsIa
RsRa�2
T =

Gas
�2�

	a	s
	8��0Adetc

�

2


T . �51�

Using the values of Ref. �9�, d=5.6 �m �for single-mode
fiber�, �=0.3, and 
T=1 ns in Eq. �51� and using Eq. �28�
�including boundary operators�, we compute the theoretical
rates shown in Fig. 2�b� using the coupled equations of Balic
et al. and Fig. 2�c� using our coupled equations. We obtain
good quantitative agreement with the experimental data �9�
reproduced in Fig. 2�a�. We find that results with the bound-
ary operators alone do not give good quantitative agreement

with experimental data. This also shows that both the bound-
ary operators and the noise operators are necessary to pro-
vide a correct quantitative description of the two-photon cor-
relation. The comparison between noise and boundary
operators will be elaborated on in a subsequent paper.

VI. DISCUSSIONS AND CONCLUSIONS

We have presented a complete analytical quantum theory
of the two-photon correlations Gas

�2�, Gsa
�2�, and Gf f

�2� for the
macroscopic Stokes and anti-Stokes fields generated in an
amplifier �extended coherent medium� in a double-�
scheme. We have derived coupled parametric oscillator equa-
tions valid for arbitrary detuning and intensity of the lasers
and analytical expressions for the correlations. The hybrid
results �Fig. 2�b��, obtained by using our analytical expres-
sion of the correlations along with the coupled equations of
Balic et al. �9� for the RED scheme give good quantitative
agreement with the experimental data �Fig. 2�a�� without any
fitting parameter for both high- and low-control �c fields.
Similarly, the results obtained using our more general
coupled equations �Fig. 2�c�� correspond quite well with the
hybrid results.

FIG. 2. �Color online� Comparison of the joint detection results computed from the cross correlation, Eqs. �28� and �51�. �a� Experimental
results of Ref. �9�. �b� Hybrid theory based on the coupled equations of Balic et al. �9� and our analytical approach to calculate G�2�.
Quantitative agreement is obtained when the coefficients �s and �as in �9� are multiplied by �N�db and � is replaced by �ac as in Ref. �25�
to obtain the correct units. �c� Our complete theory. The curves in �b� and �c� are plotted using the experimental parameters of the decay rates

and dipole moments �26� for 87Rb with optical depth N�acL=2�ga�a�L /�ac=11 �where we define the cross sections �ac=
���2�ac

�c�o�ac
,�db

=
���2�db

�c�o�db
�, weak pump �p=0.8�ac /2, detuning 
=−7.5�ac, decoherence �bc=0.6�ac, �c /�ac=23.4/2, 16.8/2, 8.4/2, 6 /2, and 4/2. The

factor of 1 /2 is due to a different definition of the Rabi frequency in our case. Quantitative agreement is obtained by multiplying Rc by 16
due to the fact that the electric field defined is twice the physical field. We take the effective transverse cross section as A= ��wo

2��3/4 where
wo=w1 /�2 is the waist and 2w1=280 �m is the diameter at 1 /e2 intensity �9� of the pump laser. The factor of �3/4 leads to a smaller
effective area by taking into account the transverse variation of the laser beam.
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FIG. 3. �Color online� Comparison of the real �solid line� and imaginary �dotted line� pairs of the gain and loss Gs,a�	� and coupling
Ks,a�	� coefficients for �a� 
=−7.5�ac �as used in experiment� and �b� 
=−75�ac �larger detuning�. Other parameters follow from the
experiment �9�: �p=0.8�ac /2, �c=8.4�ac /2, and N�acL=11. Cases �i� coefficients of Balic et al. �9�, �ii� our coefficients, Eqs. �7� and �8�,
and �iii� our coefficients but i	 /c is neglected.
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The above correspondence can be understood through the
following analysis. Figure 3�aii� shows that all our coeffi-
cients �Ga, Ka, and Ks� except Gs agree almost perfectly with
the coefficients of Balic et al. given in Eqs. �B11�–�B14�. By
Gs from Eq. �7� with wbb

st �  ̃ba
st �0 and  ̃cd

st �− 1
Tdc

i�p
*, then

applying the conditions for the RED scheme, �
Tad�	�

Tbc�	� 
 
1,

Tac�	�
 

��p�2

Tad�	� , Tdb
* �	�
 


��c�2

Tad�	� � and neglecting the term

with i 	
c , we obtain

Gs � −
��p�2

TdcTdb
* �	�

gs�sTac�	�
Tbc�	�Tac�	� + ��c�2

, �52�

which reduces exactly to the expression of Balic et al., Eq.
�B11� if we use 

 
�dc ,�db. Thus, our analytical results
are consistent with the theory of Balic et al. even the though
our coupled equations depend on additional parameters not
found in the coupled equations of Balic et al. �12�—i.e., the
decoherence rates �dc, �db, and �ab.

The asymmetric feature of our Gs �Figs. 3�aii� and 3�aiii��
across 	=0 is due to the quasiresonant effect of the pump
and the coexistence with the control field. For larger detun-
ing, Fig. 3�biii� shows that Gs becomes symmetric and agrees
very well with the coefficient of Balic et al., Fig. 3�bi�, while
we confirm that the corresponding correlations agree per-
fectly. The divergence of the imaginary component of our Gs

as �	� increases is due to i 	
c corresponding to the time deriva-

tive. This can be verified by comparing with the case when
i 	

c is neglected: namely, Figs. 3�aii� and 3�aiii� or 3�bii� and
3�biii�. However, i 	

c is an odd function which integrates to
give zero �when �s,a� �1� and therefore does not affect the
results. If the detunings and Rabi frequencies of the two
lasers are the same, we have Gs=Ga and Ks=Ka. To summa-
rize, the correctness of our generalized coefficients have
been verified and they include the coexistence of the pump
and control fields and the coherence between upper levels a
and d, which give rise to additional resonant features in the
spectra, particularly of Gs.

In Fig. 4, we plot the normalized self-correlations, cross
correlation, reverse correlation, and Cauchy-Schwartz corre-
lation defined in Sec. V. The self-correlations change from
thermal �gf f

�2�=2� to coherent �gf f
�2�=1� nature as the time de-

lay increases, but remain classical. The cross correlation
shows a large nonclassical correlation �gas

�2�, gas
CS
 
1�. The

reverse correlation is negligible �15� �gsa
�2��1� and remains

classical gsa
CS�1 which is consistent with bunching in gsa

�2�.
Finally, we conclude that the correspondence of our gen-

eralized coupled equations and the ability of our analytical
expression for the correlation to provide good quantitative
agreement with experimental data allow us to forecast new
results in different regimes of laser parameters in a series of
subsequent papers.
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APPENDIX A: CLOSED SET OF HEISENBERG-
LANGEVIN-MAXWELL EQUATIONS

The Hamiltonian for the four-level system �Fig. 1�a�� in
the Schrödinger picture is H=� j
Hoj +Vj� where

H0j = �
!=a,b,c,d

��!�! j��! j� + �
k,�

	âk�
† âk� +

1

2

�	k� �A1�

and

Vj = − �� �
k,!=b,c

�gk
a!�aj��! j� + gk

d!�dj��! j��âk�t�eik·rj + �p�dj�

��cj�ei�kp·rj−	pt� + �c�aj��bj�ei�kc·rj−	ct� + gsÊs�dj�

��bj�ei�ks·rj−	st� + gaÊa�aj��cj�ei�ka·rj−	at� + adj� �A2�

are the free Hamiltonian and interaction Hamiltonian in the
Schrödinger picture for single particles in the medium and
gs=�db /�, ga=�ac /�, gk

a!=�a!Ek /�, and Ek=��	k /2�oV.

FIG. 4. �Color online� Normalized self-correlations gf f
�2�n, cross

correlation gas
�2�n, and reverse correlation gsa

�2�n with Cauchy-
Schwartz cross correlation gsa

CS and reverse correlation gas
CS for the

experimental parameters N�L=11, �p=0.8�ac /2, 
=−7.5�ac, �bc

=0.6�ac, and �c /�ac=8.4/2.
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The subscripts p, s, q, and a stand for pump, Stokes control
and anti-Stokes fields, respectively. The number density N in
the extended medium of volume V is assumed to be suffi-
ciently large n=VN
 
1 such that the discrete operators
can be converted into continuous variables operators:

�2��2

AN
�
j=1

n

�̂��
j �t���z − zj� → �̂���z,t� , �A3�

e−ik��·rj → e−ik��z, �A4�

�2��2

AN
�
j=1

n

F̂��
j �t���z − zj� → F̂���z,t� , �A5�

where �̂���t�= �� j��� j�, F̂��
j �t� are the quantum noise opera-

tors, and A is the effective transverse interaction area covered
by the laser beams. However, the interparticle distance d
�N−1/3 is larger than the optical wavelength � so that the
dipole-dipole interaction can be neglected. Hence, we obtain
a set of 16 Heisenberg-Langevin atomic operator equations
in continuous variables coupled to the 4 �including the ad-

joints� propagation equations for the Stokes Ês and anti-

Stokes Ês.
The above equations can be simplified to a closed set of

equations that can be solved exactly for the field operators

Ês,a if p̂xx and p̂ab , p̂cd are taken as c numbers, corresponding
to the steady-state density matrix elements. The coupled
equations are

d

dt
p̂ac = − Tacp̂ac − iga

*Êa
†�p̂cc − p̂aa� − i��c

*p̂bc − �p
*p̂ad�

+ eikaze−i	atF̂ac, �A6�

d

dt
p̂ad = − Tadp̂ad + i�gsp̂abÊs − ga

*Êa
†p̂cd� + i��pp̂ac − �c

*p̂bd�

+ eikqsze−i	qstF̂ad, �A7�

d

dt
p̂bc = − Tbcp̂bc − i�gsp̂dcÊs − ga

*Êa
†p̂ba� − i��cp̂ac − �p

*p̂bd�

+ e−ikqazei	qatF̂bc, �A8�

d

dt
p̂bd = − Tdb

* p̂bd + igs�p̂bb − p̂dd�Ês + i��pp̂bc − �cp̂ad�

+ e−ikszei	stF̂db
† , �A9�

	1

c

�

�t
+

�

�z

Ês�z,t� = i�sp̂bd�z,t� , �A10�

	1

c

�

�t
±

�

�z

Êa

†�z,t� = − i�a
*p̂ac�z,t� , �A11�

with F̂db
† = F̂bd and the slowly varying atomic operators p̂ac

= �̂ace
ikaze−i	at, p̂ad= �̂adeikqste−i	qst, p̂bc= �̂bce

ikaqze−i	aqt, and

p̂bd= �̂bde−ikstei	st. The “"” is for counterpropagating geom-
etry, and the complex decoherences are

Tac = i�	a − �ac� + �ac, �A12�

Tad = i�	c − 	s − �ad� + �ad, �A13�

Tbc = i�	p − 	s − �bc� + �bc, �A14�

Tdb = i�	s − �db� + �db, �A15�

with the decoherence rates

�ac �
1

2

#ac�2n̄ac + 1� + #ab�n̄ab + 1�� + �ac

dep, �A16�

�ad =
1

2

#db�n̄db + 1� + #dc�n̄dc + 1� + #ab�n̄ab + 1�

+ #ac�n̄ac + 1�� + �ad
dep, �A17�

�bc =
1

2

#abn̄ab + #dbn̄db + #acn̄ac + #dcn̄dc� + �bc

dep,

�A18�

�db �
1

2

#db�2n̄db + 1� + #dc�n̄dc + 1�� + �db

dep, �A19�

where #�� are the spontaneous emission rates and n̄f
= �e��	f −1�−1 and ���

dep are the dephasings due to phonons in
the condensed phase or atomic collisions in gas. Here, we
consider a cold sample with negligible inhomogeneous
broadening �1/T2

*→0�.

APPENDIX B: COEFFICIENTS FOR COUPLED
PARAMETRIC EQUATIONS

We focus on the quasistatic regime which enables us to
solve either Eqs. �1� and �2� or Eqs. �5� and �6� by Fourier
transforming the t variable to 	. The resulting equations can
then be solved algebraically by Laplace transforming the z
variable to q. The inverse Laplace transform gives the solu-
tions �10� and �11�. The gain and loss coefficients are

Gs = − �s�wbb
st +

i�c

Tad�	�
 ̃ba

st +
i�p

Tbc�	�
 ̃cd

st � − i
	

c
, �B1�

Ga = − �a�wcc
st −

i�c
*

Tbc�	�
 ̃ab

st −
i�p

*

Tad�	�
 ̃dc

st � − i
	

c
, �B2�

where the superscript “st” implies steady state and Tx�	�
=Tx− i	. The  ̃��

st = �p̂��
st ���� and inversions wcc

st = aa
st − cc

st ,
wbb

st = dd
st − bb

st are the steady-state solutions of the density
matrix equations. Note that the imaginary parts of  ̃ba

st and  ̃cd
st

lead to amplification Re
Gs ,Ga��0 even without inversion
wbb

st ,wcc
st �0.

The term i 	
c is due to the time derivatives of the field

operators. It will not affect the final result for the correlation.
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This has been verified numerically and can be understood
analytically if we use Eqs. �A6�–�A11� in the retarded frame
through the new variables t�= t−z /c.

The cross couplings are

Ks = i�s� �p

Tbc�	�
 ̃ab

st +
�c

Tad�	�
 ̃dc

st � − i
	

c
�s, �B3�

Ka = − i�a� �p
*

Tad�	�
 ̃ba

st +
�c

*

Tbc�	�
 ̃cd

st � − i
	

c
�a, �B4�

with the effective propagation coefficients

�s =
gs�s

Tdb
* �	� + �s

, �a =
ga

*�a
*

Tac�	� + �a
�B5�

and the power broadening frequencies

�s =
��c�2

Tad�	�
+

��p�2

Tbc�	�
, �a =

��p�2

Tad�	�
+

��c�2

Tbc�	�
, �B6�

and the self-coupling coefficients appearing in Eqs. �5� and
�6� are

�s =
gs�s

ga
*�a

*

�c�p

Tdb
* �	� + �s

	 1

Tbc�	�
+

1

Tad�	�

 , �B7�

�a =
ga

*�a
*

gs�s

�c
*�p

*

Tac�	� + �a
	 1

Tbc�	�
+

1

Tad�	�

 , �B8�

with the propagation constants �s=N�bdc�o	s /2 and �a
=N�cac�o	a /2. The real parts of Gs,a are even functions
across 	 and the imaginary parts are odd functions and vice-
versa for Ks,a.

The coefficients in Eqs. �3� and �4� are

Xad = �s
�c

Tad�	�
, Xbc = − �s

�p

Tbc�	�
, Xbd = i�s, �B9�

Yad = �a

�p
*

Tad�	�
, Ybc = − �a

�c
*

Tbc�	�
, Yac = − i�a.

�B10�

For comparison with our coefficients, we rewrite the coeffi-
cients of Balic et al. �9� �Superscript B� based on a more

precise form of Ref. �25� in terms of our notation �c
=�c

B /2:

Gs = − Tac�	�	�p




2

1

2
N�db�db

D*�	�
, �B11�

Ga = Tbc�	�

1

2
N�ac�ac

D*�	�
, �B12�

Ks = − i
�p

*�c
*




1

2
N�db�db

D*�	�
, �B13�

Ka = i
�p

*�c
*




1

2
N�ac�ac

D*�	�
, �B14�

Xbc = − iTac�	�
�p

*




N��db�ac�db�ac

D* , �B15�

Xac = − �c
*	�p




2N�ac�ac

D* , �B16�

Ybc = − �c
*N��db�ac�db�ac

D* , �B17�

Xac = − iTbc�	�
N�ac�ac

D
, �B18�

where D�	�= ��c�2− �i�ac−	��i�bc−	�=DB /4 with N�db�db

=2gs�s, N�ac�ac=2ga�a, and �db=
���2�db

�c�o�db
,�ac=

���2�ac

�c�o�ac
. Note

that our definition of the Fourier transform is opposite to that
of Balic et al. �9�.

