Show simple item record

dc.contributor.advisorWattenbarger, Robert A.
dc.creatorMengal, Salman Akram
dc.date.accessioned2010-10-12T22:31:54Z
dc.date.accessioned2010-10-14T16:08:04Z
dc.date.available2010-10-12T22:31:54Z
dc.date.available2010-10-14T16:08:04Z
dc.date.created2010-08
dc.date.issued2010-10-12
dc.date.submittedAugust 2010
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8446
dc.description.abstractShale gas reservoirs have become a major source of energy in recent years. Developments in hydraulic fracturing technology have made these reservoirs more accessible and productive. Apart from other dissimilarities from conventional gas reservoirs, one major difference is that a considerable amount of gas produced from these reservoirs comes from desorption. Ignoring a major component of production, such as desorption, could result in significant errors in analysis of these wells. Therefore it is important to understand the adsorption phenomenon and to include its effect in order to avoid erroneous analysis. The objective of this work was to imbed the adsorbed gas in the techniques used previously for the analysis of tight gas reservoirs. Most of the desorption from shale gas reservoirs takes place in later time when there is considerable depletion of free gas and the well is undergoing boundary dominated flow (BDF). For that matter BDF methods, to estimate original gas in place (OGIP), that are presented in previous literature are reviewed to include adsorbed gas in them. More over end of the transient time data can also be used to estimate OGIP. Kings modified z* and Bumb and McKee’s adsorption compressibility factor for adsorbed gas are used in this work to include adsorption in the BDF and end of transient time methods. Employing a mass balance, including adsorbed gas, and the productivity index equation for BDF, a procedure is presented to analyze the decline trend when adsorbed gas is included. This procedure was programmed in EXCEL VBA named as shale gas PSS with adsorption (SGPA). SGPA is used for field data analysis to show the contribution of adsorbed gas during the life of the well and to apply the BDF methods to estimate OGIP with and without adsorbed gas. The estimated OGIP’s were than used to forecast future performance of wells with and without adsorption. OGIP estimation methods when applied on field data from selected wells showed that inclusion of adsorbed gas resulted in approximately 30 percent increase in OGIP estimates and 17 percent decrease in recovery factor (RF) estimates. This work also demonstrates that including adsorbed gas results in approximately 5percent less stimulated reservoir volume estimate.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectShale gasen
dc.subjectShale gas Reservoirsen
dc.subjectAdsorptionen
dc.subjectIncluding adsorption in shale gas reservoir analysisen
dc.titleAccounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberMaggard, Bryan
dc.contributor.committeeMemberSun, Yuefeng
dc.type.genreElectronic Thesisen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record