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%e present a high-energy calculation of the X-shell ejection cross section cr(Z~) as a function of
projectile charge Z~. Charge-transfer effects are not included. The wave function for the heavy
projectile is written as e'~ " F{—in, l, ik, f—g —i k, ~ (ii—r))I (1+in)e " ", as opposed to the
Glanber approximation e'"""exp(—in Jx„dzg.—t{ '). These two approximations agree at large
distances but differ as the electron and projectile approach closely to each other. A prediction is made
that if T (the maximum classical energy an electron at rest may receive) is much greater than I„
then r» will be less than unity. Here r 12 = o(ZI)Z2/o(ZQZ, Zi&Z2, Higher-energy experiments
are needed to confirm this theoretical result.

I. INTRODUCTION

The dependence of the E-shell ionization cross
section tr{zs) on the charge of the projectile, Z»
provides a severe testing ground for theoretical
calculations. ' For example, it has been demon-
strated' ' that the Born' ' approximation is in-
valid for X-shell ionization in the high-energy
region by measuring the ratio r» where

r„=o{Z,)Zs'/o{zs)Z', , Z, & Z, .
In Figs. 1-3, the experimental points for this

ratio are plotted for the K-shell ionization of car-
bon, copper, and titanium by a particles and
deuterons moving with the same velocity. This
ratio should be unity if the Born approximation
holds, in fact it differs appreciably from unity.

In this paper, we show that the same experi-
ments indicate the inadequacy of the Glauber ap-
proximation, ' but that the Cheshire approximation'
improves matters. Further, both approximations
are shown to predict that r» should be less than
unity at high energies, a fact as yet unconfirmed
by experiment. It is our hope that this paper might
encourage such experiments to be undertaken, as
the energy needed for copper is only a few MeV
higher than the experiments already performed.

We should say at the outset that none of our cal-
culations include charge exchange directly, and so
we have nothing to say yet about ionization pro-
cesses in which the charge of the nucleus and the
projectile are comparable. "Indeed, until me
have understood the data with a comparatively weak
probe of one or two electron charges, we would
regard such an attempt as being too ambitious. It
seems to us, from this work, that the most im-
portant problem to tackle is the correction of the
Cheshire approximation to include binding to the
atom.

Before we become submerged in mathematics,
it might be advantageous to see what physical in-
sight we can obtain from a quasiclassical de-
scription of ionization. An important quantity in
this regard is the maximum classical energy an
electron originally at rest can receive in a col-
lision. Vfe designate this energy T . In this
notation, as throughout the paper, we follow Merz-
bacher and Lewis. ' If T « II„ the ionization
energy, then only electrons moving towards the
projectile can be ejected. Electrons with the
highest components of velocity in the bound-state
wave function X e{r) are to be found near r equal to
zero. Similarly, in order for the projectile to
turn the electron around, the distance between the
projectile located at R and the electron located at
r must be small. These two facts have as a conse-
quence the fact that ejection only takes place for
values of the impact parameter 8 that are some-
what less than a, , the radius of the K shell. Thus,
the projectile finds itself attracting the electron
closely towards the very nucleus it is trying to
eject it from. This effect might be responsible
for the fact that r~ is less than unity at low ener-
gies.

As the energy of the projectile is increased so
that T„=IE, the projectile need not approach the
nucleus so closely. The fact that it attracts the
electron towards it enhances the cross section as
the density of the electron cloud is increased
around the projectile.

As the energy is increased further, T & IE, it
is no longer necessary to have electrons moving
towards the projectile to be ejected, and therefore
the electrons need not closely approach the pro-
jectile either. However, they are still pulled in,
and hence their density is decreased far from the
projectile. This could suppress the cross section.

The Glauber approximation assumes that k,[R- r
~
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Here

q =k~ —ko

—= (q„q ) = [2k sin( —,'8), —(W„+I )/Ifv]

k„= k —(W„+Iz)/kv.

