Show simple item record

dc.creatorMerad, Mohamed Belgacemen_US
dc.date.accessioned2012-06-07T23:16:24Z
dc.date.available2012-06-07T23:16:24Z
dc.date.created2002en_US
dc.date.issued2002
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-M49en_US
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en_US
dc.descriptionIncludes bibliographical references (leaf 90).en_US
dc.descriptionIssued also on microfiche from Lange Micrographics.en_US
dc.description.abstractDuring a well test a transient pressure response is created by a temporary change in production rate. The well response is usually monitored during a relatively short period of time, depending upon the test objectives. Reservoir properties are determined from well test data via an inverse problem approach. Uncertainty is inherent in any nonlinear inverse problem. Unfortunately, well test interpretation suffers particularly from a variety of uncertainties that, when combined, reduce the confidence that can be associated with the estimated reservoir properties. The specific factors that have been analyzed in this work are: 1. Pressure noise (random noise) 2. Pressure drift (systematic variation) 3. Rate history effects Our work is based on the analysis of the effects of random pressure noise, the drift error, and the rate history on the estimation of typical reservoir parameters for two common reservoir models: A vertical well with a constant wellbore storage and skin in a homogeneous reservoir. A vertical well with a finite conductivity vertical fracture including wellbore effects in a homogeneous reservoir. This work represents a sensitivity study of the impact of pressure and rate uncertainty on parameter estimation and the confidence intervals associated with these results. In this work we statistically analyze the calculated reservoir parameters to quantify the impact of pressure and rate uncertainty on them.en_US
dc.format.mediumelectronicen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherTexas A&M Universityen_US
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en_US
dc.subjectpetroleum engineering.en_US
dc.subjectMajor petroleum engineering.en_US
dc.titleUncertainty analysis of well test dataen_US
dc.typeThesisen_US
thesis.degree.disciplinepetroleum engineeringen_US
thesis.degree.nameM.S.en_US
thesis.degree.levelMastersen_US
dc.type.genrethesis
dc.type.materialtexten_US
dc.format.digitalOriginreformatted digitalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access