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Reconstruction of a multimode entangled state using a two-photon phase-sensitive linear amplifie
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We propose a model for the measurement of an arbitrary multimode entangled state of the cavity field using
two-photon correlated emission laser. We consider two cases:~a! The modes have different frequencies and are
detected separately and~b! the modes consist of two orthogonal polarization states and are detected using a
single balanced homodyne detector. The basic idea is to amplify the initial multimode state such that there is
no-noise in the quadrature of interest and all the noise is fed into the conjugate quadrature component. The
amplified noise-free quadrature is prepared in different phases and then corresponding quadrature distribution
is measured. The Wigner function of the initial multimode entangled state is then reconstructed by using
inverse Radon transformation. This scheme is insensitive to the noise associated with the nonunit efficiency of
the detector in the homodyne detection measurement scheme.
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I. INTRODUCTION

Quantum entanglement is one of the most fascina
nonclassical properties of a composite quantum system@1#.
Its nonlocal character lies at the heart of quantum inform
tion theory. The idea of teleportation@2#, quantum computing
@3#, quantum error correction@4#, cryptography@5# and many
more @6# reside on the quantum entanglement. In this pa
we propose a scheme for the measurement of an arbi
multimode entangled state of the cavity field.

Methods to measure the quantum state of the running fi
as well as the cavity field have been extensively studied
recent years. There are different proposals for the recons
tion of quantum state of the field based upon quantum
mography@7–9#, absorption and emission spectroscopy@10#,
the conditional measurement of the atoms in a microma
cavity @11#, dispersive interaction of a single circular Ry
berg atom with the cavity field@12#, and others@13#. Re-
cently, some pioneering experiments have also been don
measure the quantum state of the field@14# ~for a review, see
Refs. @15,16#!. However, most of the recent studies are
lated to a single mode of the cavity field and there are on
few schemes for the measurement of multimode field ins
a cavity @17#.

Earlier, we proposed a scheme for the reconstruction
single-mode quantum state of the cavity field@8#. The
scheme is based upon the amplification of the field usin
two-photon correlated emission laser~CEL! amplifier
@18,19#. During the amplification, there is no noise in th
quadrature of interest and all the noise is fed into the con
gate quadrature. The complete distribution for the noise-
field quadrature is measured via optical homodyne detect
The Wigner function of the initial quantum state is then
constructed by using inverse radon transformation familia
quantum state tomography. Following the same proposal
study here the reconstruction of an arbitrary multimode
tangled state of the cavity field. We consider two possi
cases. In the first case, the cavity modes are defined in te
of different frequency component and detected separately
1050-2947/2003/67~4!/043815~8!/$20.00 67 0438
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ing balanced homodyne detectors~BHD’s! and in the other
case the modes consist of two orthogonal polarization st
and detected using a single balanced homodyne detecto

The case in which the cavity modes consist of differe
frequency components can be handled by separating n m
and sending them into separate BHD’s. The joint quadrat
distribution v(x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un) can be ob-
tained by measuring the noise-free quadrature compon
x1(u1), x2(u2), . . . ,xn(un) by varying the local oscillator
phasesu1 , u2 , . . . ,un from 0 to p, independently. Multi-
mode amplification with reduced noise for different quad
ture phases can be obtained by injecting multiple beam
three-level atoms inside the cavity, initially prepared in
coherent superposition of their upper and lower atomic lev
using classical fields of different values of phasesw1 ,
w2 , . . . ,wn , accordingly. The joint distribution function is
then used to reconstruct the Wigner function of the mu
mode field using quantum state tomography.

In case when the cavity modes consist of two orthogo
polarization states of the cavity field, the noisefree ampl
cation can be obtained by using the same two-photon C
setup. The two beams of injected atoms independently
plify the two polarization modes such that there is no no
in the quadrature of interest. On the measurement side
can use a single BHD setup to detect the cavity field
which the local oscillator field is in a linear superposition
the two polarization modes@20#. The field which is allowed
to leak through the end mirror of the cavity is passed throu
a controllable phase shifter and then through a rotatable
larizer prior to its entry in the balanced homodyne detec
The generalized quadrature distributionv(x,u1 ,u2 ,c) is
calculated from the measured generalized quadrature

x~u1 ,u2 ,c!5 1
2 $@a1exp~2 iu1!1a1

†exp~ iu1!#cos~c!

1@a2exp~ iu2!1a2
†exp~ iu2!#sin~c!%.

Here u25u12w is the difference between the phaseu1 of
the local oscillator and the phase differencew introduced
©2003 The American Physical Society15-1
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between the modes of the field by the phase shifter.
anglec is controlled by a polarizer that determines the re
tive amplitude of the two modes that enter the BHD.
obtain noise-free amplification for a set of generaliz
quadrature phases given byu1 and u2, we prepare the am
plifiers in different phasesw1 andw2, accordingly. We have
calculated the complete noise-free generalized quadra
distribution v(x,u1 ,u2 ,c) for u1 , u2, and c, all varying
from 0 to p for an arbitrary two-mode entangled quantu
state after its amplification through a two-photon CEL. T
noise-free quadrature distributions are then used to re
struct the Wigner function of initial state by employing qua
tum state tomography@7#. It may be pointed out that the
proposed scheme overcomes the problems associated
the nonunit efficiency of the detector in homodyne detect
measurement scheme.

The paper is organized as follows. In Sec. II, we pres
the model of a two-photon CEL, and in Sec. III and IV, w
discuss the reconstruction scheme of a multimode ca
field for different frequency and polarization modes, resp
tively. Details of the calculations for multimode tomograp
are presented in the Appendix.

II. TWO-PHOTON PHASE-SENSITIVE LINEAR
AMPLIFIER

For a phase-sensitive linear amplification, we consider
model of a two-photon CEL amplifier proposed by Scu
and Zubairy@18#. In a CEL, atomic coherence is produce
by considering a beam of three-level atoms in a cascade
figuration~as shown in Fig. 1!, initially prepared in a coher-
ent superposition of their upper and lower atomic statesua&
and uc&, i.e.,

r i5raaua&^au1racua&^cu1rcauc&^au1rccuc&^cu. ~1!

The atoms are injected at a rateR inside the cavity where
they interact with the cavity mode for a timet, the injection
rate and interaction time are such that there is not more
one atom at a particular time inside the cavity. The mo
frequencyn of the cavity field is also considered to be res
nant with the atomic transitionsua&2ub& and ub&2uc&. The
evolution of the reduced density matrix of the field is giv
by the following master equation:

FIG. 1. Energy level scheme for three-level atoms.
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ṙF52
A

2
~N11!@aa†r22a†ra1raa†#2

A

2
N@a†ar

22ara†1ra†a#2
A

2
M* @aar22ara1raa#

2
A

2
M @a†a†r22a†ra†1ra†a†#, ~2!

whereA5Rg2t2(raa2rcc) is the gain coefficient. Hereg is
the atom-field interaction constant andraa (rcc) is the
density-matrix element corresponding to atoms in levelua&
(uc&). The constantsN andM are defined as

N5
rcc

~raa2rcc!
,

~3!

M5
rac

~raa2rcc!
.

The terms proportional toM contain the phase sensitivity o
the coherent atomic superposition, which play a crucial r
during the amplification process. Two-photon phase-sensi
linear amplifier allows us to amplify the signal such th
there is no noise in one of the quadrature components an
the noise is fed into the conjugate quadrature. Theref
quantum features associated with the field remain intac
one of the quadrature components and can be measure
ing the balanced homodyne detection scheme. The meas
quadrature components then can be used to reconstruc
initial quantum state of the cavity field.

Here we present an intuitive explanation of why the tw
photon CEL serves as a phase-sensitive amplifier. During
amplification process, spontaneous emission event occ
and as a result the atom undergoes a spontaneous tran
from the upper levelua& to the middle levelub&. The ran-
domness of this transition leads to an arbitrary phase ofub&
which is not determined by the atomic coherence. Howe
in the subsequent transition of the atom from levelub& to
level uc&, the atom remembers the arbitrary phase of
level ub& and as a result, the total phase coherence is
served in a CEL. In other words, the noise which is crea
during the spontaneous transition from levelua& to ub& is
compensated by a subsequent transition fromub& to uc& such
that the combined field has the same phase. This phas
completely determined by the atomic coherence which is
tially introduced between the levelsua& and uc&. Therefore,
the noise created by spontaneous emission events in a C
quenched and the process serves as a phase-sensitive a
fication.

To reconstruct a multimode cavity field, we need nois
free amplification with respect to all the cavity modes. F
different frequency modes we can inject multiple beams
three-level atoms inside the cavity, initially prepared in
coherent superposition of their upper and lower atomic sta
such that the transition frequency of each atom in a partic
beam is resonant with a specific cavity mode. Under t
condition, the individual frequency modes amplify indepe
5-2
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dently and the noise-free amplification can be obtain
However, for two orthogonal polarization modes with t
same frequency, we can consider two beams of atoms ha
the same transition frequency resonant with the cavity fie
The atoms are again prepared in a coherent superpositio
their upper and lower atomic states and injected inside
cavity. The injected atoms amplify the two polarizatio
modes independently such that there is no noise in
quadrature of interest.

The initial quantum state can be obtained by reconstr
s-
om
as

io

-
ty
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ing the corresponding Wigner function. Here we study t
evolution of the Wigner function for any arbitraryn-mode
entangled state of the cavity field after amplification throu
a phase-sensitive linear amplifier. In the following sectio
we show how it can be used to reconstruct the quantum s
of the cavity field for different frequency or polarizatio
modes. The evolution of the Wigner function for a singl
mode field can be obtained using Eq.~2! ~see Ref.@8#!,
which can be easily generalized for a multimode field and
given by the following:
W~a1 ,a2 , . . . ,an ,t !5E
2`

1`E
2`

1`

. . . E
2`

1`E
2`

1`

d2b1d2b2•••d2bnW~b1 ,b2 , . . . ,bn,0!F)
j 51

n

Wc~a j ,b j ;t !G , ~4!

wheren corresponds to the number of cavity modes and the conditional probabilityWc(a j ,b j ;t) is given by

Wc~a j ,b j ;t !5
1

p~G21!A~Nj11/2!22uM j u2
expF2

@ ua j ucos~q j2w j /2!2AGub j ucos~u0 j
2w j /2!#2

@Nj11/22uM j u#~G21!

2
@ ua j usin~q j2w j /2!2AGub j usin~u0 j

2w j /2!#2

@Nj11/21uM j u#~G21!
G . ~5!
es

ion
-
de-
and
ra-

e
y

by

a

Here G5exp(At) is defined as the gain factor which is a
sumed to be the same for all the amplified modes. The c
plex quantitiesa j andb j are expressed in the polar forms
a j5ua j uexp(iqj) andb j5ub j uexp(iu0j

). The phasew j corre-

sponds to the coherent superposition of levelsuaj&2ucj&,
i.e., rajcj

5urajcj
uexp(iwj) for the j th beam of the atoms.

In the case of perfect coherence, we have the relat
urajcj

u5Arajaj
rcjcj

. The squeezing parametersr j are defined
such that@21#

tanh2r j5
rajaj

rcjcj

.

In terms of the squeezing parametersr j , the constantsNj
and uM j u are given by

Nj5sinh2~r j !,
~6!

uM j u5
sinh~2r j !

2
.

It is clear from Eq.~4! that the initial state which is charac
terized by an arbitraryn-mode entangled state of the cavi
-

ns

field is amplified such that each individual mode amplifi
independently.

III. QUANTUM STATE RECONSTRUCTION: N-CAVITY
MODES WITH DIFFERENT FREQUENCIES

First we discuss the measurement of the Wigner funct
for a multimode cavity field which consists of different fre
quency components. Different frequency modes can be
tected in separate balanced homodyne detection setup
the joint quadrature distribution can be obtained. The quad
ture of each mode is given as

xj~u j !5 1
2 @aj

†exp~ iu j !1ajexp~2 iu j !#, ~7!

for j 51,2,3, . . . ,n, wheren is the number of modes insid
the cavity. Here phaseu j can be varied independently b
varying the phase of thej th local oscillator. A complete joint
distribution for the measured quadratures is given
v(x1 ,x2 , . . . ,xn ;u1 ,u2 , . . .un). The joint quadrature dis-
tribution for the amplified multimode field, which bears
one to one correspondence with then-mode Wigner function,
can be obtained using Eqs.~A6! and ~4! and is given by
v~x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un!5E
2`

1`E
2`

1`

. . . E
2`

1`E
2`

1`

d2b1d2b2•••d2bnW~b1 ,b2 , . . . ,bn,0!F)
j 51

n

P~xj ,u j ;t !G ,

~8!

whereP(xj ,u j ;t) is given by@8#
5-3
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P~xj ,u j ;t !5A2

p

1

A~G21!@Nj11/22uM j ucos~2u j2w j !#
expF2

@xj2AG~bxj
cosu j1byj

sinu j !#
2

~G21!@Nj11/22uM j ucos~2u j2w j !#
G . ~9!
ce
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-
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It is clear from Eq.~9! that a one to one corresponden
exists between the phasesw j 51,2, . . . ,n of the atomic coher-
ence and the phasesu j 51,2, . . . ,n of the local oscillator.
To reconstruct the Wigner function, we need a compl
set of joint quadrature distributionv(x1 ,x2 , . . . ,xn ; u1 ,
u2 , . . . ,un) for u j 51,2, . . . ,n all varying from 0 top. The
noise-free amplification forn modes can be obtained by in
jecting n beams of three-level atoms initially prepared in
coherent superposition of their upper and lower atomic st
with a fixed phasew j and by adjusting the phase of separa
local oscillatorsu j such thatu j5w j /2. The complete set o
quadrature distribution foru j going from 0 top can be ob-
tained if we prepare then beams of atoms for a
,

r
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t
f t

d
o
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i
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set of values of atomic coherent superposition phasesw j

ranging from 0 to 2p.
Once the joint quadrature distributionv(x1 ,x2 , . . . ,xn ;

u1 ,u2 , . . . ,un) is measured using separate balanced hom
dyne detection setup, then the corresponding Wigner fu
tion can be obtained by carrying out optical tomography~see
the Appendix!. On substituting Eqs.~8!–~9! into Eq. ~A7!,
we obtain the Wigner function of the noise-free amplifi
quantum state in terms of the rescaled variablesáx1

5ax1
/AG, . . . ,áxn

5axn
/AG, áy1

5ay1
/AG, . . . ,áyn

5ayn
/AG, and h́15h1 /AG, . . . ,h́n5hn /AG, which is

given by the following:
W~ á1 ,á2 , . . . ,án ,t !5E
2`

1`E
2`

1`E
2`

1`E
0

p

. . . E
2`

1`E
2`

1`E
2`

1`E
0

p

d2b1dh́1du1•••d2bndh́ndunuh́1u•••uh́nu

3W~b1 ,b2 ,•••,bn,0!F)
j 51

n

Q~ á j ,b j ;t !G , ~10!

where

Q~ á j ,b j ;t !5
1

~4p2!
expF2

~121/G!exp~22r j !

8
h́ j 22 i h́ j$~ áxj

2bxj
!cos~u j !1~ áyj

2byj
!sin~u j !%G . ~11!
gh

sed
of

yne
the

ec-
ent
the

nt,
cal
Here we have used the definition

~Nj11/22uM j u!5 1
2 exp~22r j !. ~12!

It is clear from Eq.~11! that for sufficiently large squeezing
i.e., in the limit whenr j 51,2, . . . ,n →` and for any arbitrary
value of the gain parameterG.1, we recover the Wigne
function of initial multimode quantum state of the field. It
interesting to see that any arbitraryn-mode field which con-
sists of different frequencies can be reconstructed using
proposed scheme, however, an appropriate rescaling o
measured distribution is required.

IV. QUANTUM STATE RECONSTRUCTION: TWO
POLARIZATION MODES OF THE CAVITY FIELD HAVING

THE SAME FREQUENCY

Here we consider the case when the two radiation mo
have the same frequency but orthogonal polarizations. In
der to measure such a two-mode field, we follow the sche
proposed in Ref.@20# which suggests the use of a single s
of balanced homodyne detection. The cavity field which
he
he

es
r-
e

t
s

allowed to leak through the end mirror is first passed throu
a phase shifter that produces a relative phase shift ofw in
between the two modes of the field. The field is then pas
through a polarizer that determines the relative amplitude
the two modes which then enter in a balanced homod
detector. The field operator after the polarizer is given by
following:

a5a1cos~c!1a2exp~ iw!sin~c!, ~13!

wherea1 anda2 correspond to modes one and two, resp
tively. The two-mode entangled state is then made incid
on a balanced homodyne detector which measures
quadrature component

x~u1 ,u2 ,c!5x~u1 ,u2 ,c!†5 1
2 @~a1

†expiu11a1exp2 iu1!cosc

1~a2
†expiu21a2exp2 iu2!sinc#, ~14!

whereu25u12w. In the balanced homodyne measureme
phaseu1 can be varied by changing the phase of the lo
5-4
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oscillator and phasesw and c are controlled by the phas
shifter and polarizer, respectively. A complete distribution
x(u1 ,u2 ,c) is given by the quadrature distributio
v(x,u1 ,u2 ,c), which bears a one to one corresponden
hi
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with the two-mode Wigner functionW(a1 ,a2 ,t) and is
given by Eq.~A11!. On substituting forW(a1 ,a2 ,t), i.e., n
up to 2 from Eq. ~4! into Eq. ~A11!, we obtain
v(x,u1 ,u2 ,c) for the amplified quantum state as
v~x,u1 ,u2 ,c!5
1

Ap~G21!~k1cos2~c!1k2sin2~c!!
E

2`

1`E
2`

1`

d2b1d2b2W~b1 ,b2,0!

3expF2
1

~G21!@k1cos2~c!1k2sin2~c!#
$x2AG„@bx1

cos~u1!

1by1
sin~u1!#cos~c!1@bx2

cos~u2!1by2
sin~u2!#sin~c!…%2G , ~15!
n
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where k15N111/22uM1ucos(2u12w1) and k25(N211/2
2uM2ucos(2u22w2). It is clear from Eq.~15! that the phases
w1 and w2 of the atomic coherences andu1 and u2 of the
field quadratures exhibit a one to one correspondence w
is quite interesting. To reconstruct the Wigner function of t
initial two-mode entangled state, we need a set of distri
tion functionsv(x,u1 ,u2 ,c) for different values ofu1 , u2,
andc, all varying from 0 top.

The two-mode Wigner function can be reconstructed
amplifying the signal such that there is no noise in the
sired generalized quadrature measured by the balanced
modyne detector and all the noise is fed into the conjug
generalized quadrature. It follows from Eq.~15! that the am-
plified signal without the added noise in the quadrat
v(x,u1 ,u2 ,c) can be obtained if we choose 2u12w150
and 2u22w250. In order to obtain noise-free amplificatio
for the two-mode entangled cavity field, we prepare the a
plifier by injecting two beams of three-level atoms initial
prepared in a coherent superposition of their upper and lo
atomic states with fixed phasesw1 andw2, respectively. The
injected atoms amplify the two polarization modes of the
cavity field independently. The noise-free generaliz
quadrature can be obtained by adjusting the phase of
local oscillator u1 such thatu15w1/2 and w5u12w2/2
~wherew is the phase difference between the two modes
the field produced by the phase shifter!. To find a complete
set of distributionv(x,u1 ,u2 ,c), we prepare the two beam
of atoms for a set of values of atomic coherent superposi
phasesw1 and w2 ranging from 0 to 2p and obtain the
noise-free amplification for the desired quadratures. T
Wigner function of the initial two-mode quantum state c
then be reconstructed from the measured values of noise
generalized quadraturev(x,u1 ,u2 ,c) by carrying out the
inverse Radon transformation familiar in the tomograp
imaging @7#. On substituting Eq.~15! into Eq. ~A12! and
after some simplification, we obtain the following expressi
for the Wigner function in terms of the rescaled variab
áx1

5ax1
/AG, áy1

5ay1
/AG, áx2

5ax2
/AG, and áy2

5ay2
/AG:
ch
e
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y
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W~ á1 ,á2 ,t !5E
2`

1`E
2`

1`E
2`

1`E
2`

1`

d2b1d2b2W~b1 ,b2,0!

3F)
j 51

2

R~ á j ,b j ;t !G , ~16!

where

R~ á j ,b j ;t !5
2

p~121/G!exp~22~r j !!
expF2

2

~121/G!

3H ~ áxj
2bxj

!21~ áyj
2byj

!2

exp~22r j !
J G . ~17!

Here we have used

~N111/22uM1u!5 1
2 exp~22r 1!,

~18!
~N211/22uM2u!5 1

2 exp~22r 2!.

For sufficiently strong squeezing, i.e., in the limit whe
r j 51,2 →` and for any arbitrary value of the gain parame
G.1, the functionR(á j ,b j ;t) approaches ad function and
we obtain the same original two-mode entangled state. T
clearly shows that any arbitrary two-mode entangled qu
tum state which is defined in terms of two orthogonal pol
ization states can be fully recovered after its amplificat
through a phase-sensitive linear amplifier and an appropr
rescaling of the measured distribution.

In conclusion, we propose a scheme for the measurem
of multimode entangled state of the cavity field using pha
sensitive linear amplification. We consider two cases of
terest:~i! modes are defined in terms of different frequenc
and~ii ! modes consist of two polarization states. It is sho
that in both cases we can recover the original quantum s
after amplification through a two-photon CEL amplifie
however, an appropriate rescaling of the measured distr
tion is required. For different frequency modes, the propo
scheme can be used to reconstruct any arbitraryn-mode field,
5-5



a
pr

t
n

re
th
rin
e

ro

s
Ai

k
h.

p

e
d
s
n
io

ns

end
tems

o-
itude

h

of

AHMAD, QAMAR, AND ZUBAIRY PHYSICAL REVIEW A 67, 043815 ~2003!
which is quite interesting. It may be pointed out that, in
recent study, Santos, Lutterbach, and Davidovich have
posed an interesting scheme for the measurement of
Wigner function forn modes with different frequencies i
the same or in different cavities@22#.

Here we would like to mention that, during the measu
ment, cavity field leaks through the cavity. To ensure that
field leakage through the end mirrors does not occur du
the amplification process, the time scales in the experim
have to be adjusted such that the total amplification time
very small as compared to the cavity decay time. The p
posed scheme overcomes the problems associated with
nonunit efficiency of the detector.
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APPENDIX: MULTIMODE TOMOGRAPHY

In this appendix, we show how to determine the Wign
function in terms of probability distribution for the rotate
quadrature phase for multimode field. We consider two ca
of interest, one in which we assume the separate detectio
different cavity modes and the other in which superposit
of modes is detected.

1. Case-I: Separate detection of different cavity modes

The Wigner function may be defined as Fourier tra
forms of the characteristic function@23#, which for the case
of n modes is given by the following:
n

04381
o-
he

-
e
g
nt
is
-

the

-
r

-

r

es
of

n

-

W̃~j1 ,j2 , . . . ,jn ,t !5Tr$exp@~j1â1
†2j1* â1!1~j2â2

†

2j2* â2!1 . . . 1~jnân
†2jn* ân!#r̂%,

~A1!

i.e.,

W~a1 ,a2 ,•••,an ,t !

5
1

p2nE2`

1`

. . . E
2`

1`

d2j1d2j2•••d2jn

3W̃~j1 ,j2 , . . . ,jn ,t !exp$a1j1* 2a1* j11a2j2*

2a2* j21 . . . 1anjn* 2an* jn%, ~A2!

wherer is the density operator.
If the n modes are separable then we can simply s

them into n separate balanced homodyne detection sys
and measure the joint statistics of their outputs. The hom
dyne detector measures the generalized quadrature-ampl
of the signal given by Eq.~7! in Sec. III. The complete
information of then-mode field can be obtained throug
its joint quadrature distribution v(x1 ,x2 , . . . ,xn ;
u1 ,u2 , . . . ,un), which is defined as the Fourier transform
the characteristic function and is given by

ṽ~h1 ,h2 , . . . ,hn ;u1 ,u2 , . . . ,un!5Tr„exp$ i @h1x̂1~u1!

1h2x̂2~u2!1•••1hnx̂n~un!#%r̂…, ~A3!

i.e.,
v~x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un!5
1

~2p!nE2`

1`

•••E
2`

1`

dh1dh2•••dhnṽ~h1 ,h2 , . . . ,hn ;u1 ,u2 , . . . ,un!

3exp$2 i ~h1x11h2x21•••1hnxn!%. ~A4!