APPENDIX C: DERIVATION OF Eq. (32)

We derive the cross correlation of the noise terms in Eq.
�28� using the solutions in frequency space, Eqs. �10� and
�11�, as follows:

�N̂a�t + ��N̂s�t�� = �
−�

�

ei	2�t+��d	2

2�
�

−�

�

e−i	1td	1

2�
�N̂a�z,	2�N̂s�z,	1��

= ei
kz�
−�

�

ei	2�t+��d	2

2�
�

−�

�

e−i	1td	1

2�
�
x,x�
�

0

z

dz2�
0

z

dz1Cx
a*��2,	2�Cx�

s ��1,	1��Ĝx
†�z2,	2�Ĝx��z1,	1�� . �C1�

The noise products in the frequency domain are related to the diffusion coefficients 2Dx,x�
n defined in Appendix E,
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�Ĝx
†�z2,	2�Ĝx��z1,	1�� = �

−�

�

dt2e−i	2t2�
−�

�

dt1ei	1t1e−i�xei�x��F̂x
†�z2,t2�F̂x��z1,t1��

= �
−�

�

dt2e−i	2t2�
−�

�

dt1ei	1t1
�2��2

AN
2D̃x,x�

n �z1,t1���t2 − t1���z2 − z1� , �C2�

where 2D̃x,x�
n �z1 , t1�=2Dx,x�

n e−i�xei�x� are the slowly varying

diffusion coefficients. Since 2D̃x,x�
n vary much slower than

the exponentials e−i	2t2 and ei	1t1, we can take their steady

state-values 2D̃x,x�
n �z1� but keep the spatial dependence. We

then have a � function in frequency that enables further sim-
plification of the number of integrals:

�Ĝx
†�z2,	2�Ĝx��z1,	1�� =

�2��3

AN
2D̃x,x�

n �z1���z2 − z1���	1 − 	2� .

�C3�

Finally, we have

�N̂a�t + ��N̂s�t�� = ei
kz 2�

AN �
x,x�
�

−�

�

ei	�

��
0

z

2D̃x,x�
n �z�Cx

a*��,	�Cx�
s ��,	�dzd	 ,

�C4�

which is identical to the first term of Eq. �32�.

APPENDIX D: COMMUTATION RELATION
FOR BOUNDARY FIELD OPERATORS

The Stokes and anti-Stokes operators at boundary are

Ẽf�0,t� = E f�
k

âke−i	kteikxx+ikyy , �D1�

Êf�0,	� = E f�
k

âk2���	 − 	k�eikxx+ikyy , �D2�

where E f =��	 f /2�oV. Using �âk , âk�
† �=�k , k� we find

�Êf�0,	�,Êf
†�0,	��� = �2�E f�2�

k
��	 − 	k���	� − 	k� .

�D3�

The conversion to integration using �k . . .
→ A

�2��2 ��d2k L
2� �dk . . . � L

2� �dk¯ gives

�Êf�0,	�,Êf
†�0,	��� =

�	 f

2�0V

2�L

c
� ��	 − u���	� − u�du

�
�	 f�

�0Ac
��	 − 	�� , �D4�

where we have used the identity �f�u���	−u���	�−u�du
= f�	���	−	�� and V=AL.

