Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Imaging and Computational Methods for Exploring Sub-cellular Anatomy

    Thumbnail
    View/Open
    Mayerich.pdf (20.48Mb)
    Date
    2010-01-16
    Author
    Mayerich, David
    Metadata
    Show full item record
    Abstract
    The ability to create large-scale high-resolution models of biological tissue provides an excellent opportunity for expanding our understanding of tissue structure and function. This is particularly important for brain tissue, where the majority of function occurs at the cellular and sub-cellular level. However, reconstructing tissue at sub-cellular resolution is a complex problem that requires new methods for imaging and data analysis. In this dissertation, I describe a prototype microscopy technique that can image large volumes of tissue at sub-cellular resolution. This method, known as Knife-Edge Scanning Microscopy (KESM), has an extremely high data rate and can capture large tissue samples in a reasonable time frame. We can therefore image complete systems of cells, such as whole small animal organs, in a matter of days. I then describe algorithms that I have developed to cope with large and complex data sets. These include methods for improving image quality, tracing filament networks, and constructing high-resolution anatomical models. These methods are highly parallel and designed to allow users to segment and visualize structures that are unique to high-throughput microscopy data. The resulting models of large-scale tissue structure provide much more detail than those created using standard imaging and segmentation techniques.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-745
    Subject
    microscopy
    three-dimensional imaging
    reconstruction
    modeling
    biological tissue
    visualization
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Mayerich, David (2009). Imaging and Computational Methods for Exploring Sub-cellular Anatomy. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2009 -05 -745.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV