Show simple item record

dc.contributor.advisorHogan, Harry
dc.contributor.advisorOchoa, Ozden
dc.creatorAlexander, Christopher Richard
dc.date.accessioned2010-01-15T00:11:02Z
dc.date.accessioned2010-01-16T00:39:33Z
dc.date.available2010-01-15T00:11:02Z
dc.date.available2010-01-16T00:39:33Z
dc.date.created2007-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2534
dc.description.abstractA research program was conducted to investigate the application of composite materials in repairing corroded offshore risers, leading to the development of an optimized repair using a hybrid carbon/E-glass system. The objective of this research program was to investigate the feasibility of extending onshore composite repair techniques to offshore risers by developing integrated analytical and experimental methods. The study considered loads typical for offshore risers including internal pressure, tension, and bending. To fulfill this objective efforts included a state of the art assessment of current composite repair technology, designing a carbon-based composite repair system optimized by numerical simulation with prototype testing, and providing guidelines for industry in repairing and reinforcing offshore risers using composite materials. Research efforts integrated numerical modeling, as well as full-scale testing that included four composite repair manufacturers to assess the current state of the art on pipe samples with simulated corrosion reinforced with composite materials. Analysis and testing were also performed on the optimized carbon/E-glass system. The results of this program demonstrated that composite materials are a viable means for repairing corroded offshore steel risers as adequate reinforcement ensures that the steel risers are not loaded beyond acceptable design limits. For corroded risers, the results demonstrated through analysis and full-scale testing efforts that properly designed composite repair systems can provide adequate structural reinforcement to ensure that excessive strains are not induced in the steel when subjected to internal pressure, axial tension, and bending design loads. This was verified experimentally using strain gages placed beneath the composite repair. This program is the first of its kind and is thought to contribute significantly to the future of offshore riser repairs. It is likely that the findings of this program will foster future investigations involving operators by integrating their insights regarding the need for composite repair based on emerging technology. One of the most significant contributions to the existing body of work is the use of limit analysis in developing design limits for the repair of steel pipes using composite materials.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectoffshoreen
dc.subjectriseren
dc.subjectrepairen
dc.subjectcompositeen
dc.titleDevelopment of a composite repair system for reinforcing offshore risersen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberKeating, Peter
dc.contributor.committeeMemberLalk, Thomas
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record