The excited atom has wave function y (r) and
energy W .

ln the Glauber approximation, one sets H, (r)
equal to zero, which allows one to write (V+ W)S
in Eq. (3) as a perfect differential in Eq. (4). One
could now perform the Z integration if one mere
consistent in setting H, equal to zero, as q Z
would then be equal to zero. However, this latter
approximation has the unfortunate consequence
that now even the Born approximation is incorrect.
This difficulty can be overcome by making q Z
equal to zero by "redefining" the Z direction. '
This approximation seems difficult to justify,
especially at small angles, and is a large price
to pay for one integration. Instead, we follow a
method outlined by one of the present authors. '
We write

S(r R) e -& dzf BSd(r R

2
S~(r; B, Z) = S„~(r;B,Z)exp — W(B, Z ') dZ)Sv

gives an equation
(10)

&I elz zlhP V(~z R)e-dffdzlhPS~Z» ~

If, for the time being, we assume that W is a
short-range force, we can write

Sf(r; B, ~) = Sdff(r; B, ~)
+ oo

x exp —-* W(B, Z')dd)kv
(12)

Substitution of Sf into Eq. (9) leads to

2a, = d'B y* r S» r;B,~ d'r

f'. .(q)=-e,x' I e "'"X.'(r)

Thus the effect of W, if we assume it is short
range, is merely to add a phase factor to the wave
function which cancels when we calculate the total
inelastic cross section. " We can therefore re-
move W(A) from the calculation entirely, and re-
place Eq. (4) by

and then derive
x V(r, R)S„(r,R) d'r d'A, (13)

S,(,R)~v
aZ

where f', (q) is to be used only to calculate total
cross sections. Here

xe 'z '""S +W(A)S .
We can now write

(6)

and

iIfv " ' = [H,(r)+ V(r, R)jSdd(r, R),az (14)

q R=q, B—H+/kv

in Eq. (4), where q, is 2k sin(-,'8). This is a small-
angle approximation entirely consistent with the
approximation that led to Eq. (3). This allows the

Sdd(r, R) e dedzfhp Sf&(r R-) (16)

It should be emphasized that we are not neglecting
W(A) or the bending'of the projectile that this force
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produces. It 1s certainly incorrect to ignore W(B)
if we wish to calculate f,(q}, and we make no
such claim. %e merely point out that, in a consis-
tent small-angle approximation, there is no need
to include W(R) if one wishes to calculate the total
cross section. This simplification allows tractable
calculations without setting q ~ Z = O.

Of course, in a real atom, the forces are
long range. However, this presents no real prob-
lem as me will illustrate with the hydrogen atom.
The extension to the multielectron atom or ion is
straightforward and will not be presented here. ~

The scattering amplitude for an excited transition
ls

Z 8 S(r, R)d'rd3ft .

(16)
First of all, we assume that the integral is con-
vergent and exists; and, in particular, that me

may therefore replace the upper limit of Z by Zo
a distance that is large compared to a, . The lower
limit is treated as follow's. A heavy projectile is
unaffected by the light electron. Its wave function

P given by scattering from the nucleus alone would
be I'(1 —in) e"'I'E(in, 1, ik(ft —Z)). Here n = -Z~e'/kii.
We assumed, in deriving Eq. (3), that the argument
of the hypergeometric function mas large, and
hence arrive at

ItmZ--~, y =exp[-inln(R —Z)]

= exp gtl

This is just another way of deriving the phase fac-
tor already discussed, but it brings out the correct
boundary condition that we need. %e now write

—e-in ln(s-zis (f BZ).
and note that we must have

IimZ--~, S,„(r;8, Z) = e'" ~'" z'y, (r), -

%e may therefore calculate the total cross section
from a pseudoamplltude

III. THE CHESHIRE AND GI.AUBER APPROXIMATIONS

In the Sec. II we have shown that me need to cal-
culate S„as accurately as possible from Eq. (14)
with the boundary condition of Eq. (20). The
generalization of this for a neutral atom of nuclear
charge Z~ is that for large negative Z we need

S„(r„..., r„;B,Z) -Ay, (r„..., r»)(ji -Z)'z»" .

A is the antisymmetrization operator. " We may
split the phase factor involved into Z» equal parts,
mhich we associate with a single-particle wave
function in an independent particle model; i.e., we
write

S„(r„..., r„;8, Z) =A IIS,(r,.; 8, Z)

-x],"I~,(r,)(ft-z)'" .