A one to one correspondence can be established betweenW(a1 ,a2 , . . . ,an ,t) andv(x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un) which
can be seen through Eqs.~A1! and ~A3!. On using the definition of quadrature phases given in Sec. III via Eq.~7!, we
immediately obtain

ṽ~h1 ,h2 , . . . ,hn ;u1 ,u2 , . . . ,un!5W̃S i
h1

2
exp~ iu1!,i

h2

2
exp~ iu2!, . . . ,i

hn

2
exp~ iun!,t D . ~A5!
e
n-
qs.
ne
If ṽ(h1 ,h2 , . . . ,hn ;u1 ,u2 , . . . ,un) is known for all
h1 ,h2 , . . . ,hn values in the range2`,h i 51,2, . . . ,n,`
and for all u1 ,u2 , . . . ,un values in the range 0
<u i 51,2, . . . ,n,p, then the characteristics, functio
W̃(j1 ,j2 , . . . ,jn ,t) is known in the whole complex plan
j1 ,j2 , . . . ,jn . Therefore, there is a one to one correspo
dence between the characteristic functions given by E
~A1! and ~A3! and therefore, we also have a one to o
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correspondence between the Wigner function given by Eq.~A2! and the joint quadrature distribution given by Eq.~A4!.
Using the Fourier transform of Eq.~A5! and inserting the inverse Fourier transform of Eq.~A2!, we obtain

v~x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un!5E
2`

1`E
2`

1`

. . . E
2`

1`E
2`

1`

d2a1d2a2•••d2andh1dh2•••dhnW~a1 ,a2 , . . . ,an ,t !

3)
j 51

n
1

~2p!n
exp$2 ih j~xj2axj

cosu j2ayj
sinu j !%. ~A6!

By similar steps we obtain from Eq.~A5! the inverse of Eq.~A6!,

W~a1 ,a2 , . . . ,an ,t !5E
2`

1`E
2`

1`E
0

p

. . . E
2`

1`E
2`

1`E
0

p

dx1dh1du1•••dxndhndunuh1u•••uhnu

3v~x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un!)
j 51

n
1

~4p2! j
exp$ ih j@xj2axj

cos~u j !2ayj
sin~u j !#%. ~A7!
ra

an
t

wo
c

liz
-
on

d in
It is clear that the Wigner functionW(a1 ,a2 , . . . ,an ,t) for
any arbitrary value of n can be determined from the quad
ture distributionv(x1 ,x2 , . . . ,xn ;u1 ,u2 , . . . ,un).

2. Case-II: Detection of superposition of cavity modes

Next, we consider the situation when the two modes c
not be separated, then it is not possible to measure
quadratures, independently. Under this situation, the t
mode field can be measured using a single set of balan
homodyne detection, as discussed in Sec. IV. The genera
quadrature distributionv(x,u1 ,u2) for the two modes is de
fined as the Fourier transform of the characteristic functi

ṽ~h,u1 ,u2!5Tr$exp@ ih x̂~u1 ,u2!#r̂%, ~A8!

i.e.,
04381
-

-
he
-

ed
ed

v~x,u1 ,u2!5
1

2pE2`

1`

dhw̃~h,u1 ,u2!exp~2 ihx!.

~A9!

Again a one to one correspondence can be establishe
betweenW(a1 ,a2 ,t) andv(x,u1 ,u2) through Eq.~A1! ~for
n52) and Eq.~A8!. Using the definition@see Eq.~14!# given
in Sec. IV, we obtain

ṽ~h,u1 ,u2!

5W̃S i
h cos~c!

2
exp~ iu1!,i

h sin~c!

2
exp~ iu2!,t D .

~A10!

By taking the Fourier transform of Eq.~A10! and using the
inverse Fourier transform from Eq.~A2! for n52, we obtain
r two
v~x,u1 ,u2 ,c!5
1

2pE2`

1`E
2`

1`E
2`

1`

d2a1d2a2dhW~a1 ,a2 ,t !

3exp„2 ih$x2@ax1
cos~u1!1ay1

sin~u1!#cos~c!2@ax2
cos~u2!1ay2

sin~u2!#sin~c!%…. ~A11!

Following the similar steps, we obtain

W~a1 ,a2 ,t !5
1

16p4E2`

1`E
2`

1`E
0

pE
0

pE
0

p

dxdhdu1du2dauhuuhcos~c!uuh sin~c!uv~x,u1 ,u2 ,c!

3exp„ih$x2@ax1
cos~u1!1ay1

sin~u1!#cos~c!2@ax2
cos~u2!1ay2

sin~u2!#sin~c!%…, ~A12!

which is the required expression for the two-mode Wigner function in terms of the joint quadrature distribution fo
polarization modes measured using a single balanced homodyne detector.
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