Show simple item record

dc.creatorRaymer, Stephen Geoffrey
dc.date.accessioned2012-06-07T23:00:56Z
dc.date.available2012-06-07T23:00:56Z
dc.date.created2000
dc.date.issued2000
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2000-THESIS-R39
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaf 35).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe research presented here develops a new method for measuring forces in magnetic bearings. Fiber-optic strain gauges (FOSGs) mounted to the side of the magnet poles are used to detect the small levels of strain that the metal experiences as the bearing exerts a force. These strains can be converted into force components, providing measurements with a level of accuracy and precision previously unattainable. Tests were done using the Magnetic Bearing Test Rig at the Texas A&M University Turbomachinery Laboratory. Two FOSGs were placed approximately 90ʻ apart on two separate poles of one of the bearings, and the strain levels for different load magnitudes and directions were measured. The raw signal has several undesirable attributes that prevent a static measurement. However, analysis in the frequency domain proved to be very effective, as most of the noise in the signal is confined to frequencies below 1 Hz. Due to the raw signal characteristics, new techniques for load application and calibration were developed. By using these new approaches, an equation relating reaction force components and strain was generated. This equation provides precise knowledge of any force vector in the bearing. An uncertainty analysis was performed on the resulting equation, providing a measure of resolution and a reduction in error several times more precise than any previous result. As a result of these findings, magnetic bearings can now be used to perform precise diagnostic analysis, determine rotordynamic coefficients, and improve magnetic bearing design and performance.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleForce measurements in magnetic bearings using fiber optic strain gaugesen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access