APPENDIX E: DIFFUSION COEFFICIENTS

The quantum noise correlation for two discrete particles is

� correlated in time �F̂j
x�t�F̂k

x��t���=2Dx,x�
j �t���t− t��� jk. So,

in one spatial dimension,

�F̂x�z,t�F̂x��z�,t��� =
�2��4

�AN�2 �
j,k=1

n

�F̂x
j�t���z − zj�F̂x�

k �t��

���z� − zk��

=
�2��4

�AN�2�
j=1

n

2Dx,x�
j �t���t − t����z − zj�

���z� − zj�

�
�2��2

AN
2Dx,x��z,t���t − t����z − z�� ,

�E1�

where Dx,x��z , t�=
�2��2

AN � j=1
n Dx,x�

j �t���z−zj�.
Hence, the normal-ordered noise correlations are related

to the diffusion coefficients as

�F̂x
†�z,t�F̂x��z�,t��� =

�2��2

AN
2Dx,x�

n ��z − z����t − t�� �E2�

and similarly for the antinormal-ordered noise correlations

�F̂x�z,t�F̂x�
† �z�,t��� =

�2��2

AN
2Dx,x�

an ��z − z����t − t�� .

�E3�

The normal-ordered 2Dx,x�
n and antinormal-ordered 2Dx,x�

an co-
efficients are calculated using Einstein’s relation and the
atomic equations for continuous variables. For the purpose of
evaluating the correlations, these coefficients are expressed
in terms of the steady-state matrix elements  ij

st and the ther-
mal photon number n̄f.

Note that when the thermal temperature is zero, the
excited populations are negligible,  dd

st � aa
st �0. If the

dephasings are such that �dc
dep=�ad

dep+�ac
dep=�db

dep+�bc
dep, the

only finite diffusion coefficients are 2D̃ac,ac
n =2�ac cc

st ,

2D̃bc,bc
n =2�bc cc

st , 2D̃bc,bc
an =2�bc bb

st , and 2D̃bd,bd
an =2�db bb

st .
This means that the correlations due to noise operators are
governed by the decoherence rates �db and �ac of the Stokes
and anti-Stokes transitions as well as the decoherence �bc
between the ground states.
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APPENDIX F: DECORRELATION FOR GAUSSIAN NOISE

The solutions of the Stokes and anti-Stokes operators are
composed of the boundary and the noise parts

Ês�L,t� = B̂s�L,t� + N̂s�L,t� , �F1�

Êa
†�0,t� = B̂a

†�L,t� + N̂a
†�L,t� , �F2�

where B̂s�L , t�, B̂a�L , t�, N̂s�L , t�, and N̂a
†�L , t� are the inverse

Fourier transforms of the terms in Eqs. �10� and �11�.
Since the noise operators in vacuum are well known to

satisfy Gaussian decorrelation and the odd products of noise
operators vanish, the noise part satisfies the Gaussian decor-
relation. Thus, we only need to verify one term in Gas

�2����
= �Ês

†�t�Êa
†�t+��Êa�t+��Ês�t��—i.e., the term with all bound-

ary operators. Since the boundary parts B̂f contain Êf�0,	�
� âf, we can write

�Bs
†�t�Ba

†�t + ��Ba�t + ��Bs�t�� � ��âs
† + âa��âa

† + âs�

��âa + âs
†��âs + âa

†�� ,

�F3�

where coefficients do not affect our argument and are left
out. Straightforward expansion gives

2�n̂s�2 + 4�n̂s� + 4�n̂s��n̂a� + 2�n̂a�2 + 4�n̂a� + 2

= �n̂s
2� + 3�n̂s� + 4�n̂s��n̂a� + �n̂a

2� + 3�n̂a� + 2, �F4�

where the second line follows for the thermal state, �n̂s
2�

=2�n̂s�2+ �n̂s�.
If we use Gaussian decorrelation on Eq. �3�, we have

��as
† + aa��aa

† + as����aa + as
†��as + aa

†��

+ ��as
† + aa��aa + as

†����aa
† + as��as + aa

†��

+ ��as
† + aa��as + aa

†����aa
† + as��aa + as

†��

= 2��n̂s� + �n̂a� + 1�2, �F5�

which proves that the Gaussian decorrelation applies to op-
erators in the thermal state, as well as the vacuum state:
when �n̂s�= �n̂a�=0. Thus, the decorrelation of Eq. �27� is
justified.
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