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Reconstruction of a multimode entangled state using a two-photon phase-sensitive linear amplifier
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We propose a model for the measurement of an arbitrary multimode entangled state of the cavity field using
two-photon correlated emission laser. We consider two cégeshe modes have different frequencies and are
detected separately arid) the modes consist of two orthogonal polarization states and are detected using a
single balanced homodyne detector. The basic idea is to amplify the initial multimode state such that there is
no-noise in the quadrature of interest and all the noise is fed into the conjugate quadrature component. The
amplified noise-free quadrature is prepared in different phases and then corresponding quadrature distribution
is measured. The Wigner function of the initial multimode entangled state is then reconstructed by using
inverse Radon transformation. This scheme is insensitive to the noise associated with the nonunit efficiency of
the detector in the homodyne detection measurement scheme.
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I. INTRODUCTION ing balanced homodyne detectdBHD’s) and in the other
case the modes consist of two orthogonal polarization states
Quantum entanglement is one of the most fascinatingind detected using a single balanced homodyne detector.
nonclassical properties of a composite quantum sy$tgm The case in which the cavity modes consist of different
Its nonlocal character lies at the heart of quantum informafrequency components can be handled by separating n modes
tion theory. The idea of teleportatid@], quantum computing and sending them into separate BHD's. The joint quadrature
[3], quantum error correctidi], cryptography5] and many  distribution o(xy,Xz, ... X4;601,6,, ... ,6,) can be ob-
more[6] reside on the quantum entanglement. In this papertained by measuring the noise-free quadrature components
we propose a scheme for the measurement of an arbitra¥a(61), X2(62), ... X,(6,) by varying the local oscillator
multimode entangled state of the cavity field. phasesf;, 6, ...,0, from O to 7, independently. Multi-
Methods to measure the quantum state of the running fielnode amplification with reduced noise for different quadra-
as well as the cavity field have been extensively studied ifure phases can be obtained by injecting multiple beams of
recent years. There are different proposals for the reconstru@ree-level atoms inside the cavity, initially prepared in a
tion of quantum state of the field based upon quantum tocoherent superposition of their upper and lower atomic levels
mography{7—9], absorption and emission spectroscp§], ~ using classical fields of different values of phases,
the conditional measurement of the atoms in a micromasegz, - - - ,@n, accordingly. The joint distribution function is
cavity [11], dispersive interaction of a single circular Ryd- then used to reconstruct the Wigner function of the multi-
berg atom with the cavity field12], and otherd13]. Re- mode field using quantum state tomography.
cently, some pioneering experiments have also been done to In case when the cavity modes consist of two orthogonal
measure the quantum state of the figld] (for a review, see polarization states of the cavity field, the noisefree amplifi-
Refs.[15,16]). However, most of the recent studies are re-cation can be obtained by using the same two-photon CEL
lated to a single mode of the cavity field and there are only &€tup. The two beams of injected atoms independently am-
few schemes for the measurement of multimode field insid@lify the two polarization modes such that there is no noise
a cavity[17]. in the quadrature of interest. On the measurement side, we
Earlier, we proposed a scheme for the reconstruction of §an use a single BHD setup to detect the cavity field in
single-mode quantum state of the cavity figld]. The  which the local oscillator field is in a linear superposition of
scheme is based upon the amplification of the field using &€ two polarization model20]. The field which is allowed
two-photon correlated emission lasgiCEL) amplifier  to leak through the end mirror of the cavity is passed through
[18,19. During the amplification, there is no noise in the @ controllable phase shifter and then through a rotatable po-
quadrature of interest and all the noise is fed into the conjularizer prior to its entry in the balanced homodyne detector.
gate quadrature. The complete distribution for the noise-freéhe generalized quadrature distributies(x,6,,6,,¢) is
field quadrature is measured via optical homodyne detectiorfalculated from the measured generalized quadrature
The Wigner function of the initial quantum state is then re-
constructed by using inverse radon transformation familiarin =~ x(6;,6,,%) =3 {[a;exp —i6;)+ aIexr(i 0,)]cos ¥)
guantum state tomography. Following the same proposal, we . + ] )
study here the reconstruction of an arbitrary multimode en- +[azexp(i ) + azexp(i ) Isin(¢)}.
tangled state of the cavity field. We consider two possible
cases. In the first case, the cavity modes are defined in ternhdere 6,= 6, — ¢ is the difference between the phagge of
of different frequency component and detected separately ushe local oscillator and the phase differengeintroduced
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FIG. 1. Energy level scheme for three-level atoms. .
o (Ic)). The constant®l andM are defined as

between the modes of the field by the phase shifter. The

angle is controlled by a polarizer that determines the rela- = L,

tive amplitude of the two modes that enter the BHD. To (Paa™ Pcc)

obtain noise-free amplification for a set of generalized ()
guadrature phases given I8y and 8,, we prepare the am- _ Pac

plifiers in different phases,; and ¢,, accordingly. We have M= (Paa—Pec)

calculated the complete noise-free generalized quadrature

distribution w(X, 01,0,,¢) for 61, 6>, and ¢, all varying  The terms proportional tM contain the phase sensitivity of
from O to 7 for an arbitrary two-mode entangled quantumthe coherent atomic superposition, which play a crucial role
state after its amplification through a two-photon CEL. Theduring the amplification process. Two-photon phase-sensitive
noise-free quadrature distributions are then used to recofinear amplifier allows us to amplify the signal such that
struct the Wigner function of initial state by employing quan-there is no noise in one of the quadrature components and all
tum state tomography7]. It may be pointed out that the the noise is fed into the conjugate quadrature. Therefore,
proposed scheme overcomes the problems associated wWiiyantum features associated with the field remain intact in
the nonunit efficiency of the detector in homodyne deteCtiOfbne of the quadrature components and can be measured us-
measurement scheme. ing the balanced homodyne detection scheme. The measured

The paper is organized as follows. In Sec. Il, we presenfuadrature components then can be used to reconstruct the
the model of a two-photon CEL, and in Sec. Ill and IV, we jnitial quantum state of the cavity field.
discuss the reconstruction scheme of a multimode cavity Here we present an intuitive explanation of why the two-
field for different frequency and polarization modes, respecphoton CEL serves as a phase-sensitive amplifier. During the
tively. Details of the calculations for multimode tomography amplification process, spontaneous emission event occurs,
are presented in the Appendix. and as a result the atom undergoes a spontaneous transition
from the upper leve|a) to the middle levelb). The ran-
domness of this transition leads to an arbitrary phasioof
which is not determined by the atomic coherence. However,
in the subsequent transition of the atom from lejtg)l to

For a phase-sensitive linear amplification, we consider théevel |c), the atom remembers the arbitrary phase of the
model of a two-photon CEL amplifier proposed by Scully level |b) and as a result, the total phase coherence is pre-
and Zubairy[18]. In a CEL, atomic coherence is produced served in a CEL. In other words, the noise which is created
by considering a beam of three-level atoms in a cascade comuring the spontaneous transition from leya) to |b) is
figuration (as shown in Fig. ) initially prepared in a coher- compensated by a subsequent transition ffbjrto |c) such
ent superposition of their upper and lower atomic stéa@s that the combined field has the same phase. This phase is
and|c), i.e., completely determined by the atomic coherence which is ini-
tially introduced between the levela) and|c). Therefore,
the noise created by spontaneous emission events in a CEL is
quenched and the process serves as a phase-sensitive ampli-
fication.

The atoms are injected at a r&énside the cavity where To reconstruct a multimode cavity field, we need noise-
they interact with the cavity mode for a time the injection  free amplification with respect to all the cavity modes. For
rate and interaction time are such that there is not more thadifferent frequency modes we can inject multiple beams of
one atom at a particular time inside the cavity. The modehree-level atoms inside the cavity, initially prepared in a
frequencyv of the cavity field is also considered to be reso-coherent superposition of their upper and lower atomic states
nant with the atomic transitions)—|b) and|b)—|c). The  such that the transition frequency of each atom in a particular
evolution of the reduced density matrix of the field is givenbeam is resonant with a specific cavity mode. Under this
by the following master equation: condition, the individual frequency modes amplify indepen-

Il. TWO-PHOTON PHASE-SENSITIVE LINEAR
AMPLIFIER

Pi= Paa| a><a| +Pac|a><c| + Pca|c><a| +Pcc|C><C|- 1

043815-2



RECONSTRUCTION OF A MULTIMODE ENTANGLED . .. PHYSICAL REVIEW A7, 043815 (2003

dently and the noise-free amplification can be obtaineding the corresponding Wigner function. Here we study the
However, for two orthogonal polarization modes with the evolution of the Wigner function for any arbitrarymode
same frequency, we can consider two beams of atoms havirentangled state of the cavity field after amplification through
the same transition frequency resonant with the cavity fielda phase-sensitive linear amplifier. In the following sections,
The atoms are again prepared in a coherent superposition ofe show how it can be used to reconstruct the quantum state
their upper and lower atomic states and injected inside thef the cavity field for different frequency or polarization
cavity. The injected atoms amplify the two polarizations modes. The evolution of the Wigner function for a single-
modes independently such that there is no noise in thenode field can be obtained using E@) (see Ref.[8]),
qguadrature of interest. which can be easily generalized for a multimode field and is
The initial quantum state can be obtained by reconstructgiven by the following:

