Show simple item record

dc.creatorRamabhadran, Sanjay
dc.date.accessioned2012-06-07T22:46:26Z
dc.date.available2012-06-07T22:46:26Z
dc.date.created1996
dc.date.issued1996
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1996-THESIS-R357
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references: p. 112-117.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractResearch missions in nuclear energy conducted by the U.S. Department of Energy facilities have generated large volumes of mixed wastes with hazardous and radioactive components. Uranium and nickel are the primary contaminants of concern in this research which focused on better understanding the Solidification/Stabilization (S/S) chemistry, complex waste-binder interactions, and the suitability and effectiveness of additives in the Portland cement based treatment systems. The treatability was investigated with a simulated waste representative of the actual Oak Ridge K-25 pond waste. Screening tools such as the short term slurry tests were used to ascertain the behavior of the contaminants in the cement based systems for a range of binder-to-waste ratios, and optimal substitutions of cement with additives. This was used in combination with the Acid Neutralizing Capacity of the S/S system components to design solid waste form mixes to be evaluated over long curing periods. Attempts at estimating the extent of sorption and other immobilization mechanisms were made using dry and hydrated cement matrices. Portland cement based systems with flyash, silica fume and sodium sulfide as additives were studied. Porewater uranium and nickel concentrations, leachability, physical immobilization in terms Of MacMullin number and Unconfined Compressive Strength, regulatory compliance, and risk reduction were evaluated in the solid waste forms ranging over three binder-to-waste ratios. The 900 mg/L uranium and 3,000 mg/L nickel in the untreated sludge were reduced to less than 10 mg/L uranium and 30 mg /L nickel in the TCLP extract of the solidified waste form.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectcivil engineering.en
dc.subjectMajor civil engineering.en
dc.titleSolidification/stabilization of simulated uranium and nickel contaminated sludgesen
dc.typeThesisen
thesis.degree.disciplinecivil engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access