Show simple item record

dc.creatorLondo, Andrew Jamesen_US
dc.date.accessioned2012-06-07T22:41:25Z
dc.date.available2012-06-07T22:41:25Z
dc.date.created1995en_US
dc.date.issued1995
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-1995-THESIS-L65en_US
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.descriptionIssued also on microfiche from Lange Micrographics.en_US
dc.description.abstractSoil respiration rates have been used as an indicator of soil community activity around the world. An increasing number of studies have been performed using soil respiration rates as a measure of man's impacts on the environment, including forest land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non-harvested control. I hypothesized that respiration rates would vary directly with harvest intensity. The sodalime absorption technique was used for determining in situ respiration and the wet alkali method was used for measuring mineral soil respiration in the lab. Soil temperature and moisture content were also measured. Sampling occurred between 6 and 22 months after harvesting. Total soil and soluble organic carbon analyses were performed every three sampling periods beginning with period 6. Total soil organic carbon content was determined by the Walkley-Black method, an acid digest procedure. Soluble organic carbon content was determined from cold-water extracts analyzed with a total organic carbon analyzer. Results indicated that harvesting significantly (a=0.05) increased in situ respiration during most sampling periods. This effect was attributed to the revegetation of the site creating an increase in live root and associated microflora activity in the soil following harvesting. In situ respiration varied directly with soil temperature and inversely with soil moisture. Harvesting effects on mineral soil respiration were less clear and showed trends in only some months. Harvesting significantly (a=0.05) increased the amount of total organic carbon in the top 15 cm, whereas overall soluble organic carbon levels were not significantly affected. I feel that even though harvesting has significantly effected soil respiration rates, this increase will not adversely affect atmospheric C02 levels. Published data show that when temperate forests are allowed to regrow immediately after harvest, carbon assimilated in growing vegetation is greater than the C02 lost from the soil.en_US
dc.format.mediumelectronicen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherTexas A&M Universityen_US
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en_US
dc.subjectforestry.en_US
dc.subjectMajor forestry.en_US
dc.titleThe effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystemen_US
dc.typeThesisen_US
thesis.degree.disciplineforestryen_US
thesis.degree.nameM.S.en_US
thesis.degree.levelMastersen_US
dc.type.genrethesis
dc.type.materialtexten_US
dc.format.digitalOriginreformatted digitalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access