W(aq,ay, ... ,an,t)= J_:f_: o J_:f_:dzﬁldzﬂz' - d?BW(B1,B2, ... ,,Bn,O)Lljl We(aj, B ;t)}, (4

wheren corresponds to the number of cavity modes and the conditional probabfity; , 8; ;t) is given by
1 p[ [l o] cos 9 — ¢;/2) = VG| Bjlcos b, — ¢;/2) 17
expg —
m(G—1)V(N;+1/2)2=[M,[? [Nj+1/2=[Mj[1(G-1)

[l j|sin(9;— ¢;/2) — VG| ;| sin eoj—qojlznj
- [N;+1/2+M;[1(G—1) '

Wc(aj Yﬂj ’t)z

®)

Here G=exp(At) is defined as the gain factor which is as- field is amplified such that each individual mode amplifies
sumed to be the same for all the amplified modes. The conindependently.
plex quantitiese; and B; are expressed in the polar forms as

a;=|aj|exp( %)) and B;=|B;|exp(6y). The phasep; corre- | ' A\NTUM STATE RECONSTRUCTION:  N-CAVITY
sponds to the coherent superposition of Ie\4€i§)—|cj), MODES WITH DIFFERENT FREQUENCIES

ie., Pac,= |pa,cj|expacpj) for the jth beam of the atoms. _ _ . _
n the caseof peiet coherence e have th relation 1 52U e essuemert o e Maper rcten
|pai°i|= Paja;Pe;c: The squeezing parametessare defined quency components. Different frequency modes can be de-

such tha{21] tected in separate balanced homodyne detection setup and
the joint quadrature distribution can be obtained. The quadra-
tanr?rj:pajaj. ture of each mode is given as
chcj
x;(6))=13 [a]exp(i 6;) +ajexp(—i )], 7)

In terms of the squeezing parametefs the constants;

and|M;| are given b
Ml g y for j=1,2,3...,n, wheren is the number of modes inside

Nj:sian(rj), the cavity. Here phasé; can be varied independently by
(6) varying the phase of thgh local oscillator. A complete joint

sinh(2ry) distribution for the measured quadratures is given by
IMj| = o w(X1,X5, ... Xq: 601,05, ...6,). The joint quadrature dis-

tribution for the amplified multimode field, which bears a
It is clear from Eq.(4) that the initial state which is charac- one to one correspondence with tikenode Wigner function,
terized by an arbitrary-mode entangled state of the cavity can be obtained using Eq#6) and(4) and is given by

8

©(X1,X2, ... Xpi101,05, ... ,Hn)le:ﬁ: ce Jl:jﬁ:dzﬁldzﬂZ' - d?BW(B1.B2, ... .Bn0) j]:[l P(x;,0;;t)

whereP(x;,6; ;t) is given by[8]
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> 1 [X;— VG( By coS6;+ B sin ;)12
P(XJ 10] ,t): \/: exp — ] : : (9)

7 J(G—1)[N;+1/2—[M;[cog26,— ¢;)] (G—1)[N;+1/2—|Mj|cod26;— ¢))]

It is clear from Eq.(9) that a one to one correspondenceset of values of atomic coherent superposition phases
exists between the phases_,,  , of the atomic coher- ranging from O to 2r.

ence and the phaseg;_,,  , of the local oscillator. Once the joint quadrature distributian(X;,X5, . . . Xu;
To reconstruct the Wigner function, we need a completed,,6,, ... ,0,) is measured using separate balanced homo-
set of joint quadrature distributiom(Xq,Xs5, ... X,; 601, dyne detection setup, then the corresponding Wigner func-

