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We discuss a possible experimental scheme for the implementation of a quantum walk. The scheme is based
on the passage of an atom inside a high-Q cavity. The chirality is characterized by the atomic states and the
displacement is characterized by the photon number inside the cavity. The quantum steps are described by
appropriate interactions with a sequence of classical and quantized cavity fields.
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It is well known that a quantum computer can solve some
problems faster than classical computer. Many classical al-
gorithms used in classical computer are based on random
walks. It is therefore interesting to consider the quantum ana-
log of a classical random walk.

There are a number of different types of quantum walk.
Discrete-time quantum walks were proposed by Aharonovet
al. [1] and further developed by Watrous[2]. These walks
rely on an auxiliary quantum system, a “quantum coin,” in
order to make the time steps in the walk correspond to the
action of a unitary operator. Aharonovet al. [3] and Am-
bainis et al. [4] gave the first explicitly algorithmic context
for coined quantum walks. Nayaket al. [5] studied in detail
the properties of a quantum walk in one dimension. Farhi
and Gutmann[6] introduced continuous-time quantum walks
in 1997. Recently Hilleryet al. [7] developed a discrete-time
quantum-walk model which is based on an analogy to optical
interferometers, and does not require a quantum coin. Quan-
tum walks in systems with one and two absorbing walls have
also been studied[8].

A number of algorithmic aplications of quantum walks
have been found. Childset al. [9] proved that a continuous-
time quantum walk can find its way across a special type of
graph exponentially faster than can any classical algorithm.
Shenviet al. [10] demonstrated that a search algorithm based
on a coined quantum walk can obtain the same quadratic
speedup as Grover’s search algorithm. Quantum algorithms
that are faster than any classical one have been found for
searching databases laid out inD dimensions using a
continuous-time walk[11] and in two dimensions using a
discrete-time walk[12]. Quantum-walk algorithms have also
been found for element distinctness[13], finding triangles in
graphs[14], subset finding[15], and determining whether a
set of marked elements, which is promised to be of a certain
size, exists or not[16].

Methods for the implementation of the coined quantum
walk on a number of different physical systems have recently
been suggested. These include ion traps[17], neutral atoms
trapped in an optical lattice[18], and cavity QED, in which it
is the phase of the field that undergoes the walk[19]. Very
recently, additional optical implementations have been pro-
posed using either linear optical elements[20,21] or cavities
[22,23]. In these cavity implementations, the walk takes
place among frequency components of the cavity field. These
papers also show that an experimental quantum walk has, in

fact, been carried out, though it was not interpreted as such at
the time[24].

In this paper, we present a study of the properties of quan-
tum walks in one dimension using the cavity QED method.
We consider a possible experimental scheme to implement a
quantum walk via an interaction between photons and a spe-
cial two-level atom inside a high-Q cavity. We are interested
in a random walk such that the displacement of the particle
making the walk corresponds to the number of photons in-
side the cavity. As photon numbers are always positive, our
quantum walk takes place on a straight line with an integer
lattice but restricted to a half-space, i.e., it cannot go to nega-
tive range. The particle starts at one of those lattice points at
some initial time, and at each time step it moves to the left or
the right lattice point with equal probability.

A one-dimensional classical random walk can be de-
scribed as follows. A particle starts at an initial position. The
decision to move to the left or right is made by flipping a
coin. If the outcome is “heads,” the particle moves to the
right and if the outcome is “tails,” the particle moves to the
left. It is well known that the probability of being at a given
position remains maximum at the initial position. For a large
number of steps, the distribution is given by a Gaussian.

The results for a quantum walk are qualitatively different.
The basic difference comes from the fact that, in a quantum
walk, we consider the probability amplitudes for the dis-
placement instead of probabilities. As a consequence, there is
quantum interference between the probability amplitudes at
different locations. One interesting feature is that the prob-
ability for location at the initial location is no longer maxi-
mum.

In the case of the quantum walk, the particle moves to the
left or right according to the outcome of the flip of a “quan-
tum coin” as determined by the chirality[5]. At any point of
the lattice the particle has either “left” or “right” chirality.
The chirality undergoes a rotation(a unitary transformation
called “Hadamard transformation”) according to

uLl → 1
Î2

suLl + uRld,

uRl → 1
Î2

suLl − uRld. s1d

The particle then moves to the adjacent lattice point accord-
ing to its final chirality state, i.e.,
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ucLsn,tdl → ucLsn − 1,tdl,

ucRsn,tdl → ucRsn + 1,tdl. s2d

Here ucLsn,tdl and ucRsn,tdl are the wave functions of the
particle at position “n” at time step “t” with “left” or “right”
chirality. A simulation of such a quantum walk is presented
in Fig. 1. We plot the probabilitiesPL,n and PR,n which are
the probabilities with the left and right chiralities, respec-
tively, for the particle at positionsn after t=100 steps. The
particle is initially located atn=0 and moves to the left.

