Show simple item record

dc.contributor.advisorGladysz, John A.
dc.creatorZeits, Paul
dc.date.accessioned2012-02-14T22:19:24Z
dc.date.accessioned2012-02-16T16:17:04Z
dc.date.available2014-01-15T07:05:29Z
dc.date.created2011-12
dc.date.issued2012-02-14
dc.date.submittedDecember 2011
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10265
dc.description.abstractThe olefin metathesis reaction has become one of the most powerful carbon-carbon bond forming reaction in synthetic chemistry. This work has expanded the utility of olefin metathesis in metal coordination spheres in three major directions (1) the synthesis and characterization of trans-spanning bis(pyridine)PtCl2 complexes, (2) the developme-adducts of polyacetylene (PA), and (3) the development of regioregular -adducts of poly(phenylene-vinylene) (PPV). Chapter I gives a brief overview of olefin metathesis and previous applications to organometallic substrates. Chapter II details the synthesis of pyridine ligands containing alkenyl substituents, 2-NC5H4(CH2O(CH2)nCH=CH2) (n = 1, 2), 3-NC5H4(CH2O(CH2)nCH=CH2) (n = 1-5, 8, 9), and 3,5-NC5H3(p-C6H4O(CH2)7CH=CH2)2. Metalation of the new ligands with PtCl2 affords the corresponding trans-bis(pyridine)dichloroplatinum complexes, trans-PtCl2(2-NC5H4(CH2O(CH2)nCH=CH2))2 (n = 1, 2), trans-PtCl2(3-NC5H4(CH2O(CH2)nCH=CH2))2 (n = 1-5, 8, 9), and trans-PtCl2(3,5-NC5H3(p-C6H4O(CH2)7CH=CH2))2. Ring-closing metathesefirst generation catalyst followed by hydrogenations with Pd/C afford the title complexes trans-PtCl2-(NC5H4(CH2O(CH2)2n+2OCH2)H4C5N)] (n = 1, 2), trans-PtCl2-(NC5H4(CH2O(CH2)2n+2OCH2)H4C5N)] (n = 4, 8, 9), and trans-PtCl2-(NC5H3(p-C6H4O(CH2)12O-p-C6H4)2H3C5N)]. Reactions with methylmagnesium bromide afford trans-PtCl(CH3)(3-NC5H4(CH2O(CH2)nCH=CH2))2 (n = 2, 8) and trans-PtCl(CH3-(NC5H4(CH2O(CH2)nOCH2)H4C5N)] (n = 10, 18), which feature dipolar rotators. Low temperature NMR spectra in the latter remained facile on the NMR time scale in CDFCl2 at -120 degrees Celsius. Chapter III focuses on the application of ROMP with organometallic monomers to form metal pi-adducts of polyacetylene. The new complex (n4-benzene)Cp*Ir has been synthesized, crystallographically characterized, and evaluated in the ROMP reaction. Monomers (n4-benzene)CpIr, [(n6-COT)CpRu][PF6], and (n4-COT)Fe(CO)3 were also evaluated in the ROMP reaction. ROMP of (?4-benzene)CpIr with Grubbs' first generation catalyst afforded the conductive regioregular polymer CpIr-PA. Chapter IV focuses on the synthesis of the divinyl benzene complexes [Cp*Ir(C6H4(CH=CH2)2)][BF4]2 and [Cp*Ru(C6H4(CH=CH2)2)][OTf] and their polymerization via ADMET to afford PPV systems. Treatment of divinyl benzene ed the conductive regioregular polymers [Cp*Ir-PPV][BF4]2n and [Cp*Ru-PPV][OTf]n. The photophysical properties of the new -metal adducts of PPV exhibit blue-shifts relative to typical PPVs and retain strong UV absorption.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectolefin metathesisen
dc.subjectconjugated polymersen
dc.subjectconducting polymersen
dc.subjectmolecular gyroscopesen
dc.titleOlefin Metatheses in Metal Coordination Spheres: Development of Gyroscope-like trans-Spanning Bis(pyridine) Complexes and Organometallic pi-Adducts of Conjugated Polymersen
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberDarensbourg, Donald J.
dc.contributor.committeeMemberGabbai, Francois P.
dc.contributor.committeeMemberGrunlan, Jaime C.
dc.type.genrethesisen
dc.type.materialtexten
local.embargo.terms2014-01-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record