0o, ...,0,) for 6;—1, ., all varying from O tom. The tion can be obtained by carrying out optical tomografése
noise-free amplification fon modes can be obtained by in- the Appendix. On substituting Eqs(8)—(9) into Eq. (A7),
jecting n beams of three-level atoms initially prepared in awe obtain the Wigner function of the noise-free amplified
coherent superposition of their upper and lower atomic stategyantum state in terms of the rescaled varlabEe)s

with a fixed phasep; and by adjusting the phase of separate_ .
local oscillatorse; such thatd;= ¢;/2. The complete set of axll\/— xa — %xn G, @y /‘/—
quadrature distribution fod); going from O tom can be ob- =@y /\/G, and 7= 771/\/— 77n/\/— Wthh s

tained if we prepare then beams of atoms for a given by the following:

, , , + oo + oo + oo o + o0 + o + oo T 2 , 2 , , .
o, ant= [ [T T emianaon - apamdonlnl - ol

n
XW(B1.B2." " *,Bn0) ,Hl Q(a;, B ;t)}, (10
where
1 (1 1/G)exp(—2ry) )
Q( aj, ﬁ]ut) (47 2) €x ) 7]]2_|771{(0‘x Bx. )0030)+(ay ﬂyj)sm(ej)} . (13)
|
Here we have used the definition allowed to leak through the end mirror is first passed through
a phase shifter that produces a relative phase shift af
(N;+ 1/2_|Mj|): %exq_zn)_ (12) between the two modes of the field. The field is then passed

through a polarizer that determines the relative amplitude of
the two modes which then enter in a balanced homodyne
detector. The field operator after the polarizer is given by the
following:

It is clear from Eq.(11) that for sufficiently large squeezing,
i.e., in the limit Whenr] 12,...n — and for any arbitrary
value of the gain paramete€5>1, we recover the Wigner
function of initial multimode quantum state of the field. It is
interesting to see that any arbitranymode field which con- a=acog ¢) +aexpie)sin(y), (13
sists of different frequencies can be reconstructed using the
proposed scheme, however, an appropriate rescaling of trWh

erea, anda, correspond to modes one and two, respec-
measured distribution is required.

tively. The two-mode entangled state is then made incident
on a balanced homodyne detector which measures the

IV. QUANTUM STATE RECONSTRUCTION: TWO quadrature component
POLARIZATION MODES OF THE CAVITY FIELD HAVING
THE SAME FREQUENCY X(0y,0,) =X(0y,05,4)" =1 (alexp?+a,exp 1) cosy

Here we consider the case when the two radiation modes
have the same frequency but orthogonal polarizations. In or-
der to measure such a two-mode field, we follow the scheme
proposed in Refl20] which suggests the use of a single setwhere §,= 6;— ¢. In the balanced homodyne measurement,
of balanced homodyne detection. The cavity field which isphasef; can be varied by changing the phase of the local

+ (ajexp P2+ azexp ' %2)siny], (14)
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oscillator and phaseg and ¢ are controlled by the phase with the two-mode Wigner functionV(«q,a,,t) and is
shifter and polarizer, respectively. A complete distribution forgiven by Eq.(A11). On substituting foMW(a1,a5,t), i.e.,n
X(61,0,,¢¥) is given by the quadrature distribution up to 2 from Eq. (4 into Eqg. (All), we obtain
w(Xx,01,6,,¢¥), which bears a one to one correspondencean(x,64,0,,¢) for the amplified quantum state as

1
 Jm(G—1)(k,c02() + k,SINP()

w(X:0110211//)

)f f d2B,02B,W(31,82,0)

r{ ! {x—JG([ By, cog 6;)
exg — X— +.CO
(G—1)[ k1COZ(1h) + KySIMP(1)] RS

+ By, SN 01)1CO8 ) + [ By, COK 0,) + By, Sin aznsiw»}zl, (15

where x;=N;+ 1/2—|M,|cos(P,—¢;) and x,=(N,+1/2 o S el N
—|M,|cos(¥,—¢y). It is clear from Eq(15) that the phases W(“bo‘z-t):f_oo J'_m f_x f_oc d*B1d“BW(B1,82,0)
¢, and ¢, of the atomic coherences ard and 6, of the

field quadratures exhibit a one to one correspondence which

is quite interesting. To reconstruct the Wigner function of the X
initial two-mode entangled state, we need a set of distribu-

tion functionsw(x, 64,6, ,¢) for different values off,, 65,
and ¢, all varying from O tor.

The two-mode Wigner function can be reconstructed by 2 2
amplifying the signal such that there is no noise in the de- R(ézj BiiH= ex;{ -
sired generalized quadrature measured by the balanced ho- (1= 1/G)exp(—2(r))) (1-1/G)
modyne detector and all the noise is fed into the conjugate {(&xj_ﬁxj)hr(&yj_ﬁyj)z”

X

2
Jl:[l R(&j’ﬁj;t)} (16)

where

generalized quadrature. It follows from E45) that the am-
plified signal without the added noise in the quadrature
w(X,01,0,,¥) can be obtained if we choosef2— ;=0
and 20,— ¢,=0. In order to obtain noise-free amplification
for the two-mode entangled cavity field, we prepare the am- . _1 B
plifier by injecting two beams of three-level atoms initially (N1 +1/2=[My]) = 2exp(—2ry),

prepared in a coherent superposition of their upper and lower (Ny+ 1/2— [M,|) = Lexp(— 2r,) (18)
atomic states with fixed phases and¢,, respectively. The 2 202 27

|nje§:ted atoms amplify the two poIan;aqumodes of th? For sufficiently strong squeezing, i.e., in the limit when
cavity field independently. The noise-free generahzec#_=12 —.o0 and for any arbitrary value of the gain parameter

guadrature can be obtained by adjusting the phase of tl"g>l, the functionR(ézJ- B, :t) approaches 4 function and

Iocr?l osc!IIatr(])r 01h sucz.éhat elzgl/z and r‘f: 0.~ ""2/d2 e obtain the same original two-mode entangled state. This
(where is the phase difference between the two modes Ojearly shows that any arbitrary two-mode entangled quan-

the field_ prpduped by the phase shiftefo find a complete tum state which is defined in terms of two orthogonal polar-
set of distributionw(x, 01,05, 4), we prepare the two beams i, 41ion states can be fully recovered after its amplification

of atoms for a set of values of atomic coherent SUPErpositioRy, ., ,qh a phase-sensitive linear amplifier and an appropriate
phasese; and ¢, ranging from 0 to Zr and obtain the egeaiing of the measured distribution.

noise-free amplification for the desired quadratures. The |, <onclusion. we propose a scheme for the measurement

Wigner function of the initial two-mode quantum state cant myjtimode entangled state of the cavity field using phase-
then be reconstructed from the measured values of noise-freg sitive linear amplification. We consider two cases of in-

generalized quadrature(x,6y,6,,) by carrying out the terest(i) modes are defined in terms of different frequencies
inverse Radon transformation familiar in the tomographicanq i) modes consist of two polarization states. It is shown

imaging [7]. On substituting Eq(15) into Eq. (A12) and  hat in both cases we can recover the original quantum state
after some simplification, we obtain the following expressiongiq, amplification through a two-photon CEL amplifier,

for the Wigner function in terms of the rescaled variablesy,qyever, an appropriate rescaling of the measured distribu-
Ux, = “xll\/a’ @y, = ayll\/a' Ax, = “le\/a' and @y,  tionis required. For different frequency modes, the proposed
= ay2/ JG: scheme can be used to reconstruct any arbitranode field,

exp(—2r;) (a7

Here we have used
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which is quite interesting. It may be pointed out that, in a _ 2t ex2 At
recent study, Santos, Lutterbach, and Davidovich have pro-W(gl’gz' b D=TrexA (68 £180) + (632
posed an interesting scheme for the measurement of the —&ap+ ... +H(&ah-Eranlp),
Wigner function forn modes with different frequencies in

the same or in different cavitig®2]. (A1)

Here we would like to mention that, during the measure-
ment, cavity field leaks through the cavity. To ensure that the
field leakage through the end mirrors does not occur during €
the amplification process, the time scales in the experiment
have to be adjusted such that the total amplification time is

very small as compared to the cavity decay time. The pro- W(ay,az,- -+ an,t)
posed scheme overcomes the problems associated with the 1 (4w e
nonunit efficiency of the detector. =— o f d?¢&,d?%¢,- - - d?¢,
ﬂ' — 0 — o0
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APPENDIX: MULTIMODE TOMOGRAPHY of the signal given by Eq(7) in Sec. lll. The complete

) ] . i information of then-mode field can be obtained through
In this appendix, we show how to determine the Wigner;g joint quadrature  distribution w(Xq,Xy, . . . Xg:

function in terms of probz_ibility d_istribution for_ the rotated 01,05, . ...0,), which is defined as the Fourier transform of

quadrature phase for multimode field. We consider two case§,q characteristic function and is given by

of interest, one in which we assume the separate detection of

different cavity modes and the other in which superposition

of modes is detected. ~ n

(1)( N1:M25 -« 1 ns 01!021 ot ,Hn):Tr(eXp[l[T]le( 01)

