Show simple item record

dc.creatorSei, Vincent Joseph
dc.date.accessioned2012-06-07T15:38:42Z
dc.date.available2012-06-07T15:38:42Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-S457
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractThe High Angle of Attack Research Vehicle (HARV) as well as other similar flight test aircraft have been using smoke flow visualization techniques to characterize the vortex flow created by leading edge extensions and the forebody. With the advent of video measurement techniques, this type of flow visualization can not only provide a qualitative assessment of the flow but also a quantitative measure to be used to validate computational fluid dynamic codes and wind tunnel test. One of the major drawbacks to employing video imaging was the introduction of false motion due to camera movement in flight. A relative motion approach using fixed targets along with the flow visualization scheme was utilized to remove unwanted motion. The relative motion algorithm was tested using a laboratory test setup where cameras underwent both translational and rotational motion to simulate both wing bending and torsion. The method was effective in removing both motions with only a slight loss of accuracy. A full scale mockup of the HARV demonstrated that the location of a target could be determined within one inch of its true position or less that 1% of the HARV length.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectaerospace engineering.en
dc.subjectMajor aerospace engineering.en
dc.titleA nonintrusive method of quantifying flow visualization data in vortex flow fieldsen
dc.typeThesisen
thesis.degree.disciplineaerospace engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access