Show simple item record

dc.contributor.advisorSpencer, Thomas E.
dc.contributor.advisorBazer, Fuller W.
dc.creatorLewis, Shaye K.
dc.date.accessioned2010-10-12T22:31:33Z
dc.date.accessioned2010-10-14T16:02:42Z
dc.date.available2010-10-12T22:31:33Z
dc.date.available2010-10-14T16:02:42Z
dc.date.created2009-08
dc.date.issued2010-10-12
dc.date.submittedAugust 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7106
dc.description.abstractGalectins are a family of secreted animal lectins with a high affinity to betagalactosides commonly involved in cellular functions such as apoptosis, adhesion and migration. Galectin 15 (LGALS15), a newest member of the galectin superfamily, has a unique C-terminal RGD sequence and participates in integrin-mediated ovine trophectoderm cell attachment and migration. In the ovine uterus, LGALS15 is expressed only by the endometrial luminal (LE) and superficial glandular (sGE) epithelia, induced by progesterone between Days 10 and 12 of the cycle and pregnancy, and then stimulated by interferon tau (IFNT) from the conceptus after Day 14 of pregnancy. During early pregnancy, the canonical janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is not active in the endometrial LE/sGE. Therefore, IFNT may utilizes a non-canonical signaling pathway to increase transcription of genes, including CST3, CTSL, HIF2A, LGALS15, and WNT7A, specifically in the endometrial LE/sGE. Alternatively, IFNT and progesterone could indirectly affect epithelial gene expression by influencing gene expression in the stroma, which then communicates with the epithelium. Although the LGALS15 gene is present in ovine, caprine and bovine species, it is only expressed in uteri of sheep and goats. Available data shows a tissue- and speciesspecific expression pattern for LGALS15, likely involving multiple layers of transcription regulation in the ruminant endometrium. Further analysis of the LGALS15 5? promoter/enhancer region revealed similar predicted transcription factor binding sites in all three species, including; PU.1, Ets-1, AP1, Sp1, and GRE or PRE sites. Interestingly, the proximal promoter region of the LGALS15 gene in all three species exhibited a conserved Sp1 binding site upstream of an AP1 binding site on both sense and antisense strands, and with similar spacing between binding sites. Sequence analysis revealed key differences in LGALS15 gene structure between ruminant species including the proximity of repetitive DNA sequences to the transcription start site (+1). Bovine LGALS15 has repetitive DNA sequences start at - 145 whereas in ovine or caprine LGALS15 it starts at about -300. The length of the repetitive DNA sequence is similar (~1.2 kb) in the 5' promoter/enhancer region of LGALS15 in all three species. Transient transfection analyses found that repetitive DNA sequences reduced basal promoter activity and responsiveness to treatments. None of the promoter construct showed responsiveness to interferon tau (IFNT). The bovine LGALS15 gene promoter showed no activity under any experimental conditions. The current studies indicate that uterine LGALS15 is expressed in ovine and caprine but not bovine species. Additionally, repetitive DNA sequences found in the promoter region may contribute to modulating the LGALS15 gene expression. Therefore, the ruminant LGALS15 gene, like other galectins, is under tight transcriptional control involving hormones, requisite transcription factors and potentially chromatin remodeling complexes working synergistically for LGALS15 promoter transactivation.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectImplantationen
dc.subjectuterusen
dc.subjectgalectinen
dc.subjecttranscriptional regulationen
dc.subjecttrophoblasten
dc.subjectconceptusen
dc.subjectpregnancyen
dc.subjectmethylationen
dc.subjectCpG dinucleotideen
dc.titleTranscriptional Regulation of Galectin 15 (LGALS15): An Implantation-Related Galectin Uniquely Expressed in the Uteri of Sheep and Goatsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentAnimal Scienceen
thesis.degree.disciplinePhysiology of Reproductionen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBurghardt, Robert C.
dc.contributor.committeeMemberJohnson, Gregory A.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record