Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts

    Thumbnail
    View/Open
    YAN-DISSERTATION.pdf (911.9Kb)
    Date
    2009-05-15
    Author
    Yan, Zhen
    Metadata
    Show full item record
    Abstract
    This dissertation is focused on understanding the structure-activity relationship in heterogeneous catalysis by studying model catalytic systems. The catalytic oxidation of CO was chosen as a model reaction for studies on a variety of catalysts. A series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold complex showed the best performance for CO oxidation, and the average gold particle size of this catalyst was 3.1 nm. CO oxidation was also studied over Au/MgO catalysts, where the MgO supports were annealed to various temperatures between 900 and 1300 K prior to deposition of Au. A correlation was found between the activity of Au clusters for the catalytic oxidation of CO and the F-center concentration in the MgO support. In addition, the catalytic oxidation of CO was studied in a batch reactor over supported Pd/Al2O3 catalysts, a Pd(100) single crystal, as well as polycrystalline metals of rhodium, palladium, and platinum. A hyperactive state, corresponding to an oxygen covered surface, was observed at high O2/CO ratios at elevated pressures. The reaction rate at this state was significantly higher than that on CO-covered surfaces at stoichiometric conditions. The oxygen chemical potential required to achieve the hyperactive state depends on the intrinsic properties of the metal, the particle size, and the reaction temperature. A well-ordered ultra-thin titanium oxide film was synthesized on the Mo(112) surface as a model catalyst support. Two methods were used to prepare this Mo(112)- (8x2)-TiOx film, including direct growth on Mo(112) and indirect growth by deposition of Ti onto monolayer SiO2/Mo(112). The latter method was more reproducible with respect to film quality as determined by low-energy electron diffraction and scanning tunneling microscopy. The thickness of this TiOx film was one monolayer and the oxidation state of Ti was +3 as determined by Auger spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2455
    Subject
    CO oxidation
    gold catalysts
    Pt-group metals
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Yan, Zhen (2007). Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2455.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV