Show simple item record

dc.creatorMacha, Douglas Bryan
dc.date.accessioned2012-06-07T22:41:34Z
dc.date.available2012-06-07T22:41:34Z
dc.date.created1995
dc.date.issued1995
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1995-THESIS-M3345
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe beneficial effects of chronic DC electrical stimulation upon peripheral nervous system (PNS) regeneration of injured nerve has been adequately confirmed, yet few attempts have been made to quantify the relevant stimulus parameter. The localized electric field strength and current densities produced by the injection of electrical current through inhomogenous structures in the region of the nerve are the acknowledged parameter of interest. However, because of the difficulties inherent in measuring these values, researchers have previously chosen to characterize stimulus in terms of raw current supplied to nerve injuries. Attempts to quantify field strength or current densities in vivo were based on assumptions which idealize the conductive media as being isotropic. The actual field strength or current density induced by the applied current is seldom directly measured in-vivo. This research seeks to evaluate the design of an implantable DC stimulator capable of delivering a constant, stable and measurable electrical stimulus across a defined region of nerve, and for the purpose of measuring the bulk tissue resistivity and electrical field strength in the defined region in a chronic regime. From this information, current density within the region can be measured and controlled, providing a stimulation parameter which can be correlated to nerve regeneration. Such a probe will prove very useful in ongoing research which evaluates the effects of applied electrical fields upon nerve regeneration.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectbioengineering.en
dc.subjectMajor bioengineering.en
dc.titleDevelopment and evaluation of an implantable chronic DC stimulation and measurement probe for nerve regeneration studiesen
dc.typeThesisen
thesis.degree.disciplinebioengineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access