Show simple item record

dc.creatorMathaudhu, Suveen Nigel
dc.date.accessioned2012-06-07T23:06:31Z
dc.date.available2012-06-07T23:06:31Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-M381
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 127-131).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractFor this study, the effectiveness of equal channel angular extrusion (ECAE) to improve the material properties and processing characteristics of vacuum arc remelted (VAR) pure tantalum was determined. The primary objectives were: 1) determination of recrystallization temperatures for processed material 2) determination of the grain refinement potential of ECAE and 3) determination of the ability of ECAE to produce a homogeneous grain structure. The effects of initial grains size (as-cast: [] 5 mm, large: 500 [u]m - 2 mm, medium: 20 [u]m - 100[u]m) and morphology, annealing temperature (23°C - 1370°C) and level of strain (one, two, or four extrusions) and extrusion route (C and E) on the recrystallized grain size, percent recrystallization, microstructural uniformity, grain morphology and Vickers microhardness were investigated. All extrusions were performed at room temperature in a 90° die using a punch speed of 5 mm/sec. Microstructural uniformity and morphology were observed and characterized using an optical metallograph equipped with a polarizing filter. Grain size measurements were made using the linear intercept method on optical micrographs. Four consecutive passes without intermediate annealing show that pure VAR tantalum is very workable when subjected to ECAE processing. The initial grain size and processing route have little if any effect on the workability or recrystallization temperature after one extrusion pass. Microhardness values are similar to published literature values produced by conventional deformation methods at equivalent strains and tend to increase significantly during the first two extrusions. Routes 2C and 4C result in fine (<22 [u]m), uniform grains after annealing for the large and medium initial grain size materials but do not for the as-cast initial grain size. Route E results in fine-grained, homogeneous, equiaxed microstructures for all initial grain sizes with ~11 [u]m being the smallest produced. The microstructural homogeneity and uniformity, and the fine-grain size resulting from ECAE processing may be advantageous to those produced by the conventional methods such as rolling, swaging, forging and wire drawing, with the added advantage of being a bulk product. The Hall-Petch relationship is found to be valid for ECAE processed tantalum over a grain size range of 10 [u]m to 100[u]m.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleGrain refinement in bulk pure tantalum using equal channel angular extrusionen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access