Show simple item record

dc.contributor.advisorMohanty, Binayak P.
dc.creatorDas, Narendra Narayan
dc.date.accessioned2010-01-15T00:06:34Z
dc.date.accessioned2010-01-16T01:02:54Z
dc.date.available2010-01-15T00:06:34Z
dc.date.available2010-01-16T01:02:54Z
dc.date.created2008-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2877
dc.description.abstractThe dissertation focuses on characterization of subpixel variability within a satellite-based remotely sensed coarse-scale soil moisture footprint. The underlying heterogeneity of coarse-scale soil moisture footprint is masked by the area-integrated properties within the sensor footprint. Therefore, the soil moisture values derived from these measurements are an area average. The variability in soil moisture within the footprint is introduced by inherent spatial variability present in rainfall, and geophysical parameters (vegetation, topography, and soil). The geophysical parameters/variables typically interact in a complex fashion to make soil moisture evolution and dependent processes highly variable, and also, introduce nonlinearity across spatio-temporal scales. To study the variability and scaling characteristics of soil moisture, a quasi-distributed Soil-Vegetation-Atmosphere-Transfer (SVAT) modeling framework is developed to simulate the hydrological dynamics, i.e., the fluxes and the state variables within the satellite-based soil moisture footprint. The modeling framework is successfully tested and implemented in different hydroclimatic regions during the research. New multiscale data assimilation and Markov Chain Monte Carlo (MCMC) techniques in conjunction with the SVAT modeling framework are developed to quantify subpixel variability and assess multiscale soil moisture fields within the coarse-scale satellite footprint. Reasonable results demonstrate the potential to use these techniques to validate multiscale soil moisture data from future satellite mission e.g., Soil Moisture Active Passive (SMAP) mission of NASA. The results also highlight the physical controls of geophysical parameters on the soil moisture fields for various hydroclimatic regions. New algorithm that uses SVAT modeling framework is also proposed and its application demonstrated, to derive the stochastic soil hydraulic properties (i.e., saturated hydraulic conductivity) and surface features (i.e., surface roughness and volume scattering) related to radar remote sensing of soil moisture.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectsoil moistureen
dc.subjecten
dc.titleModeling and application of soil moisture at varying spatial scales with parameter scalingen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentBiological and Agricultural Engineeringen
thesis.degree.disciplineBiological and Agricultural Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberHetland, Robert
dc.contributor.committeeMemberSingh, Vijay P.
dc.contributor.committeeMemberYalchin, Efendiev
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record