1. Case-l: Separate detection of different cavity modes + 7]2;(2(02)+ ot X ) )]};)) (A3)
n*n n 1

The Wigner function may be defined as Fourier trans-
forms of the characteristic functidr23], which for the case

of n modes is given by the following: ie.,
|
1 + oo + o -
w(X11X2! s !Xn;01!02! e !en): (Zﬁ)nfx e fﬁm d771d772 ' 'dﬁnw(ﬁlvﬂm s 177n;011021 s 1'9n)
Xexp{—i(mXg+ maXa+ - -+ mXp) b (A4)
A one to one correspondence can be established betWéen, a5, ... ,a,,t) andw(X;,Xs, ... X,;01,605, ... ,6,) which

can be seen through Eq&1) and (A3). On using the definition of quadrature phases given in Sec. Il via(Bg.we
immediately obtain

PIC IS TR T ,en>=\7V<i%exmel),i%exmez), L Dexp(i ).t (A5)

If 2’(771,7721 e aWn 01,05, ...,60,) is known for all \7V(§1,§2, .. .,&,,1) is known in the whole complex plane

M1,72, .. .,my values in the range-o<n_;,  ,<® &1,6, ... ,&,. Therefore, there is a one to one correspon-
and for all 6,,0,,...,0, values in the range 0 dence between the characteristic functions given by Egs.
<, then the characteristics, function (Al) and (A3) and therefore, we also have a one to one
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correspondence between the Wigner function given by(E8) and the joint quadrature distribution given by E44).
Using the Fourier transform of E@GA5) and inserting the inverse Fourier transform of E42), we obtain

+ o0 + o0 + o0 +
w(Xl,Xz,...,Xn;01,02,...,0n)=J7 j, Jl j, d2a,0%a,- - - d?a,dpd 7, - - dpW(ay,ay, . . . an,t)

1
(2m)"

exp{—i nj(xj—axjcosaj—ayjsin 0;)}. (AB)

n
x11
j=1

By similar steps we obtain from E@A5) the inverse of Eq(A6),

+ o0 + oo T + oo + o0 T
Wapaz, - anti= [ [T [T dadmaoydxdmdonlnl- <o

n
1 . .
X0(X1,X0, oo Xp 01,05, ... ,0n)j1_[1 (4n2) expli nj[xj—axjcos(aj)—ayjsm(aj)]}. (A7)
= T
|

It is clear that the Wigner functiow(aq, a5, . .. ,a,,t) for 1 (+» _
any arbitrary value of n can be determined from the quadra- ~ @(X,61,6,)= zf dnpw(n,6q,6)exp —inx).
ture distributionew(X,, Xz, . .. Xn;61,02, . . . .0p). o (A9)

Again a one to one correspondence can be established in
. o betweenW(«;,a,,t) andw(X, 64, 6,) through Eq(Al) (for
Next, we consider the gltqatlon when _the two modes canp — 2) and Eq(A8). Using the definitiorfisee Eq(14)] given
not be separated, then it is not possible to measure thg gec. IV, we obtain
quadratures, independently. Under this situation, the two-
mode field can be measured using a single set of balanced w(1.01,0,)
homodyne detection, as discussed in Sec. IV. The generalized o102

2. Case-ll: Detection of superposition of cavity modes

quadrature distributiom (X, 64, 6,) for the two modes is de- ~ [ mcody) . psin(y) .
fined as the Fourier transform of the characteristic function =W ITGXD(I 01),ITGXF(I 6,),t].
w(7,01,0,)=Tr{exdinX(61,6,)1p},  (A8) (A10)

By taking the Fourier transform of EGA10) and using the
ie., inverse Fourier transform from EGA2) for n=2, we obtain

1 + oo + o + oo
w(X,01,02,I/1)=Ef7 Jl J: d?a,02a,d pW(ay,a5,t)

X exp(—in{X—[ay, coq ;) + ay SiN( 1) ]cog i) —[ ay,COL O2) + ay SIN(B7) [sin(4)}).  (ALL)

Following the similar steps, we obtain

1 +o [+ o (7 [
Warat)=— | [ |77 "axandododalnll ncosinl nsint sl wtx,on. 02,0
X exili {4,008 02)+ a, SN A1) JCOS 1)~ [, COS )+ SN B Isin ), (A12)

which is the required expression for the two-mode Wigner function in terms of the joint quadrature distribution for two
polarization modes measured using a single balanced homodyne detector.
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