It then turns out that to calculate the total inelastic
cross section for producing a K-shell hole, we
can use Eqs. (14), (2&), and (22); the only dif-
ference betmeen the general atom and the hydrogen
case is that y,(r) is now given by e "I'*. The es-
sential character of the problem as a single-parti-
cle problem, though, is unchanged.

%'riting

S.(;R) =X.(r)e(; R)

me obtain

and similarly

limz --~, S„(r;B,Z) =e'"~'" z&y, (r). (20)

We can nom mrite as before

~, 0= d'& X~& ~I~ ryByZO

x[(E2+Z2)ll2 Z ] -ind3r

l2
d'B X*~ S,„r;B,Z, d'z . 21

The first two terms on the right-hand side of
this equation are called the freely recoiling term
(FT) and the binding term (BT),' respectively The.
Glauber approximation sets FT and BT equal to
zero and gives a solution

e =(IR-rl-Z+z)'".
The Cheshire approximation sets BT equal to

zero and gives a solution

Pe = I'(I+in)e "'~'E(-in, 1, ik, () R —r(- Z+z)).

We note that, if we are at such high energies that
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(23)

where

(Tmr)1=f ,4 (r)X (r)e '4''4'r, (24)

te(q™+k,, k, ) = (Z~e'2m'/k')e"" '

x I'(1+in)I2q, l
™(q')"'" (25)

We thus deduce that the Glauber approximation
for an inelastic cross section gives 0~, where

o, = Ir(I+in) I'e"'oe (26)

and 0~ is the Born result. Applying this result to
ionization gives r„&1.

To obtain the result of Eq. (25), it is necessary
to perform the integral I, where

the argument of F is large, then (t)c = Pe. The
reason that we can use this limit as an accurate
approximation to derive Eq. (17) is the fact that
k» k, . It might be noted as an aside that if we
are using electrons as projectiles, the only con-
sistent approximation is to neglect FT as we have
already neglected a term of this order in obtaining
Eq. (3).

If we use gc or (t)o in Eq. (22), we note that we

can take the limit Z, to infinity without difficulty,
because as long as q, is nonzero, the integral con-
verges. In an inelastic process, q, of course, is
never zero. Changing variables (R —r) to R' in

an exactly equivalent manner to the Born approxi-
mation as described by Merzbacher and Lewis,
gives, in the Glauber approximation

f'(q)= F(q, m)te(q+k„k, ),

I =4 (4'4,)'"J 4*
0

=4m(2iq, )'"r(1+in)(q ')'"". (3o)

In our problem q, is negative. Hence

I =4m
I 2q, I

'"I'(1+ in)(q ')'""e""'. (31)

The Cheshire approximation gives

tc(q+k„k, ) =(Z~e'2m~e "'~'/ k')I'(I+in)(q ')'"+'

x(q'+2k, q)'", (32)

a result which may be derived in an exactly anal-
ogous manner to that above, if we use

1

F( b' ) = *'(1—t) ' 't' 'dt.
r(b)

We first note that if k, is large, then t~ and tc,

agree, apart from a factor (k,)'". This comes
from the fact that we have written the Glauber wave
function as (r —z)'", as opposed to the asymptotic
form for the Cheshire approximation [k,(r-z)]'".

We also note that t~ is discontinuous at the point
where (q'+2k, q) is zero. This discontinuity has
been noted by other authors' for the Cheshire ap-
proximation, and for this integral by Ford, "who

calculated the off-energy-shell t-matrix elements
for a cutoff Coulomb potential to which the integral
exactly corresponds. This latter statement merely
reflects the fact that for a Coulomb potential cutoff
at some large radius, say, A0, the wave function
(I)(" inside the potential region is apart from a
phase factor, e'~' F(-in, 1, ik(r —z)). The corre-
spondence between the integral and the off-energy-
shell t matrix then follows from the fact that

I= e '~' r-z '"r 'd'r. (27)
t(k. + q, k.)=- «.+ ql ~l gi(."&.

