Show simple item record

dc.creatorBeaudoin, Jacob Michael
dc.date.accessioned2013-02-22T20:41:21Z
dc.date.available2013-02-22T20:41:21Z
dc.date.created2004
dc.date.issued2013-02-22
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2004-Fellows-Thesis-B44
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 28-30).en
dc.description.abstractIn this paper we describe a method for simulating motion of realistically complex plants interactively. We use a precomputation stage to generate the plant structure, along with a set of simulation levels of detail. The levels of detail are made by continuously grouping branches starting from the tips of the branches and working toward the trunk. Grouped branches are simulated as single branches that have similar simulation characteristics to the original branches. During run-time, we traverse the plant and determine the allowable error in the simulation of branch motion. This allows us to choose the appropriate simulation level of detail and we provide smooth transitions from level to level. Our level of detail approach affects only the simulation parameters, allowing geometry to be handled independently. Using this method we can significantly improve simulation times for complex trees.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectcomputer engineering.en
dc.subjectMajor computer engineering.en
dc.titleSimulation levels of detail for plant motionen
thesis.degree.departmentcomputer engineeringen
thesis.degree.disciplinecomputer engineeringen
thesis.degree.nameFellows Thesisen
thesis.degree.levelUndergraduateen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record