We now introduce a cavity QED scheme for the imple-
mentation of the quantum walk discussed above. The pro-
posed scheme is based on the interaction of an atom with an
array of classical and quantum radiation fields. However, be-
fore describing our scheme, we define certain operations that
can be carried out in the atom-field interaction.

(a) First, we consider the resonant interaction of a
two-level atom with a classical field. The unitary operator
corresponding to this interaction is given by[25]

UCsu,wd = S cossud − ieiwsinsud
− ie−iwsinsud cossud

D , s3d

where u=Vt with V being the Rabi frequency andt the
interaction time, andw is the phase of the driving field.

(b) Second, we consider the interaction of a two-level
atom with the quantized field inside the cavity and we dis-
cuss how a shift of the photon number state can take place
via chirping. We assume that the detuning between the
atomic transition frequencyvab and the cavity resonance fre-
quencyn is time-dependent(see Fig. 2). The atom-field in-
teraction in the dipole and the rotating-wave approximation
is described by the following Hamiltonian:

H0 = "nualkau + "na†a + "dstdualkau + "gsualkbua + a†ublkaud,

s4d

where dstd=vab−n is the atom-field detuning. The Hamil-
tonian can be diagonalized and the atom-field dressed states
are given by

u + l = cosunualunl − sin unublun + 1l,

u− l = sin unualunl + cosunublun + 1l. s5d

The corresponding energy eigenvalues are

E+n = "fsn + 1dn + vabg −
"

2
fÎd2 + 4g2sn + 1d + dg,

E−n = "snnd +
"

2
fÎd2 + 4g2sn + 1d + dg. s6d

Here

sin un =
Îd2 + 4g2sn + 1d + d

ÎfÎd2 + 4g2sn + 1d + dg2 + 4g2sn + 1d
,

cosun =
2gÎn + 1

ÎfÎd2 + 4g2sn + 1d + dg2 + 4g2sn + 1d
.

We now consider the situation when the atom is initially in
stateubl and there aren photons in the cavity. If the atom-
field detuning is initiallysat t= tid such thatd=−udu with udu
@2gÎn+1, then we are in au+l state. Next the detuning is
chirped slowly such that, att= tf swith uti − tfu@2gÎn+1d,
we haved= + udu. The atom is then transferred to theubl
with n+1 photons. Thus the net result of frequency chirp-
ing is that

ualunl → − ublun + 1l.

It is not difficult to see that, under the same circumstances,
the atom-field stateublunl evolves toualun−1l. Thus we can
describe an operatorS such that

S:ualunl → − ublun + 1l,

S:ublunl → ualun − 1l.

It may be noted that this transformation takes place regard-
less of the number of photonsn inside the cavity.

Now we are ready to discuss the implementation of a
quantum walk based only on the operationsUCsu ,wd andS.

We consider the passage of a two-level atom through a
cavity. The initial state of the atom can be the ground state
ubl or the excited stateual and the cavity is in the photon
number stateun0l. We now show that each step of the quan-
tum walk corresponds to a sequence of the operations
UCsp /2 ,−p /2dSUCsp /4 ,−p /2d. Thus for each step, we
need two interactions with the classical fields supplemented

FIG. 1. The probabilitiesPL,n and PR,n are plotted vsn. At the
initial time, the particle is located at the positionn0=0 and the
direction of movement is left. Total number of steps ist=100. FIG. 2. Schematics of a two-level atom interacting with the

radiation field. The energy levelsual andubl of the atom are detuned
from the radiation field of frequencyn by an amountd=vab−n.
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by a time-dependent interaction with the quantized cavity
field.

The atomic statesubl and ual correspond to “left” and
“right” chirality states needed in quantum walks. The photon
number states in the cavity represent particle positions. The
changing of the photon number corresponds to a particle
moving forward or backward. As pointed out earlier, the pho-
ton number is non-negative. Therefore, our study concerns
only half-space in quantum walks, i.e., the particle is re-
stricted in a non-negative range.

We start the first step of the quantum walk with a Had-
amard transformation of chirality statesual andubl. This step
can be simply carried out via interaction between classical
field and the two-level atom system. The unitary classical
evolution matrix is given as

UCsp/4,−p/2d =
1
Î2

S1 − 1

1 1
D . s7d

The atomic statesual and ubl evolve to

ual → 1
Î2

sual + ubld,

ubl → 1
Î2

subl − uald. s8d

Please note that there is a slight difference between Eq.(8)
and Eq.(1) but it does not affect the final result of quantum
walks.

In the second step, we change the photon states according
to the following prescription: Photon numbers increase by 1
if the atom is in stateual and decrease by 1 if the atom is in
stateubl without changing the atom states, i.e.,

ublunl → ublun − 1l,

ualunl → ualun + 1l. s9d

This step cannot be accomplished through a simple
Jaynes-Cummings-type interaction. Instead we consider a
two-step process. In the first step, we use a frequency chirp-
ing method represented byS as discussed in(b) above. The
result isS: ualunl→−ublun+1l and S:ublunl→ ualun−1l.

Next we use classical evolution[Eq. (3)] with u=p /2 and
w=−p /2, i.e.,

UCsp/2,−p/2d = S0 − 1

1 0
D s10d

to make −ublun+1l→ ualun+1l and
ualun−1l→ ublun−1l.Thus finally we have

ualunl → − ublun + 1l → ualun + 1l,

ublunl → ualun − 1l → ublun − 1l if n . 0,

ublu0l → ublu0l → ualu0l if n = 0. s11d

The operation of the first and the second steps, i.e.,
UCsp /2 ,−p /2dSUCsp /4 ,−p /2d, completes the description
of one step of the quantum walk. Repeating these steps again
and again we can make quantum walks.

The immediate question arises as to how we can control
the classical evolution as well as the time-dependent evolu-
tion for chirping during the passage of an atom through the
cavity. We propose the atomic levelsual and ubl to be mag-
netic sublevels coupled through appropriately polarized light.
The interactions can then be controlled via application of a
time-dependent magnetic field such that the interaction times
for the implementation of theUCsu ,wd transformation and
the time dependence of the detuningD for the chirping are
controlled.

In Figs. 3–5, we present results of our simulation based on
the solution of the appropriate Schrödinger equation. We
choose initial states to beublun0l. For each figure, we give the
value of the initial photon numbersn0 and the total number
of time steps. In these figures,Pa,n and Pb,n represent the

FIG. 3. The probabilitiesPa,n and Pb,n are plotted vsn. These
plots show the photon numbers after 200 time steps; the initial
photon number isn0=0.

FIG. 4. The probabilitiesPa,n andPb,n are plotted vsn. Here we
set the initial photon numbern0=100, and the number of steps is
100.

FIG. 5. The probabilitiesPa,n and Pb,n are plotted vsn. Here
initial photon number isn0=100 and total number of time steps is
200.
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probabilities for the atom to be in stateual and ubl, respec-
tively, with n photons inside the cavity. In these simulations,
we choseg/ udu=0.01.

In Fig. 3, we choosen0=0 and time step=200. The quan-
tum walks in our system cannot go to negative rangesn
ù0d. The maximum probability of photon states therefore
lies in the rangen=0 to n=200. For a larger number of
quantum steps, the maximum probability of photon states
moves away fromn=0 as shown in Fig. 3.

In Fig. 4, we choosen0=100 and the number of time steps
to be equal to 100 as well. The quantum walks can now take
place on both sides ofn=100. The shape of the probability is
not symmetrical and is dependent on the initial atomic state.
This is one of the important differences between classical
random walk and quantum walk. The maximum probability
of photon states lies on the left side ofn=100 for the initial
stateubl.

In Fig. 5, we consider the case ofn0=100 and the number
of time stepst=200. Here the “particle” moves fromn0
=100 to the right and left as shown in Fig. 4. However, this
time the left-going wave will reachn=0 and then bounce
back to n.0. An interference between the left-going and
right-going walks leads a complex behavior betweenn=0
andn=100. As pointed out earlier, a quantum walk with one
barrier has been studied by Bachet al. [8].

At present, it is difficult to have pure photon number
states for large photon number. In Fig. 6, we choose initial
photon states to be a coherent stateual and give the final

result for a quantum walk. We choose the average photon
number to be 100. The coherent state can be written as a
superposition of Fock state and each Fock state undergoes a
separate random walk. The final result is obtained by com-
bining all the amplitudes. The net result is an interference of
these amplitudes, and the sharp peaks and dips disappear as
seen in Fig. 6. The disappearance of the sharp behavior as-
sociated with quantum walks will also be expected for any
coherent or incoherent mixture of Fock states.

Since classical characters of coherent states are so obvi-
ous, it is possible to do experiments to test this kind of co-
herent state quantum walk.

Decoherence induced by losses through the cavity mirrors
k or atomic decayg will also affect the quantum walk as the
photon number inside the cavity will change with time. A
detailed analysis is complicated and will be presented else-
where. Here we only point out that the results presented in
this paper are valid if the cavity and atomic decay rates are
small such that all the steps are completed during a timet
@1/k ,g.

In conclusion, we have discussed a scheme for the imple-
mentation of a quantum walk in a cavity QED system. This
system allows us to study the properties of quantum walks in
half-space. In the present analysis, we have considered a se-
quence of classical and quantum interactions of an atom
passing through a cavity with a fixed number of photons.
Recently, there has been tremendous experimental progress
in cavity QED [26,27]. Several aspects of the proposed
schemes have been implemented, such as the controlled in-
teraction of an atom with a sequence of classical and quan-
tum field [28]. Fock states with small photon numbers have
also been generated[29]. The implementation of the pro-
posed scheme is there within reach at least for small photon
numbers and a small number of quantum steps.
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