(r —z)'"=[I'(-in)] ' e'" "'t '" 'dt
0

(28)

In Eq. (28) we allow n a small positive imaginary
part to be taken to zero at the end of the calculamm

tion. Thus

4~ " t -'" -'dt
I'(-in), (q+ikt)'+t'

4m
oo oo

(Q +2$Q t)xt-ftl-ldt
I'(-in) (29)

This integral is straightforward to evaluate if we

use the fact that The discontinuity in tc is not physical. It is a
result of our approximation in neglecting BT. The
fact that the electron is bound is what makes the
scattering off energy shell, and produces what is
normally an "unphysical" discontinuity. This dis-
continuity has appeared because we have treated
the electron as free (i.e., we have neglected BT) as
far as the dynamics are concerned, but we have
treated the electron as if it were not free as far
as the kinematics are concerned. Nevertheless,
the discontinuity is integrable and produces per-
fectly reasonable smooth total cross sections. In
particular, if I~ & T, we never reach the dis-
continuity, and we derive

In Eq. (29), $ is a unit vector in the z direction.
Performing the t integration gives cc =

I
I'(1+ in) I' e ""oe. (33)
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Applied to the ionization problem, this gives r» + 1.
For I~& T„ the discontinuity is reached, and in the
notation of Merzbacher and Lewis, we obtain the
result of Eq. (33) for all those final-state energies
such that

Q&w,

and the result of Eq. (26) if

Q&g.
Thus r» is an average of the two results, de-

pending on the kinematic region one is scattering
into. It is interesting to note from our quasi-
classical description of the process that Eq. (33)
merely reflects that the electron density is modi-
fied over the Born result by a factor of
II'(1+in)I e "~ at the point R =r. As the energy
increases, the projectile can expel the electron
at a larger and larger separation. The density
increased over the Born result at the origin falls
as IR —r

I
increases. By plotting

Ir(1+in) I'e " IF( in, 1, ik, (-IR —rI-Z+z))I'

as a function of its argument, we can find that the
density starts decreasing over the Born result at
a separation d for small n such that

k,d- 1.
By the uncertainty principle, this corresponds to
a momentum transfer such that

q-k, .
This is exactly the point at which the effect

changes sign due to the discontinuity. This rea-
soning, of course, does not explain why the change
is discontinuous; it merely helps us to understand
the sign change of the effect.

IV. APPLICATION TO IONIZATION

We applied the two approximations discussed
above to the experiments mentioned previously. '
We used standard wave functions for F(q, m) with

the usual screening charges Zs, and performed
the calculation in a way exactly analogous to the
method of Merzbacher and Lewis. ' The results
for r» are plotted in Figs. 1-3. The upper curve
is the envelope obtained by using Eq. (33), and the
lower curve is the Glauber result of Eq. (26). The
Cheshire approximation, the solid line, which
averages these two results, is seen to be in much
better agreement with experiment than either
envelope. However, the fit to the data is by no
means convincing. In particular, with the possible
exception of copper, none of the experiments show
r» less than unity at the high-energy end. How-
ever, the energies measured so far are com-
paratively low, and it would be of great interest
to perform further experiments to test this theo-
retical prediction. Another reason for the lack of
agreement between theory and experiment may be
the approximate form factor F(q, m). The device
of replacing the other atomic electrons by a
screening charge is highly suspect for the ejected
electron. No provision is made for the Percy'~
effect, which can alter the wave functions con-
siderably.

The major approximation, of course, is the
neglect of BT. This can be estimated' to give
errors of the order of (Z„/Z~)rP snd becomes im-
portant as the energy is lowered. Our next task
will be to try and incorporate BT into the calcula-
tion.

In summary, we have shown that with the re-
moval of the projectile nuclear repulsion, very
simple analytic formulas may be obtained for the
Cheshire and Glauber approximations within a
consistent small-angle high-energy framework.
Both of these approximations predict that y» is
less than unity at high energies; the Cheshire ap-
proximation is in better agreement with the experi-
ments at lower energies. However, in order to
correctly understand r», it is clear that advances
must be made in both the description of the elec-
tronic wave functions used, and in the projectile's
interaction with a bound electron.
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